EP1512184A2 - Electrodes destinees a des composants optoelectroniques et utilisation - Google Patents

Electrodes destinees a des composants optoelectroniques et utilisation

Info

Publication number
EP1512184A2
EP1512184A2 EP03740075A EP03740075A EP1512184A2 EP 1512184 A2 EP1512184 A2 EP 1512184A2 EP 03740075 A EP03740075 A EP 03740075A EP 03740075 A EP03740075 A EP 03740075A EP 1512184 A2 EP1512184 A2 EP 1512184A2
Authority
EP
European Patent Office
Prior art keywords
electrode
allotropes
organic
electrodes
nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03740075A
Other languages
German (de)
English (en)
Inventor
Christoph Brabec
Jens Hauch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konarka Technologies Inc
Original Assignee
Konarka Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konarka Technologies Inc filed Critical Konarka Technologies Inc
Publication of EP1512184A2 publication Critical patent/EP1512184A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices

Definitions

  • the invention relates to electrodes which comprise spherical allotropes, in particular silicon and / or carbon nanotubes, and their use in organic semiconductor technology.
  • Electrodes for optoelectronic components based on organic conductors such as PANI, PED0T: PSS (polystyrene sulfonic acid) etc.
  • the conductivity, the transparency for light, the electronic work function and / or the surface properties of these electrodes can still be optimized.
  • the object of the present invention is therefore to provide a new electrode with improved (opto) electronic properties for organic semiconductor components and optoelectronic components.
  • the invention relates to an electrode for optoelectronic and / or organic semiconductor components, which comprises allotropes.
  • the invention also combines, for example, allotropes with organic conductors or semiconductors (typically conjugated polymers) to form a semi-transparent or non-transparent electrode.
  • the electrodes can comprise the allotropes either in their metallic conductive form or in their semiconducting form.
  • metallic-conductive allotropes are, for example, from the literature (ZF Ren, ZP Huang, J.. Xu, DZ Wang, JH Wang, L. Calvet, J. Chen, JF Klemic, and MA Reed, "Large Arrays of Well-Aligned Carbon Nanotubes ", Proceedings of 13th International Winter School on Electronic Properties of Nove Materials, Pages 263-267, (1999).
  • Nanotubes have a variety of unique electronic, optical and mechanical properties.
  • Single-walled nanotubes have high tensile strength and, depending on the diameter and chirality, can be metallic, semiconducting or insulating.
  • chemical derivatization of nanotubes can also make sense, because this can influence their solubility and processability.
  • the derivatized and / or soluble nanotubes can be used as part of a phase mixture in organic functional polymers of microelectronics.
  • Spherical allotropes such as nanotubes are e.g. in Nature 1991, vol. 354, pages 56 to 58. There are silicon and carbon nanotubes.
  • the alltotropes can either be added to conductive organic materials and / or drawn on substrates.
  • the electrodes can either be realized purely with metallic allotropes, or by means of composite materials with metallic allotropes and / or with semiconducting allotropes.
  • the following allotropes are suitable for positive / negative electrodes, which are formed by prior deposition of a suitable catalyst on substrates such as glass, metal (molybdenum), semiconductors (silicon) or also on foils (PET).
  • a combination of at least two elements selected from the group of conductive substrates (conductive oxides (ITO), doped semiconductors (silicon, germanium ...), - of metals such as AL, Ag ... is also suitable for positive / negative electrodes. . or
  • non-conductive substrates glass, foils, ...) on which allotropes are applied either in their purest form or in mixtures with conductive or non-conductive binding materials (polymers ).
  • organic material or “functional polymer” or “polymer” here encompasses all types of organic, organometallic and / or organo-inorganic plastics (hybrids), in particular those which are described in English e.g. be called “plastics”. These are all types of substances with the exception of the semiconductors that form the classic diodes (germanium, silicon) and the typical metallic conductors. A restriction in the dogmatic sense to organic material as carbon-containing material is therefore not provided, but rather is also due to the widespread use of e.g. Silicones thought.
  • polymer in the functional polymer is historical and therefore contains no information about the presence of an actually polymeric compound.
  • functional polymer can refer to semiconducting, conducting and / or insulating substances.
  • Metallic allotropes or nanotubes grown (formed) on a substrate result in conductive electrodes with a a three-dimensional structure, for example a two-dimensional array with nanotubes on it, which has a large surface area.
  • the increase in surface area that is to say the ratio of the substrate surface on which the allotorop is applied, to the usable electrode surface, that is to say the active area, can be increased further by the density of the planting, that is to say the grown allotropes and / or by their length ,
  • Composite material for electrodes can e.g. can be produced by embedding metallic allotropes in a matrix of conductive functional polymer. In this mixture of the allotrope with the organic functional polymer, the conductivity and / or the transparency of the electrode can be optimized via the amount of allotrope, its concentration in the matrix. From this composite material e.g. an electrode can be printed as a solution.
  • semiconducting allotopes can also be used as the positive electrode (electron acceptor) for heterojunction applications. It has recently been shown that nanotube composites with conjugated polymers show a strong photo effect (SB Lee, T. Karayama, H. Kajii, H. Araki and K. Yoshino, Synth. Met 121 (2001) 1591-1592 ).
  • the optical properties of the electrode can be adjusted by changing the length of the allotropes.
  • Allotropic or nanotubes of suitable length function like a ⁇ / 4 antenna that is used to absorb electromagnetic radiation.
  • allotropes for example, allotropes with a length of 100 to 200 nm are used. The invention is explained in more detail below with the aid of examples:
  • Example 1 is the embodiment of the invention as an organic solar cell or organic photodetector, based on a metallic nanotube electrode.
  • the nanotubes are either deposited on a conductive substrate, as an alternative, the nanotubes can also be “grown” on a non-conductive substrate, that is, “formed by growing”.
  • the nanotube electrode is coated with a conductive (optionally or optionally semitransparent polymer) (eg by means of a printing process from the solution).
  • This electrode then comprises these layers - substrate optionally conductive layer, eg. B. Au, ITO, AI ... - nanotube (selectable adjustable length, arrangement) optionally conductive polymer.
  • the organic semiconductor (or a mixture of organic p-type and n-type semiconductor) is then deposited on this electrode (for example by a printing process from the solution).
  • the component is finished by applying a counter electrode (typically by thermal vapor deposition of a thin metal layer).
  • the optical absorption can be increased by a suitable choice of the length of the nanotubes and their arrangement.
  • the second example describes an organic solar cell or an organic photodetector based on a semiconducting nanotube electrode.
  • the nanotubes are either deposited on a conductive substrate, alternatively the nanotubes can also be grown on a non-conductive substrate.
  • the nanotube electrode is coated with a conductive (optionally semi-transparent polymer) (e.g. by printing from the solution).
  • a conductive optionally semi-transparent polymer
  • the organic semiconductor preferably a p-type semiconductor
  • is deposited typically by solution printing process.
  • the semiconducting nanotubes of the electrode act as n-type semiconductors, so that a photo effect occurs between the polymeric semiconductor and the nanotubes.
  • the component is finished by applying a counter electrode (typically by thermal evaporation of thin metal layers).
  • the optical absorption can be increased by a suitable choice of the nanotube length and the arrangement of the nanotubes.
  • the third example describes an organic light-emitting diode (or an organic display) based on a nanotube electrode (nanotube electrode array).
  • the nanotubes are either deposited on a conductive substrate, as an alternative, the nanotubes can also be grown on a non-conductive substrate, for contacting, the nanotube electrode is coated with a conductive (optionally semitransparent polymer) (e.g. by printing process from the solution).
  • the organic semiconductor preferably a p-type semiconductor
  • is deposited onto this electrode isting of substrate / (optionally conductive layer, for example Au, ITO, AI ...) / nanotube / (optionally conductive polymer) (typically through printing process from solution).
  • the component is completed by applying a counter electrode (typically by thermal evaporation of thin metal layers).
  • the semiconductor component is composed as follows: Step 1: Production of the underside: substrate / electrode 1 (metal) / organic semiconductor Step 2: pressing a grown nanotube electrode into the organic semiconductor. By pressing, the carbon nanotubes penetrate into the organic semiconductor and make contact. With this technology, either the electrode 1 or the nanotube electrode can be designed to be semi-transparent.
  • the invention relates to electrodes which comprise spherical allotropes, in particular silicon and / or carbon nanotubes, and their use in organic semiconductor technology.
  • the electrodes can either comprise only allotropes and / or allotropes which are embedded in an organic functional polymer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Light Receiving Elements (AREA)

Abstract

L'invention concerne des électrodes contenant des allotropes sphériques, notamment des nanotubes de silicium et/ou de carbone, ainsi que leur utilisation dans la technique des semiconducteurs organiques. Les électrodes selon l'invention peuvent contenir des allotropes uniquement et/ou des allotropes intégrés dans un polymère fonctionnel organique.
EP03740075A 2002-06-13 2003-06-10 Electrodes destinees a des composants optoelectroniques et utilisation Withdrawn EP1512184A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10226366 2002-06-13
DE10226366A DE10226366A1 (de) 2002-06-13 2002-06-13 Elektroden für optoelektronische Bauelemente und deren Verwendung
PCT/DE2003/001914 WO2003107451A2 (fr) 2002-06-13 2003-06-10 Electrodes destinees a des composants optoelectroniques et utilisation

Publications (1)

Publication Number Publication Date
EP1512184A2 true EP1512184A2 (fr) 2005-03-09

Family

ID=29719034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03740075A Withdrawn EP1512184A2 (fr) 2002-06-13 2003-06-10 Electrodes destinees a des composants optoelectroniques et utilisation

Country Status (5)

Country Link
EP (1) EP1512184A2 (fr)
JP (1) JP2005530350A (fr)
CN (1) CN1659721A (fr)
DE (1) DE10226366A1 (fr)
WO (1) WO2003107451A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005009333D1 (de) * 2004-02-20 2008-10-09 Univ Florida Halbleiterbauelement und verfahren mit nanoröhren-kontakten
JP2009506546A (ja) * 2005-08-24 2009-02-12 ザ トラスティーズ オブ ボストン カレッジ ナノスケール共金属構造を用いた太陽エネルギー変換のための装置および方法
JP4720426B2 (ja) * 2005-10-19 2011-07-13 住友金属鉱山株式会社 カーボンナノチューブを用いた太陽電池
JP2009541198A (ja) * 2006-06-30 2009-11-26 ユニバーシティー オブ ウロンゴング ナノ構造複合材
WO2008122027A2 (fr) * 2007-04-02 2008-10-09 Konarka Technologies, Inc. Nouvelle electrode
WO2009023778A1 (fr) * 2007-08-14 2009-02-19 William Marsh Rice University Dispositif de rectification optique et procédé de fabrication de celui-ci
MX2011011501A (es) 2009-04-30 2011-11-18 Univ Florida Catodos de aire a base de nanotubos de carbono de una sola pared.
KR101744931B1 (ko) 2010-09-24 2017-06-09 서울바이오시스 주식회사 반도체 발광 소자 및 그 제조방법
JP6138694B2 (ja) 2010-12-17 2017-05-31 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク.University Of Florida Reseatch Foundation,Inc. 電気化学電池用の電極を形成する方法
EP2694579A4 (fr) 2011-04-04 2014-09-03 Univ Florida Dispersants de nanotubes et films de nanotubes exempts de dispersant formés à partir de ceux-ci
CN105764838B (zh) 2013-11-20 2019-03-01 佛罗里达大学研究基金会有限公司 含碳材料上的二氧化碳还原

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030269A2 (fr) * 2001-09-26 2003-04-10 Klaus Rennebeck Fibre creuse, notamment nanotube ou microtube et utilisation
WO2003037791A1 (fr) * 2001-10-29 2003-05-08 Siemens Aktiengesellschaft Nanotubes ou nano-oignons derives, composites contenant ces composes, procede de production et utilisations
JP2006513557A (ja) * 2002-05-21 2006-04-20 エイコス・インコーポレーテッド カーボンナノチューブ被覆物をパターン化する方法およびカーボンナノチューブ配線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03107451A3 *

Also Published As

Publication number Publication date
JP2005530350A (ja) 2005-10-06
WO2003107451A2 (fr) 2003-12-24
DE10226366A1 (de) 2004-01-08
CN1659721A (zh) 2005-08-24
WO2003107451A3 (fr) 2004-08-05

Similar Documents

Publication Publication Date Title
US20050194038A1 (en) Electrodes for optoelectronic components and the use thereof
EP1611484B1 (fr) Composant photo-actif presentant des couches organiques
DE102006053953B4 (de) Fotovoltaische Struktur mit einer Elektrode aus einem Array leitender Nanodrähte
EP2078313B1 (fr) Dispositifs photovoltaïques avec des couches de support comprenant des fibres
DE202007018948U1 (de) Elektroden mit Nanoröhrchen für organische optoelektronische Einrichtung
WO2004051756A2 (fr) Composant photovoltaique et procede de production de ce composant
Kim et al. Stretchable photodetectors based on electrospun polymer/perovskite composite nanofibers
DE112012003329T5 (de) Tandem-Solarzelle mit Graphen-Zwischenschicht und Verfahren zum Herstellen davon
DE102004036734A1 (de) Kostengünstige organische Solarzelle und Verfahren zur Herstellung
EP1634343A2 (fr) Cellule solaire tandem, munie d'une electrode organique commune
DE102006054523A1 (de) Dithiolenübergangsmetallkomplexe und Selen-analoge Verbindungen, deren Verwendung als Dotand, organisches halbleitendes Material enthaltend die Komplexe, sowie elektronische oder optoelektronisches Bauelement enthaltend einen Komplex
WO2003107451A2 (fr) Electrodes destinees a des composants optoelectroniques et utilisation
EP2248202A1 (fr) Diode électroluminescente organique, ensemble de contact et procédé de fabrication d'une diode électroluminescente organique
DE102018118116A1 (de) Verfahren zur Herstellung eines elektrisch leitfähigen Substrats, einer elektronischen Vorrichtung und einer Anzeigevorrichtung
CN110364628A (zh) 一种混合维度柔性透明电极及其制备方法和应用
Xiao et al. Light managements and transparent electrodes for semitransparent organic and perovskite solar cells
DE102004036793A1 (de) Nanoporöse Fullerenschichten und deren Verwendung in der organischen Photovoltaik
EP1535353A2 (fr) Composant organique photovoltaique et procede de fabrication dudit composant
EP3317906B1 (fr) Composant organique électroluminescent et son procédé de fabrication
DE102013106804A1 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
EP1442486B1 (fr) Pile solaire a materiau organique dans la couche photovoltaique et procede de fabrication associe
WO2010006595A2 (fr) Composant photoactif avec couches organiques et électrode à couches multiples
DE102021130501A1 (de) Schichtsystem mit mindestens einer photoaktiven Schicht mit mindestens einer Zwischenschicht für ein organisches elektronisches Bauelement
WO2007096349A2 (fr) Diode organique et procédé de fabrication de diodes organiques
DE102009024953A1 (de) Mehrschichtelektrode für photovoltaische Bauelemente, Verfahren zu ihrer Herstellung und photovoltaisches Bauelement mit einer solchen Mehrschichtelektrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041130

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090327

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120103