WO2010139310A2 - Cellule solaire ou photodétecteur organique inversé(e) ou transparent(e) à adsorption améliorée - Google Patents

Cellule solaire ou photodétecteur organique inversé(e) ou transparent(e) à adsorption améliorée Download PDF

Info

Publication number
WO2010139310A2
WO2010139310A2 PCT/DE2010/000618 DE2010000618W WO2010139310A2 WO 2010139310 A2 WO2010139310 A2 WO 2010139310A2 DE 2010000618 W DE2010000618 W DE 2010000618W WO 2010139310 A2 WO2010139310 A2 WO 2010139310A2
Authority
WO
WIPO (PCT)
Prior art keywords
photoactive component
organic
organic photoactive
component according
materials
Prior art date
Application number
PCT/DE2010/000618
Other languages
German (de)
English (en)
Other versions
WO2010139310A3 (fr
Inventor
Jan Meiss
Markus Hummert
Karl Leo
Moritz Riede
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Publication of WO2010139310A2 publication Critical patent/WO2010139310A2/fr
Publication of WO2010139310A3 publication Critical patent/WO2010139310A3/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a photoactive component, in particular an organic solar cell or a photodetector, with a layer arrangement which has an electrode and a counter electrode and a sequence of organic layers, which is arranged between the electrode and the counter electrode.
  • Organic solar cells consist of a series of thin layers, which typically have a thickness of between 1 nm and 1 ⁇ m, of organic materials which are vapor-deposited in vacuum or applied from a solution.
  • the electrical contacting is generally carried out by transparent, semitransparent or non-transparent metal layers and / or transparent conductive oxides (TCOs) and / or conductive polymers.
  • organic-based devices over conventional inorganic-based devices, such as semiconductors such as silicon or gallium arsenide, are the sometimes extremely high optical absorption coefficients of up to 3x10 5 cm -1 , offering the possibility of low material and material cost Energy costs of producing very thin solar cells
  • Other technological aspects include the low cost, the possibility of producing flexible large-area components on plastic films, and the almost unlimited possibilities of variation in organic chemistry.
  • the following are some key points that explain major technical problems in the development and successful commercial exploitation; the key points are divided into two topics for a better understanding:
  • ITO indium tin oxide
  • TCO transparent conductive oxides
  • a preferred use of transparent, thin, ITO-free electrodes would be to create "inverted", top-illuminated solar cells, where the light is introduced from the side away from the substrate, which would allow for cheaper, thinner and more flexible substrates than glass
  • solar cells without ITO with a transparent top electrical contact would open up new ways of marketing.
  • Semitransparent solar cells A potential application for solar cells could be so-called "power windows", ie windows that are semitransparent and capable of producing electricity.This application is conceivable for example for office buildings or for glazing with shading effect, whereby one could make use of the fact that not only does light reflect or absorbed, as is the case with conventional semi-transparent materials, but that the light can be directly converted to electricity production.
  • Exciton A solar cell converts light energy into electrical energy.
  • light does not directly generate free charge carriers in organic solar cells, but initially bound Frenkel excitons are formed, ie electrically neutral excitation states in the form of bound electron-hole pairs.
  • These excitons can only be separated by very high electric fields or at suitable interfaces.
  • sufficiently high fields are not available, so that all promising concepts for organic solar cells based on the exciton separation at photoactive interfaces (organic donor-acceptor interface - CW Tang, Applied Physics Letters, 48 (2), 183- 185 (1986)) or interface to an inorganic semiconductor (see B. O'Regan et al., Nature 353, 737 (1991)).
  • a layer contains a colloidally dissolved substance which is distributed so as to form a network through which charge carriers can flow (percolation mechanism).
  • the task of light absorption takes over in such a network either only one of the components or both.
  • the active layer consists of an organic semiconductor in a gel or binder (US 3,844,843, US 3,900,945, US 4,175,981 and US 4,175,982).
  • a layer contains two or more types of organic pigments which have different spectral characteristics (JP 04024970).
  • One layer contains a pigment that generates the charge carriers, and in addition a material that carries away the charge carriers (JP 07142751).
  • the materials of the class "metal phthalocyanines” for example, copper phthalocyanine, CuPc, or zinc phthalocyanine, ZnPc
  • fullerenes for example, C 60
  • C 6 o it is possible to the current state of the art with C 6 o.
  • ZnPc can be absorbed in a wavelength range around 650-700 nm, so much of the energy of sunlight with wavelengths between 450 and 650 nm remains unused (M. Riede et al., Nanotechnology 19). 424001 (2008)). In addition, n Not all light is absorbed because the thin layers do not absorb sufficiently.
  • Tandem cells A key issue in this context is the production of tandem, triple or generally multiple cells, which consist of a stack of multiple solar cells, so that the multiple cell through different absorber materials, each absorbing only a certain part of the spectrum, in a broad spectral range can absorb.
  • the problem of the limited exciton diffusion length can be circumvented to a certain extent since a multiple solar cell can be seen as a layer stack of several solar cells (so-called sub-cells) in which several absorption layers can act together.
  • sub-cells a layer stack of several solar cells in which several absorption layers can act together.
  • DCVTs dicyanovinyl-oligothiophenes
  • the object of the invention is, by using a suitable, easily synthesized, thermally stable material in semitransparent or top-illuminated solar cells, to meet the requirements stated above in both subject areas for achieving higher efficiencies by exploiting a broad spectral range,
  • Transparent-cell solar cells allow light to be absorbed and converted into electrical power while the transparency is still present.
  • an organic photoactive component in particular a solar cell or photodetector, which is composed of several layers, wherein the component contains a semitransparent or transparent electrode on the side facing away from the substrate and contains a further electrode on the substrate side, which is nontransparent, semitransparent or transparent, and wherein at least one of the organic layers at least one Diindeno [l, 2,3-cd: r, 2 ', 3'-lmjperylen- compound of the general formula
  • each R 1 -R 1 is independently selected from hydrogen, halogen, unsubstituted or substituted, saturated or unsaturated C 1 -C 2O -alkyl, CpC 2O - heteroalkyl, C 6 -C 20 -ATyI, C 6 -C 2 o-heteroaryl, saturated or unsaturated carbocyclic or heterocyclic, which may be identical or different, where two adjacent radicals R 1, R 16 may also be part of a further saturated or unsaturated, carbocyclic or heterocyclic ring, where the ring C, N, O, S, Si and Se may include.
  • diindenoperylene compound a material corresponding to the above description will be abbreviated to "diindenoperylene compound.”
  • Preferred embodiments of the invention have a light transmission of up to 10% for strong shade effect, 10-50% for " Semitransparent "applications in which darkening is desired, and over 50% for almost transparent applications in eg Windows.
  • the transmissions referred to here relate to the visible range of the light spectrum (400-800 nm) and may differ in the ultraviolet ( ⁇ 400 nm) and infrared (> 800 nm).
  • diindeno [1,2,3-cd: l ', 2', 3'-lm] perylene compounds are combined particularly advantageously with doped transport layers for electrons and holes. This surprisingly shows extremely high filling factors, which are otherwise not reported in organic solar cells.
  • Another dependent invention are tandem solar cells with said diindeno [l, 2,3-cd: r, 2 ', 3'-lm] perylene compounds. It is to be expected that a spectral absorption can be achieved by suitable substitution, so that together with the known substance class of phthalocyanines there is no significant overlap and the two subcells do not each reduce the current of the other cells.
  • the diindenoperylene compound is used as light-absorbing material in photoactive components, in particular organic solar cells.
  • the optical density of, for example, dibenzoperiflanthene, shown in FIG. 3, indicates good absorption centered around the green region of the visible spectrum.
  • Other derivatives can be synthesized in such a way that their absorption is exactly adapted to the respective requirements.
  • Preferred applications of the invention are tandem, triple or generally multi-junction solar cells in which the molecule is used as the absorber material.
  • Advantageous applications of the invention therefore include the combination of the absorber materials with doped, non-absorbent or doped absorbent organic materials.
  • Advantageous applications of the invention in use in tandem cells include the use of heavily doped layers as conversion contacts.
  • n-dopants are metals (for example but not limited to aluminum or silver), conductive polymers (for example but not limited to poly (ethylene dioxythiophene): poly (styrenesulfonate) [PEDOTrPSS]) or transparent conductive oxides (for example, but not limited to, aluminum-doped zinc oxide, tin-doped indium oxide, fluorine-doped tin oxide), or combinations of metal, conductive polymer, or transparent conductive oxide.
  • metals for example but not limited to aluminum or silver
  • conductive polymers for example but not limited to poly (ethylene dioxythiophene): poly (styrenesulfonate) [PEDOTrPSS]
  • transparent conductive oxides for example, but not limited to, aluminum-doped zinc oxide, tin-doped indium oxide, fluorine-doped tin oxide
  • transparent conductive oxides for example, but not limited to, aluminum-doped zinc oxide, tin-do
  • Preferred examples of heavily doped materials in layer sequences which preferentially conduct holes are 4,4 ', 4 "-tris (1-naphthylphenylamino) -triphenylamines (TNATA), N 5 N'-di (naphthalen-1-yl) -N , N'-diphenylbenzidine (alpha-NPD), 9,9-bis [4- (N, N-bis-biphenyl-4-yl-amino) -phenyl] -9H-fluorenene (BPAPF), 4,4 ' -Bis (N, N-diphenylamino) quaterphenyl (4P- TPD), N, N'-diphenyl-N, N'-bis (4 '- (N, N-bis (naphth-1-yl) -amino) -biphenyl-4-yl) -benzidine (di-NPB) , N, N, N ', N'-t
  • An advantageous embodiment of the invention contains in the HTL materials serving as dopants (acceptors) for the materials which preferentially conduct positive charges (holes).
  • HTL hole transport layers
  • Preferred examples of materials that conduct electrons are 1,4,5,8-naphthalenetetracarboxylic dianhydrides (NTCDA) or Buckminster fullerenes (C ⁇ o).
  • NTCDA 1,4,5,8-naphthalenetetracarboxylic dianhydrides
  • C ⁇ o Buckminster fullerenes
  • An advantageous embodiment of the invention contains in the ETL materials serving as dopants (donors) for the materials which preferentially conduct negative charges (electrons). Examples are: (N, N, N, N, N'-tetramethylacridine-3,6-diamine) (AOB) or NDNI (Novaled AG, Dresden, Germany). AOB is a preferred example of an n-dopant.
  • Preferred examples of materials that absorb photons are phthalocyanines, particularly, but not limited to, tin phthalocyanines (SnPc), zinc phthalocyanines (ZnPc), copper phthalocyanines (CuPc); Buckminster fullerenes (eg C ⁇ O or C 70 ); Dicyanovinyl-oligothiophene derivatives (DCVxT); Chloroaluminum phthalocyanine (ClAlPc or AlClPc); Perylene derivatives.
  • An advantageous embodiment of the invention contains in the active layer materials which serve as dopants for the light-absorbing materials.
  • Preferred examples of materials which serve as so-called excitron blocking layer, that is for use as excitatory blockers, are bathocuproine (BCP) or 4,7-diphenyl-1,10-phenanthroline (BPhen).
  • Preferred examples of materials for encapsulation are SiN, SiO 2 .
  • Preferred examples of materials for a cover layer are N, N, N ', N'-tetrakis (4-methoxyphenyl) -benzidines (MeO-TPD) or tris (8-hydroxy-quinolinato) -aluminum (Alq 3 ) -
  • cover layers of inorganic materials are TiO 2 or SiO 2 .
  • the invention is based on the surprising, experimentally gained knowledge that diindenoperylene compounds and derivatives are not only characterized by strong absorption and thermal stability, but in conjunction with heavily doped hole transport materials energy barriers can be minimized, resulting in very high fill factors. Furthermore, tandem cell experiments have shown that high photovoltages can be achieved by properly combining the spectral sensitivities of different materials. A key factor here is that the materials have appropriate band gaps to optimize absorption and energy levels.
  • diindenoperylene compounds - incorporated in an appropriate material system - are suitable absorbers to construct efficient solar cells. This is underlined by good processability, thermal stability and a simple, efficient synthesis.
  • fluoranthenes can be achieved by [4 + 2] cycloaddition of unsaturated compounds such as alkynes or alkenes to various dienes and subsequent aromatization by the influence of temperature or oxidation (W. Dilthey, G. Hurtig, Berichte der Deutschen Chemischentechnik A 1934, 67 , 2004).
  • Another possibility for fluoranthene synthesis is transition-metal-catalyzed cyclization, for example by the Wilkinson catalyst RuCl (PPh 3 ) 2 (Y.-T. Wu, T. Hayama, KK Baldridge, A. Linden, JS Siegel, Journal of the American Chemical Society, 2006, 128, 6870).
  • Diindenoperylene compounds and derivatives can be obtained in excellent yields by the cyclodehydrogenation of fluoranthenes (M. Wehmeier, M. Wagner, K. Müllen, Chemistry 2001, 7, 2197). In this case, oxidizing agents such as CoF 3 or FeCl 3 in organic solvents are used (for synthesis see generally Fig. 4) (P. Kovacic, FW Koch, Journal of Organic Chemistry 1963, 28, 1864). This class of compounds offers excellent thermal stability.
  • Diindenoperylen compounds and derivatives that melt at about 550 0 C. without decomposition found in the literature. (JD Debad, JC Morris, V. Lynch, P. Magnus, A J.Bard, Journal of the American Chemical Society 1996, 118, 2374).
  • diindenoperylene compounds and derivatives open up a path to efficient, cost-effective organic solar cells, solving in particular the problem that, according to the prior art, a broad spectral range remains unused in multiple solar cells.
  • Especially promising derivatives make it possible to more precisely adapt the properties of the base molecule to individual requirements, such as, for example, energy levels of adjacent organic transport layers.
  • a wider part of the solar spectrum can be exploited, which leads to higher photocurrents, fill factors and / or photovoltages depending on the exact solar cell configuration.
  • diindenoperylenes and diindenoperylene derivatives according to the invention can be easily integrated into the production process of organic photodetectors and solar cells, since they are stable even at high temperatures and can be readily vaporized.
  • Fig. 1 the general structural formula of diindeno [l, 2,3-cd: r, 2 ', 3'-lm] perylene
  • Fig. 2 a dicyanovinyl-oligothiophene compound
  • Fig. 3 a graph of the absorptivities of different perylene compounds:
  • Fig. 4 a reaction scheme for the preparation of the perylene compound used in accordance with the invention;
  • Fig. 5 the structural formula of 8,9-dibutyl-7,10-diphenylfluoranthene;
  • FIG. 7 shows an example of a possible, archetypical layer structure of a single solar cell (cross section) containing the substrate (0), a base electrode (1), an absorber (2) and a cover electrode (3);
  • FIG. 8 shows an example of a possible, archetypical layer structure of a single solar cell (cross section), with substrate (0), base electrode (1), absorber (3) and cover electrode (6), additionally with functional layers as exciton blocker (EBL) (5), electron transporter (ETL) (4), hole transporter (HTL) (2);
  • EBL exciton blocker
  • ETL electron transporter
  • HTL hole transporter
  • FIG. 9 shows an example of a possible, archetypical layer structure of a multiple cell, here a tandem cell (cross section), consisting of substrate (0), base electrode (1), absorber of subcell 1 (2), conversion contact (3), absorber of subcell 2 (4), cover contact (5).
  • tandem cell here a tandem cell (cross section), consisting of substrate (0), ground electrode (1), hole transporter (HTL) (2), absorber of subcell 1 (3), conversion contact (4), absorber of subcell 2 (5), Electron transporter (ETL) (6), exciton blocker (EBL) (7) and cover electrode (8).
  • HTL hole transporter
  • EBL exciton blocker
  • FIG. 11 shows an example of a layer structure of a single solar cell (cross section)
  • Embodiment 1 the layers will be explained further below in Example 1.
  • Fig. 12 a current-voltage characteristic of a single solar cell
  • FIG. 13 shows an example of a layer structure of a single solar cell (cross section)
  • Embodiment 2 the layers will be explained further below in Example 2.
  • Fig. 14 a current-voltage characteristic of a single solar cell
  • Embodiment 3 the layers are explained further below in exemplary embodiment 3.
  • Fig. 16 a current-voltage characteristic of a single solar cell
  • a sample was prepared on glass (0) with an exciton blocking and smoothing layer of 6nm 4,7-diphenyl-l, 10-phenanthroline (BPhen) (1), with a base contact of 13 nm aluminum (2), followed by a Exciton blocker layer of 6nm 4,7-diphenyl-l, 10-phenanthroline (BPhen) (3), a 30 nm thick absorber / electron transport layer of C 6O (4). Then a 40 nm thick, light-absorbing layer of dibenzoperiflanthene mixed with C 60 in the ratio 2: 3 was applied (5), followed by a 25 nm thick layer N, N'-diphenyl-N, N'-bis (4 ').
  • NDP9 N-bis (naphth-1-yl) amino) -biphenyl-4-yl) -benzidine
  • Si-NPD p-doped, for example with 5% NDP9 (6).
  • an inm thick layer followed, for example, NDP9 (7).
  • the transparent cover contact consisted of 1 nm aluminum (8), 14 nm silver (9) and 60 nm tris_8-hydroxyquinolinato-aluminum (Alq3) for optimal light coupling and reflection reduction (10).
  • diindenoperylene in a simple cell construction can achieve a remarkable efficiency of 1.89%, which is even comparable to the efficiencies of non-transparent C 60 : ZnPc solar cells (typical values are 2-2.5%, see K. Walzer et al., Chemical Reviews 107 (4), 1233-1271 (2007); C. Falkenberg et al., Journal of Applied Physics 104, 034506 (2008)).
  • This value could be achieved without absorption at wavelengths above about 650 nm, so that higher values can be expected by adding suitable red absorbers.
  • a sample was prepared on glass (0) with an exciton blocking and smoothing layer of 6nm 4,7-diphenyl-l, 10-phenanthroline (BPhen) (1), with a base contact of 100 nm aluminum (2), followed by a Exciton blocker layer of 6nm 4,7-diphenyl-l, 10-phenanthroline (BPhen) (3), a 30 nm thick absorber / electron transport layer of C 60 (4).
  • a 40 nm thick, light-absorbing layer of dibenzoperiflanthene mixed with C 60 in the ratio 2: 3 was applied (5), followed by a 25nm thick layer N, N'-diphenyl-N, N'-bis (4 '- (N, N-bis (naphth-1-yl) -amino) -biphenyl-4-yl) -benzidine (Di-NPD) , p-doped, for example, with 5% NDP9 (6).
  • an inm thick layer followed, for example, NDP9 (7).
  • the transparent cover contact consisted of 1 nm aluminum (8), 14 nm silver (9) and 60 nm tris_8-hydroxyquinolinato-aluminum (Alq3) for optimal light coupling and reflection reduction (10).
  • a second solar cell was produced, which contains an exactly identical layer structure - only layer number (5) contains instead of 40 nm dibenzoperiflanthene: C 60 a layer of 30 nm ZnPc: C 60 (ratio 1: 1), ie is completely without diindenoperylene- Derivative.
  • the characteristics are shown in Fig. 14.
  • the comparative cell with diindenoperylene derivative has a high photovoltage of 0.82 V and a high photocurrent of 7.48 mA / cm 2 .
  • the solar cell achieves a significantly higher efficiency of 2.51%, which could be improved by better hole transport materials to optimize the fill factor.
  • a sample was prepared on glass (0) with an exciton blocking and smoothing layer of 6nm 4,7-diphenyl-l, 10-phenanthroline (BPhen) (1), with a base contact of 13 nm aluminum (2), followed by a Exciton blocker layer of 6nm 4,7-diphenyl-l, 10-phenanthroline (BPhen) (3), a 30 nm thick absorber / electron transport layer of C 60 (4).
  • Dibenzoperiflanthene (5) followed by a 25nm thick layer of N, N'-diphenyl-N, N'-bis (4 '- (N, N-bis (naphth-1-yl) -amino) -biphenyl-4- yl) benzidine (Di-NPD), p-doped, for example with 5% NDP9 (6).
  • Di-NPD Dibenzoperiflanthene
  • Di-NPD dibenzoperiflanthene
  • p-NPD p-doped, for example with 5% NDP9 (6).
  • an inm thick layer followed, for example, of NDP9 (a p-dopant or acceptor material, Novaled AG) (7).
  • the transparent cover contact consisted of 1 nm aluminum (8), 14 nm silver (9) and 60 nm tris-8-hydroxyquinolinato-aluminum (Alq 3 ) for optimal light coupling and reflection reduction (10).
  • this solar cell achieves an efficiency of 1.68%.
  • the photocurrent could be increased by an electrical contact with higher transmission and thus increase the efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un composant organique photoactif, en particulier une cellule solaire ou un photodétecteur, qui comporte plusieurs couches, dont au moins une comprend au moins un composé diindéno[1,2,3-cd:1',2',3'- im]pérylène de formule générale représentée à la figure 1, et elle concerne également l'utilisation de ce composant.
PCT/DE2010/000618 2009-06-05 2010-06-03 Cellule solaire ou photodétecteur organique inversé(e) ou transparent(e) à adsorption améliorée WO2010139310A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009024956A DE102009024956A1 (de) 2009-06-05 2009-06-05 Invertierte oder transparente organische Solarzelle oder Photodetektor mit verbesserter Absorption
DE102009024956.7 2009-06-05

Publications (2)

Publication Number Publication Date
WO2010139310A2 true WO2010139310A2 (fr) 2010-12-09
WO2010139310A3 WO2010139310A3 (fr) 2011-06-03

Family

ID=43015771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000618 WO2010139310A2 (fr) 2009-06-05 2010-06-03 Cellule solaire ou photodétecteur organique inversé(e) ou transparent(e) à adsorption améliorée

Country Status (2)

Country Link
DE (1) DE102009024956A1 (fr)
WO (1) WO2010139310A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368727B2 (en) 2012-10-25 2016-06-14 Samsung Electronics Co., Ltd. Organic photoelectric device and image sensor including the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012022745B4 (de) * 2012-11-21 2021-03-18 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Tandem-Dünnschicht-Solarzelle
DE102013106789B4 (de) 2013-06-28 2020-06-18 Carl Zeiss Ag Brillenglas mit veränderlicher Transparenz und Verfahren zur Herstellung eines Brillenglases
GB201601055D0 (en) * 2016-01-20 2016-03-02 Cambridge Display Tech Ltd Cathode layer stack for semi-transparent OPV devices
CN113838983B (zh) * 2021-08-26 2024-03-26 电子科技大学 一种基于npb/v2o5缓冲层的有机光电传感器及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844843A (en) 1973-01-02 1974-10-29 Philco Ford Corp Solar cell with organic semiconductor contained in a gel
US3900945A (en) 1973-01-02 1975-08-26 Philco Ford Corp Organic semiconductor solar cell
US4127738A (en) 1976-07-06 1978-11-28 Exxon Research & Engineering Company Photovoltaic device containing an organic layer
US4175982A (en) 1978-07-03 1979-11-27 Xerox Corporation Photovoltaic cell
US4175981A (en) 1978-07-03 1979-11-27 Xerox Corporation Photovoltaic cell comprising metal-free phthalocyanine
US4461922A (en) 1983-02-14 1984-07-24 Atlantic Richfield Company Solar cell module
JPH0424970A (ja) 1990-05-16 1992-01-28 Canon Inc 有機太陽電池
JPH07142751A (ja) 1993-11-18 1995-06-02 Mita Ind Co Ltd 有機太陽電池
US5965063A (en) 1996-11-26 1999-10-12 Fuji Xerox Co., Ltd. Charge transporting material and method of preparing charge transporting particulates used therein
US5986206A (en) 1997-12-10 1999-11-16 Nanogram Corporation Solar cell
WO2000033396A1 (fr) 1998-11-27 2000-06-08 Forschungszentrum Juelich Gmbh Cellule solaire ou diode electroluminescente organique
US6198091B1 (en) 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration
US6198092B1 (en) 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with an electrically parallel configuration
DE10209789A1 (de) 2002-02-28 2003-09-25 Univ Dresden Tech Photoaktives Bauelement mit organischen Schichten

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1085947A (fr) * 1977-08-02 1980-09-16 Ching W. Tang lements photovoltaiques organigues multicouches
US4281053A (en) * 1979-01-22 1981-07-28 Eastman Kodak Company Multilayer organic photovoltaic elements
CN102694124B (zh) * 1998-08-19 2015-08-19 普林斯顿大学理事会 有机光敏光电器件
JP4217013B2 (ja) * 2001-11-13 2009-01-28 株式会社林原生物化学研究所 吸光組成物
US7368659B2 (en) * 2002-11-26 2008-05-06 General Electric Company Electrodes mitigating effects of defects in organic electronic devices
US8174182B2 (en) * 2004-11-17 2012-05-08 Global Oled Technology Llc Selecting white point for OLED devices
US7230269B2 (en) * 2005-06-13 2007-06-12 The Trustees Of Princeton University Organic photosensitive cells having a reciprocal-carrier exciton blocking layer
US7645524B2 (en) * 2005-10-19 2010-01-12 Eastman Kodak Company OLED device with improved high temperature operation
US7638207B2 (en) * 2006-03-30 2009-12-29 Eastman Kodak Company OLED device with improved efficiency and lifetime
JP2008135540A (ja) * 2006-11-28 2008-06-12 Sanyo Electric Co Ltd 有機光電変換素子
US20080164809A1 (en) * 2006-12-22 2008-07-10 Sony Corporation Organic electroluminescent device and display apparatus
US7816859B2 (en) * 2007-04-30 2010-10-19 Global Oled Technology Llc White light tandem OLED
US7948165B2 (en) * 2007-05-09 2011-05-24 Global Oled Technology Llc High-performance tandem white OLED

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844843A (en) 1973-01-02 1974-10-29 Philco Ford Corp Solar cell with organic semiconductor contained in a gel
US3900945A (en) 1973-01-02 1975-08-26 Philco Ford Corp Organic semiconductor solar cell
US4127738A (en) 1976-07-06 1978-11-28 Exxon Research & Engineering Company Photovoltaic device containing an organic layer
US4175982A (en) 1978-07-03 1979-11-27 Xerox Corporation Photovoltaic cell
US4175981A (en) 1978-07-03 1979-11-27 Xerox Corporation Photovoltaic cell comprising metal-free phthalocyanine
US4461922A (en) 1983-02-14 1984-07-24 Atlantic Richfield Company Solar cell module
JPH0424970A (ja) 1990-05-16 1992-01-28 Canon Inc 有機太陽電池
JPH07142751A (ja) 1993-11-18 1995-06-02 Mita Ind Co Ltd 有機太陽電池
US5965063A (en) 1996-11-26 1999-10-12 Fuji Xerox Co., Ltd. Charge transporting material and method of preparing charge transporting particulates used therein
US5986206A (en) 1997-12-10 1999-11-16 Nanogram Corporation Solar cell
US6198091B1 (en) 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration
US6198092B1 (en) 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with an electrically parallel configuration
WO2000033396A1 (fr) 1998-11-27 2000-06-08 Forschungszentrum Juelich Gmbh Cellule solaire ou diode electroluminescente organique
DE10209789A1 (de) 2002-02-28 2003-09-25 Univ Dresden Tech Photoaktives Bauelement mit organischen Schichten

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
BAILEY-SALZMAN ET AL., APPLIED PHYSICS LETTERS, vol. 88, 2006, pages 233502
C. FALKENBERG ET AL., JOURNAL OF APPLIED PHYSICS, vol. 104, 2008, pages 034506
C. J. BRABEC ET AL., ADVANCED FUNCTIONAL MATERIALS, vol. 11, 2001, pages 15
C. UHRICH ET AL., JOURNAL OF APPLIED PHYSICS, vol. 104, 2008, pages 043107
C. W. TANG ET AL., APPL. PHYS. LETT., vol. 48, 1986, pages 183
C.W. TANG, APPLIED PHYSICS LETTERS, vol. 48, no. 2, 1986, pages 183 - 185
CHEN ET AL., THIN SOLID FILMS, vol. 394, 2001, pages 201
FUJISHIMA ET AL., SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 93, 2009, pages 1029
J. D. DEBAD; J. C. MORRIS; V. LYNCH; P. MAGNUS; A J.BARD, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 118, 1996, pages 2374
J. DRECHSEL ET AL., APPLIED PHYSICS LETTERS, vol. 86, 2005, pages 244102
J. Y. KIM ET AL., SCIENCE, vol. 13, 2007, pages 222 - 225
K. SCHULZE ET AL., ADVANCED MATERIALS, vol. 18, 2006, pages 2872
K. WALZER ET AL., CHEMICAL REVIEWS, vol. 107, no. 4, 2007, pages 1233 - 1271
KOEPPE ET AL., CHEMISTRY AND SUSTAINABILITY, vol. 2, 2009, pages 309
M. RIEDE ET AL., NANOTECHNOLOGY, vol. 19, 2008, pages 424001
M. WEHMEIER; M. WAGNER; K. MÜLLEN, CHEMISTRY, vol. 7, 2001, pages 2197
MEISS ET AL., JOURNAL OF APPLIED PHYSICS, vol. 105, 2009, pages 063105
O'REGAN ET AL., NATURE, vol. 353, 1991, pages 737
P. KOVACIC; F. W. KOCH, JOURNAL OF ORGANIC CHEMISTRY, vol. 28, 1963, pages 1864
S. PFÜTZNER ET AL., PROCEEDINGS OF SPIE, vol. 6999, 2008, pages 69991M
W. DILTHEY; G. HURTIG, BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT A, vol. 67, 1934, pages 2004
Y.-T. WU; T. HAYAMA; K. K. BALDRIDGE; A. LINDEN; J. S. SIEGEL, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, 2006, pages 6870

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368727B2 (en) 2012-10-25 2016-06-14 Samsung Electronics Co., Ltd. Organic photoelectric device and image sensor including the same

Also Published As

Publication number Publication date
WO2010139310A3 (fr) 2011-06-03
DE102009024956A1 (de) 2010-12-09

Similar Documents

Publication Publication Date Title
EP1861886B8 (fr) Composant photoactif organique
EP3050134B9 (fr) Matériau organique photoactif pour composants optoélectroniques
WO2010075836A2 (fr) Composés hétérocycliques et leur utilisation dans des composants électroniques et optoélectroniques
EP2433317A1 (fr) Composant semi-conducteur
EP2498315B1 (fr) Cellule solaire organique
EP2329539A1 (fr) Utilisation du dibenzotetraphenylperiflanthene dans des cellules solaires organiques
EP2959520B1 (fr) Composant optoélectronique
EP2867932B1 (fr) Électrode transparente pour composants optoélectroniques
WO2010139310A2 (fr) Cellule solaire ou photodétecteur organique inversé(e) ou transparent(e) à adsorption améliorée
EP3044818B1 (fr) Dispositif de l'électronique organique à couche active
DE102010056519A1 (de) Optoelektronisches Bauelement mit dotierten Schichten
DE102014217817B4 (de) Organische Donor-Akzeptor-Farbstoffe für die Verwendung in elektronischen und optoelektronischen Bauteilen
DE102012105812A1 (de) Elektrodenanordnung für optoelektronische Bauelemente
DE102012104247A1 (de) Halbleitendes organisches Material für optoelektronische Bauelemente
WO2010133205A1 (fr) Cellule solaire organique ou photodétecteur à absorption améliorée
EP4035215B1 (fr) Composés possédant un groupe furopyrolle ou un groupe thiénopyrolle, composant optoélectronique comprenant ce type de composé, et utilisation de ce type de composé dans des composants optoélectroniques
DE102011084120A1 (de) Photovoltaische Vorrichtung
WO2010006595A2 (fr) Composant photoactif avec couches organiques et électrode à couches multiples
WO2010012279A1 (fr) Composant photoactif organique, en particulier cellule solaire organique ou photodétecteur organique
DE102022125417A1 (de) Chemische Verbindung, optoelektronisches Bauelement mit mindestens einer solchen chemischen Verbindung, und Verwendung mindestens einer solchen chemischen Verbindung in einem optoelektronischen Bauelement
DE102012105810A1 (de) Transparente Elektrode für optoelektronische Bauelemente
DE102012105809A1 (de) Transparente Elektrode für optoelektronische Bauelemente
DE102009021882B4 (de) Organisches halbleitendes Bauelement
DE102019120457A1 (de) Organische halbleitende Verbindung mit einer Indolgruppe, organisches optoelektronisches Bauelement mit einer solchen Verbindung, und Verwendung einer solchen Verbindung
WO2012093180A1 (fr) Composant électronique ou optoélectronique comprenant des couches organiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10737742

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 10737742

Country of ref document: EP

Kind code of ref document: A2