EP1520091B1 - Procede et dispositif de commande d'un moteur a combustion interne - Google Patents

Procede et dispositif de commande d'un moteur a combustion interne Download PDF

Info

Publication number
EP1520091B1
EP1520091B1 EP03762409A EP03762409A EP1520091B1 EP 1520091 B1 EP1520091 B1 EP 1520091B1 EP 03762409 A EP03762409 A EP 03762409A EP 03762409 A EP03762409 A EP 03762409A EP 1520091 B1 EP1520091 B1 EP 1520091B1
Authority
EP
European Patent Office
Prior art keywords
signal
characteristic
injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03762409A
Other languages
German (de)
English (en)
Other versions
EP1520091A1 (fr
Inventor
Jens Damitz
Ruediger Fehrmann
Matthias Schueler
Michael Kessler
Mohamed Youssef
Vincent Dautel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10305656A external-priority patent/DE10305656A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1520091A1 publication Critical patent/EP1520091A1/fr
Application granted granted Critical
Publication of EP1520091B1 publication Critical patent/EP1520091B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine according to the preambles of the independent claims.
  • a method and a device for controlling an internal combustion engine, in particular a diesel internal combustion engine is known from US 6,390,068 known.
  • This document describes a method for monitoring an injection system.
  • the output signal of a structure-borne sound sensor is integrated via a measuring window and filtered with a predetermined frequency band.
  • the signal is checked via two crank angle windows F 1 and F 2 to the effect at which crank angle the signal reaches a predetermined amplitude value.
  • the amount of fuel that is metered in the pre-injection or main injection is calculated.
  • the quantities thus derived from the structure-borne noise signal are checked to see if they are outside a permissible value range. If this is the case, the device recognizes errors
  • the DE 196 12 179 C describes a method for controlling the combustion process of an internal combustion engine.
  • the start of combustion in the cylinders is determined and, if necessary, changed in such a way that an uneven torque output of the cylinders is equalized.
  • a filtering of the signal in a measuring window (MF) per injection is provided. Based on the filtered signal only one parameter is determined.
  • a method and a device for controlling an internal combustion engine, in particular a diesel internal combustion engine is known from DE 195 36 110 known. There, based on the signal of a structure-borne sound sensor, quantities are determined which are used to control the internal combustion engine.
  • At least two parameters are determined based on the signal of a structure-borne sound sensor. These are used to control the internal combustion engine.
  • the evaluation of the structure-borne sound signal includes at least one filtering which selects at least two angular ranges. Based on the correspondingly processed signal, the characteristics result. The fact that several angular ranges are evaluated, a reliable determination of the events to be evaluated is possible.
  • At least two parameters are determined.
  • a parameter is determined for each angular range in which an evaluation takes place.
  • new characteristics are determined by dividing the characteristics among each other.
  • two parameters K 1 and K 2 are determined by filtering in at least one angular range and the quotient is formed.
  • the actual parameter is then determined by ratio formation, which is independent of absolute signal values and thus of sensor tolerances and drifts.
  • the characteristics are compared with setpoints.
  • manipulated variables can be predetermined which influence the injection and / or the position of the inlet valves and / or the outlet valves.
  • the determined characteristics characterize certain events and / or times.
  • the parameter preferably characterizes the noises determined in the corresponding measurement window. In a pre-injection there is a simple relationship between the noise emission and the injected fuel quantity.
  • a correlation coefficient is determined as a parameter by means of a cross-correlation which characterizes the deviation of the measured signal from a reference signal.
  • the reference signal preferably corresponds to the structure-borne sound signal in preferred states.
  • the reference signal corresponds to the structure-borne sound signal at a desired pre-injection.
  • FIG. 1 shows a block diagram of the procedure according to the invention and FIGS. 2 to 4 show various configurations of the evaluation according to the invention of the structure-borne sound signal.
  • FIG. 1 shows the method according to the invention for measuring and evaluating the structure-borne sound signal as a block diagram.
  • 0 is a structure-borne sound sensor
  • 1 an anti-aliasing filter
  • 2 is a windowing
  • 3a, 3b, 3c are three parallel FIR filters
  • 4a, 4b and 4c are three parallel magnitude formations
  • 5a, 5b, and 5 c are called three integrators.
  • the FIR filters the amount of education and the Integrators each have multiple branches.
  • 3 parallel branches are shown. In other embodiments, other numbers of parallel branches may be provided.
  • the parallel FIR filters can be freely parameterized. Different frequency ranges can be considered simultaneously. This is advantageous because interference signals in the vehicle, which are caused for example by the connection of a pump, by valve noise of another cylinder, superimpose the actual useful signal in certain frequency ranges interference signals. By filtering one and / or several frequency ranges are selected in which the useful signal can be measured as possible without interference. The combination of several selected frequency ranges allows a more reliable detection of the useful signal.
  • the output signals of the individual branches reach a control 6.
  • an output signal is forwarded for each considered angular range and each considered frequency range.
  • a signal of a first split injection filtered by a first filtering method is designated In1F1.
  • a signal of a first split injection filtered by a second filtering method is designated In1F2, and a signal of a second split injection filtered by the first filtering method is designated In2.
  • Signals associated with at least one angular range are filtered by at least one filtering method.
  • signals are filtered multiple angular ranges with multiple filtering methods.
  • An angular range is assigned in particular to a partial injection of a combustion process.
  • 3 filters are used which are spread over the entire evaluation range, i. for all injections. Due to the window formation, angle ranges are excluded which do not contain any signal component and / or in which disturbances occur.
  • the controller 6 can be connected directly to the structure-borne sound sensor 0 via a first connection 7 and / or directly to the windowing 2 via the connection 8.
  • Outa is a manipulated variable for valve control
  • Outb a manipulated variable for controlling the actuation starts of pre-, main, post-injections
  • Outc a manipulated variable for controlling the actuation time of pre-, main, Called post-injections.
  • the structure-borne sound signal is measured in one or more measurement windows.
  • two to three measuring windows per injection are provided.
  • a measuring window is defined by the window position and the window length.
  • the window position corresponds to the angular position of the camshaft and / or the crankshaft, at which the detected size is likely to occur.
  • the window length corresponds to the angle range around which the detected size can change.
  • the window position and window length is variably adjustable to capture different sizes.
  • the windowing selects the angular range to be evaluated within which the structure-borne sound signal is evaluated. Depending on which size is to be obtained as the output variable, different measurement windows are specified.
  • a partial injection is assigned to each window.
  • the individual partial injections are assigned at least one measuring window.
  • filters with different transmission characteristics may also be provided.
  • bandpasses, lowpasses, highpasses, bandstop filters and / or nonlinear filters are used.
  • filters are used which select certain frequency ranges.
  • a square or similar functions can also be used. It is essential that a quantity is formed which characterizes the signal power, which depends quadratically on the signal amplitude.
  • any averaging can be implemented in these angular ranges for integration over certain angular ranges if a relative consideration of different characteristic values relative to one another is carried out by quotient formation or a similar mathematical method.
  • the controller 6 acts on a valve control unit, not shown, with a first manipulated variable Outa. This is preferably a variable that influences the opening and / or closing times of the intake valves and / or the exhaust valves.
  • the controller 6 also acts on control elements, not shown, which influence the fuel metering with a second signal Outb, which influences the start of control of one or more pilot, main and post-injections.
  • the controller 6 acts on illustrated adjusting elements, which influence the fuel metering with a third signal Outc, which determines the driving time and thus the amount of one or more pilot, main and post injections.
  • FIG. 2 shows the signal processing in the controller 6 in more detail using the example of an input variable Inb.
  • 21 denotes a time-of-flight correction, 22 a malfunction compensation, 23 an averaging, 24 a statistical value calculation and 25 an interference-level switching between control / regulation.
  • a structure-borne noise sensor is used for a plurality of cylinders of the internal combustion engine.
  • the sound wave created in the combustion chamber takes a running time to reach the sensor. Therefore, the signals from cylinders farther from the sensor reach the sensor later than from the closer cylinders.
  • This runtime or the necessary correction is a defined quantity, which depends on the installation location of the sensor. It is first applied to the test stand or vehicle in order to take it into account in the signal processing. For block 21, this means that there is a time shift of the signals with the previously applied quantities.
  • the useful signals are interference signals superimposed by background noise. For example, the valve stroke of another cylinder causes a characteristic vibration in the cylinder Waveform. These disturbances are determined beforehand on the test engine. These interference signals are compensated in noise compensation 22.
  • certain characteristic oscillations are subtracted in certain time ranges from the measured signal. For interfering signals with characteristic frequency components, these are subtracted in the frequency spectrum.
  • the averaging 23 determines an average over several variables.
  • the calculation 24 determines various statistical quantities, such as the variance.
  • the rating 25 causes, based on the level of the noise level of the signal, a switching between map controlled and controlled operation. If the interference level does not exceed a threshold value, the corresponding output variable is regulated.
  • the output variable is determined as a function of the comparison of a measured value or a variable calculated from one or more measured values with a desired value.
  • FIG. 3 shows the evaluation of the structure-borne sound signals transmitted via the connection 7 and / or 8 in the controller 6.
  • Inc is a reference signal and Inb the structure-borne noise signal is called, which is transmitted via the connection 7 and / or via the connection 8.
  • 31 is an integrator and 32 is an evaluation method.
  • the integrator 31, the structure-borne sound signal is fed.
  • the analysis method 32, the structure-borne sound signal and the reference signal is supplied. Further, thresholding at 33 and weighting and / or combination of features at 34 are indicated.
  • the thresholding 33 is supplied to the output signal of the integrator 31 and the structure-borne sound signal.
  • the weighting and / or combination of the features 34 are fed to the output signal of the threshold value formation 33 and that of the evaluation method 32.
  • the weighting and / or combination of the features is preferably designed as Kalman filtering.
  • the output signal of the evaluation method 32 is designated as parameter Ka. These are preferably the times at which certain signals occur and / or information about the similarity of the input signals, which are also referred to as the correlation coefficient.
  • the output of thresholding 33 is also referred to as characteristic Kb. These characterize the times at which certain signals occur.
  • the output variables of the weighting 34 correspond to the output variables of the controller 6.
  • the evaluation of the processed structure-borne noise signals takes place via the block 32 and / or the block 33.
  • reference signals are used.
  • structure-borne sound signals are used, which were measured under defined operating conditions.
  • structure-borne noise signals that occur in overrun mode and / or structure-borne sound signals that occur with only one pre- or main or post-injection can be used as a reference signal.
  • the reference signals are detected in the corresponding operating states and stored in suitable memory means.
  • the evaluation method used is preferably a KKF and / or a wavelet analysis and / or an FIR filtering.
  • the signals are convoluted in the time domain.
  • a measured signal is evaluated.
  • the KKF evaluates the similarity of the signal with reference signals.
  • the correlation coefficient describes the agreement.
  • the value 1 denotes an identical course of the signal and the reference signal.
  • the absolute points in time and / or the angular positions of the occurring signal oscillations are determined.
  • the FIR is used to reduce noise and select relevant frequency ranges. This can be used to calculate the power of certain frequency components. By windowing the signals can also be determined in which measurement window and thus when an event occurs in the measurement signal.
  • the wavelet analysis in which the signal is convoluted with a reference signal, corresponds to a simple FIR filtering.
  • Advantageous is their simple implementation in software and hardware.
  • the evaluation in block 32 contains at least 2 possibilities with which the parameters can be calculated and the control can be realized.
  • the calculated features are combined and weighted by mathematical methods, in particular by the use of a so-called Kalman filtering.
  • the block 33 includes the evaluation of the measured structure-borne sound signals and / or the integral values.
  • a start time in the signal is detected by the exceeding of a defined, operating point-dependent threshold value.
  • the times at which an inlet valve and / or an outlet valve closes and / or opens, the top dead center occurs, the individual partial injection start or end and / or the combustion begins or ends are detected.
  • a corresponding time is detected when the corresponding filtered signal exceeds certain thresholds. It is provided that the filtering of the structure-borne sound signal and the reference values for the different sizes are selected differently.
  • the structure-borne sound signal In addition to pressure changes due to combustion, sound waves through engine attachments and / or ancillary components influence the structure-borne sound signal.
  • the actuation of the intake valves and / or the exhaust valves causes mechanical vibrations, which are recognized by the structure-borne sound sensor as a characteristic oscillation in the waveform.
  • the angular ranges of the structure-borne noise signals in which these vibrations preferably occur are filtered out by means of the fenestration 2 and / or the FIR filter. By evaluating the correspondingly filtered signal, the angular positions are determined at which the inlet and / or outlet valves open and / or close.
  • the variables determined in this way are fed as actual value to a control, which, starting from a comparison of these actual variables with a desired value, determines a corresponding manipulated variable which is used to act on an actuating element which actuates the inlet and / or outlet valves.
  • the time position and / or the angular position can be determined directly.
  • the occurring vibration is assigned to a particular event or condition.
  • a measured vibration correlates with the closing or opening of the valve.
  • a characteristic oscillation occurs at fixed angular positions in the signal curve. This is recognized by the evaluation 32 detected and used for example for OT detection and calibration.
  • the onset of combustion causes a vibration in the structure-borne sound signal.
  • the detection of the beginning of the combustion and thus of the ignition delay makes it possible to control the start times of the injection.
  • the variables determined in this way are fed as actual value to a control, which, starting from a comparison of these actual variables with a desired value, controls a corresponding manipulated variable which controls an actuating element which controls the start and / or drive duration of pilot, main and post-injections.
  • the analysis of the structure-borne sound signals by means of the blocks 1, 2, 3, 4 and 5 provides a number of characteristics, which is determined by the number of measurement windows times the number of injections per injection cycle. The processing of these parameters is shown in FIG.
  • the evaluation of the structure-borne sound signals shown in FIG. 4 is carried out in the controller 6.
  • the variables In1 to Inx correspond to the output signals of the blocks 5a, 5b and 5c. Inc denotes the reference signal or reference signal.
  • the number x of the input variables In1 to Inx preferably corresponds to the number of partial injections times the number of measuring windows per partial injection.
  • an averaging takes place via a plurality of characteristic variables in the same injection, an averaging via the injection into a plurality of cylinders and / or an averaging over a plurality of partial injections.
  • other statistical quantities such as the variance, can be determined.
  • the pre-injection drastically influences the noise and exhaust emissions due to the strong influences on the combustion process. This affects the ignition delay as well as the gradient of the cylinder pressure curve.
  • the structure-borne sound signal is a direct measure of the changes occurring in the cylinder pressure.
  • the parameters calculated from the structure-borne sound signal for the pre-combustion and / or the main combustion show a clear dependence on the pre-injection quantity.
  • the effects of the pilot injection on the structure-borne noise signal can be used for an optimization of the pre-injection. Optimization means a reduction or increase of the Pre-injection quantity while maintaining defined ignition delays and cylinder pressure gradients.
  • the relationship is used that the turnover speed or the injected fuel quantity influence the parameters. Larger amounts of fuel or faster conversion speeds affect the signal intensity in different frequency ranges. Filtering, amount formation and integration identify these influences.
  • the comparison of the signals with each other or with parameters that were determined under reference conditions provide the connection sought to the injected fuel quantity and the times of the individual injections and thus allow their regulation.
  • the evaluation according to path 1-2-3-4-5 from Fig.1 subdivides both the main injection and the pilot injection into different measurement windows, in each of which the evaluation takes place.
  • the result in particular the signal value integrated via the measuring window, corresponds to a combination of integrator values which is characteristic for this operating point.
  • An increase in the pilot injection quantity leads to a stronger pre-combustion, a previous and slower main combustion. This has the effect on the integrator values of the pilot injection that generally higher values occur.
  • the integrator values of the earlier measurement windows increase because the main combustion takes place earlier.
  • the values of the mean measured values decrease because the burning speed is lower.
  • the times and injection quantities are concluded by comparing the measured pattern with the patterns determined under reference conditions.
  • At least one of the parameters In is determined. This characteristic is fed as actual value to a control.
  • the setpoint used is the corresponding characteristic variable Inc, which occurs when a pre-injection takes place with an optimum pre-injection quantity. If the parameters measured during operation deviate from the parameter with optimum pre-injection, the controller influences the pre-injection quantity via the manipulated variable Out in such a way that the difference between the setpoint and the actual value is reduced.
  • FIG. At least two filtered signals In1 and In2, through appropriate filtering and signal processing By means of blocks 1 to 5, a quotient formation 50 is obtained.
  • the output signal Ka which represents a parameter, arrives at a controller 52 at whose second input the reference signal Inc is present.
  • This reference signal Inc is provided by a setpoint input 54.
  • a first value In1 which characterizes the noise emission of the pilot injection
  • a second value In2 which characterizes the noise emission of the main injection
  • new characteristics are determined by dividing the characteristics among each other.
  • angular ranges are, for example, areas a, which are characteristic of certain partial injections, such as the pre-injection and the main injection are areas b which are characteristic of certain partial injections under certain process conditions, areas c where no combustion takes place and / or areas d where characteristic disturbances like valve rattling take place.
  • the quotients of the characteristics between the regions which are characteristic for the pre-injection and the regions which are characteristic of the main injection are considered.
  • the quotients of the parameters are formed between regions with injection and regions without injection.
  • the characteristics of areas between which the weight of the partial burns shifts depending on the process conditions can be considered.
  • the manipulated variable is determined by means of a control.
  • the parameter Ka is compared with a nominal value Inc.
  • the manipulated variable will then be specified.
  • a constant setpoint or a setpoint dependent on the operating state can be specified.
  • an addaptive control can also be provided.
  • the parameter Ka is compared with the setpoint Inc. Based on the comparison, a correction variable is determined and stored. With the stored correction value, the manipulated variable is corrected in the other operating states.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Dispositif et procédé de commande d'un moteur à combustion interne, en particulier d'un moteur diesel. Des grandeurs caractéristiques sont déterminées à partir du signal d'un capteur de bruit de corps, grandeurs qui sont utilisées pour réguler le moteur à combustion interne. Au moins une grandeur caractéristique est déterminée sur la base d'une analyse qui comporte un filtrage sélectionnant au moins deux plages angulaires.

Claims (7)

  1. Procédé de gestion d'un moteur à combustion interne selon lequel, partant du signal d'un capteur de bruit de structure, on détermine des grandeurs caractéristiques utilisées pour commander le moteur à combustion interne selon lequel
    on détermine au moins une grandeur caractéristique par une exploitation avec filtrage, sélectionnant au moins deux plages angulaires par injection,
    caractérisé en ce que
    pour au moins les deux plages angulaires, on détermine au moins deux grandeurs caractéristiques,
    par division des deux grandeurs caractéristiques, on forme une troisième grandeur caractéristique et
    on compare cette troisième grandeur caractéristique à une valeur de consigne et partant de la comparaison, on prédéfinit ou on corrige une grandeur d'actionnement.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    les grandeurs d'actionnement influencent l'injection et/ou la position des soupapes d'admission et/ou des soupapes d'échappement.
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    comme grandeur caractéristique, on détermine un coefficient de corrélation par une corrélation croisée caractérisant la déviation du signal mesuré par rapport à un signal de référence.
  4. Procédé selon la revendication 1,
    caractérisé en ce que
    le signal de référence correspond au signal de bruit de structure pour des états correspondants.
  5. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    comme grandeur caractéristique, on utilise la position angulaire du vilebrequin et/ou de l'arbre à cames, position pour laquelle se produisent certains événements.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    la grandeur caractéristique distingue l'intensité du signal dans certaines plages angulaires.
  7. Dispositif de commande d'un moteur à combustion interne selon lequel, partant du signal d'un capteur de bruit de structure on détermine les grandeurs caractéristiques utilisées pour la régulation du moteur à combustion interne, on sélectionne par filtrage au moins deux plages angulaires par injection et des moyens, qui, partant des signaux filtrés, déterminent au moins une grandeur caractéristique,
    caractérisé par
    des moyens déterminant au moins deux grandeurs caractéristiques pour au moins deux plages angulaires et qui par division de deux grandeurs caractéristiques déterminent une troisième grandeur caractéristique et cette dernière est comparée à une valeur de consigne et à partir de cette comparaison, on prédéfinit ou on corrige une grandeur d'actionnement.
EP03762409A 2002-07-02 2003-06-18 Procede et dispositif de commande d'un moteur a combustion interne Expired - Lifetime EP1520091B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10229719 2002-07-02
DE10229719 2002-07-02
DE10305656A DE10305656A1 (de) 2002-07-02 2003-02-12 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10305656 2003-02-12
PCT/DE2003/002043 WO2004005686A1 (fr) 2002-07-02 2003-06-18 Procede et dispositif de commande d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1520091A1 EP1520091A1 (fr) 2005-04-06
EP1520091B1 true EP1520091B1 (fr) 2007-11-21

Family

ID=30116597

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03762409A Expired - Lifetime EP1520091B1 (fr) 2002-07-02 2003-06-18 Procede et dispositif de commande d'un moteur a combustion interne

Country Status (6)

Country Link
US (1) US7269498B2 (fr)
EP (1) EP1520091B1 (fr)
JP (1) JP2005531722A (fr)
CN (1) CN100458129C (fr)
DE (1) DE50308657D1 (fr)
WO (1) WO2004005686A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10343069B4 (de) * 2003-09-17 2005-09-29 Siemens Ag Verfahren zur Quantifizierung einer Voreinspritzung bei einem Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102004046086A1 (de) * 2004-09-23 2006-03-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP2008520876A (ja) * 2004-11-18 2008-06-19 ウエストポート・パワー・インコーポレイテッド 内燃機関の燃焼性制御を援助する加速度計信号を処理するためのシステム及び方法
DE102004058682A1 (de) * 2004-12-06 2006-06-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung und Steuerung einer Brennkraftmaschine
DE102005036727A1 (de) * 2005-08-04 2007-02-15 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102006001369A1 (de) * 2005-10-24 2007-05-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102005059908A1 (de) * 2005-12-15 2007-06-28 Robert Bosch Gmbh Verfahren zur Dosierung von Kraftstoff in Brennräume eines Verbrennungsmotors
EP1843024B1 (fr) * 2006-04-06 2017-07-26 Magneti Marelli S.p.A. Système et méthode de commande de groupe motopropulseur
ATE430975T1 (de) * 2006-07-10 2009-05-15 Harman Becker Automotive Sys Reduzierung von hintergrundrauschen in freisprechsystemen
FR2918338B1 (fr) * 2007-07-06 2009-10-30 Renault Sas Dispositif et procede d'assistance pour un vehicule.
AT505105B1 (de) * 2008-07-24 2009-10-15 Avl List Gmbh Verfahren zur beurteilung der fahrbarkeit von fahrzeugen
JP5152048B2 (ja) * 2009-03-12 2013-02-27 日産自動車株式会社 ディーゼルエンジンの制御装置
DE102011005773A1 (de) * 2011-03-18 2012-01-19 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern eines Einspritzventils zum Zumessen von Kraftstoff für eine Brennkraftmaschine
DE102012023393A1 (de) * 2012-11-30 2014-06-05 Hella Kgaa Hueck & Co. Verfahren zur Aufnahme fahrzeugrelevanter Daten, insbesondere zur Erfassung und zur Bewertung von Bagatellschäden, Sensoranordnung zum Einbau in ein Fahrzeug und Fahrzeug mit der Sensoranordnung zur Durchführung des Verfahrens
AT518869B1 (de) * 2016-09-28 2018-02-15 Avl List Gmbh Verfahren zum Erstellen eines entstörten Brennraumsignaldatenstroms
DE102017115757A1 (de) * 2017-07-13 2019-01-17 Man Diesel & Turbo Se Verfahren und Steuerungseinrichtung zum Betreiben einer Brennkraftmaschine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508630B2 (ja) 1986-02-28 1996-06-19 日本電装株式会社 燃料噴射率制御装置
JPS63231221A (ja) * 1987-03-19 1988-09-27 Mitsubishi Electric Corp エンジンの吸気量測定装置
JPH05238348A (ja) * 1991-03-13 1993-09-17 Zexel Corp 車両安全装置の制御システム
US5261694A (en) 1991-06-14 1993-11-16 Automotive Systems Laboratory, Inc. Reconfigurable air bag firing circuit
DE19536110B4 (de) * 1995-09-28 2005-09-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19612179C1 (de) * 1996-03-27 1997-08-14 Siemens Ag Verfahren zum Regeln des Verbrennungsvorganges einer mehrzylindrigen Brennkraftmaschine
EP1019625B1 (fr) * 1997-09-29 2001-07-18 Siemens Aktiengesellschaft Procede de surveillance d'un systeme d'injection
GB9810726D0 (en) 1998-05-20 1998-07-15 Lucas France Control system
DE19844746C1 (de) * 1998-09-29 2000-04-20 Siemens Ag Verfahren und Vorrichtung zum Detektieren einer Voreinspritzung bei einer Brennkraftmaschine
DE10028995B4 (de) * 2000-06-16 2005-10-27 Siemens Ag Verfahren zur Bewertung der Phasenlage einer Nockenwelle eines Verbrennungsmotors, insbesondere für ein Kraftfahrzeug
DE10032931B4 (de) * 2000-07-06 2009-12-10 Aft Atlas Fahrzeugtechnik Gmbh Verfahren zur Steuerung einer mehrzylindrigen Viertakt-Brennkraftmaschine mit zylinderselektiver Kraftstoffeinspritzung
JP3487274B2 (ja) 2000-08-23 2004-01-13 トヨタ自動車株式会社 エアバッグ装置の起動制御装置
DE10050956A1 (de) 2000-10-13 2002-05-02 Bayerische Motoren Werke Ag Verfahren zur Auslösung von wenigstens einem Rückhaltemittel
JP4158335B2 (ja) * 2000-12-11 2008-10-01 日産自動車株式会社 エンジンの騒音検出装置

Also Published As

Publication number Publication date
CN100458129C (zh) 2009-02-04
US7269498B2 (en) 2007-09-11
WO2004005686A1 (fr) 2004-01-15
US20060085119A1 (en) 2006-04-20
EP1520091A1 (fr) 2005-04-06
JP2005531722A (ja) 2005-10-20
CN1630773A (zh) 2005-06-22
DE50308657D1 (de) 2008-01-03

Similar Documents

Publication Publication Date Title
EP1520091B1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
DE10305656A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102011109487B4 (de) Verfahren zum Schätzen und Steuern eines akustischen Geräuschs während der Verbrennung
DE102007053406B3 (de) Verfahren und Vorrichtung zur Durchführung sowohl einer Adaption wie einer Diagnose bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
EP1215388B1 (fr) Méthode et système de commande d'un moteur à combustion interne
DE4312587A1 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffeinspritzsystems
DE102005016809A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in wenigstens einen Brennraum einer Brennkraftmaschine
EP0286644B1 (fr) Procede pour determiner electroniquement le debit de carburant d'un moteur a combustion interne
DE102005059909B4 (de) Verfahren zur Steuerung eines Verbrennungsmotors
DE102006033483B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102006000973A1 (de) Verfahren zur zylinderindividuellen Restgasbestimmung bei einem Verbrennungsmotor
EP2076667B1 (fr) Procédé et dispositif pour surveiller un système d'injection de carburant
DE3932763C1 (fr)
EP1398483A2 (fr) Procédé et dispositif de commande d'un moteur à combustion interne à émission de pollutants reduite
DE102014102324A1 (de) Verfahren zum Erkennen einer klopfenden Verbrennung einer Brennkraftmaschine
EP3337961B1 (fr) Prédiction de la position de phase d'un arbre à cames
DE10343069B4 (de) Verfahren zur Quantifizierung einer Voreinspritzung bei einem Kraftstoffeinspritzsystem einer Brennkraftmaschine
EP1045235A2 (fr) Procédé de contrôle de couple pour moteurs à allumage par étincelle dans les véhicules automobiles
DE102010040622A1 (de) Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine und direkteinspritzende Brennkraftmaschine
WO2022089866A1 (fr) Procédé d'identification robuste de cliquetis dans un moteur à combustion interne, dispositif de commande et véhicule à moteur
DE102006001367A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1316707B1 (fr) Procédé pour faire fonctionner un appareil de commande d'un véhicule
DE102008027151A1 (de) Verfahren zur Steuerung eines Verbrennungsmotors mit einem temperaturabhängigen Einspritzparameter
DE102006015968B3 (de) Adaptionsverfahren und Adaptionsvorrichtung einer Einspritzanlage einer Brennkraftmaschine
DE19810523B4 (de) Vorrichtung zur Erfassung ionalen Stroms für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050602

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50308657

Country of ref document: DE

Date of ref document: 20080103

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080307

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140625

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140617

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50308657

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150618

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150618

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630