WO2007096349A2 - Diode organique et procédé de fabrication de diodes organiques - Google Patents

Diode organique et procédé de fabrication de diodes organiques Download PDF

Info

Publication number
WO2007096349A2
WO2007096349A2 PCT/EP2007/051593 EP2007051593W WO2007096349A2 WO 2007096349 A2 WO2007096349 A2 WO 2007096349A2 EP 2007051593 W EP2007051593 W EP 2007051593W WO 2007096349 A2 WO2007096349 A2 WO 2007096349A2
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
electrically conductive
unstructured
diodes
Prior art date
Application number
PCT/EP2007/051593
Other languages
German (de)
English (en)
Other versions
WO2007096349A3 (fr
Inventor
Jens FÜRST
Debora Henseler
Arndt Jaeger
Peter Stauss
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2007096349A2 publication Critical patent/WO2007096349A2/fr
Publication of WO2007096349A3 publication Critical patent/WO2007096349A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/20Organic diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an organic diode and a procedural ⁇ ren for the manufacture of organic diodes, in particular of organic photodiodes.
  • Organic photo-detectors or organic Fotodio be used ⁇ can, inter alia, relatively well as ambient light sensors, since the spectral sensitivity of the acti ⁇ ven organic layers of the photodiodes can be adapted relatively well to the sensitivity curve of the human eye. In addition, organic photodiodes can be made relatively inexpensive.
  • the individual diodes have two separate and structured electrodes for contacting. Although several photodiodes can be processed on a substrate, for example glass. However, the individual layers and in particular the electrodes of the photodiodes must be structured during their production. In addition, organic diodes typically need to be hermetically sealed against moisture penetration before the individual diodes, for example, by a so-called "scribe-and-break"
  • the object of the present invention is therefore to provide a method for producing organic diodes, in particular of organic photodiodes, which creates the conditions for a cost-effective production of relatively small organic diodes.
  • the object of the invention is achieved by a method for producing organic diodes, comprising the following method steps: producing a large-area and structured layer system by providing an unstructured electrically conductive substrate, applying at least one unstructured active organic layer to the electrically conductive substrate and applying an unstructured electrically conductive layer layer to the unpatterned active organic layer, and manufacturing a plurality of organic ⁇ shear diodes from the large and unstructured layer system by cutting the layer system in a plurality of organic raw diodes so that each of the organic raw diodes the electrically conductive substrate, with consequent active organic layer and subsequent electrically conductive layer, providing the electrically conductive substrate and the electrically conductive layer of each organic raw diode with jewei a wire connection and providing each organic raw diode with a protective layer.
  • the unstructured layer system is first produced from an electrically conductive substrate, the unstructured active organic layer and the unstructured electrically conductive layer.
  • the production of an unstructured layer system is less expensive than the production of a structured layer system according to the prior art.
  • the unstructured electrically conductive substrate is at ⁇ play a doped and hence conductive inorganic wafer such as Si, Ge, Ga, As, InP or a metalli ⁇ ULTRASONIC substrate. If the organic diodes are photodiodes, then the active organic layer is intended to absorb light and to separate the resulting positive and negative charge carriers.
  • the unstructured active organic layer is then preferably a mixture from an electron-transporting material, for example the fullerenes C60, C70 or their derivatives, and a hole-transporting material, for example substituted polythiophenes, polyphenylenevylenes or polyfluorenes.
  • an electron-transporting material for example the fullerenes C60, C70 or their derivatives
  • a hole-transporting material for example substituted polythiophenes, polyphenylenevylenes or polyfluorenes.
  • the unstructured electrically conductive substrate forms after the cutting of the layer system one of the two electrodes of the organic diodes to be produced.
  • the other electrode of the individual organic diodes is formed by the unstructured electrically conductive layer.
  • the electrically conductive substrate may form both the anode and the cathode of the organic diodes. Accordingly, the unstructured electrically conductive layer likewise forms either the cathode or the anode of the organic diodes.
  • the layer system for example with a laser or with a diamond saw, is cut into a plurality of organic raw diodes. Due to the cutting according to the invention, it is possible to obtain smaller singulated organic diodes than is possible in the production of organic diodes by means of a structured layer system.
  • the protective layer is intended to protect the isolated organic diodes from penetrating oxygen or moisture.
  • Protective layer is in particular an electrically non-conductive passivation layer, with which the isolated organic raw diodes are surrounded, suitable.
  • the isolated organic diodes can also be cast in a resin.
  • this MAESSEN is erfindungsge ⁇ a first metal layer.
  • the first metal layer forms the anode of the organic diodes, this in particular comprises ITO (indium-tin oxide), Au, Ag, Pd, PT, as well as combinations of several of these materials.
  • the first metal layer if this forms the Katho ⁇ de of the organic diodes, include Al, Ag, ITO, Mg, LiF, Ca, and combinations of several of these materials.
  • the first metal layer or, in general, the electrically conductive layer on its outwardly directed surface may additionally be provided with a current diffusion layer comprising eg ITO.
  • the electrically conductive layer is made so thin that it is at least semitransparent.
  • the electrically conductive layer preferably has a layer thickness ⁇ smaller than 20 nm.
  • the first metal layer or the electrically conductive layer is made of an at least semi-transparent material. Suitable semitransparent materials for the electrically conductive layer or for the first metal layer comprise ITO or semitransparent electrically conductive oxides.
  • an unstructured second metal layer is applied to the unstructured electrically conductive substrate.
  • the second metal layer forms one of the two electrodes in combination with the substrate.
  • Suitable materials for the second metal layer when it forms the anode of the organic diodes, ITO include, Au, Ag, Pd, Pt, and combination Nati ⁇ ones of several of these materials.
  • Suitable materials for the second metal layer, if this forms the cathode of the organic diodes include Al, Ag, ITO, Mg, LiF, Ca, ⁇ as combinations of several of these materials
  • an additional hole transport or electron transport layer can be applied between the organic layer and the second electrically conductive layer. Also, between the substrate and the second metal layer and the organic layer is an additional hole transport ⁇ or electron transport layer can be applied.
  • the adhesive film is particularly flexible, so that the individual organic Ron diodes can be better separated after cutting by pulling the film apart.
  • the adhesive film ⁇ UV is detachable, so that this by the isolated crude diodes can be achieved by UV irradiation.
  • organic diodes Due to the method according to the invention, it is possible to produce several hundred to one hundred thousand organic diodes relatively inexpensively by means of a substrate and subsequent separation. If the organic diodes are photodiodes, they are particularly favorable for use for measuring the ambient light. In addition, due to the unstructured layers, and in particular the unstructured active organic layer, relatively inexpensive coating methods can be used. The relatively high quantum efficiency that can reach with active organic materials up to 90 percent, and the relatively good spectral adaptability to specific requirements, prop ⁇ just organic photodiodes nen particularly well to advertising used with small component surfaces as light sensors the. In particular, due to the method according to the invention, it is possible to produce such small executed organic Fotodio ⁇ the.
  • organic diodes produced are organic photodiodes
  • poly-3-hexylthiophene with C60 derivatives is advantageously used as the active organic layer.
  • This material is relatively water and air un ⁇ sensitive.
  • Suitable electrode materials are in particular the relatively oxidation-insensitive materials Al or ITO.
  • the process according to the invention is carried out in an inert gas environment.
  • the inert gas prevents or at least reduces the risk ei ⁇ ner oxidation of the raw diodes, before they are provided with the protective layer.
  • ⁇ SSIG organic light emitting diodes
  • the organic light emitting diodes are organic diodes (OLEDs).
  • FIGS 1 to 10 different production methods of an organic photodiode.
  • FIGS. 1 to 10 illustrate the production of a plurality of organic photodiodes F with an anode A and a cathode K.
  • the organic photodiode F For the production of the organic photodiode F, a first shown in FIG. 1 and unstructured doped inorganic substrate 2, which in the case of the embodiment PRESENT doped silicon is comprised, provided ⁇ be riding. On the substrate 2, an unstructured conductive layer 3 shown in FIG. 2 is subsequently applied, which, in the case of the present embodiment, is applied to the substrate 2. Consists of ITO (indium tin oxide) and the anodes A of the organic photodiodes F forms.
  • ITO indium tin oxide
  • the active organic layer 5 in the case of the present embodiment is a mixture of an electron-transporting material, in the case of the present embodiment poly-3-hexylthiophene with C60 derivatives, and a hole-transporting material, in the case of the present example substituted polythiophene.
  • the acti ve ⁇ organic layer 5 is subsequently transporting layer having a composition represented in the figure 5 and large-area electron unstructured 6 provided.
  • On the electron transport layer 6 is then a large area and a further unstructured conductive layer 7 shown in FIG 6 is applied, which forms the organic photodiodes F in the case of the presentariessbei ⁇ outside the cathode K.
  • the forth ⁇ that delivers the diodes organic photodiodes F is provided to absorb light and separate the resulting positive and negative charge carriers. Therefore may need to meet at least one of the electric ⁇ the the organic photodiodes F be at least semi-transparent to allow light to penetrate therethrough and ganic to the active layer or ⁇ . 5
  • the cathodes K are at least semitransparent, for which reason the conductive layer 7 likewise consists of ITO and has a thickness of approximately 15 nm.
  • the substrate 2, the conductive layers 3, 7, the trans ⁇ port layers 4, 6 and the active organic layer 5 form an unstructured layer system S, the first before further processing in the case of the present embodiment, a UV shown in Figure 6 -lösbare ⁇ adhesive film 1 having an adhesive and a non-adhesive side is placed so that the substrate 2 is located on the adhesive side of the UV releasable adhesive sheet. 1 Subsequently, the layer system S lying on the adhesive film 1 is cut along lines 8 shown in FIG. 7 with a laser or a diamond saw. This results in a plurality of raw photodiodes 9 shown in FIG.
  • the adhesive sheet 1, on which the raw photodiodes 9 adhere is pulled apart in the direction of arrows P shown in FIG. 8, whereby the individual raw photodiodes 9 are spaced from each other.
  • the raw photodiodes 9 can be better processed further.
  • the adhesive film 1 is irradiated with UV rays, whereby it dissolves from the substrate.
  • the cathodes K of the raw photodiodes 9 each contacted with a gold wire 10 and the substrate 2 of the raw photodiodes 9, each with a gold wire 11 by the gold wires 10 and 11 to the respective Ka ⁇ methods K or substrates 2 of the raw diodes 9 are bonded with a bonding tool, not shown.
  • the individual raw diodes 9 are potted with a resin 12, so that the organic photodiodes F shown in FIG. 10 are formed.
  • the organic diodes are organic photodiodes F.
  • this method can also be applied to organic light-emitting diodes (oLEDs).
  • oLEDs organic light-emitting diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Light Receiving Elements (AREA)

Abstract

L'invention concerne une diode organique (F) et un procédé de fabrication de diodes organiques (F). Ce procédé consiste d'abord à réaliser un système de couches (S) non structuré et de grande surface en préparant un substrat électroconducteur (2) non structuré, en appliquant au moins une couche organique (5) active non structurée sur le substrat électroconducteur (2) et en appliquant une couche électroconductrice (7) non structurée sur la couche organique (5) active non structurée. Ledit procédé consiste ensuite à découper ce système de couches (S) en plusieurs ébauches de diodes organiques (9) puis à doter le substrat électroconducteur (2) et la couche électroconductrice (7) de chaque ébauche de diode organique (9) d'une connexion par fil respective (10, 11) et d'une couche de protection (12).
PCT/EP2007/051593 2006-02-24 2007-02-20 Diode organique et procédé de fabrication de diodes organiques WO2007096349A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008743 2006-02-24
DE102006008743.7 2006-02-24

Publications (2)

Publication Number Publication Date
WO2007096349A2 true WO2007096349A2 (fr) 2007-08-30
WO2007096349A3 WO2007096349A3 (fr) 2008-02-14

Family

ID=38437722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/051593 WO2007096349A2 (fr) 2006-02-24 2007-02-20 Diode organique et procédé de fabrication de diodes organiques

Country Status (1)

Country Link
WO (1) WO2007096349A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031533A1 (de) * 2008-07-03 2010-01-07 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines organischen elektronischen Bauelements und organisches elektronisches Bauelement
DE102013106804A1 (de) * 2013-06-28 2014-12-31 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670791A (en) * 1994-11-23 1997-09-23 U.S. Philips Corporation Photoresponsive device with a photoresponsive zone comprising a polymer blend
WO2004100616A1 (fr) * 2003-05-12 2004-11-18 Schreiner Group Gmbh & Co. Kg Procede de traitement d'un element electroluminescent et element electroluminescent traite selon ce procede
WO2005029592A1 (fr) * 2003-09-16 2005-03-31 Midwest Research Intstitute Piles photovoltaiques organiques a champ electrique integre au niveau de interface d'heterojonction
WO2005086255A1 (fr) * 2004-02-09 2005-09-15 General Electric Company Dispositifs photovoltaiques de zone etendue et procedes de fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670791A (en) * 1994-11-23 1997-09-23 U.S. Philips Corporation Photoresponsive device with a photoresponsive zone comprising a polymer blend
WO2004100616A1 (fr) * 2003-05-12 2004-11-18 Schreiner Group Gmbh & Co. Kg Procede de traitement d'un element electroluminescent et element electroluminescent traite selon ce procede
WO2005029592A1 (fr) * 2003-09-16 2005-03-31 Midwest Research Intstitute Piles photovoltaiques organiques a champ electrique integre au niveau de interface d'heterojonction
WO2005086255A1 (fr) * 2004-02-09 2005-09-15 General Electric Company Dispositifs photovoltaiques de zone etendue et procedes de fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJIKAKE SHINJI ET AL.: "Fabrication Technologies for large-area plastic-film-substrate solar cells" PROC. WORLD CONF. PHOTOVOLTAIC ENERG. CONVER.; PROCEDDINGS OF THE 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION; PROCEDDINGS OF THE 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION 2003, Bd. B, 2003, Seiten 1760-1763, XP002460629 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031533A1 (de) * 2008-07-03 2010-01-07 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines organischen elektronischen Bauelements und organisches elektronisches Bauelement
DE102008031533B4 (de) 2008-07-03 2021-10-21 Pictiva Displays International Limited Organisches elektronisches Bauelement
DE102013106804A1 (de) * 2013-06-28 2014-12-31 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements

Also Published As

Publication number Publication date
WO2007096349A3 (fr) 2008-02-14

Similar Documents

Publication Publication Date Title
DE102008020816B4 (de) Organische Leuchtdiode, flächiges, optisch aktives Element mit einer Kontaktanordnung und Verfahren zur Herstellung einer organischen Leuchtdiode
DE102010032834B4 (de) Optoelektronische Vorrichtung und Verfahren zu deren Herstellung
DE102007046337A1 (de) Optoelektronischer Halbleiterchip, optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
WO2010025696A2 (fr) Procédé pour produire un photoémetteur organique, et photoémetteur organique
DE112013001641T5 (de) Solarzelle und Verfahren zum Herstellen einer Solarzelle
DE102013106378B4 (de) Verfahren zur herstellung eines chipgehäuses
WO2007096349A2 (fr) Diode organique et procédé de fabrication de diodes organiques
EP1442486B1 (fr) Pile solaire a materiau organique dans la couche photovoltaique et procede de fabrication associe
EP3017464B1 (fr) Dispositif opto-électronique et sa méthode de fabrication
EP2453498B1 (fr) Dispositif émettant un rayonnement et procédé de fabrication d'un dispositif émettant un rayonnement
DE102008030845B4 (de) Organisches elektronisches Bauelement und Verfahren zur Herstellung eines organischen elektronischen Bauelements
DE102017107707A1 (de) Verfahren zur Herstellung eines elektronischen Bauelements und elektronisches Bauelement
DE102015103742A1 (de) Organisches optoelektronisches Bauelement und Verfahren zum Herstellen eines organischen optoelektronischen Bauelements
EP4055638A1 (fr) Composant optoélectronique et procédé de contact de composant optoélectronique
DE102007019327A1 (de) Organische Driftdiode
WO2016030184A1 (fr) Dispositif optoélectronique
WO2016037925A1 (fr) Dispositif émetteur de rayonnement et procédé de fabrication de celui-ci
WO2016078882A1 (fr) Dispositif optoélectronique avec fusible
DE102015103702A1 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102020131742A1 (de) Feldbreitenanpassung von Zellen in einem photovoltaischen Element
WO2020043678A1 (fr) Système d'électrodes protégé contre les courts-circuits pour des composants électroniques
WO2016146642A1 (fr) Procédé de fabrication d'un composant organique
DE112021007840T5 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung desselben
WO2014049046A1 (fr) Procédé et dispositif permettant de déterminer la perméabilité d'une couche diélectrique d'un composant optoélectronique, composant optoélectronique et procédé de fabrication d'un composant optoélectronique
DE102016122685A1 (de) Organisches Bauelement und Verfahren zur Herstellung eines organischen Bauelements

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07712252

Country of ref document: EP

Kind code of ref document: A2