EP1514318A2 - MATERIAL FüR EINE FUNKTIONSSCHICHT EINES ORGANISCHEN ELEKTRONIKBAUTEILS HERSTELLUNGSVERFAHREN UND VERWENDUNG DAZU - Google Patents

MATERIAL FüR EINE FUNKTIONSSCHICHT EINES ORGANISCHEN ELEKTRONIKBAUTEILS HERSTELLUNGSVERFAHREN UND VERWENDUNG DAZU

Info

Publication number
EP1514318A2
EP1514318A2 EP03759828A EP03759828A EP1514318A2 EP 1514318 A2 EP1514318 A2 EP 1514318A2 EP 03759828 A EP03759828 A EP 03759828A EP 03759828 A EP03759828 A EP 03759828A EP 1514318 A2 EP1514318 A2 EP 1514318A2
Authority
EP
European Patent Office
Prior art keywords
solvent
functional polymer
material according
functional
fractions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03759828A
Other languages
English (en)
French (fr)
Inventor
Christoph Brabec
Karsten Heuser
Henning Rost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konarka Technologies Inc
Original Assignee
Konarka Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konarka Technologies Inc filed Critical Konarka Technologies Inc
Publication of EP1514318A2 publication Critical patent/EP1514318A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a material for a functional layer of an organic electronic component, in particular one from which both a conductive, a semiconducting and an insulating functional layer can be formed.
  • PEDOT-PSS poly (3,4-ethylenedioxythiophene) -poly (styrene-sulfonate)] or PA I (polyaniline) -PSS are known. These materials result in functional layers as thin films of the respective functional polymer.
  • the invention relates to a material for forming a functional layer of an electronic component with adjustable conductivity, the material comprising a mixture of at least two fractions of a functional polymer, namely a first fraction based on a dispersion of the functional polymer in a first solvent which the functional polymer is at least partially dispersed and a second fraction of functional polymer which is based on a real solution of the functional polymer in a second solvent, the two fractions being processed, dispersed and / or dissolved together and by the mixing ratio of the at least two fractions the conductivity of the functional layer formed from this material can be adjusted in connection with the thickness of the functional layer.
  • the invention also relates to a method for producing a material for a functional layer of an electronic component, in which a mixture of two different fractions
  • a dispersion of the functional polymer and a solution of the functional polymer are mixed with high-boiling solvent, then the lower-boiling solvent is removed by distillation in such a way that the various fractions of functional polymer in the high-boiling solvent ultimately essentially form the material.
  • the high-boiling solvent is added in equal parts to the fraction.
  • the material is essentially free of the solvent and / or dispersant of the fractions on which it is based and / or comprises an additional, third solvent.
  • the material can be any other additives and additives such as these types the materials are common and / or useful, such as defoamers or wetting agents etc.
  • the “material *” is always the material according to the invention for forming a functional layer of an organic electronic component.
  • the two fractions are each in dry substance before the dispersion / solution.
  • the two fractions denote two modifications, i.e. two presumably different states of a substance.
  • the functional polymer is PEDOT or PANI.
  • the functional polymer is in the form of a copolymer or mixture which comprises PSS polystyrene sulfonate as anions.
  • the first solvent is water or another high polarity component in which the functional polymer is substantially insoluble.
  • the second solvent ethanol or another low-boiling, polar solvent is preferably a polar-protic, which can form H-bridge bonds.
  • low-boiling * is understood here to mean solvents which have a boiling temperature of up to 150 ° C.
  • the third solvent is different from the first and / or the second solvent.
  • ethylene glycol or another alcohol is used as the third solvent.
  • sets especially also mixtures of several alcohols and / or alcohols with a carbon content of C4 to CIO, branched and unbranched, also polyhydric alcohols, or mixtures thereof, and mixtures with water, particularly preferably glycol and glycerol.
  • solution is used when individual polymer particles are essentially surrounded by solvent molecules and it is in contrast to the term “dispersion”, which denotes the state in which individual polymer particles conglomerate and form clusters, for example, but do not precipitate or settle out, but instead are essentially dispersed and do not form a precipitate, i.e. larger solid agglomerations.
  • a component is referred to here as a solvent or as a dispersing agent only depends on how the functional polymer in question behaves in this agent. The conditions that prevail during production, storage and / or processing must be considered.
  • organic material or “functional material” or * functional polymer ”here encompasses all types of organic, organometallic and / or organic-inorganic plastics (hybrids), in particular those which are referred to in English, for example, as“ plastics ” all types of substances with the exception of the semiconductors that form the classic diodes (germanium, silicon) and the typical metallic conductors. Accordingly, a restriction in the dogmatic sense to organic material as carbon-containing material is not intended, but rather is the term is intended to be widely used, for example silicones, and the term should not be subject to any restriction with regard to the molecular size, in particular to polymeric and / or oligomeric materials, but the use of "small molecules" is also entirely possible
  • Polymer in the functional polymer is historically determined and therefore contains no information about the existence of an actual lent polymeric compound and no statement whether it is a polymer mixture or a copolymer or not.
  • a dry substance is a substance that is essentially free of solvent.
  • An “organic, electronic component *” here is, for example, a transistor, a diode, an optocoupler, a solar cell, an organic light-emitting diode, organic lighting, a display (active and passive matrix), a conductive fabric, an antistatic coating, or an optoelectronic component designated.
  • the conductivity is modified by many orders of magnitude without changing the solvent environment.
  • a mixture of two different PEDOT solutions both with the same solvent, e.g.
  • Ethylene glycol which have different conductivities due to their history (one solution is made from a water-based solution, the other from an ethanol-based solution).
  • the solution obtained from water-based PEDOT (WPEDOT) has a specific resistance of 10 ⁇ 2 ⁇ cm, that from ethanol-based PEDOT (EPEDOT) has a specific resistance of 10 7 ⁇ cm.
  • the surface conductivity can even be varied by 10 orders of magnitude by adjusting the layer thickness (between 5 nm and 500 ⁇ m).
  • a surface resistance is generally given for this.
  • the ITO used for LCDs, OLEDs or solar cells has a sheet resistance of 20 OHM / square as the anode.
  • a Pedot mixture with 10 s / cm (corresponds to 10 "1 Ohm cm specific resistance) achieves these conductive properties with a layer thickness of 5 ⁇ m.
  • the same volume of ethylene glycol is added to the original solutions, which are commercially available, for example, from HC Starck, and then the original solvent is distilled off in a rotary evaporator. Since ethylene glycol can only be distilled at 200 ° C, a pure glycolic PEDOT solution then remains. Since the original materials WPEDOT and EPEDOT are of a different nature, in the case of the WPEDOT the conductivity is drastically reduced by replacing the water with ethylene glycol, which is due to the dispersive nature of the WPEDOT. In the case of the EPEDOT, which is a real solution, the conductivity is not changed by replacing the ethanol with ethylene glycol. This creates two glycolic PEDOT variations with 5 orders of magnitude of different conductivity. By mixing (blending) the two solutions, any conductivity in between can now be set (see Figure 1).
  • the present invention is intended to solve the problem of targeted fine tuning (“tuning *”) of the conductivity of the polymer film over many orders of magnitude while maintaining the optimum solution or dispersion properties for the coating process.
  • This invention makes it possible to use a low-cost coating method, such as a polymer film, the conductivity of which can be chosen in a wide range.
  • the invention relates to a material (polymer mixture) for forming a thin layer (5 nm to 500 ⁇ m) with adjustable conductivity.
  • the material comprises at least a mixture of two different fractions of a functional polymer, preferably in a solvent.
  • the invention relates to a material for applying thin organic layers with conductivity that can be set in a defined manner.
  • the material comprises at least a mixture of two different fractions of a functional polymer, preferably in a solvent, and comes e.g. as a functional layer of an organic electronic component by means of various application techniques.

Abstract

Die Erfindung betrifft ein Material zur Aufbringung dünner organischer Schichten mit definiert einstellbarer Leitfähigkeit. Das Material umfasst zumindest eine Mischung aus zwei verschiedenen Fraktionen eines Funktionspolymers, bevorzugt in einem Lösungsmittel und kommt z.B. als eine Funktionsschicht eines organischen elektronischen Bauteils mittels verschiedener Aufbringungstechniken zum Einsatz.

Description

Beschreibung
Material für eine Funktionsschicht eines organischen Elektronikbauteils Herstellungsverfahren und Verwendung dazu
Die Erfindung betrifft ein Material für eine Funktionsschicht eines organischen Elektronikbauteils, insbesondere eines, aus dem sowohl eine leitende, eine halbleitende als auch eine isolierende Funktionsschicht gebildet werden kann.
Es sind Materialien für Funktionsschichten auf der Basis von PEDOT-PSS [Poly (3, 4-ethylenedioxythiophene) -poly (styrene- sulfonate) ] oder PA I (Polyanilin) -PSS bekannt. Diese Materialien ergeben Funktionsschichten als dünne Filme des jeweili- gen Funktionspolymers.
Bislang ist es erforderlich, für die jeweilige Funktions- schicht ein speziell dafür geeignetes Material durch Aufbringungstechniken wie spin coating etc. zu verarbeiten. Dabei ist es nachteilig, dass, insbesondere für die Massenproduktion von „einweg-elektronik wie elektronische bar Chips, ID- tags etc., für ein solches Bauteil mehrere Funktionspolymere zum Einsatz kommen, die jeweils unter unterschiedlichen Bedingungen verarbeitet werden müssen.
Aufgabe der vorliegenden Erfindung ist es daher, ein Material zu schaffen, das für alle Funktionsschichten eines elektronischen Bauteils einsetzbar ist, damit die Herstellungstechniken vereinfacht und damit kostengünstiger gestaltet werden können.
Es ist die allgemeine Erkenntnis der Erfindung, dass eine Mischung von verschiedenen Fraktionen eines einzigen Funktionspolymers eine durch das Mischungsverhältnis einstellbare Leitfähigkeit hat, wobei die rheologischen Eigenschaften der Mischung durch das Mischungsverhältnis der Fraktionen unbe- einträchtigt sind. Gegenstand der Erfindung ist ein Material zur Bildung einer Funktionsschicht eines elektronischen Bauteils mit einstellbarer Leitfähigkeit, wobei das Material eine Mischung aus zu- mindest zwei Fraktionen eines Funktionspolymers umfasst, nämlich eine erste Fraktion, die auf einer Dispersion des Funktionspolymers in einem ersten Lösungsmittel basiert, in dem das Funktionspolymer zumindest teilweise dispergiert ist und eine zweite Fraktion an Funktionspolymer, die auf einer ech- ten Lösung des Funktionspolymers in einem zweiten Lösungsmittel basiert, wobei die beiden Fraktionen gemeinsam verarbeitet, dispergiert und/oder aufgelöst werden und durch das Mischungsverhältnis der zumindest zwei Fraktionen im Zusammenhang mit der Dicke der Funktionsschicht die Leitfähigkeit der aus diesem Material gebildeten Funktionsschicht einstellbar ist. Außerdem ist Gegenstand der Erfindung ein Verfahren zur Herstellung eines Materials für eine Funktionsschicht eines elektronischen Bauteils, bei dem eine Mischung aus zwei verschiedenen Fraktionen eines Funktionspolymers gegebenenfalls in einem Lösungsmittel, kombiniert wird.
Nach einer Ausführungsform des Verfahrens wird dazu eine Dispersion des Funktionspolymers und eine Lösung des Funktionspolymers mit hochsiedendem Lösungsmittel versetzt, dann destillativ die niedriger siedenden Lösungsmittel so entfernt, dass letztendlich die verschiedenen Fraktionen an Funktionspolymer im hochsiedenden Lösungsmittel im wesentlichen das Material bilden. Dabei sieht eine Ausführungsform des Verfahrens vor, dass jeweils das hochsiedende Lösungs it- tel in gleichen Teilen, wie die Fraktion vorliegt, zugesetzt wird.
Nach einer vorteilhaften Ausführungsform ist das Material im wesentlichen frei von dem Lösungsmittel und/oder Dispersions- mittel der zugrunde liegenden Fraktionen und/oder umfasst ein zusätzliches, drittes Lösungsmittel. Das Material kann beliebige weitere Zusätze und Additive, wie sie für diese Arten der Materialien üblich und/oder sinnvoll sind, wie Entschäumer, oder Netzmittel etc enthalten.
Als „Material* wird vorliegend immer das erfindungsgemäße Ma- terial zur Bildung einer Funktionsschicht eines organischen Elektronikbauteils bezeichnet.
Nach einer anderen Ausführungsform liegen die beiden Fraktionen vor der Dispersion/Lösung jeweils in Trockensubstanz vor.
Die beiden Fraktionen bezeichnen zwei Modifikationen, also zwei vermutlich verschiedene Zustände eines Stoffes.
Nach einer vorteilhaften Ausführungsform ist das Funktionspo- lymer PEDOT oder PANI .
Nach einer vorteilhaften Ausführungsform liegt das Funktionspolymer als Copolymer oder Mischung vor, das PSS Polystyrol- sulfonat als Anionen umfasst.
Nach einer Ausführungsform ist das erste Lösungsmittel Wasser oder eine andere Komponente mit hoher Polarität, in der das Funktionspolymer im wesentlichen unlöslich ist.
Nach einer Ausführungsform der Erfindung ist das zweite Lösungsmittel Ethanol oder ein anderes niedrig siedendes, polares Lösungsmittel bevorzugt ein polar-protisches, das H-Brückenbindungen ausbilden kann..
Unter dem Begriff „niedrig siedend* werden hier Lösungsmittel verstanden, die bis zu 150°C Siedetemperatur haben.
Nach einer Ausführungsform ist das dritte Lösungsmittel verschieden von dem ersten und/oder dem zweiten Lösungsmittel.
Nach einer vorteilhaften Ausführungsform wird als drittes Lösungmittel Ethylenglykol oder 'ein sonstiger Alkohol einge- setzt, insbesondere auch Mischungen mehrerer Alkohole, und/ oder Alkohole mit einem Kohlenstoffgehalt von C4 bis CIO, verzweigt und unverzweigt, auch mehrwertige Alkohole, bzw. Gemische daraus, sowie Gemische mit Wasser, besonders bevor- zugt Glycol und Glycerol.
Der Begriff „Lösung' wird verwendet, wenn einzelne Polymerteilchen im wesentlichen von Lösungmittelmolekülen umgeben sind und er steht im Gegensatz zum Begriff „Dispersion* der den Zustand bezeichnet, in dem einzelne Polymerteilchen konglomerieren und beispielsweise Cluster bilden, sich aber nicht niederschlagen oder absetzen, sondern im wesentlichen in der dispergiert sind und keinen Niederschlag, also größere Feststoffagglomerationen, bilden. Ob eine Komponente hier als Lösungsmittel oder als Dispersionsmittel bezeichnet wird hängt nur davon ab, wie das jeweils in Rede stehende Funktionspolymer sich in diesem Mittel verhält. Zu betrachten sind jeweils die Bedingungen, die während der Herstellung, Lagerung und/oder Verarbeitung herrschen.
Der Begriff "organisches Material" oder "Funktionsmaterial" oder * Funktionspolymer" umfasst hier alle Arten von organischen, metallorganischen und/oder organisch-anorganischen Kunststoffen (Hybride) , insbesondere die, die im Englischen z.B. mit "plastics" bezeichnet werden. Es handelt sich um alle Arten von Stoffen mit Ausnahme der Halbleiter, die die klassischen Dioden bilden (Germanium, Silizium) , und der typischen metallischen Leiter. Eine Beschränkung im dogmatischen Sinn auf organisches Material als Kohlenstoff-enthal- tendes Material ist demnach nicht vorgesehen, vielmehr ist auch an den breiten Einsatz von z.B. Siliconen gedacht. Weiterhin soll der Term keiner Beschränkung im Hinblick auf die Molekülgröße, insbesondere auf polymere und/oder oligomere Materialien unterliegen, sondern es ist durchaus auch der Einsatz von "small molecules" möglich. Der Wortbestandteil
"polymer" im Funktionspolymer ist historisch bedingt und enthält insofern keine Aussage über das Vorliegen einer tatsäch- lieh polymeren Verbindung und keine Aussage darüber, ob es sich um ein Polymergemisch oder ein Copolymer handelt oder nicht.
Als Trockensubstanz wird hier ein Stoff bezeichnet, der im wesentlichen frei von Lösungsmittel ist.
Als „organisches, elektronisches Bauteil* wird hier beispielsweise ein Transistor, eine Diode, ein Optokoppler, eine Solarzelle, eine organische Leuchtdiode, organische Beleuchtungen, ein Display, (aktiv und passiv Matrix) , ein leitfähiges Gewebe, eine Antistatikbeschichtung, oder eine optoelektronische Komponente bezeichnet.
Im Folgend,en wird die Erfindung noch anhand eines Herstellungsbeispiels erläutert:
Hier wird erstmals ohne Änderung der Lösungsmittelumgebung die Leitfähigkeit um viele Größenordnungen modifiziert. Dabei kommt beispielsweise eine Mischung aus zwei unterschiedlichen PEDOT Lösungen (beide mit dem gleichen Lösungsmittel, z.B.
Ethylenglykol) zum Einsatz, die Aufgrund ihrer Vorgeschichte (die eine Lösung wird aus wasserbasierter Lösung, die andere aus ethanolbasierter Lösung hergestellt) unterschiedliche Leitfähigkeiten besitzen. Die Lösung, die aus wasserbasiertem PEDOT (WPEDOT) gewonnen wurde hat einen spezifischen Widerstand von 10Λ2 Ωcm, die aus ethanolbasiertem PEDOT (EPEDOT) gewonnene einen von 10 7 Ωcm.
Da in Bauteilen die notwendige Oberflächenleitfähigkeit meist von Bedeutung ist, kann mittels der Einstellung der Schichtdicke (zwischen 5 nm und 500 um) die Oberflächenleitfähigkeit sogar um 10 Größenordnungen variiert werden. Im allgemeinen wird dazu ein Oberflächenwiderstand angegeben. Z.B. hat das für LCDs, OLEDs oder Solarzellen verwendete ITO als Anode ei- nen Schichtwiderstand von 20 OHM/square. Eine Pedot Mischung mit 10 s/cm (entspricht 10"1 Ohm cm spezifischer Widerstand) erreicht mit 5 μm Schichtdicke diese leitenden Eigenschaften. Zur Herstellung der Ausgangsmaterialien WPEDOT und EPEDOT wird den ursprünglichen Lösungen die unter anderem z.B. kommerziell von HC Starck ertrieben werden, das gleiche Volumen Ethylenglykol zugegeben und anschließend das ursprüngliche Lösungsmittel in einem Rotationsverdampfer abdestilliert. Da Ethylenglykol erst bei 200°C destillierbar ist, bleibt anschließend eine reine glykolische PEDOT Lösung. Da die Ursprungsmaterialien WPEDOT und EPEDOT anderer Natur sind wird im Falle des WPEDOT die Leitfähigkeit durch das Ersetzen des Wasser durch Ethylenglykol drastisch reduziert, was an dem dispersiven Charakter des WPEDOT liegt. Im Falle des EPEDOT, wobei es sich um eine wirkliche Lösung handelt, wird die Leitfähigkeit durch das Ersetzen des Ethanols durch Ethylen- glykol nicht verändert. Damit entstehen zwei glykolische PEDOT Variationen mit 5 Größenordungen unterschiedlicher Leitfähigkeit. Durch das Mischen (Blenden) der beiden Lösungen kann nun jede Leitfähigkeit dazwischen eingestellt werden (siehe Figur 1) .
Durch die vorliegende Erfindung soll das eingangs beschriebene Problem der gezielten Feineinstellung („Tuning*) der Leitfähigkeit des Polymerfilms über viele Größenordnungen unter Beibehaltung der für das Beschichtungsverfahren optimalen Lö- sungs- bzw. Dispersionseigenschaften, gelöst werden. Durch diese Erfindung wird es möglich, einen Polymerfilm, dessen Leitfähigkeit in einem weiten Bereich beliebig gewählt werden kann, mit einem preiswerten Beschichtungsverfahren, wie z. B. Siebdruck, strukturiert oder großflächig mit hoher Auflösung auf ein Substrat aufzubringen. Möglich ist dies, da die Leitfähigkeit des Polymers durch verschiedene Mischungsverhältnisse der ersten und zweiten Fraktion des Funktionspolymers und/oder durch die Wahl des dritten Lösungsmittel variiert wird, ohne Additive hinzuzugeben. Damit bleiben Oberflächen- Spannung und Viskosität unverändert und die Verdruckbarkeit des Polymers erhalten. Dadurch wird es erstmals möglich, ein organisches elektronisches Bauteil, wie einen Transistor, aus verschiedenen Mischungen eines einzigen Materials zu bauen. Dies führt zum sogenannten voll-PEDOT-Transistor aus leitfähigem PEDOT, halbleitendem PEDOT und isolierendem PEDOT, dessen Herstellung um Größenordnungen billiger ist als alles bisher bekannte .
Die Erfindung betrifft ein Material (Polymer-Mischung) zur Bildung einer dünnen Schicht (5 nm bis 500 um) mit einstellbarer Leitfähigkeit. Das Material umfasst zumindest eine Mischung aus zwei verschiedenen Fraktionen eines Funktionspolymers, bevorzugt in einem Lösungsmittel.
Die Erfindung betrifft ein Material zur Aufbringung dünner organischer Schichten mit definiert einstellbarer Leitfähigkeit. Das Material umfasst zumindest eine Mischung aus zwei verschiedenen Fraktionen eines Funktionspolymers, bevorzugt in einem Lösungsmittel, und kommt z.B. als eine Funktions- schicht eines organischen elektronischen Bauteils mittels verschiedener Aufbringungstechniken zum Einsatz.

Claims

Patentansprüche
1. Material zur Bildung einer Funktionsschicht eines elektronischen Bauteils mit einstellbarer Leitfähigkeit, wobei das Material eine Mischung aus zumindest zwei Fraktionen eines Funktionspolymers umfasst, nämlich eine erste Fraktion, die auf einer Dispersion des Funktionspolymers in einem ersten Lösungsmittel basiert, in dem das Funktionspolymer zumindest teilweise dispergiert ist und eine zweite Fraktion an Funkti- onspolymer, die auf einer echten Lösung des Funktionspolymers in einem zweiten Lösungsmittel basiert, wobei die beiden Fraktionen gemeinsam verarbeitet, dispergiert und/oder aufgelöst werden und durch das Mischungsverhältnis der zumindest zwei Fraktionen im Zusammenhang mit der Dicke der Funktions- schicht die Leitfähigkeit der aus diesem Material gebildeten Funktionsschicht einstellbar ist.
2. Material nach Anspruch 1, wobei die Schicht eine Dicke von 5 nm bis 500 μm haben kann. •
3. Material nach einem der Ansprüche 1 oder 2, das ein zusätzliches, also drittes Lösungsmittel umfasst.
4. Material nach einem der vorstehenden Ansprüche, das im we- sentlichen frei ist von dem ersten und/oder zweiten Lösungsmittel und/oder Dispersionsmittel der zugrunde liegenden Fraktionen.
5. Material nach einem der vorstehenden Ansprüche, bei dem das Funktionspolymer PEDOT oder PANI umfasst.
6. Material nach einem der vorstehenden Ansprüche, bei dem das Funktionspolymer als Copolymer oder Mischung vorliegt, das PSS umfasst.
7. Material nach einem der vorstehenden Ansprüche, bei dem das erste Lösungsmittel Wasser oder eine andere Komponente mit hoher Polarität umfasst, in der das Funktionspolymer im wesentlichen unlöslich ist.
8. Material nach einem der vorstehenden Ansprüche, bei dem das zweite Lösungsmittel Ethanol oder ein anderes niedrig siedendes polares Lösungsmittel, bevorzugt ein polar proti- sches, das H-Brückenbindungen ausbilden kann.
9. Material nach einem der vorstehenden Ansprüche, bei dem das dritte Lösungsmittel verschieden von dem ersten und/oder dem zweiten Lösungsmittel ist.
10. Material nach einem der vorstehenden Ansprüche, bei dem als drittes Lösungmittel Ethylenglykol oder ein sonstiger Al- kohol eingesetzt wird, insbesondere auch Mischungen mehrerer Alkohole, und/oder Alkohole mit einem Kohlenstoffgehalt von 04 bis C10, verzweigt und unverzweigt, auch mehrwertige Alkohole, bzw. Gemische daraus, sowie Gemische mit Wasser, besonders bevorzugt Glycol und Glycerol.
11. Verfahren zur Herstellung eines Materials für eine Funktionsschicht eines elektronischen Bauteils, bei dem eine Mischung aus zwei verschiedenen Fraktionen eines Funktionspolymers in einem Lösungsmittel vereint werden.
12. Verfahren nach Anspruch 11, bei dem als erste Fraktion eine Dispersion des Funktionspolymers und als zweite Fraktion eine Lösung des Funktionspolymers mit einem dritten, hochsiedendem Lösungsmittel versetzt werden, dann destillativ die niedriger siedenden Lösungsmittel so entfernt werden, dass letztendlich die verschiedenen Fraktionen an Funktionspolymer ohne eigenes Lösungsmittel im dritten, hochsiedenden Lösungsmittel im wesentlichen das Material bilden.
13. Verfahren nach einem der Ansprüche 11 oder 12, bei dem jeweils das hochsiedende Lösungsmittel in gleichen Teilen, wie die Fraktion vorliegt, zugesetzt wird.
14. Verwendung des Materials nach einem der Ansprüche 1 bis 10 in einem elektronischen Bauteil
15. Verarbeitung des Materials nach einem der Ansprüche 1 bis 10 zur Herstellung einer Funktionsschicht mit einstellbarer Leitfähigkeit mittels spin coating, Siebdruck, Offsetdruck, Flexodruck, Spray coating, Roller coating, Tintenstrahldruck, Schablonendruck und/oder Rakeln.
16. Elektronisches Bauteil, bei dem alle Funktionsschichten aus verschieden leitfähigen PEDOT-Mischungen aufgebaut sind.
EP03759828A 2002-06-14 2003-06-05 MATERIAL FüR EINE FUNKTIONSSCHICHT EINES ORGANISCHEN ELEKTRONIKBAUTEILS HERSTELLUNGSVERFAHREN UND VERWENDUNG DAZU Withdrawn EP1514318A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10226669 2002-06-14
DE10226669 2002-06-14
PCT/DE2003/001867 WO2003107453A2 (de) 2002-06-14 2003-06-05 Material für eine funktionsschicht eines organischen elektronikbauteils herstellungsverfahren und verwendung dazu

Publications (1)

Publication Number Publication Date
EP1514318A2 true EP1514318A2 (de) 2005-03-16

Family

ID=29723179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03759828A Withdrawn EP1514318A2 (de) 2002-06-14 2003-06-05 MATERIAL FüR EINE FUNKTIONSSCHICHT EINES ORGANISCHEN ELEKTRONIKBAUTEILS HERSTELLUNGSVERFAHREN UND VERWENDUNG DAZU

Country Status (5)

Country Link
US (2) US7871543B2 (de)
EP (1) EP1514318A2 (de)
JP (1) JP2005530351A (de)
CN (1) CN1663061A (de)
WO (1) WO2003107453A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663061A (zh) * 2002-06-14 2005-08-31 孔纳尔卡技术公司 一种有机电子部件功能层的材料及其制造方法和应用
US20050234280A1 (en) * 2002-06-14 2005-10-20 Georg Wittmann Material for a thin and low-conductive funtional layer for an oled and production method therefor
GB0510382D0 (en) * 2005-05-20 2005-06-29 Cambridge Display Tech Ltd Ink jet printing compositions in opto-electrical devices
US9673394B2 (en) 2007-10-18 2017-06-06 Merck Patent Gmbh Conducting formulation
DE102008039337A1 (de) 2008-03-20 2009-09-24 Siemens Aktiengesellschaft Vorrichtung zum Besprühen, Verfahren dazu sowie organisches elektronisches Bauelement
JP5340656B2 (ja) 2008-07-02 2013-11-13 シャープ株式会社 太陽電池アレイ
JP5215150B2 (ja) * 2008-12-05 2013-06-19 トッパン・フォームズ株式会社 非接触型データ受送信体
JP6015073B2 (ja) * 2012-04-02 2016-10-26 セイコーエプソン株式会社 機能層形成用インク、発光素子の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3634281A1 (de) 1986-10-08 1988-04-21 Basf Ag Elektrisch leitfaehige polysilane
DE4100202A1 (de) 1990-02-08 1991-08-14 Bayer Ag Neue polythiophensalze, ihre herstellung und ihre verwendung zur herstellung leitfaehiger schichten und ihre verwendung dieser schichten als elektroden
US5232631A (en) * 1991-06-12 1993-08-03 Uniax Corporation Processible forms of electrically conductive polyaniline
DE19841803A1 (de) 1998-09-12 2000-03-16 Bayer Ag Hilfsschichten für elektrolumineszierende Anordnungen
JP3629973B2 (ja) 1998-09-16 2005-03-16 松下電器産業株式会社 導電性組成物及びコンデンサの製造方法
EP1081548A1 (de) 1999-08-30 2001-03-07 Eastman Kodak Company Beschichtungszusammensetzung, die Polythiophen und ein Lösungsmittelgemisch enthält
US6372154B1 (en) * 1999-12-30 2002-04-16 Canon Kabushiki Kaisha Luminescent ink for printing of organic luminescent devices
AU2001259187A1 (en) 2000-04-27 2001-11-07 Add-Vision, Inc. Screen printing light-emitting polymer patterned devices
US20020038999A1 (en) * 2000-06-20 2002-04-04 Yong Cao High resistance conductive polymers for use in high efficiency pixellated organic electronic devices
DE10103416A1 (de) * 2001-01-26 2002-08-01 Bayer Ag Elektrolumineszierende Anordnungen
US6692662B2 (en) * 2001-02-16 2004-02-17 Elecon, Inc. Compositions produced by solvent exchange methods and uses thereof
DE10111790A1 (de) * 2001-03-12 2002-09-26 Bayer Ag Neue Polythiophen-Dispersionen
AU2002349041A1 (en) * 2001-12-04 2003-06-17 Agfa-Gevaert Process for preparing an aqueous or non-aqueous solution or dispersion of a polythiophene or thiophene copolymer
US7122130B2 (en) * 2001-12-04 2006-10-17 Agfa Gevaert Composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and non-aqueous solvent
CN1663061A (zh) * 2002-06-14 2005-08-31 孔纳尔卡技术公司 一种有机电子部件功能层的材料及其制造方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03107453A2 *

Also Published As

Publication number Publication date
WO2003107453A3 (de) 2004-05-21
US20060011894A1 (en) 2006-01-19
JP2005530351A (ja) 2005-10-06
CN1663061A (zh) 2005-08-31
US20110095236A1 (en) 2011-04-28
WO2003107453A2 (de) 2003-12-24
US8696941B2 (en) 2014-04-15
US7871543B2 (en) 2011-01-18

Similar Documents

Publication Publication Date Title
DE102005010162B4 (de) Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
EP1706431B1 (de) Dispersionen intrinsisch leitfähiger polymere und verfahren zu deren herstellung
US20090272968A1 (en) Material for a thin and low-conductive functional layer for an oled and production method therefor
US8696941B2 (en) Material for functional layer of organic electronic component
DE10059498A1 (de) Substrat mit einer halbleitenden Schicht, elektronisches Bauelement mit diesem Substrat, elektronische Schaltung mit mindestens einem solchen elektronischen Bauelement, druckbare Zusammensetzung sowie Verfahren zur Herstellung eines Substrats
DE10349963A1 (de) Verfahren zur Herstellung einer Folie
Brooke et al. Combining vapor phase polymerization and screen printing for printed electronics on flexible substrates
DE112014001248T5 (de) Organische halbleitende Mischung
DE102011087561B4 (de) Verfahren zur Herstellung einer elektronischen Vorrichtung und dielektrische Zusammensetzungen
DE102004036793A1 (de) Nanoporöse Fullerenschichten und deren Verwendung in der organischen Photovoltaik
DE10329262B3 (de) Verfahren zur Behandlung eines Substrates und ein Halbleiterbauelement
WO2005004252A2 (de) Verfahren zur herstellung von organischen solarzellen oder photodetektoren
DE10340643B4 (de) Druckverfahren zur Herstellung einer Doppelschicht für Polymerelektronik-Schaltungen, sowie dadurch hergestelltes elektronisches Bauelement mit Doppelschicht
DE102014211910A1 (de) Leitfähige Metalldruckfarben mit Polyvinylbutyralbindemittel
EP1513902A1 (de) Material zur herstellung einer leitfähigen organischen funktionsschicht und verwendung dazu
WO2003107450A1 (de) Substrat für einen organischen feld-effekt transistor, verwendung des substrates, verfahren zur erhöhung der ladungsträgermobilität und organischer feld-effekt transistor (ofet)
DE102006021410B4 (de) Verfahren zur Herstellung eines Mehrschichtgebildes und Verwendung des Verfahrens
WO2006128818A1 (de) Material für eine elektrochrome formulierung, verwendung davon und display
EP1704606A1 (de) Organischer transistor mit selbstjustierender gate-elektrode und verfahren zu dessen herstellung
AT505116B1 (de) Tintenzusammensetzungen und deren verwendung
DE102006019484A1 (de) OMR(organo-megneto-resisitver)-Sensor und Verfahren zur Herstellung
DE102013225902B4 (de) Beschichtungsmittel, Verfahren zum Herstellen eines Beschichtungsmittels und einer elektrisch leitfähigen Schicht sowie Bauelement mit Schicht
DE102006035293A1 (de) Verfahren zur Herstellung eines organischen elektrischen Bauelements sowie ein derartiges Bauelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041130

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070103