WO2010012279A1 - Composant photoactif organique, en particulier cellule solaire organique ou photodétecteur organique - Google Patents

Composant photoactif organique, en particulier cellule solaire organique ou photodétecteur organique Download PDF

Info

Publication number
WO2010012279A1
WO2010012279A1 PCT/DE2009/001118 DE2009001118W WO2010012279A1 WO 2010012279 A1 WO2010012279 A1 WO 2010012279A1 DE 2009001118 W DE2009001118 W DE 2009001118W WO 2010012279 A1 WO2010012279 A1 WO 2010012279A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
photoactive component
layer
organic photoactive
component according
Prior art date
Application number
PCT/DE2009/001118
Other languages
German (de)
English (en)
Inventor
Jan Meiss
Nikola Allinger
Karl Leo
Moritz Riede
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Publication of WO2010012279A1 publication Critical patent/WO2010012279A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Organic photoactive component in particular organic solar cell or organic photodetector
  • the invention relates to an organic photoactive component, in particular an organic solar cell or an organic photodetector, with a layer arrangement comprising an electrode and a counter electrode and a sequence of organic layers, which is arranged between the electrode and the counter electrode, and which additionally comprises at least one organic and / or inorganic layer which serves as a cover layer for improving the light coupling in a broad spectral range.
  • an organic photoactive component in particular an organic solar cell or an organic photodetector
  • a layer arrangement comprising an electrode and a counter electrode and a sequence of organic layers, which is arranged between the electrode and the counter electrode, and which additionally comprises at least one organic and / or inorganic layer which serves as a cover layer for improving the light coupling in a broad spectral range.
  • Organic solar cells consist of a series of thin layers, which typically have a thickness of between 1 nm and 1 ⁇ m, of organic materials which are vapor-deposited in vacuum or applied from a solution.
  • the electrical contacting is generally carried out by transparent, semitransparent or non-transparent metal layers and / or transparent conductive oxides (TCOs) and / or conductive polymers.
  • a solar cell converts light energy into electrical energy.
  • solar cells do not directly generate free charge carriers due to the light, but excitons are first formed, ie electrically neutral excitation states, namely bound electron-hole pairs. These excitons can only be separated by very high electric fields or at suitable interfaces.
  • organic solar cells sufficiently high fields are not available, so that all promising concepts for organic solar cells are based on excision separation at photoactive interfaces (organic donor-acceptor interface - CW Tang, Appl. Phys. Lett., 48 (2), 183-185 (1986)) or interface to one inorganic semiconductors (see B. O'Regan et al., Nature 353, 737 (1991)). This requires that excitons generated in the bulk of the organic material can diffuse to this photoactive interface.
  • a layer contains a colloidally dissolved substance which is distributed so as to form a network through which charge carriers can flow (percolation mechanism).
  • the task of light absorption takes over in such a network either only one of the components or both.
  • the advantage of such a mixed layer is that the generated excitons only have to travel a very short distance until they reach a domain boundary where they are separated. The removal of the electrons and the holes takes place separately in the dissolved substance or in the remaining layer.
  • the active layer consists of an organic semiconductor in a gel or binder (US 3,844,843, US 3,900,945, US 4,175,981 and US 4,175,982).
  • a layer contains two or more types of organic pigments which have different spectral characteristics (JP 04024970).
  • One layer contains a pigment that generates the charge carriers, and in addition a material that carries away the charge carriers (JP 07142751).
  • Inverted solar cells have the great advantage that one no longer necessarily relies on glass substrates and expensive transparent conductive oxides as electrodes, but has the choice of a wide variety of substrates and applications.
  • tandem, triple or generally multiple cells consisting of a stack of several solar cells, so that the multiple cell can absorb in a broad spectral range by different absorber materials, each of which absorbs only a certain part of the spectrum , As a result, significantly higher efficiencies can be achieved than with single cells;
  • the tandem / multiple cell technology also shows once again that a broad spectral range is necessary for efficient solar cells; the problem of multiple cells has been described in the publications by Agrawal / Peumans and O'Connor et al. not treated
  • the object of the present invention is the optimization of the light coupling and reduction of the reflection of a broad spectral range of the visible light in an organic photoactive component, in particular an organic solar cell or an organic photodetector. According to the invention the object is achieved by an organic photoactive component having the features mentioned in claim 1.
  • Advantageous embodiments are the subject of dependent subclaims. Advantageous uses arise from the claims 30 to 32.
  • the organic photoactive component contains at least one further layer, which consists of at least one organic or inorganic material or a combination of organic or inorganic materials, which improves the efficiency of the photoactive component by improved light coupling and / or reduced reflection and / or optimization of the optical field increased inside the solar cell by forming a microcavity.
  • This layer is referred to below as a transparent cover layer or cover layer, wherein the layer thickness of the transparent cover layer or cover layer, denoted as D, of the relationship
  • the layer thickness of the at least one covering layer thus lies in the range of 0-100 nm.
  • the covering layer is produced by vapor deposition of a suitable layer in the specified layer thickness onto an inverted or top-illuminated solar cell according to the features of claim 1.
  • the organic photoactive component according to the features is advantageous. of claim 2 designed as a so-called tandem solar cell.
  • the organic photoactive component according to the features of claim 3 is designed as a so-called triple solar cell.
  • a further advantageous embodiment is according to the features of claim 4, the formation of the organic photoactive component as a multiple solar cell.
  • the electrical contacts include, for example, but not limited to, the elements aluminum, silver, gold, ytterbium, chromium, nickel, magnesium, iron.
  • Advantageous materials for an organic photoactive component are 4,4 ', 4 "-tris (1-naphthylphenylamino) -triphenylamine (TNATA), N, N'-di (naphthalen-1-yl) -N , N'-diphenylbenzidine (alpha-NPD), 4,4'-bis (N, N-diphenylamino) quaterphenyl (4P-TPD), N, N'-diphenyl-N, N'-bis (4 '- (N, N-bis (naphth-1-yl) -amino) -biphenyl-4-yl) -benzidine (di-NPB), N, N, N', N'-tetrakis (4-methoxyphenyl) - benzidines (MeO-TPD)
  • An advantageous embodiment of the invention contains in the HTL materials serving as dopants (acceptors) for the materials which preferentially conduct positive charges (holes).
  • HTL materials serving as dopants (acceptors) for the materials which preferentially conduct positive charges (holes).
  • examples are: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethanes (F4-TCNQ) or NDP2 (Novaled AG, Dresden, Germany).
  • NTCDA 1,4,5,8-naphthalenetetracarboxylic dianhydrides
  • C60 Buckminster fullerenes
  • An advantageous embodiment of the invention contains in the ETL materials serving as dopants (donors) for the materials which preferentially conduct negative charges (electrons).
  • ETL materials serving as dopants (donors) for the materials which preferentially conduct negative charges (electrons).
  • examples of these are: (N, N, N ', N'-tetramethylacridine-3,6-diamine) (AOB) or NDNl (Novaled AG, Dresden, Germany).
  • Phthalocyanines (CuPc), Buckminster fullerenes (e.g., C60 or C70), dicyanovinyl
  • Dotands serve for the light-absorbing materials.
  • Further advantageous materials to be used for an organic photoactive component according to the features of claim 17 are Bathocuproine (BCP), 4,7-diphenyl-l, 10-phenanthroline (BPhen). Further advantageous materials to be used for an organic photoactive component according to the features of claim 18 are SiN, SiO 2.
  • the present invention has succeeded in reducing inverted organic solar cells by the application of cover layers not only the reflection of the upper electrode, but in particular to control the distribution of the optical field in the interior of the solar cell. It is exploited that between a reflective electrode (eg, a thick aluminum layer) and a semi-transparent electrode (eg, but not limited to a very thin metal layer), which acts as a dielectric mirror, a microcavity is formed, and the microcavity within the solar cell specifically exploited and adapted.
  • a reflective electrode eg, a thick aluminum layer
  • a semi-transparent electrode eg, but not limited to a very thin metal layer
  • An advantage of the inventive solution is that in particular the spectrum of the absorber is fully utilized (not only monochromatic light) the light coupling over a wide angle range works (not only directly perpendicular to the solar cell ein fallendes, but also important for solar cells diffused light) ideal way not only the optical field is optimally distributed in the cell, but an anti-reflection effect can be used as a side effect with
  • the structure of the solar cell can be varied if necessary
  • Fig. 1 an archetypal organic solar cell
  • Fig. 2 shows another archetypal organic solar cell
  • Fig. 3 shows another archetypal organic solar cell
  • Fig. 4 is a diagram showing examples of single cells of different Kavticianscolin
  • Fig. 5 is an illustration of a solar cell according to the invention
  • Fig. 6 is an illustration of current-voltage characteristics for different transparent
  • Figures 1, 2 and 3 show archetypical organic solar cells consisting of an opaque ground contact made of 100 nm aluminum, a sequence of organic layers and a semitransparent cover contact of 14nm aluminum.
  • the organic layers between the two metal contacts referred to in the figures as "organics,” form a microcavity together with the aluminum transparent cover contact.
  • This part of the solar cell which may include layers acting as landing transporters, absorbers, exciton blockers, etc. in the following the term "cavity”.
  • the "cavity length" is determined by the sum of the organic layer thickness and the layer thickness of the transparent cover contact, which simultaneously acts as part of the cavity and as the second partial mirror.
  • the figures show the amplitude of the optical field inside the solar cell depending on the position at which you are in the solar cell. It is essential here that the distribution of the optical field is independent of the exact structure of the solar cell or the materials used in the individual case, but the cavity length is the deciding factor.
  • FIG. 4 shows as Examples of different single cells of different cavity lengths (112nm, 127nm, 132nm) and different tandem cells of different cavity lengths (193nm, 333nm).
  • these 5 possible solar cells were calculated by means of optical simulations, at which layer thickness of a cover layer, the optimal solar cell efficiency is achieved, wherein also any cover layers with arbitrary optical refractive index n were taken into account in the simulations.
  • Decisive and surprising here is that for any solar cell with any cavity length and any cover layer with any optical properties optimal improvement of the solar cell performance can be achieved when the cover layer is applied with a layer thickness D in nanometers, the formula
  • d (n) 201.9 -121, In + 20, ln 2 and n is the optical refractive index of the cover layer.
  • Cover layer (S) b) a sample on glass (1), with reflective back electrode of 100 nm of aluminum (2), Inm NDP2 (an acceptor material, Novaled AG), 30nm of TNATA (4,4 ', 4 "-tris (1-naphthylphenylamino) -triphenylamine, Hole transport material, 3), doped with 5wt% NDP2, 10nm ZnPc (zinc phthalocyanine as absorber, 4), 25nm ZnPc: C60 (1: 1 doped, as absorber, 4), 40nm C60 (5), 7nm BPhen (4,7 -diphenyl-l, 10-phenanthroline, exciton blocker, 6), 5nm aluminum and 10nm silver (electrical, transparent top contact, 7), 10nm transparent capping layer of tris (8-hydroxy-quinolinato) -aluminum (Alq3) (8) c) a sample on glass (1) with a reflective back electrode of 100 nm
  • the efficiency can be increased by more than 50% (from 0.69% to 1.06%) if the solar cell uses a 50 nm thick Alq3 transparent cover layer.
  • the major part of the increase in efficiency is based on an increased photocurrent, which could be increased from 3.37 mA / cm 2 to 4.92 mA / cm 2 .
  • the experimentally measured external quantum efficiency indicates the ratio between the power radiated from the outside into the solar cell and the power recovered from the solar cell
  • EQE indicates the ratio between the power radiated from the outside into the solar cell and the power recovered from the solar cell
  • the 50 nm thick transparent Alq3 cap layer could increase the efficiency of the solar cell over the entire visible spectrum (400nm - 800nm) and the effect of the capping layer not only on a narrow spectral range or even monochromatic light is limited.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un composant photoactif organique, en particulier une cellule solaire organique ou un photodétecteur organique, constitué d'au moins deux électrodes et d'au moins une couche qui est située entre les électrodes et contient au moins une couche avec des matières organiques. L'invention est caractérisée en ce que le composant contient au moins une autre couche constituée d'au moins une matière organique ou inorganique ou une combinaison de matières organiques et inorganiques, la couche qualifiée de couche de couverture transparente ou couche de couverture accroît l'efficacité du composant photoactif par une injection de lumière améliorée et/ou une réflexion réduite et/ou une optimisation du champ optique à l'intérieur de la cellule solaire par formation d'une microcavité, l'épaisseur de la couche de couverture transparente ou couche de couverture, désignée par D, satisfaisant à l'équation D = d ± (0,2d), d(n) = 201,9 - 121,1n + 20,1n2 et n étant l'indice de réfraction de la couche de couverture.
PCT/DE2009/001118 2008-07-29 2009-07-29 Composant photoactif organique, en particulier cellule solaire organique ou photodétecteur organique WO2010012279A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008036310A DE102008036310A1 (de) 2008-07-29 2008-07-29 Organisches photoaktives Bauelement, insbesondere organische Solarzelle oder organischer Photodetektor
DE102008036310.3 2008-07-29

Publications (1)

Publication Number Publication Date
WO2010012279A1 true WO2010012279A1 (fr) 2010-02-04

Family

ID=41351776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/001118 WO2010012279A1 (fr) 2008-07-29 2009-07-29 Composant photoactif organique, en particulier cellule solaire organique ou photodétecteur organique

Country Status (2)

Country Link
DE (1) DE102008036310A1 (fr)
WO (1) WO2010012279A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919291A4 (fr) * 2013-12-26 2016-07-27 Boe Technology Group Co Ltd Panneau d'affichage delo et son procédé de fabrication
WO2022189629A1 (fr) * 2021-03-12 2022-09-15 Technische Universität Dresden Composant optoélectronique et procédé de détection spectralement sélective d'un rayonnement électromagnétique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109653A1 (de) * 1980-03-31 1982-01-28 Jenoptik Jena Gmbh, Ddr 6900 Jena "resonanzabsorber"
WO2007040601A1 (fr) * 2005-03-17 2007-04-12 The Regents Of The University Of California Architecture pour cellules photovoltaiques polymeres a grande efficacite avec entretoise optique
WO2008060716A2 (fr) * 2006-09-14 2008-05-22 The Regents Of The University Of California Dispositifs photovoltaïques présentant une architecture en tandem
WO2008063255A1 (fr) * 2006-11-02 2008-05-29 Guardian Industries Corp. Électrode avant pour une utilisation dans un dispositif photovoltaïque et son procédé de fabrication

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844843A (en) 1973-01-02 1974-10-29 Philco Ford Corp Solar cell with organic semiconductor contained in a gel
US3900945A (en) 1973-01-02 1975-08-26 Philco Ford Corp Organic semiconductor solar cell
US4127738A (en) 1976-07-06 1978-11-28 Exxon Research & Engineering Company Photovoltaic device containing an organic layer
US4175981A (en) 1978-07-03 1979-11-27 Xerox Corporation Photovoltaic cell comprising metal-free phthalocyanine
US4175982A (en) 1978-07-03 1979-11-27 Xerox Corporation Photovoltaic cell
US4461922A (en) 1983-02-14 1984-07-24 Atlantic Richfield Company Solar cell module
JPH0424970A (ja) 1990-05-16 1992-01-28 Canon Inc 有機太陽電池
JPH07142751A (ja) 1993-11-18 1995-06-02 Mita Ind Co Ltd 有機太陽電池
JP3173395B2 (ja) 1996-11-26 2001-06-04 富士ゼロックス株式会社 電荷輸送性材料及びそれに用いる電荷輸送性微粒子の製造方法
US5986206A (en) 1997-12-10 1999-11-16 Nanogram Corporation Solar cell
US6198092B1 (en) 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with an electrically parallel configuration
US6198091B1 (en) 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration
DE19905694A1 (de) 1998-11-27 2000-08-17 Forschungszentrum Juelich Gmbh Bauelement
DE10209789A1 (de) 2002-02-28 2003-09-25 Univ Dresden Tech Photoaktives Bauelement mit organischen Schichten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109653A1 (de) * 1980-03-31 1982-01-28 Jenoptik Jena Gmbh, Ddr 6900 Jena "resonanzabsorber"
WO2007040601A1 (fr) * 2005-03-17 2007-04-12 The Regents Of The University Of California Architecture pour cellules photovoltaiques polymeres a grande efficacite avec entretoise optique
WO2008060716A2 (fr) * 2006-09-14 2008-05-22 The Regents Of The University Of California Dispositifs photovoltaïques présentant une architecture en tandem
WO2008063255A1 (fr) * 2006-11-02 2008-05-29 Guardian Industries Corp. Électrode avant pour une utilisation dans un dispositif photovoltaïque et son procédé de fabrication

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DRECHSEL J ET AL: "Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 86, no. 24, 7 June 2005 (2005-06-07), pages 244102 - 244102, XP012065900, ISSN: 0003-6951 *
EERENSTEIN W ET AL: "Optical modeling as optimization tool for single and double junction polymer solar cells", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 516, no. 20, 17 December 2007 (2007-12-17), pages 7188 - 7192, XP022777935, ISSN: 0040-6090, [retrieved on 20071217] *
PEUMANS PETER ET AL: "Small molecular weight organic thin-film photodetectors and solar cells", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 93, no. 7, 1 April 2003 (2003-04-01), pages 3693 - 3723, XP012059300, ISSN: 0021-8979 *
SINGH TH B ET AL: "Photocurrent studies of an active polymer layer in a resonant microcavity", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 80, no. 7, 18 February 2002 (2002-02-18), pages 1213 - 1215, XP012031592, ISSN: 0003-6951 *
ZHU X ET AL: "High-performance top-emitting white organic light-emitting devices", JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, TOKYO,JP, vol. 46, no. 7A, 1 July 2007 (2007-07-01), pages 4054 - 4058, XP001517970, ISSN: 0021-4922 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2919291A4 (fr) * 2013-12-26 2016-07-27 Boe Technology Group Co Ltd Panneau d'affichage delo et son procédé de fabrication
US10003043B2 (en) 2013-12-26 2018-06-19 Boe Technology Group Co., Ltd. OLED display panel and production process thereof
WO2022189629A1 (fr) * 2021-03-12 2022-09-15 Technische Universität Dresden Composant optoélectronique et procédé de détection spectralement sélective d'un rayonnement électromagnétique

Also Published As

Publication number Publication date
DE102008036310A1 (de) 2010-02-11

Similar Documents

Publication Publication Date Title
Fan et al. The progress of interface design in perovskite‐based solar cells
DE102004014046B4 (de) Photoaktives Bauelement mit organischen Schichten
EP1861886B8 (fr) Composant photoactif organique
EP2398056B1 (fr) Cellule solaire organique dotée de plusieurs systèmes de couches de transport
Ananthakumar et al. Third-generation solar cells: Concept, materials and performance-an overview
WO2011138021A2 (fr) Composant photoactif à couches organiques
WO2006092135A1 (fr) Composant photoactif a couches organiques
Park et al. Simultaneous ligand exchange fabrication of flexible perovskite solar cells using newly synthesized uniform tin oxide quantum dots
EP2513995A1 (fr) Composant photoactif à couches organiques
Manjunath et al. Understanding the role of inorganic carrier transport layer materials and interfaces in emerging perovskite solar cells
EP2867932B1 (fr) Électrode transparente pour composants optoélectroniques
EP3516693A1 (fr) Composant organique permettant de convertir de la lumière en énergie électrique à efficacité et durée de vie améliorées en cas d'obscurcissement partiel
WO2010139804A1 (fr) Composant photoactif à deux couches mixtes organiques ou plus
WO2010139310A2 (fr) Cellule solaire ou photodétecteur organique inversé(e) ou transparent(e) à adsorption améliorée
WO2021079731A1 (fr) Film de conversion photoélectrique, cellule solaire l'utilisant et procédé de production de film de conversion photoélectrique
WO2014006566A1 (fr) Agencement d'électrodes pour des composants électro-optiques
WO2010012279A1 (fr) Composant photoactif organique, en particulier cellule solaire organique ou photodétecteur organique
WO2010006595A2 (fr) Composant photoactif avec couches organiques et électrode à couches multiples
EP4035215B1 (fr) Composés possédant un groupe furopyrolle ou un groupe thiénopyrolle, composant optoélectronique comprenant ce type de composé, et utilisation de ce type de composé dans des composants optoélectroniques
WO2010133205A1 (fr) Cellule solaire organique ou photodétecteur à absorption améliorée
DE102012105810B4 (de) Transparente Elektrode für optoelektronische Bauelemente
DE102012105809B4 (de) Organisches optoelektronisches Bauelement mit transparenter Gegenelektrode und transparenter Elektrodenvorrichtung
Hou Rational Interfaces Design of Efficient Organic–inorganic Hybrid Perovskite Solar Cells
KR102371199B1 (ko) 대기 중에서 제작 가능한 반투명 페로브스카이트 태양 전지 및 이의 제조방법
Götz Oxide layer design for transparent electrodes and charge transport components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09776074

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09776074

Country of ref document: EP

Kind code of ref document: A1