WO2010006595A2 - Composant photoactif avec couches organiques et électrode à couches multiples - Google Patents

Composant photoactif avec couches organiques et électrode à couches multiples Download PDF

Info

Publication number
WO2010006595A2
WO2010006595A2 PCT/DE2009/001030 DE2009001030W WO2010006595A2 WO 2010006595 A2 WO2010006595 A2 WO 2010006595A2 DE 2009001030 W DE2009001030 W DE 2009001030W WO 2010006595 A2 WO2010006595 A2 WO 2010006595A2
Authority
WO
WIPO (PCT)
Prior art keywords
photoactive component
organic
photoactive
layer
limited
Prior art date
Application number
PCT/DE2009/001030
Other languages
German (de)
English (en)
Other versions
WO2010006595A3 (fr
Inventor
Jan Meiss
Nikola Allinger
Karl Leo
Moritz Riede
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Publication of WO2010006595A2 publication Critical patent/WO2010006595A2/fr
Publication of WO2010006595A3 publication Critical patent/WO2010006595A3/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a photoactive component with organic layers, in particular an organic solar cell, with a layer arrangement which has an electrode and a counter electrode and a sequence of organic layers
  • Organic solar cells consist of one series thin layers, which typically have a thickness between 1 nm and 1 .mu.m, of organic materials, which are preferably vapor-deposited in vacuum or applied from a solution.
  • the electrical contacting is generally carried out by transparent, semitransparent or non-transparent metal layers and / or transparent conductive layers Oxides (TCOs) and / or conductive polymers
  • organic-based devices over conventional inorganic-based devices, such as semiconductors such as silicon or gallium arsenide, are the sometimes very high optical absorption coefficients of up to 3 ⁇ 10 5 cm -1 , so that there is the possibility of having low material and Energy expenditure to produce very thin solar cells Further technological aspects are the low cost, the possibility of producing flexible large-area components on plastic films, and the almost unlimited possibilities of variation in organic chemistry
  • a solar cell converts light energy into electrical energy
  • solar cells do not generate free charge carriers directly, but excitons are formed, ie electrically neutral states of excitation, namely bound electron-hole pairs. These excitons can only be generated by In organic solar cells, sufficiently high fields are not available, so that all promising concepts for organic solar cells based on the exciton separation at photoactive interfaces (organic donor-acceptor interface - CW Tang, Appl Phys Lett, 48 (2), 183-185 (1986)) or interface to an inorganic semiconductor (see BO Regan et al, Nature 353, 737 (1991)) This requires that excitons generated in the bulk of the organic material can diffuse to this photoactive interface
  • the document WO 00/33396 proposes the formation of a so-called interpenetrating network.
  • a layer contains a colloidally dissolved substance which is distributed so as to form a network over which charge carriers can flow (percolation mechanism) such network either only one of the components or both
  • the active layer consists of an organic semiconductor in a gel or binder (US 3,844,843, US 3,900,945, US 4,175,981 and US 4,175,982)
  • a layer containing a pigment which generates the charge carriers and additionally a material which removes the charge carriers JP 07142751
  • Tandem cells can be further improved by using p-i-n structures with doped transport layers of large band gaps (DE 103 13 232)
  • a general disadvantage of both inorganic and organic solar cells is a limited choice of possible materials for electrical contacting (electrode and counterelectrode).
  • electrical contacting electrode and counterelectrode
  • transparent contact only a few alternatives are known, which are generally limited to some transparent, conductive oxides (TCOs), Limiting conductive polymers and semi-transparent metal layers
  • TCOs transparent, conductive oxides
  • Limiting conductive polymers Limiting conductive polymers
  • semi-transparent metal layers The simplest version to realize in organic solar cells is the vapor deposition of thin metal layers, which can be a good compromise between transparency and conductivity.
  • thin metal contacts are potentially more durable than conductive polymers, less expensive than tin-doped indium oxide ( ITO), which is currently often used as a standard material, more non-toxic than compounds containing indium, arsenic or cadmium, and process-technically easy to realize Due to these advantages, it is desirable to optimal dü to develop metal contacts
  • ITO tin-doped indium oxide
  • One possibility here is the vapor deposition of thin silver layers as a semitransparent electrode.
  • the object of the invention is to achieve an optimal compromise of different requirements with thin metal contacts.
  • the object is achieved by a photoactive component with organic layers, in particular a solar cell, with the features mentioned in claim 1.
  • Advantageous embodiments are the subject of dependent subclaims.
  • Advantageous uses arise from the claims 18 to 20.
  • At least the upper electrode of the photoactive component consists of several layers of different elements, wherein at least one layer of a main group metal (for example, but not limited to Al, Ga, In, Sn) with a layer thickness of 35 Angstrom to 200 Angstrom or a transition metal (for example, but not limited to Cr, Mn, Fe, Co, Ni, Cu, Zn) having a layer thickness of up to 200 angstroms, and wherein at least one further layer of another metal or transition metal (for example, but not limited to Al, Ag , Au, Pt).
  • a main group metal for example, but not limited to Al, Ga, In, Sn
  • a transition metal for example, but not limited to Cr, Mn, Fe, Co, Ni, Cu, Zn
  • Examples of the materials mentioned in claim 5 are 4,4 ', 4 "-tris (1-naphthylphenylamino) -triphenylamines (TNATA), N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- benzidine (alpha-NPD), 4,4'-bis (N, N-diphenylamino) quaterphenyl (4P-TPD), N, N'-diphenyl-N, N'-bis (4 '- (N, N - bis (naphthyl) amino) biphenyl-4-yl) benzidines (di-NPB), N, N, N ', N'-tetrakis (4-methoxyphenyl) benzidines (MeO-TPD)
  • An advantageous embodiment of the invention contains in the HTL materials which serve as dopants (acceptors) for the materials which preferably conduct positive charges (holes), examples of which are 2,3,5,
  • Examples of the materials mentioned in claim 6 are 1,4,5,8-naphthalene-tetracarboxylic dianhydrides (NTCDA) or Buckminster fullerenes (C60).
  • NTCDA 1,4,5,8-naphthalene-tetracarboxylic dianhydrides
  • C60 Buckminster fullerenes
  • An advantageous embodiment of the invention contains in the ETL materials serving as dopants (donors) for the materials which preferentially conduct negative charges (electrons). Examples of these are: (N, N, N ', N'-tetramethylacridine-3,6-diamine) (AOB) or NDNl (Novaled AG, Dresden, Germany).
  • Examples of the materials mentioned in claim 7 are zinc phthalocyanines (ZnPc), copper phthalocyanines (CuPc), Buckminster fullerenes (eg C60 or C70), dicyanovinyl Oligothiophene Derivatives (DCVxT), Chloroaluminum Phthalocyanine (CIAlPc or AlClPc)
  • Examples of the materials mentioned in claim 9 are Bathocuproine (BCP), 4,7-diphenyl-1,10-phenanthroline (BPhen).
  • Examples of the materials mentioned in claim 10 are SiN, SiO 2.
  • the invention is based on the surprising, experimentally obtained knowledge that an already very thin intermediate layer of less favorable optical properties of the metal in combination with a second layer of a more optically favorable metal leads to very good morphological and optical properties.
  • This combination of at least two different elements for a transparent metal contact makes it possible, compared to a contact of only a single element, - to achieve a smoother, more closed layer with superior conductivity and transmission while maintaining a constant layer thickness,
  • the invention thus offers considerable potential for saving costs and material over conventional electrodes, which are usually made of a single metal such as aluminum, gold or silver, while improving the efficiency of the photoactive component
  • conventional electrodes which are usually made of a single metal such as aluminum, gold or silver
  • single layers are preferably used
  • the metal multilayer according to the invention thus represents the optimum compromise between the optical, electrical and morphological requirements and thus enables the construction of highly efficient photoactive components, the metal multilayer having superior performance compared to the commonly used single layers, precisely by combining the properties of several elements only possible with one element
  • the interaction of different elements means that even more expensive materials can be replaced by cheaper ones as well as thinner layers can be used
  • the invention thus comprises a photoactive component with organic layers and transparent multi-layer metal contact, in particular a solar cell, with a layer arrangement comprising an electrode and a counter electrode and a sequence of organic layers, which is arranged between the electrode and the counter electrode, wherein at least one the electrodes may be a combination of at least two different elements
  • these metal multilayers can be produced process-technically without further complications by applying a metal layer and after Completion of the deposition directly and immediately a second (or more) further layer (s) can be applied
  • a multiple metal layer can be achieved by the invention, which has approximately the properties of the advantageous second metal, without the properties of the first metal in importance
  • This total layer may be a total of much thinner than it is a single layer would be the more advantageous single material
  • Figure 1 shows an example of a possible layer structure (cross section), EBL
  • Figure 2 shows a comparison of different solar cells of Embodiment 2, containing different contacts made of aluminum-silver multilayers
  • a 15nm silver layer is covered by a multiple layer of 5nm aluminum and 10nm
  • Two samples were prepared, a) a sample on glass (1), with reflective back electrode of 100 nm of aluminum (2), Inm NDP2 (an acceptor material, Novaled AG), 30nm of TNATA (4.4 ', 4 "-tris (1) naphthylphenylamino) -triphenylamine, hole transport material, 3), doped with 5wt% NDP2, 10nm ZnPc (zinc phthalocyanine as absorber, 4), 25nm ZnPc C60 (1 doped, as absorber, 4), 40nm C60 (5), 7nm BPhen ( 4,7-diphenyl-l, 10-phenanthroline, exciton blocker, 6), 15nm silver (electrical, transparent top contact, 7) b) a sample on glass (1), with reflective back electrode of 100nm aluminum (2), lnm NDP2 ( an acceptor material, Novaled AG), 30nm TNATA (4,4 ', 4 "-tris (1-naphthylphen
  • sample a When characterizing the samples, it is striking that sample a) has the properties of a photovoltaic component (short-circuit current approx. 0.28 mA / cm 2 , open circuit voltage 0.41 V, full factor 25%), the photovoltaic efficiency approx , 03%, however, is very low
  • the sample b) achieves a short-circuit current of about 3.37 mA / cm 2 , a Open circuit voltage 0.41 V, full factor 48% and thus an efficiency of 0.69%, which corresponds to over 20 times of sample a)
  • the multiple layer of the single layer is clearly superior.
  • Examples 1 and 2 demonstrate that metal multilayers according to the present invention can both replace expensive materials (silver) with cheaper ones (aluminum), and that by selectively controlling the layer thicknesses, solar cell efficiency can be maximized.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un composant photoactif avec couches organiques, en particulier une cellule solaire organique, avec un agencement de couches comprenant une électrode et une contre-électrode ainsi qu'une séquence de couches organiques disposées entre l'électrode et la contre-électrode. Au moins l'une des électrodes est composée de plusieurs couches d'au moins deux métaux différents. Au moins l'une des couches est un métal des groupes principaux avec une épaisseur de couche de 35 angströms à 200 angströms ou un métal de transition avec une épaisseur de couche de 200 angströms maximum. Au moins une autre couche est un métal ou un métal de transition.
PCT/DE2009/001030 2008-07-18 2009-07-17 Composant photoactif avec couches organiques et électrode à couches multiples WO2010006595A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008034256A DE102008034256A1 (de) 2008-07-18 2008-07-18 Photoaktives Bauelement mit organischen Schichten
DE102008034256.4 2008-07-18

Publications (2)

Publication Number Publication Date
WO2010006595A2 true WO2010006595A2 (fr) 2010-01-21
WO2010006595A3 WO2010006595A3 (fr) 2010-04-29

Family

ID=41130232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/001030 WO2010006595A2 (fr) 2008-07-18 2009-07-17 Composant photoactif avec couches organiques et électrode à couches multiples

Country Status (2)

Country Link
DE (1) DE102008034256A1 (fr)
WO (1) WO2010006595A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157508A1 (fr) 2016-03-13 2017-09-21 Ebf Gmbh Profilés de support extrudés multifonctionnels pour serres
WO2018081475A1 (fr) 2016-10-27 2018-05-03 Celgene Quanticel Research, Inc. Polythérapie par inhibiteur de protéine à bromodomaine et domaine extra-terminal
CN110473967A (zh) * 2019-07-31 2019-11-19 青岛大学 基于纳米银片掺杂氧化锌电子传输层构建的柔性结构聚合物太阳能电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134093A1 (fr) * 2005-06-16 2006-12-21 Siemens Aktiengesellschaft Electrode multicouche semi-transparente
US20070138637A1 (en) * 2005-12-19 2007-06-21 Shiva Prakash Electronic device having low background luminescence, a black layer, or any combination thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844843A (en) 1973-01-02 1974-10-29 Philco Ford Corp Solar cell with organic semiconductor contained in a gel
US3900945A (en) 1973-01-02 1975-08-26 Philco Ford Corp Organic semiconductor solar cell
US4127738A (en) 1976-07-06 1978-11-28 Exxon Research & Engineering Company Photovoltaic device containing an organic layer
US4175981A (en) 1978-07-03 1979-11-27 Xerox Corporation Photovoltaic cell comprising metal-free phthalocyanine
US4175982A (en) 1978-07-03 1979-11-27 Xerox Corporation Photovoltaic cell
US4461922A (en) 1983-02-14 1984-07-24 Atlantic Richfield Company Solar cell module
JPH0424970A (ja) 1990-05-16 1992-01-28 Canon Inc 有機太陽電池
JPH07142751A (ja) 1993-11-18 1995-06-02 Mita Ind Co Ltd 有機太陽電池
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
JP3813990B2 (ja) * 1996-09-04 2006-08-23 ケンブリッジ ディスプレイ テクノロジー リミテッド 有機発光デバイスおよびその製造方法
JP3173395B2 (ja) 1996-11-26 2001-06-04 富士ゼロックス株式会社 電荷輸送性材料及びそれに用いる電荷輸送性微粒子の製造方法
US5986206A (en) 1997-12-10 1999-11-16 Nanogram Corporation Solar cell
US6198092B1 (en) 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with an electrically parallel configuration
US6198091B1 (en) 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration
DE19905694A1 (de) 1998-11-27 2000-08-17 Forschungszentrum Juelich Gmbh Bauelement
EP1076368A2 (fr) * 1999-08-11 2001-02-14 Eastman Kodak Company Diode organique électroluminescent à émission par la surface
DE10209789A1 (de) 2002-02-28 2003-09-25 Univ Dresden Tech Photoaktives Bauelement mit organischen Schichten
US7015639B2 (en) * 2002-10-22 2006-03-21 Osram Opto Semiconductors Gmbh Electroluminescent devices and method of making transparent cathodes
US7411223B2 (en) * 2003-09-15 2008-08-12 General Electric Company Compound electrodes for electronic devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134093A1 (fr) * 2005-06-16 2006-12-21 Siemens Aktiengesellschaft Electrode multicouche semi-transparente
US20070138637A1 (en) * 2005-12-19 2007-06-21 Shiva Prakash Electronic device having low background luminescence, a black layer, or any combination thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GRANQVIST ET AL: "Transparent conductors as solar energy materials: A panoramic review" SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 91, Nr. 17, 15. Oktober 2007 (2007-10-15), Seiten 1529-1598, XP022206195 ISSN: 0927-0248 *
LIN Y-J ET AL: "Effects of sulfide treatment of indium tin oxide on efficiency of polymer light-emitting diodes" JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, TOKYO,JP, Bd. 46, Nr. 2, 1. Februar 2007 (2007-02-01), Seiten 647-650, XP001517898 ISSN: 0021-4922 *
MEISS J ET AL: "Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes" APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, Bd. 94, Nr. 1, 7. Januar 2009 (2009-01-07), Seiten 13303-13303, XP012118244 ISSN: 0003-6951 *
MEISS JAN ET AL: "Optimizing the morphology of metal multilayer films for indium tin oxide (ITO)-free inverted organic solar cells" JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 105, Nr. 6, 25. März 2009 (2009-03-25), Seiten 63108-63108, XP012120095 ISSN: 0021-8979 *
YOSHIDA Y ET AL: "GA-DOPED ZNO FILM AS A TRANSPARENT ELECTRODE FOR PHTHALOCYANINE/PERYLENE HETEROJUNCTION SOLAR CELL" JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, TOKYO,JP, Bd. 47, Nr. 2, 1. Februar 2008 (2008-02-01), Seiten 867-871, XP001513171 ISSN: 0021-4922 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157508A1 (fr) 2016-03-13 2017-09-21 Ebf Gmbh Profilés de support extrudés multifonctionnels pour serres
WO2018081475A1 (fr) 2016-10-27 2018-05-03 Celgene Quanticel Research, Inc. Polythérapie par inhibiteur de protéine à bromodomaine et domaine extra-terminal
CN110473967A (zh) * 2019-07-31 2019-11-19 青岛大学 基于纳米银片掺杂氧化锌电子传输层构建的柔性结构聚合物太阳能电池及其制备方法
CN110473967B (zh) * 2019-07-31 2023-04-18 青岛大学 基于氧化锌电子传输层构建的柔性结构聚合物太阳能电池及其制备方法

Also Published As

Publication number Publication date
DE102008034256A1 (de) 2010-01-21
WO2010006595A3 (fr) 2010-04-29

Similar Documents

Publication Publication Date Title
EP1611484B1 (fr) Composant photo-actif presentant des couches organiques
EP1859494A1 (fr) Composant photoactif a couches organiques
EP1634343A2 (fr) Cellule solaire tandem, munie d'une electrode organique commune
EP1808909A1 (fr) Dispositif électroluminescent
DE102005010978A1 (de) Photoaktives Bauelement mit organischen Schichten
WO2011161108A1 (fr) Composant photoactif comportant plusieurs systèmes de couches de transport
DE102008063205A1 (de) Organische Dünnschichtsolarzelle und Verfahren zu ihrer Herstellung
WO2012034765A1 (fr) Procédé de fabrication d'un composant électronique, ainsi que composant électronique
WO2011073219A1 (fr) Composant photoactif à couches organiques
EP2867932B1 (fr) Électrode transparente pour composants optoélectroniques
DE112014003470T5 (de) Organische elektronische Vorrichtungen mit mehreren lösungsverarbeiteten Schichten
Wang et al. Energy level and thickness control on PEDOT: PSS layer for efficient planar heterojunction perovskite cells
EP2063472A2 (fr) Cellule solaire organique dotée d'une couche intermédiaire dotée de propriétés de transport asymétriques
WO2010139804A1 (fr) Composant photoactif à deux couches mixtes organiques ou plus
WO2010006595A2 (fr) Composant photoactif avec couches organiques et électrode à couches multiples
WO2010139310A2 (fr) Cellule solaire ou photodétecteur organique inversé(e) ou transparent(e) à adsorption améliorée
DE102007009995A1 (de) Organische Solarzelle
WO2014006566A1 (fr) Agencement d'électrodes pour des composants électro-optiques
EP1442486B1 (fr) Pile solaire a materiau organique dans la couche photovoltaique et procede de fabrication associe
WO2010012279A1 (fr) Composant photoactif organique, en particulier cellule solaire organique ou photodétecteur organique
DE102019125715A1 (de) Verbindungen mit einer Furopyrrol- oder einer Thienopyrrolgruppe, optoelektronische Bauelemente mit einer solchen Verbindung, und Verwendung einer solchen Verbindung in optoelektronischen Bauelementen
DE102012105810B4 (de) Transparente Elektrode für optoelektronische Bauelemente
WO2010133205A1 (fr) Cellule solaire organique ou photodétecteur à absorption améliorée
DE102012105809B4 (de) Organisches optoelektronisches Bauelement mit transparenter Gegenelektrode und transparenter Elektrodenvorrichtung
Hou Rational Interfaces Design of Efficient Organic–inorganic Hybrid Perovskite Solar Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09776004

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 09776004

Country of ref document: EP

Kind code of ref document: A2