EP1517009A2 - Arbre à cames avec rotor de déphaseur intégré - Google Patents

Arbre à cames avec rotor de déphaseur intégré Download PDF

Info

Publication number
EP1517009A2
EP1517009A2 EP04254860A EP04254860A EP1517009A2 EP 1517009 A2 EP1517009 A2 EP 1517009A2 EP 04254860 A EP04254860 A EP 04254860A EP 04254860 A EP04254860 A EP 04254860A EP 1517009 A2 EP1517009 A2 EP 1517009A2
Authority
EP
European Patent Office
Prior art keywords
rotor
camshaft
shaft
phaser
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04254860A
Other languages
German (de)
English (en)
Inventor
David C. White
Philip J. Mott
Franklin R. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Inc
Original Assignee
BorgWarner Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/649,060 external-priority patent/US20050045128A1/en
Application filed by BorgWarner Inc filed Critical BorgWarner Inc
Publication of EP1517009A2 publication Critical patent/EP1517009A2/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0471Assembled camshafts
    • F01L2001/0473Composite camshafts, e.g. with cams or cam sleeve being able to move relative to the inner camshaft or a cam adjusting rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0475Hollow camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/01Tools for producing, mounting or adjusting, e.g. some part of the distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/02Initial camshaft settings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors

Definitions

  • the invention pertains to the field of camshaft disposition within an internal combustion engine. More particularly, the invention pertains to camshaft incorporating variable camshaft timing (VCT) phaser rotor.
  • VCT variable camshaft timing
  • the performance of an internal combustion engine can be improved by the use of dual camshafts, one to operate the intake valves of the various cylinders of the engine and the other to operate the exhaust valves.
  • one of such camshafts is driven by the crankshaft of the engine, through a sprocket and chain drive or a belt drive, and the other of such camshafts is driven by the first, through a second sprocket and chain drive or a second belt drive.
  • both of the camshafts can be driven by a single crankshaft powered chain drive or belt drive.
  • Engine performance in an engine with dual camshafts can be further improved, in terms of idle quality, fuel economy, reduced emissions or increased torque, by changing the positional relationship of one of the camshafts, usually the camshaft which operates the intake valves of the engine, relative to the other camshaft and relative to the crankshaft, to thereby vary the timing of the engine in terms of the operation of intake valves relative to its exhaust valves or in terms of the operation of its valves relative to the position of the crankshaft.
  • U.S. Patent No. 5,002,023 describes a VCT system within the field of the invention in which the system hydraulics includes a pair of oppositely acting hydraulic cylinders with appropriate hydraulic flow elements to selectively transfer hydraulic fluid from one of the cylinders to the other, or vice versa, to thereby advance or retard the circumferential position on of a camshaft relative to a crankshaft.
  • the control system utilizes a control valve in which the exhaustion of hydraulic fluid from one or another of the oppositely acting cylinders is permitted by moving a spool within the valve one way or another from its centered or null position.
  • the movement of the spool occurs in response to an increase or decrease in control hydraulic pressure, P c , on one end of the spool and the relationship between the hydraulic force on such end and an oppositely direct mechanical force on the other end which results from a compression spring that acts thereon.
  • U.S. Patent No. 5,107,804 describes an alternate type of VCT system within the field of the invention in which the system hydraulics include a vane having lobes within an enclosed housing which replace the oppositely acting cylinders disclosed by the aforementioned U.S. Patent No. 5,002,023.
  • the vane is oscillatable with respect to the housing, with appropriate hydraulic flow elements to transfer hydraulic fluid within the housing from one side of a lobe to the other, or vice versa, to thereby oscillate the vane with respect to the housing in one direction or the other, an action which is effective to advance or retard the position of the camshaft relative to the crankshaft.
  • the control system of this VCT system is identical to that divulged in U.S. Patent No. 5,002,023, using the same type of spool valve responding to the same type of forces acting thereon.
  • U.S. Patent Nos. 5,172,659 and 5,184,578 both address the problems of the aforementioned types of VCT systems created by the attempt to balance the hydraulic force exerted against one end of the spool and the mechanical force exerted against the other end.
  • the improved control system disclosed in both U.S. Patent Nos. 5,172,659 and 5,184,578 utilizes hydraulic force on both ends of the spool.
  • the hydraulic force on one end results from the directly applied hydraulic fluid from the engine oil gallery at full hydraulic pressure, P s .
  • the hydraulic force on the other end of the spool results from a hydraulic cylinder or other force multiplier which acts thereon in response to system hydraulic fluid at reduced pressure, P c , from a PWM solenoid.
  • U.S. Patent No. 5,289,805 provides an improved VCT method which utilizes a hydraulic PWM spool position control and an advanced control method suitable for computer implementation that yields a prescribed set point tracking behavior with a high degree of robustness.
  • a camshaft has a vane secured to an end for non-oscillating rotation.
  • the camshaft also carries a timing belt driven pulley which can rotate with the camshaft but which is oscillatable with respect to the camshaft.
  • the vane has opposed lobes which are received in opposed recesses, respectively, of the pulley.
  • the camshaft tends to change in reaction to torque pulses which it experiences during its normal operation and it is permitted to advance or retard by selectively blocking or permitting the flow of engine oil from the recesses by controlling the position of a spool within a valve body of a control valve in response to a signal from an engine control unit.
  • the spool is urged in a given direction by rotary linear motion translating means which is rotated by an electric motor, preferably of the stepper motor type.
  • U.S. Patent No. 5,497,738 shows a control system which eliminates the hydraulic force on one end of a spool resulting from directly applied hydraulic fluid from the engine oil gallery at full hydraulic pressure, P s , utilized by previous embodiments of the VCT system.
  • the force on the other end of the vented spool results from an electromechanical actuator, preferably of the variable force solenoid type, which acts directly upon the vented spool in response to an electronic signal issued from an engine control unit (“ECU") which monitors various engine parameters.
  • the ECU receives signals from sensors corresponding to camshaft and crankshaft positions and utilizes this information to calculate a relative phase angle.
  • a closed-loop feedback system which corrects for any phase angle error is preferably employed.
  • variable force solenoid solves the problem of sluggish dynamic response.
  • Such a device can be designed to be as fast as the mechanical response of the spool valve, and certainly much faster than the conventional (fully hydraulic) differential pressure control system.
  • the faster response allows the use of increased closed-loop gain, making the system less sensitive to component tolerances and operating environment.
  • U.S. Patent No. 5,657,725 shows a control system which utilizes engine oil pressure for actuation.
  • the system includes a camshaft that has a vane secured to an end thereof for non-oscillating rotation therewith.
  • the camshaft also carries a housing which can rotate with the camshaft but which is oscillatable with the camshaft.
  • the vane has opposed lobes which are received in opposed recesses, respectively, of the housing.
  • the recesses have greater circumferential extent than the lobes to permit the vane and housing to oscillate with respect to one another, and thereby permit the camshaft to change in phase relative to a crankshaft.
  • the camshaft tends to change direction in reaction to engine oil pressure and/or camshaft torque pulses which it experiences during its normal operation, and it is permitted to either advance or retard by selectively blocking or permitting the flow of engine oil through the return lines from the recesses by controlling the position of a spool within a spool valve body in response to a signal indicative of an engine operating condition from an engine control unit.
  • the spool is selectively positioned by controlling hydraulic loads on its opposed end in response to a signal from an engine control unit.
  • the vane can be biased to an extreme position to provide a counteractive force to a unidirectionally acting frictional torque experienced by the camshaft during rotation.
  • U.S. Patent No. 6,247,434 shows a multi-position variable camshaft timing system actuated by engine oil.
  • a hub is secured to a camshaft for rotation synchronous with the camshaft, and a housing circumscribes the hub and is rotatable with the hub and the camshaft and is further oscillatable with respect to the hub and the camshaft within a predetermined angle of rotation.
  • Driving vanes are radially disposed within the housing and cooperate with an external surface on the hub, while driven vanes are radially disposed in the hub and cooperate with an internal surface of the housing.
  • a locking device reactive to oil pressure, prevents relative motion between the housing and the hub.
  • a controlling device controls the oscillation of the housing relative to the hub.
  • U.S. Patent No. 6,250,265 shows a variable valve timing system with actuator locking for an internal combustion engine.
  • the variable camshaft timing system is comprised of a camshaft with a vane secured to the camshaft for rotation with the camshaft but not for oscillation with respect to the camshaft.
  • the vane has a circumferentially extending plurality of lobes projecting radially outwardly therefrom and is surrounded by an annular housing that has a corresponding plurality of recesses each of which receives one of the lobes and has a circumferential extent greater than the circumferential extent of the lobe received therein to permit oscillation of the housing relative to the vane and the camshaft while the housing rotates with the camshaft and the vane.
  • Oscillation of the housing relative to the vane and the camshaft is actuated by pressurized engine oil in each of the recesses on opposed sides of the lobe therein, the oil pressure the recesses being preferably derived in part from a torque pulse in the camshaft as it rotates during its operation.
  • An annular locking plate is positioned coaxially with the camshaft and the annular housing and is moveable relative to the annular housing along a longitudinal central axis of the camshaft between a first position, where the locking plate engages the annular housing to prevent its circumferential movement relative to the vane and a second position where circumferential movement of the annular housing relative to the vane is permitted.
  • the locking plate is biased by a spring toward its first position and is urged away from its first position toward its second position by engine oil pressure, to which it is exposed by a passage leading through the camshaft, when engine oil pressure is sufficiently high to overcome the spring biasing force, which is the only time when it is desired to change the relative positions of the annular housing and the vane.
  • the movement of the locking plate is controlled by an engine electronic control unit either through a closed loop control system or an open loop control system.
  • U.S. Patent No. 6,263,846 shows a control valve strategy for vane-type variable camshaft timing system.
  • the strategy involves an internal combustion engine that includes a camshaft and hub secured to the camshaft for rotation therewith, where a housing circumscribes the hub and is rotatable with the hub and the camshaft, and is further oscillatable with respect to the hub and camshaft.
  • Driving vanes are radially inwardly disposed in the housing and cooperate with the hub, while driven vanes are radially outwardly disposed in the hub to cooperate with the housing and also circumferentially alternate with the driving vanes to define circumferentially alternating advance and retard chambers.
  • a configuration for controlling the oscillation of the housing relative to the hub includes an electronic engine control unit, and an advancing control valve that is responsive to the electronic engine control unit and that regulates engine oil pressure to and from the advance chambers.
  • a retarding control valve responsive to the electronic engine control unit regulates engine oil pressure to and from the retard chambers.
  • An advancing passage communicates engine oil pressure between the advancing control valve and the advance chambers, while a retarding passage communicates engine oil pressure between the retarding control valve and the retard chambers.
  • U.S. Patent No. 6,311,655 shows multi-position variable cam timing system having a vane-mounted locking-piston device.
  • An internal combustion engine having a camshaft and variable camshaft timing system, wherein a rotor is secured to the camshaft and is rotatable but non-oscillatable with respect to the camshaft is described.
  • a housing circumscribes the rotor and is rotatable with both the rotor and the camshaft. The housing is further oscillatable with respect to both the rotor and the camshaft between a fully retarded position and a fully advanced position.
  • a locking configuration prevents relative motion between the rotor and the housing, and is mounted within either the rotor or the housing, and is respectively and releasably engageable with the other of either the rotor and the housing in the fully retarded position, the fully advanced position, and in positions therebetween.
  • the locking device includes a locking piston having keys terminating one end thereof, and serrations mounted opposite the keys on the locking piston for interlocking the rotor to the housing.
  • a controlling configuration controls oscillation of the rotor relative to the housing.
  • U.S. Patent No. 6,374,787 shows a multi-position variable camshaft timing system actuated by engine oil pressure.
  • a hub is secured to a camshaft for rotation synchronous with the camshaft, and a housing circumscribes the hub and is rotatable with the hub and the camshaft and is further oscillatable with respect to the hub and the camshaft within a predetermined angle of rotation.
  • Driving vanes are radially disposed within the housing and cooperate with an external surface on the hub, while driven vanes are radially disposed in the hub and cooperate with an internal surface of the housing.
  • a locking device reactive to oil pressure, prevents relative motion between the housing and the hub.
  • a controlling device controls the oscillation of the housing relative to the hub.
  • U.S. Patent No. 6,477,999 shows a camshaft that has a vane secured to an end thereof for non-oscillating rotation therewith.
  • the camshaft also carries a sprocket that can rotate with the camshaft but is oscillatable with respect to the camshaft.
  • the vane has opposed lobes that are received in opposed recesses, respectively, of the sprocket.
  • the recesses have greater circumferential extent than the lobes to permit the vane and sprocket to oscillate with respect to one another.
  • the camshaft phase tends to change in reaction to pulses that it experiences during its normal operation, and it is permitted to change only in a given direction, either to advance or retard, by selectively blocking or permitting the flow of pressurized hydraulic fluid, preferably engine oil, from the recesses by controlling the position of a spool within a valve body of a control valve.
  • the sprocket has a passage extending therethrough the passage extending parallel to and being spaced from a longitudinal axis of rotation of the camshaft.
  • a pin is slidable within the passage and is resiliently urged by a spring to a position where a free end of the pin projects beyond the passage.
  • the vane carries a plate with a pocket, which is aligned with the passage in a predetermined sprocket to camshaft orientation.
  • the pocket receives hydraulic fluid, and when the fluid pressure is at its normal operating level, there will be sufficient pressure within the pocket to keep the free end of the pin from entering the pocket. At low levels of hydraulic pressure, however, the free end of the pin will enter the pocket and latch the camshaft and the sprocket together in a predetermined orientation.
  • a phaser having a rotor needs to be rigidly affixed to a camshaft and angularly adjustable in relation to other parts of the phaser.
  • FIG. 1 an exploded view of a prior art VCT device or phaser is depicted.
  • a rotor 1 is fixedly positioned on the camshaft 9, by means of mounting flange 8, to which it and rotor front plate 4 is fastened by screws 14.
  • the rotor 1 has a diametrically opposed pair of radially outwardly projecting vanes 16, which fit into recesses 17 in the housing body 2.
  • the inner plate 5, housing body 2, and outer plate 3 are fastened together around the mounting flange 8, rotor 1 and rotor front plate 4 by screws 13, so that the recesses 17 holding the vanes 16, enclosed by outer plate 3 and inner plate 5, form fluid-tight chambers.
  • the timing gear 11 is connected to the inner plate 5 by screws 12.
  • Japanese Patent publication number 04209912(A), entitled: "Valve System Of Engine” teaches an improved apparatus having a simplified structure with improved supporting rigidity by holding the hub of a variable valve timing mechanism on a camshaft end part by a means of a cylindrical shaft member to fasten the hub by means of a fastening member, and bearing-supporting the shaft member on a cylinder head.
  • Japanese Patent 04209912 (A) teaches a simplified structure having improved supporting rigidity by holding the hub of a variable valve timing mechanism on a camshaft end part by a means of a cylindrical shaft member to fasten the hub by means of a fastening member, and bearing-supporting the shaft member on a cylinder head.
  • the structure of the device is as follows. In a V typed engine 1 provided with a DOHC valve system, gears 7, 8 provided between cams are arranged on respective one end parts of an intake side camshaft 2 and an exhaust side camshaft 3 so as to engage each other as a driving wheel provided between the cams.
  • a variable valve timing mechanism 20 is arranged inside the boss part 7a of the gear 7 provided between the cams of the intake side.
  • a cylindrical shaft member 17a for holding the hub 21 of the variable valve timing mechanism 20 is provided on the center part of the gear 7 provided between the cams of the intake side, and the shaft member 17 is installed by a jointing member 18 jointed on the camshaft 2.
  • the journal part 17a of the shaft member 17 is bearing-supported on a front end bearing part 5a mounted in the forward of the gear chamber 9 of a cylinder head 4.
  • Japanese Patent 60021195 (A) teaches a device that has a joined camshaft consisting of joint members and a shaft member joined to the strength equivalent to the strength of the base metal by subjecting the shaft part of the camshaft consisting of a steel material and fitting members such as cam members, journal members, etc. formed of a cast iron to join by copper brazing in a furnace.
  • the device includes a shaft part 2 consisting of a hollow or solid steel material and separately manufactured fitting members made of a cast iron such as cam members 4, journal members 5, etc. are disposed in prescribed positions and are joined under the following conditions: The shaft part 2 and the above-described fitting members are joined by brazing in a furnace for ⁇ 15min in a temp.
  • European patent EP0313985B1 teaches a method of making a camshaft from a blank having a cam shape, the configuration of the camshaft with the cams and the bearings being moulded into the blank by swaging and circular kneading by means of tool segments which at least partially surround the blank and exert radial compressive forces thereon and thus alter the shape and the cross section of the blank, characterized in that, in a first step, the cam-shaped blank is given an at least approximately circular shape by preforming by means of forging or hammering in the region of the bearings of the camshaft, and that subsequently, in a second step, the configuration of the camshaft with the cams and the bearings is molded by swaging and circular kneading by means of tool elements which at least partially surround the blank and exert radial compressive forces thereon and thus alter its shape and cross section both in the region of the bearings and in the remaining
  • VCT units such as a phaser need to be downsized in order to reduce packaging requirements.
  • the form factor that limits the axial and radial package of a VCT needs to be suitably reduced.
  • the use of a more permanent means of affixing the rotor of a phaser to the camshaft will allow for reduction in the radial packaging requirements.
  • a pilot is needed for locating the VCT system. Additional fasteners are required in the assembly; elaborate hydraulic seals are required for the rotor, camshaft. in addition, the cam lobe are separated into independent pieces. As can be seen, the separated and independent nature of the assembly necessarily entails mounting of the same and its concomitant adjustments. Therefore, it is desirable to have a single piece rotor-camshaft-cam lobe assembly.
  • a single piece rotor-cam shaft-cam lobe assembly is provided.
  • an actuator instead of being placed at the rotor end of the single piece rotor-cam shaft-cam lobe member, is placed at the opposite end.
  • a VCT device which provides a rotor that is machined out of a single piece of material in which camshaft and cam lobe are also formed thereon.
  • a back plate having a cam shaped inner opening is provided for facilitating its mounting of the backing plate.
  • a VCT device In a VCT device, permanent means of affixing part of the VCT device onto a shaft is provided.
  • a set of non-reversible means of affixing part of the VCT device onto a shaft is provided.
  • the rotor of a phaser is permanently, non-reversibly affixed onto a camshaft.
  • a VCT device having reduced form factors are provided.
  • the reduced form factors include axial reduction and radial reduction.
  • a VCT device free from area on its frontal face for receiving connecting members such as bolt or screws is provided.
  • a device which includes: a first end having a rotor with a hollow space positioned at the center disposed to rotate relative to a housing; and a rotating shaft, integral to the rotor, having a plurality of lobes thereon terminating to a second end, the rotating shaft being made of the same material as the rotor.
  • a VCT system includes: a phaser having a housing and a rotor; and a device.
  • the device includes: a first end having the rotor with a hollow space positioned at the center disposed to rotate relative to the housing; and a rotating shaft, integral to the rotor, having a plurality of lobes thereon terminating to a second end, the rotating shaft being made of the same material as the rotor.
  • a VCT device such as a phaser
  • eliminating mounting flange 8 that is mounted onto a shaft such as the camshaft 9.
  • Flange 8 has openings or holes for accommodating or receiving connecting members such as screws 14 for connecting portions of the phaser such as the rotor 1 onto camshaft 9.
  • New means for connecting portions of the phaser such as the rotor 1 onto camshaft 9 is disclosed infra.
  • FIG. 2 frontal view 10 of a prior art rotor is shown.
  • three lobes 16 are shown. All the rest of the features and parts herein the present figure are substantially similar to that of Fig. 1.
  • a region 18 is provided for accommodating the screws 14. Region 18 is limited by two concentric circles (in broken line) having a common center. Openings 14a are distributed within region 18 for allowing the screws 14 to pass through for fastening purposes. For example, as shown in Fig. 1, screws 14 transpose through rotor 1 and fasten themselves onto flange 8.
  • FIG. 2A a frontal face view 10a of the rotor 1a of the present invention is shown.
  • Frontal view 10a is substantially identical to frontal view 10 of Fig. 2 except that region 18 is eliminated.
  • region 18 causes a reduction of radial dimension of rotor 1a in that the area of the front face of rotor 1a is smaller as compared with that of the rotor 1 of Figs 1 and 2.
  • Vanes 16 are provided that may have similar or different size as that of Fig. 2. Further, the number of vanes 16 per rotor 1a may be any natural number or positive integer. In addition, an opening 19 is provided for the coupling of rotor 1a with a shaft such as camshaft 9 of Fig. 1.
  • Figs. 3 and 4 depict perspective views of the present invention.
  • the VCT device comprises rotor 1a which constitutes part of a phaser.
  • Rotor 1a has opening 19 formed substantially at the center of rotor 1a.
  • Rotor 1a is connected to a first end of the camshaft 9, which has cam lobes 22 at a distance to the first end respectively.
  • Rotor 1a is connected to camshaft 9 without the use of screws 14 and the flange 8 of the prior art phaser device shown in Figs. 1 and 2.
  • the rotor 1a and camshaft 9 are connected together in a non-reversible means described infra.
  • the functional portion of what is indicated as flange 8 in Fig. 1 is now incorporated in the camshaft/phaser component in Figs 3 and 4.
  • FIG. 4 a second perspective view of the VCT device of Fig. 3 is shown. Note that flange 8 of Fig. 1 or other interposing members of prior art is eliminated. Therefore, the axial length of the device along the length of camshaft 9 is shortened.
  • FIG. 5 an alternative embodiment of the present invention is shown.
  • a camshaft 9a and a rotor 1b are integrally connected together.
  • Rotor 1b has slots 26 disposed to receive vanes (not shown) preferably made of steel.
  • the vanes instead of formed as an extension of the rotor or formed integrally with the rotor, the vanes are separate parts that needs to be inserted into slots 26 in the rotor 1b.
  • a more detailed blow up view of a single piece rotor-cam shaft-cam lobe member 38 is shown.
  • cam lobes 22, camshaft 9a, and rotor 1b are formed out of a single piece or member.
  • single piece rotor-cam shaft-cam lobe member 38 is machined out of a single metal or alloy piece.
  • Slots 26 are located on the outer circumference of rotor 1b for the accommodation of vanes 40 having vane springs 42 interposed therebetween. Vanes 40 are disposed to oscillate within cavities 43 formed within sprocket housing 44.
  • a check valve 46 is provided within rotor 1b for controlling control fluid flowing unidirectionally within a passage, wherein a segment of which is formed within the single piece rotor-cam shaft-cam lobe member 38.
  • a lock pin 48 is provided for locking sprocket housing 44 and rotor 1b into a fixed angular relationship.
  • An accompanying spring pin 49 and lock pin spring 50 are provided for coupling to lock pin 48.
  • a sleeve 52 having a sleeve slot 54 is disposed to fit in the opening 19.
  • a backing plate 56 is provided to cover the back portion of the rotor 1b and sprocket housing 44 unit to contain control fluid within the VCT system. Backing plate 56 has a cam shaped inner openings 57 for allowing the same to traverse through the cam lobes 22 before reaching the desired location for the final assembly.
  • a perspective view of the VCT assembly is shown.
  • the single piece rotor-cam shaft-cam lobe member 38 including camshaft 9a, rotor 1b, and cam lobes 22 are shown.
  • sprocket housing 44 is disposed to be engagable with single piece rotor-cam shaft-cam lobe member 38 for adjusting an angular relationship.
  • Lock pin 48 with its accompanying lock pin spring 50 are disposed to be positioned in sprocket housing 44 as shown for stopping or rigidly fixing an angular relationship of the phaser assembly.
  • Pulse wheel 58 is provided to be coupled to the sprocket housing 44 as shown. Pulse wheel 58 includes teeth 59 for generating pulses as wheel 58 turns. A retaining element 60 is disposed about the center of pulse wheel 58 for fitting in the sleeve slot 54 of sleeve 52.
  • single piece rotor-cam shaft-cam lobe member 38 that comprises rotor 1b, camshaft 9a, and cam lobes 22 are formed out of a single piece of material.
  • Single piece rotor-cam shaft-cam lobe member 38 may be made out of a single piece machined alloy material.
  • Spool valve 62 is substantially disposed within the rotor 1b portion of single piece rotor-cam shaft-cam lobe member 38 and having spool spring 64 placed at the inner end of sleeve 52.
  • Control fluid passages 66 are formed within single piece rotor-cam shaft-cam lobe member 38 for facilitating the controlled flow of control fluid flowing therein.
  • Sprocket housing 44 and backing plate 56 are mounted on the VCT assembly as shown.
  • actuator 70 instead of being placed at the rotor 1b end of the single piece rotor-cam shaft-cam lobe member 38, is place at the opposite end.
  • a hollow tube 72 is formed within the single piece rotor-cam shaft-cam lobe member 38 for accommodating a set of force transmitting members in the transmission of force from actuator 70 to spool valve 62 and then to spool spring 64 which is anchored on a seat (not shown). This causes the displacement of spool valve 62 in which controlled fluid are controlled in such a way that an angular relationship is adjusted or maintained.
  • the set of force transmitting members comprises a first ball joint 74a, a second ball joint 74b, a first force transmitting segment 76a, a second force transmitting segment 76b, and a third force transmitting segment 76c.
  • the spool valve 62 and spool spring 64 are placed within sleeve 52. Control fluid pressure is maintained within the hollow tube 72. There exits a balancing force with the hollow tube 72 as a result of control fluid pressure therein. Further the hollow tube nature of hollow tube 72 necessarily reduces the mass of single piece rotor-cam shaft-cam lobe member 38.
  • actuator 70 may be a type of solenoid such as variable force solenoid (VFS).
  • VFS variable force solenoid
  • the present invention may provide a rotor that is machined out of a single piece of material in which camshaft and cam lobe are also formed thereon.
  • the alignment of bearing surfaces is improved in that no inter-member alignment of bearing surface is involved for the present single piece rotor-cam shaft-cam lobe member 38.
  • the load capability of the bearings is improved as well.
  • the rotor 1b sprocket housing 44 bearing surface is improved in that no flange is required.
  • check valve 46 may be placed within the single piece rotor-cam shaft-cam lobe member 38 assembly including the camshaft 9a.
  • cam shaped inner opening 57 of backing plate 56 possesses a unique shape for facilitating its mounting in that cam lobes 22 need to be traversed before the eventual mounting of backing plate 56.
  • cam lobes is not limited to two.
  • the present invention teaches method and apparatus to apply VCT technology to desired applications such as connecting parts of a phaser on a first end of a camshaft.
  • the relevant size of units such as rotor 1a size must be downsized in order to reduce packaging requirements.
  • One factor that limits the axial and radial package of prior art product is the bolt circle diameter that affixes the phaser rotor to the end of the camshaft.
  • region 18 of Fig. 2 affects or increases the dimension of a phaser, camshaft combination device.
  • the use of a more permanent means of affixing the rotor to the camshaft is desirable in that a reduction in the radial packaging requirements is achieved.
  • the permanent means can be a non-reversible way to affix rotor 1a onto camshaft 9 in that once the two pieces, rotor 1a or rotor 1b and camshaft 9, are rigidly affixed to each other; the end product is generally a fixed thing in that taking the thing apart once they are rigidly affixed onto each other tends to render the whole thing useless.
  • the prior art uses screws 14 (in Fig. 1) for non-permanently affixing rotor 1 onto camshaft 9, which is undesirable in that area 18 and flange 8 are required. Area 18 and flange 8 are undesirable because they increase the dimension of an end product such as the phaser.
  • the dimension increases include both an axial increase via the introduction of flange 8, and the radial increase via the introduction of area 18.
  • the present invention teaches the reduction of both the axial dimension and the radial dimension of a VCT device by eliminating both the flange 8 and area 18. As radial package space is reduced, the phaser components can then be pulled under the sprocket which also reduces the required axial package space. The bearing surface for the sprocket would also be incorporated into the end of the camshaft.
  • the rotor and bearing surface could be affixed onto the end of the camshaft in a number of ways.
  • the means of affixing the rotor to the end of the camshaft would include but not be limited to the following 5 scenarios.
  • camshaft 9 may have one end 30 disposed to be fitted into opening 19 of rotor 1a as shown in Fig. 10.
  • Hub is referred to as a cylindrical projection on the end of the camshaft onto which the inner diameter of the phaser is pressed. As shown in Fig. 10, the region around end 30 is a hub.
  • This second means of irreversible connection is similar to the first means in that the rotor is pressed upon a hub of a camshaft.
  • one component such as the rotor may have an opening 19, wherein an inside surface of opening 19 of the rotor 1a may be lined with straight spline.
  • another component such as the camshaft 9 may have one end 30a may have a non-straight spline such as a helical spline.
  • a non-straight spline such as a helical spline.
  • Brazing the rotor onto the camshaft is another means to irreversibly affix the rotor such as rotor 1a onto a camshaft 9. Any known means of brazing is contemplated by the present invention.
  • Rotor can also be swaged onto the camshaft.
  • First end 30b which may or may not have an internal opening 19a is first inserted or placed into opening 19 of the rotor 1a.
  • swaging is a process that is used to reduce or increase the diameter of tubes or rods such as a camshaft. Swaging may be done by placing camshaft 9 inside a die that applies compressive force by hammering radially. In addition, swaging can be achieved by placing a mandrel inside the internal opening 19a and applying radial compressive forces on the outer diameter.
  • the inner diameter can be a different shape, for example the internal opening 19a may be a hexagon, and the resultant outer diameter after swaging can still be substantially circular.
  • ballizing may be a means of permanently or irreversibly affixing rotor 1a onto camshaft 9.
  • shaft 9 is place within rotor 1a such that a first end 30c of camshaft 9 is within opening 19 of the rotor 1a.
  • a ball 32 made of materials such as a tungsten carbide speeds through opening 19a of camshaft 9 at a desired speed along a direct such as direction 34.
  • the direction of travel for ball 32 may be the reverse of direction 34. In other words, the direction of travel may be 180 degrees of direction 34. Therefore, by ballizing the rotor onto the camshaft where the camshaft is a hollow component, the net result is achieved in that the rotor and the camshaft is permanently or irreversibly affixed together.
  • a single member can include a rotor, a bearing surface, and a camshaft.
  • the camshaft can be considered an extension of the phaser.
  • the camshaft may be considered as an extension of the rotor. This is especially true in cases wherein less cam lobes are involved. Therefore, it necessarily is more convenient to machine the rotor and the camshaft out of one piece of material. It is further noted that cam lobe may not be machined out of one piece of material.
  • the rotor is connected to a camshaft.
  • the present invention contemplates the coupling or connecting of the rotor of a phaser onto any driving or driven shaft.
  • the rotor may be coupled to a crank shaft, or to any camshaft whether the camshaft is a driving or driven shaft.
  • Actuating fluid is the fluid which moves the vanes in a vane phaser.
  • actuating fluid includes engine oil, but could be other hydraulic fluid.
  • the VCT system of the present invention may be a Cam Torque Actuated (CTA)VCT system in which a VCT system that uses torque reversals in camshaft caused by the forces of opening and closing engine valves to move the vane.
  • the control valve in a CTA system allows fluid flow from advance chamber to retard chamber, allowing vane to move, or stops flow, locking vane in position.
  • the CTA phaser may also have oil input to make up for losses due to leakage, but does not use engine oil pressure to move phaser.
  • Vane is a radial element actuating fluid acts upon, housed in chamber.
  • a vane phaser is a phaser which is actuated by vanes moving in chambers.
  • camshaft There may be one or more camshaft per engine.
  • the camshaft may be driven by a belt or chain or gears or another camshaft.
  • Lobes may exist on camshaft to push on valves.
  • a multiple camshaft engine most often has one shaft for exhaust valves, one shaft for intake valves.
  • a "V" type engine usually has two camshafts (one for each bank) or four (intake and exhaust for each bank).
  • Chamber is defined as a space within which vane rotates. Chamber may be divided into advance chamber (makes valves open sooner relative to crankshaft) and retard chamber (makes valves open later relative to crankshaft).
  • Check valve is defined as a valve which permits fluid flow in only one direction.
  • a closed loop is defined as a control system which changes one characteristic in response to another, then checks to see if the change was made correctly and adjusts the action to achieve the desired result (e.g. moves a valve to change phaser position in response to a command from the ECU, then checks the actual phaser position and moves valve again to correct position).
  • Control valve is a valve which controls flow of fluid to phaser. The control valve may exist within the phaser in CTA system. Control valve may be actuated by oil pressure or solenoid.
  • Spool valve is defined as the control valve of spool type. Typically the spool rides in bore, connects one passage to another. Most often the spool is located on center axis of rotor of a phaser.
  • DPCS Differential Pressure Control System
  • VCU Valve Control Unit
  • Driven shaft is any shaft which receives power (in VCT, most often camshaft).
  • Driving shaft is any shaft which supplies power (in VCT, most often crankshaft, but could drive one camshaft from another camshaft).
  • ECU is Engine Control Unit that is the car's computer.
  • Engine Oil is the oil used to lubricate engine, pressure can be tapped to actuate phaser through control valve.
  • Housing is defined as the outer part of phaser with chambers.
  • the outside of housing can be pulley (for timing belt), sprocket (for timing chain) or gear (for timing gear).
  • Hydraulic fluid is any special kind of oil used in hydraulic cylinders, similar to brake fluid or power steering fluid. Hydraulic fluid is not necessarily the same as engine oil. Typically the present invention uses "actuating fluid”.
  • Lock pin is disposed to lock a phaser in position. Usually lock pin is used when oil pressure is too low to hold phaser, as during engine start or shutdown.
  • Oil Pressure Actuated (OPA) VCT system uses a conventional phaser, where engine oil pressure is applied to one side of the vane or the other to move the vane.
  • Open loop is used in a control system which changes one characteristic in response to another (say, moves a valve in response to a command from the ECU) without feedback to confirm the action.
  • Phase is defined as the relative angular position of camshaft and crankshaft (or camshaft and another camshaft, if phaser is driven by another cam).
  • a phaser is defined as the entire part which mounts to cam. The phaser is typically made up of rotor and housing and possibly spool valve and check valves.
  • a piston phaser is a phaser actuated by pistons in cylinders of an internal combustion engine. Rotor is the inner part of the phaser, which is attached to a camshaft.
  • Pulse-width Modulation provides a varying force or pressure by changing the timing of on/off pulses of current or fluid pressure.
  • Solenoid is an electrical actuator which uses electrical current flowing in coil to move a mechanical arm.
  • Variable force solenoid is a solenoid whose actuating force can be varied, usually by PWM of supply current. VFS is opposed to an on/off (all or nothing) solenoid.
  • Sprocket is a member used with chains such as engine timing chains. Timing is defined as the relationship between the time a piston reaches a defined position (usually top dead center (TDC)) and the time something else happens. For example, in VCT or VVT systems, timing usually relates to when a valve opens or closes. Ignition timing relates to when the spark plug fires.
  • Torsion Assist (TA)or Torque Assisted phaser is a variation on the OPA phaser, which adds a check valve in the oil supply line (i.e. a single check valve embodiment) or a check valve in the supply line to each chamber (i.e. two check valve embodiment).
  • the check valve blocks oil pressure pulses due to torque reversals from propagating back into the oil system, and stop the vane from moving backward due to torque reversals.
  • torque assist is used in the TA system.
  • Graph of vane movement is step function.
  • VCT system includes a phaser, control valve(s), control valve actuator(s) and control circuitry.
  • VCT Variable Cam Timing
  • the angular relationship also includes phase relationship between cam and the crankshafts, in which the crank shaft is connected to the pistons.
  • VVT Variable Valve Timing
  • VCT Variable Valve Timing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
EP04254860A 2003-08-27 2004-08-12 Arbre à cames avec rotor de déphaseur intégré Withdrawn EP1517009A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US649060 1984-09-10
US10/649,060 US20050045128A1 (en) 2003-08-27 2003-08-27 Camshaft incorporating variable camshaft timing phaser rotor
US895215 2004-07-20
US10/895,215 US20050045130A1 (en) 2003-08-27 2004-07-20 Camshaft incorporating variable camshaft timing phaser rotor

Publications (1)

Publication Number Publication Date
EP1517009A2 true EP1517009A2 (fr) 2005-03-23

Family

ID=34198371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04254860A Withdrawn EP1517009A2 (fr) 2003-08-27 2004-08-12 Arbre à cames avec rotor de déphaseur intégré

Country Status (3)

Country Link
US (1) US20050045130A1 (fr)
EP (1) EP1517009A2 (fr)
JP (1) JP2005069227A (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433974A (en) * 2006-01-04 2007-07-11 Mechadyne Plc Mounting of a SCP (single cam phaser) camshaft on an engine
DE102013217145A1 (de) * 2013-08-28 2015-03-05 Schaeffler Technologies Gmbh & Co. Kg Nockenwellenversteller

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194086A (zh) * 2005-05-02 2008-06-04 博格华纳公司 具有偏置滑阀的正时相位器
US20110048350A1 (en) * 2006-08-25 2011-03-03 Borgwarner Inc. Variable force solenoid with integrated position sensor
EP2522820B1 (fr) * 2007-07-02 2017-08-09 BorgWarner Inc. Came concentrique avec clapets anti-retour dans la bobine pour un déphaseur
JP5147940B2 (ja) 2007-07-06 2013-02-20 ボーグワーナー インコーポレーテッド カムシャフトに取り付けられた可変カムタイミング制御装置
WO2010033415A2 (fr) * 2008-09-19 2010-03-25 Borgwarner Inc. Dispositif de mise en phase incorporé dans un arbre à cames ou des arbres à cames concentriques
US9297281B2 (en) 2010-04-23 2016-03-29 Borgwarner, Inc. Concentric camshaft phaser flex plate
WO2011155885A1 (fr) * 2010-05-11 2011-12-15 Agap Hb Arbre à cames avec tourillons de palier démontables
JP5182326B2 (ja) 2010-06-09 2013-04-17 トヨタ自動車株式会社 流量制御弁
JP5585832B2 (ja) * 2010-09-10 2014-09-10 アイシン精機株式会社 弁開閉時期制御装置
DE102012202823B4 (de) * 2012-02-24 2014-03-06 Schaeffler Technologies AG & Co. KG Nockenwellenversteller
DE102013209930B4 (de) * 2013-05-28 2016-01-28 Schaeffler Technologies AG & Co. KG Nockenwellenverstelleinrichtung
US9341089B2 (en) 2014-04-04 2016-05-17 RB Distribution, Inc. Camshaft phaser
DE102014219990B4 (de) 2014-09-12 2017-10-05 Schaeffler Technologies AG & Co. KG Nockenwellenversteller
DE102015200140B4 (de) * 2015-01-08 2021-07-01 Schaeffler Technologies AG & Co. KG Nockenwellenversteller mit Montagehilfe sowie Verfahren zur Montage des Nockenwellenverstellers an einem nockenwellenfesten Abschnitt
DE202015008578U1 (de) * 2015-01-08 2016-03-22 Schaeffler Technologies AG & Co. KG Montagehilfe für einen Nockenwellenversteller sowie Verfahren zur Montage des Nockenwellenverstellers an einem nockenwellenfesten Abschnitt
DE102016208968A1 (de) * 2016-05-24 2017-11-30 Thyssenkrupp Ag Schiebemodul einer Nockenwelle
US10539046B2 (en) * 2016-09-27 2020-01-21 Cummins Inc. Camshaft phaser/compression brake release integration with concentric camshaft
CN112648039A (zh) * 2019-10-11 2021-04-13 舍弗勒技术股份两合公司 凸轮轴调相系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1290596C (fr) * 1987-03-09 1991-10-15 Philip D. Arnold Methode et dispositif d'assemblage d'arbre a cames tubulaire
JPH0291433A (ja) * 1988-09-27 1990-03-30 Fuji Heavy Ind Ltd エンジンのクランク角タイミング検出装置
US5107804A (en) * 1989-10-16 1992-04-28 Borg-Warner Automotive Transmission & Engine Components Corporation Variable camshaft timing for internal combustion engine
US5361735A (en) * 1989-10-16 1994-11-08 Borg-Warner Automotive Transmission & Engine Components Corporation Belt driven variable camshaft timing system
US5172659A (en) * 1989-10-16 1992-12-22 Borg-Warner Automotive Transmission & Engine Components Corporation Differential pressure control system for variable camshaft timing system
US5002023A (en) * 1989-10-16 1991-03-26 Borg-Warner Automotive, Inc. Variable camshaft timing for internal combustion engine
DE4024057C1 (fr) * 1990-07-28 1991-09-19 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De
JPH0533617A (ja) * 1991-07-31 1993-02-09 Atsugi Unisia Corp 内燃機関のバルブタイミング制御装置
US5289805A (en) * 1992-03-05 1994-03-01 Borg-Warner Automotive Transmission & Engine Components Corporation Self-calibrating variable camshaft timing system
US5184578A (en) * 1992-03-05 1993-02-09 Borg-Warner Automotive Transmission & Engine Components Corporation VCT system having robust closed loop control employing dual loop approach having hydraulic pilot stage with a PWM solenoid
US5497738A (en) * 1992-09-03 1996-03-12 Borg-Warner Automotive, Inc. VCT control with a direct electromechanical actuator
US5657725A (en) * 1994-09-15 1997-08-19 Borg-Warner Automotive, Inc. VCT system utilizing engine oil pressure for actuation
US5836277A (en) * 1996-12-24 1998-11-17 Aisin Seiki Kabushiki Kaisha Valve timing control device
US6105616A (en) * 1997-03-28 2000-08-22 Sturman Industries, Inc. Double actuator control valve that has a neutral position
JPH1150820A (ja) * 1997-08-05 1999-02-23 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JP4040779B2 (ja) * 1998-12-25 2008-01-30 ヤマハ発動機株式会社 エンジンのバルブタイミング制御装置およびバルブタイミング制御方法
DE19929393A1 (de) * 1999-06-26 2000-12-28 Schaeffler Waelzlager Ohg Verfahren zur Ansteuerung einer Vorrichtung zum Variieren der Ventilsteuerzeiten einer Brennkraftmaschine, insbesondere einer Nockenwellen-Verstelleinrichtung mit hydraulisch entriegelbarer Startverriegelung
US6250265B1 (en) * 1999-06-30 2001-06-26 Borgwarner Inc. Variable valve timing with actuator locking for internal combustion engine
US6477999B1 (en) * 1999-12-28 2002-11-12 Borgwarner Inc. Vane-type hydraulic variable camshaft timing system with lockout feature
US6247434B1 (en) * 1999-12-28 2001-06-19 Borgwarner Inc. Multi-position variable camshaft timing system actuated by engine oil
US6263846B1 (en) * 1999-12-28 2001-07-24 Borgwarner Inc. Control valve strategy for vane-type variable camshaft timing system
US6311655B1 (en) * 2000-01-21 2001-11-06 Borgwarner Inc. Multi-position variable cam timing system having a vane-mounted locking-piston device
JP2002286151A (ja) * 2001-03-26 2002-10-03 Denso Corp 電磁弁
US6405696B1 (en) * 2001-06-28 2002-06-18 Delphi Technologies, Inc. Spline-type cam phaser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433974A (en) * 2006-01-04 2007-07-11 Mechadyne Plc Mounting of a SCP (single cam phaser) camshaft on an engine
DE102013217145A1 (de) * 2013-08-28 2015-03-05 Schaeffler Technologies Gmbh & Co. Kg Nockenwellenversteller

Also Published As

Publication number Publication date
US20050045130A1 (en) 2005-03-03
JP2005069227A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
EP1517009A2 (fr) Arbre à cames avec rotor de déphaseur intégré
US6763791B2 (en) Cam phaser for engines having two check valves in rotor between chambers and spool valve
US8375906B2 (en) Camshaft phaser for a concentric camshaft
EP1486645B1 (fr) Déphaseur avec rotor à aubes et un pion de blocage
US8122863B2 (en) Camshaft phaser for the inner camshaft of a concentric camshaft assembly
US6814038B2 (en) Spool valve controlled VCT locking pin release mechanism
US20100089351A1 (en) Camshaft phaser for a concentric camshaft
JP2002295210A (ja) バルブタイミング調整装置
US20030196625A1 (en) Air venting mechanism for variable camshaft timing devices
US6866013B2 (en) Hydraulic cushioning of a variable valve timing mechanism
US6932037B2 (en) Variable CAM timing (VCT) system having modifications to increase CAM torsionals for engines having limited inherent torsionals
US6840202B2 (en) Method to reduce noise of a cam phaser by controlling the position of center mounted spool valve
US7475660B2 (en) Camshaft adjuster
US6883479B2 (en) VCT phaser having an electromagnetic lock system for shift and lock operation
EP1522684A2 (fr) Dispositif de commande pour un déphaseur d'arbre à cames
JP3265979B2 (ja) 内機機関のバルブタイミング制御装置
US20050045128A1 (en) Camshaft incorporating variable camshaft timing phaser rotor
US20060260578A1 (en) Apparatus for the variable setting of the control times of gas exchange valves of an internal combustion engine
US10954828B2 (en) Variable camshaft phaser with magnetic locking cover bushing
US10895177B2 (en) Timing wheel for a camshaft phaser arrangement for a concentric camshaft assembly
JPH11200824A (ja) 可変弁制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BORGWARNER INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060202