EP1507068A1 - Verfahren zum Abbremsen eines Rotors einer Strömungsmaschine und eine Drehvorrichtung zum Antreiben des Rotors einer Strömungsmaschine - Google Patents

Verfahren zum Abbremsen eines Rotors einer Strömungsmaschine und eine Drehvorrichtung zum Antreiben des Rotors einer Strömungsmaschine Download PDF

Info

Publication number
EP1507068A1
EP1507068A1 EP03018376A EP03018376A EP1507068A1 EP 1507068 A1 EP1507068 A1 EP 1507068A1 EP 03018376 A EP03018376 A EP 03018376A EP 03018376 A EP03018376 A EP 03018376A EP 1507068 A1 EP1507068 A1 EP 1507068A1
Authority
EP
European Patent Office
Prior art keywords
rotor
drive
turbomachine
designed
load element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03018376A
Other languages
English (en)
French (fr)
Inventor
Antje Noack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03018376A priority Critical patent/EP1507068A1/de
Priority to US10/568,338 priority patent/US8641360B2/en
Priority to PCT/EP2004/007945 priority patent/WO2005019603A1/de
Priority to DE502004003297T priority patent/DE502004003297D1/de
Priority to EP04763286A priority patent/EP1654443B1/de
Priority to CNB2004800228332A priority patent/CN100543276C/zh
Priority to ES04763286T priority patent/ES2281820T3/es
Publication of EP1507068A1 publication Critical patent/EP1507068A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/006Arrangements of brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/34Turning or inching gear

Definitions

  • the invention relates to a method for braking a Rotor of a turbomachine according to the preamble of the claim 1 and a rotating device for driving a rotor a turbomachine according to the preamble of the claim 6th
  • the oil storage is next to a lubricating oil and in addition powered by a lifting oil supply, which serves the Hydrostatically raise the rotor during turning operation.
  • the disadvantage here is that performing the Abfahrprogramm Control of the gas turbine then the oil supply of the oil storage not because of the constant rotational movement of the rotor automatically shuts off.
  • the automated shutdown of the oil supply the oil storage would only take place when the the speed monitoring sensors the standstill of the rotor recognizes. Fault messages of the controls are the consequence which then require manual intervention.
  • To slow down the rotor is then the manual shutdown of the oil supply necessary, with the rotor then unlubricated to a standstill rotated in oil storage. This can lead to wear and defects Rotor and oil storage lead.
  • the object of the invention is therefore an inexpensive method for decelerating a rotor of a turbomachine, with the caused by the draft rotational movement of the rotor is slowed down until the rotor stops. Further is an object of the invention to a corresponding device specify.
  • the solution is based on the consideration that after completion the cooling phase for braking the rotor of this Drive by means of the coupled drive shaft in reverse operation drives.
  • the already for the rotary operation of the rotor designed and designed turning device is so inexpensive operated in reverse operation.
  • Existing turbines, the already have a rotating device can by slight Attachments or conversions can be converted inexpensively.
  • the control will follow during the shutdown program to the turning operation automatically the braking operation by and can then after recognizing the stoppage of the rotor Switch off the oil supply to the oil storage. A manual intervention in the Abfahrprogramm can be prevented.
  • a first advantageous embodiment is after completion the cooling phase the drive is disconnected from the power source and connected to a load element.
  • the severance the power source stops the drive of the rotor and thus the rotary operation of the turbine.
  • the reverse operation of the drive be performed.
  • the prevailing draft in the turbine maintains the rotational movement of the rotor upright.
  • This one gives the Rotary movement continues via the drive shaft to the drive.
  • the rotational energy is converted by the drive and then dissipated by means of a load element.
  • the load moment for the rotor increases, causing the rotational movement of the Rotor slows down until it comes to a halt.
  • the drive is designed as a hydraulic motor, the in reverse mode works as a hydraulic pump.
  • the drive is designed as an electric motor, which operates in reverse mode as an electric generator.
  • the rotor is stored by means of an oil bearing, can after the standstill of the rotor, the energy supply of the oil storage turned off.
  • the reverse operation works as a hydraulic pump and as a load element a Throttle or a valve is provided, that of the hydraulic motor in reverse operation promoted liquid medium a throttle or a valve flow.
  • a Throttle or a valve is provided, that of the hydraulic motor in reverse operation promoted liquid medium a throttle or a valve flow.
  • the drive of the Hydromotors takes place by the draft, the through the Flow path of the turbine flows while the rotor in a Rotated motion offset.
  • the throttle or the valve are included formed in an advantageous refinement controllable so that needed to slow down the rotor at any time Lastmoment can be adjusted.
  • the load element as an electrical consumer and the drive as an electric motor educated.
  • the rotational energy of the rotor is determined by means of Electric motor, the case in reverse operation as an electric generator works, converted into an electric current and on delivered to the consumer.
  • the load of the consumer so dimensioned that a delay of the rotation of the rotor until it has come to a standstill. It is advantageous that the load element is adjustable.
  • the turbomachine designed as a gas turbine.
  • turbomachine designed as a compressor.
  • FIG. 2 shows a gas turbine 1 in a longitudinal partial section. It has inside about a rotation axis. 2 rotatably mounted rotor 3, which also as a turbine rotor or Rotor shaft is called. Along the rotor 3 follow Intake housing 4, a compressor 5, a toroidal annular combustion chamber 6 with a plurality of coaxially arranged burners 7, a turbine 8 and the exhaust housing 9 to each other.
  • annular compressor passage 10 is provided, in the direction of the annular combustion chamber 6 in cross section rejuvenated.
  • a diffuser 11 is arranged, which communicates with the annular combustion chamber 6 is in fluid communication.
  • the annular combustion chamber 6 forms a combustion chamber 12 for a mixture of a Fuel and compressed air.
  • a hot gas duct 13 is with the combustion chamber 12 in fluid communication, wherein the Hot gas duct 13, the exhaust housing 9 is arranged downstream.
  • the rotor 3 is rotatably supported by means of an oil bearing 21.
  • the Oil storage 21 is next to a lubricating oil and in addition powered by a lifting oil supply, which serves the To raise the rotor 3 hydrostatically during turning operation.
  • the gas turbine 1 During operation of the gas turbine 1 is from the compressor. 5 sucked air 21 through the intake housing 4 and in the compressor duct 10 compacted. The at the burner end of the compressor 5 provided air 21 is through the diffuser 11th led to the burners 7 and mixed there with a fuel. The mixture is then made to form a working fluid 20 burned in the combustion chamber 10. From there flows the working fluid 20 in the hot gas duct 13. At the in the Turbine 8 arranged vanes 16 and on the blades 18 the working fluid 20 relaxes momentum, so that the rotor 3 is driven and with it one to him coupled machine (not shown).
  • FIG. 2 shows a hydraulic circuit diagram 35 of a rotating device 22.
  • An output P of the hydraulic unit 23 is with connected to the input of a pressure reducing valve 24.
  • the exit the pressure reducing valve 24 is in fluid communication with the input of a flow control valve 25 whose output is connected to the input of a hydraulic motor 26.
  • the exit the hydraulic motor 26 is at the entrance of a pressure relief valve 27 connected.
  • the output of the pressure relief valve 27 is connected to the input T of the hydraulic unit 23 in fluid communication.
  • a drive shaft 28 of the hydraulic motor 26 is a gear 29 with a rotor 30 a Turbomachine 31 connected.
  • the pressure reducing valve 24 and the pressure limiting valve 27 are each actuated electromagnetically.
  • the turbomachine 31 can be used as a compressor or be designed as a gas turbine 1.
  • the hydraulic unit 23 has a controllable hydraulic pump 32, which is driven by a motor 33.
  • the entrance the hydraulic pump 32 is in this case with a hydraulic accumulator 34 in flow communication.
  • the output of the hydraulic pump 32nd is formed as an output of the hydraulic unit 23.
  • the hydraulic circuit 35 is designed for three operating states: a rotary operation, a freewheeling operation and a Braking operation.
  • the drive shaft 28 of the hydraulic motor 26 not to the rotor 30 of the turbomachine 31 docked. Only with the shutdown of the turbomachine 31, the drive shaft 28 is coupled to the rotor 30.
  • the hydraulic motor 26 is fed by the hydraulic unit 23, wherein the pressure reducing valve 24 allows a pressure of about 150 bar in the hydraulic fluid.
  • the flow control valve 25 limits the flow rate of the hydraulic fluid to a volume of max. 70 l / min.
  • the pressure relief valve 27 is unconfirmed, so that there no pressure drops.
  • the drive shaft 28 remains connected to the rotor 30 via the gear 29.
  • the pressure reducing valve reduces the pressure of the hydraulic fluid to 10 bar from.
  • the hydraulic motor 26 will continue to provide sufficient Supplying amount of hydraulic fluid without it generates an effective drive torque on the drive shaft 28 becomes.
  • the hydraulic motor 26 is thus of the hydraulic unit 23 decoupled as an energy source.
  • the pressure relief valve 27 remains set to 0 bar, so that in the Hydraulic fluid no pressure loss occurs. Due to friction losses the rotor speed decreases.
  • the drive shaft 28 of the hydraulic motor 26th coupled to the rotor 30 of the turbomachine 31.
  • the Pressure reducing valve 24 reduces the pressure in the hydraulic fluid at 10 bar.
  • the pressure relief valve 27 is now controlled in such a way that there is a steadily increasing pressure in the Hydraulic fluid stops.
  • the pressure relief valve is used 27 in braking mode as a load element for the reverse operation operated hydraulic motor 26.
  • the hydraulic motor 26 is driven by the rotation of the rotor 30 now, so that this works as a pump. Consequently, the hydraulic motor 26 promotes the hydraulic fluid continues to the pressure relief valve 24, where a pressure build-up in the hydraulic fluid takes place. This will be a Load generated for the rotating rotor 30, which is the rotation slows down and slows down.
  • the desired braking torque is generated, to bring the rotor 30 to a standstill.
  • the controller switches the turbomachine 31 to complete the Abfahrprogramms the supply of the oil bearing 21 of the rotor 3 automatically off.
  • the suppressed oil supply causes friction in the oil storage 21 generates, which slows the rotor 30 to a standstill. This also prevents the rotor 30 of the turbomachine 31 by the natural train from the standstill in a rotational movement is offset.
  • After switching off the oil bearing 21 may also be the pressure relief valve 24 reopened to the hydraulic motor 26 to relieve pressure and reduce the hydraulic fluid.
  • a stationary gas turbine can also work machine be used as a brake, instead of a Payload is connected to a load element.
  • the generator will be shorted as a working machine, in which the internal resistance of the generator then as Load element is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Abbremsen eines Rotors (3, 30) einer Strömungsmaschine (31) mit einer Drehvorrichtung (22), die einen von einer Energiequelle gespeisten Antrieb mit einer Antriebswelle (28) aufweist, an die der Rotor (3, 30) ankoppelbar ist, wobei während einer Abkühlphase der Turbine (8) der Rotor (3, 30) mittels der dann angekoppelten Antriebswelle (28) vom Antrieb angetrieben wird. Um ein Verfahren zum Abbremsen eines Rotors (3, 30) einer Strömungsmaschine (31) anzugeben, mit der die durch den Luftzug durch die Turbine (8) bedingte Drehbewegung des Rotors (3, 30) verlangsamt bis der Rotor (3, 30) steht, wird vorgeschlagen, dass nach Abschluss der Abkühlphase zum Abbremsen des Rotors (3, 30) dieser mittels der angekoppelten Antriebswelle (28) den Antrieb im Umkehrbetrieb antreibt. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Abbremsen eines Rotors einer Strömungsmaschine gemäss dem Oberbegriff des Anspruchs 1 und eine Drehvorrichtung zum Antreiben eines Rotors einer Strömungsmaschine gemäss dem Oberbegriff des Anspruchs 6.
Es ist bekannt, dass in einem Abfahrprogramm nach dem Abschalten einer Gasturbine der in einem Öllager gelagerte Rotor in einem sogenannten Drehbetrieb mittels einer Drehvorrichtung bei einer niedrigeren Drehzahl gedreht wird.
Die beim Betrieb der Turbine aufgeheizten und sich ausgedehnten Komponenten werden so während dieser Abkühlphase von der Betriebstemperatur der Gasturbine auf die Umgebungstemperatur abgekühlt. Der Verdichter saugt Umgebungsluft an und pumpt diese in den ringförmigen Strömungspfad der Brennkammer und der Turbine, so dass die Komponenten gekühlt werden und der Gasturbine Wärme entzogen wird.
Das Öllager wird dabei neben einer Schmieröl- und zusätzlich von einer Anhebeölversorgung gespeist, die dazu dient, den Rotor während des Drehbetriebs hydrostatisch anzuheben.
Nach dem Abschalten der Drehvorrichtung kann sich ein Luftzug durch den Verdichter, die Brennkammer und die Turbine einstellen, der als Naturzug bezeichnet wird und von der Wetterlage abhängig ist. Dieser kann derart groß werden, dass während des Abfahrprogramms der Rotor der Gasturbine trotz abgeschalteter Drehvorrichtung weiter in einer Drehbewegung verbleibt.
Nachteilig ist dabei, dass die das Abfahrprogramm durchführende Steuerung der Gasturbine dann die Ölversorgung des Öllagers wegen der ständigen Drehbewegung des Rotors nicht selbsttätig abschaltet. Das automatisierte Abschalten der Ölversorgung des Öllagers würde erst dann erfolgen, wenn die die Drehzahl überwachende Sensorik den Stillstand des Rotors erkennt. Störungsmeldungen der Steuerungen sind die Folge, die dann einem manuellen Eingriff erfordern. Zum Abbremsen des Rotors ist dann die manuelle Abschaltung der Ölversorgung nötig, wobei der Rotor dann bis zum Stillstand ungeschmiert im Öllager rotiert. Dies kann zu Verschleiß und Defekten an Rotor und Öllager führen.
Aufgabe der Erfindung ist es daher, ein kostengünstiges Verfahren zum Abbremsen eines Rotors einer Strömungsmaschine anzugeben, mit der die durch den Luftzug bedingte Drehbewegung des Rotors verlangsamt wird, bis der Rotor steht. Ferner ist es Aufgabe der Erfindung eine dazu korrespondierende Vorrichtung anzugeben.
Die auf das Verfahren bezogene Aufgabe wird durch die Merkmale des Anspruchs 1 und die auf die Vorrichtung gerichtete Aufgabe durch die Merkmale des Anspruchs 6 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
Die Lösung geht dabei von der Überlegung aus, dass nach Abschluss der Abkühlphase zum Abbremsen des Rotors dieser den Antrieb mittels der angekoppelten Antriebswelle im Umkehrbetrieb antreibt. Die bereits für den Drehbetrieb des Rotors konzipierte und ausgelegte Drehvorrichtung wird so kostengünstig im Umkehrbetrieb betrieben. Bestehende Turbinen, die bereits eine Drehvorrichtung aufweisen, können durch geringfügige An- oder Umbauten kostengünstig umgerüstet werden.
Die Steuerung führt während des Abfahrprogramms im Anschluss an den Drehbetrieb selbsttätig den Bremsbetrieb durch und kann dann nach dem Erkennen des Stillstandes des Rotors die Ölversorgung des Öllagers abschalten. Ein manuelles Eingreifen in das Abfahrprogramm kann so verhindert werden.
In einer ersten vorteilhaften Ausgestaltung wird nach Abschluss der Abkühlphase der Antrieb von der Energiequelle getrennt und an ein Lastelement angeschlossen. Das Abtrennen der Energiequelle beendet den Antrieb des Rotors und somit den Drehbetrieb der Turbine. Durch den Anschluss des Lastelementes an den Antrieb kann der Umkehrbetrieb des Antriebes durchgeführt werden. Der in der Turbine herrschende Luftzug erhält die Drehbewegung des Rotors aufrecht. Dieser gibt die Drehbewegung über die Antriebswelle an den Antrieb weiter. Die Rotationsenergie wird durch den Antrieb umgewandelt und dann mittels eines Lastelementes dissipiert. Das Lastmoment für den Rotor erhöht sich, wodurch die Drehbewegung des Rotors sich verlangsamt, bis er zum Stillstand kommt.
Vorteilhaft ist der Antrieb als Hydromotor ausgebildet, der im Umkehrbetrieb als Hydropumpe arbeitet.
Zweckmäßigerweise ist der Antrieb als Elektromotor ausgebildet, der im Umkehrbetrieb als Elektrogenerator arbeitet.
Wenn der Rotor mittels eines Öllagers gelagert ist, kann nach dem Stillstand des Rotors die Energieversorgung des Öllagers ausgeschaltet werden.
Wenn der Antrieb als Hydromotor ausgebildet ist, der im Umkehrbetrieb als Hydropumpe arbeitet und als Lastelement eine Drossel oder ein Ventil vorgesehen ist, kann das von dem Hydromotor im Umkehrbetrieb geförderte flüssige Medium durch eine Drossel oder ein Ventil strömen. Somit ist im Kreislauf des Mediums ein Lastelement vorgesehen, an dem die Strömungsenergie des geförderten Mediums dissipiert. Der Antrieb des Hydromotors erfolgt dabei von dem Luftzug, der durch den Strömungspfad der Turbine strömt und dabei den Rotor in eine Drehbewegung versetzt. Die Drossel oder das Ventil sind dabei in einer vorteilhaften Weitergestaltung regelbar ausgebildet, so dass zum Abbremsen des Rotors jederzeit das benötigte Lastmoment eingestellt werden kann.
In einer vorteilhaften Ausgestaltung ist das Lastelement als ein elektrischer Verbraucher und der Antrieb als Elektromotor ausgebildet. Die Rotationsenergie des Rotors wird mittels des Elektromotors, der dabei im Umkehrbetrieb als Elektrogenerator arbeitet, in einen elektrischen Strom umgewandelt und an den Verbraucher abgegeben. Dabei ist die Last des Verbrauchers so dimensioniert, dass eine Verzögerung der Rotation des Rotors einsetzt, bis dieser zum Stillstand gekommen ist. Dabei ist es vorteilhaft, dass das Lastelement regelbar ist.
In einer vorteilhaften Weiterbildung ist die Strömungsmaschine als Gasturbine ausgebildet.
Gemäß einem vorteilhaften Vorschlages ist die Strömungsmaschine als Verdichter ausgebildet.
Die Erfindung wird anhand einer Zeichnung erläutert. Dabei zeigen die Figuren:
Figur 1
eine schematische Darstellung einer Strömungsmaschine mit einer Drehvorrichtung,
Figur 2
einen Längsteilschnitt durch eine Gasturbine.
Die Figur 2 zeigt eine Gasturbine 1 in einem Längsteilschnitt. Sie weist im Inneren einen um eine Rotationsachse 2 drehgelagerten Rotor 3 auf, der auch als Turbinenläufer oder Rotorwelle bezeichnet wird. Entlang des Rotors 3 folgen ein Ansauggehäuse 4, ein Verdichter 5, eine torusartige Ringbrennkammer 6 mit mehreren koaxial angeordneten Brennern 7, eine Turbine 8 und das Abgasgehäuse 9 aufeinander.
Im Verdichter 5 ist ein ringförmiger Verdichterkanal 10 vorgesehen, der sich in Richtung der Ringbrennkammer 6 im Querschnitt verjüngt. Am brennkammerseitigen Ausgang des Verdichters 5 ist ein Diffusor 11 angeordnet, der mit der Ringbrennkammer 6 in Strömungsverbindung steht. Die Ringbrennkammer 6 bildet einen Verbrennungsraum 12 für ein Gemisch aus einem Brennmittel und verdichteter Luft. Ein Heißgaskanal 13 ist mit dem Verbrennungsraum 12 in Strömungsverbindung, wobei dem Heißgaskanal 13 das Abgasgehäuse 9 nachgeordnet ist.
Im Verdichterkanal 10 und im Heißgaskanal 13 sind jeweils alternierend Schaufelringe angeordnet. Einem aus Leitschaufeln 14 gebildeter Leitschaufelring 15 folgt jeweils ein aus Laufschaufeln 16 geformter Laufschaufelring 17. Die feststehenden Leitschaufeln 14 sind dabei mit dem Stator 18 verbunden, wo hingegen die Laufschaufeln 16 am Rotor 3 mittels einer Turbinenscheibe 19 befestigt sind.
Der Rotor 3 ist mittels eines Öllagers 21 drehgelagert. Das Öllager 21 wird dabei neben einer Schmieröl- und zusätzlich von einer Anhebeölversorgung gespeist, die dazu dient, den Rotor 3 während des Drehbetriebs hydrostatisch anzuheben.
Während des Betriebes der Gasturbine 1 wird vom Verdichter 5 durch das Ansauggehäuse 4 Luft 21 angesaugt und im Verdichterkanal 10 verdichtet. Die am brennerseitigen Ende des Verdichters 5 bereitgestellte Luft 21 wird durch den Diffusor 11 zu den Brennern 7 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung eines Arbeitsfluids 20 im Verbrennungsraum 10 verbrannt. Von dort aus strömt das Arbeitsfluid 20 in den Heißgaskanal 13. An den in der Turbine 8 angeordneten Leitschaufeln 16 und an den Laufschaufeln 18 entspannt sich das Arbeitsfluid 20 impulsübertragend, so dass der Rotor 3 angetrieben wird und mit ihm eine an ihn angekoppelte Arbeitsmaschine (nicht dargestellt).
Figur 2 zeigt einen Hydraulikschaltplan 35 einer Drehvorrichtung 22. Ein Ausgang P des Hydraulik-Aggregates 23 ist mit dem Eingang eines Druckreduzierventils 24 verbunden. Der Ausgang des Druckreduzierventils 24 steht in Strömungsverbindung mit dem Eingang eines Stromregelventils 25, dessen Ausgang mit dem Eingang eines Hydromotors 26 verbunden ist. Der Ausgang des Hydromotors 26 ist an den Eingang eines Druckbegrenzungsventils 27 angeschlossen. Der Ausgang des Druckbegrenzungsventils 27 ist mit dem Eingang T des Hydraulik-Aggregats 23 in Strömungsverbindung. Eine Antriebswelle 28 des Hydromotors 26 ist über ein Getriebe 29 mit einem Rotor 30 einer Strömungsmaschine 31 verbunden.
Das Druckreduzierventil 24 und das Druckbegrenzungsventil 27 werden jeweils elektromagnetisch betätigt.
Die Strömungsmaschine 31 kann dabei als ein Verdichter oder auch als eine Gasturbine 1 ausgebildet sein.
Das Hydraulik-Aggregat 23 weist eine regelbare Hydraulikpumpe 32 auf, die von einem Motor 33 angetrieben wird. Der Eingang der Hydraulikpumpe 32 ist dabei mit einem Hydraulikspeicher 34 in Strömungsverbindung. Der Ausgang der Hydraulikpumpe 32 ist als Ausgang des Hydraulikaggregats 23 ausgebildet.
Die Hydraulikschaltung 35 ist für drei Betriebszustände ausgelegt: einen Drehbetrieb, einen Freilaufbetrieb und einen Bremsbetrieb.
Beim Betrieb der Strömungsmaschine 31 ist die Antriebswelle 28 des Hydromotors 26 nicht an den Rotor 30 der Strömungsmaschine 31 angekoppelt. Erst mit dem Abschalten der Strömungsmaschine 31 wird die Antriebswelle 28 an den Rotor 30 angekoppelt.
In einem Abfahrprogramm startet die Steuerung der Strömungsmaschine 31 zum Abkühlen dieser den Drehbetrieb. Dazu arbeitet der Hydromotor 26 als Antriebsmotor, der mittels seiner Antriebswelle 26 über ein Getriebe 29 den Rotor 30 der Strömungsmaschine 31 bei einer niedrigen Rotordrehzahl von n=100min-1 antreibt. Dafür wird der Hydraulikmotor 26 von dem Hydraulik-Aggregat 23 gespeist, wobei das Druckreduzierventil 24 einen Druck von ca. 150 bar im Hydraulikmittel zulässt. Das Stromregelventil 25 begrenzt zur Volumeneinstellung den Durchfluss des Hydraulikmittels auf ein Volumen von max. 70 l/min. Das Druckbegrenzungsventil 27 ist dabei unbetätigt, so dass dort kein Druck abfällt. Im Drehbetrieb wird durch die Rotation des Rotors 30 Luft durch den Verdichterkanal 10, die Ringbrennkammer 6 und den Heißgaskanal 13 von den Laufschaufeln 16 gepumpt, so dass die Strömungsmaschine 31 die gespeicherte Wärme schneller an die Luft abgibt. Nach dem Absinken der Temperatur der Gasturbine 1 unterhalb eines vorgegebenen Grenzwertes wird der Drehbetrieb eingestellt.
Im anschließenden Freilaufbetrieb bleibt die Antriebswelle 28 mit dem Rotor 30 über das Getriebe 29 verbunden. Das Druckreduzierventil senkt den Druck des Hydraulikmittels auf 10 bar ab. Somit wird der Hydraulikmotor 26 weiterhin mit einer ausreichenden Menge an Hydraulikmitteln versorgt, ohne dass dabei ein wirksames Antriebsmoment an der Antriebswelle 28 erzeugt wird. Der Hydraulikmotor 26 ist somit von dem Hydraulik-Aggregat 23 als Energiequelle entkoppelt. Das Druckbegrenzungsventil 27 bleibt auf 0 bar eingestellt, so dass im Hydraulikmittel kein Druckverlust erfolgt. Aufgrund von Reibungsverlusten vermindert sich die Rotordrehzahl.
Wenn aufgrund von einem als Naturzug bezeichneten Luftstromes, der durch den Verdichterkanal 10, den Verbrennungsraum 12 und den Heißgaskanal 13 strömt, die Rotorwelle auf einer Drehzahl hält bzw. verhindert, dass die Rotordrehzahl unter eine vorgegebene Grenzdrehzahl von n=10min-1 gelangt, schaltet die Steuerung der Strömungsmaschine selbsttätig von dem Freilaufbetrieb in den Bremsbetrieb weiter.
Im Bremsbetrieb ist die Antriebswelle 28 des Hydromotors 26 an den Rotor 30 der Strömungsmaschine 31 angekoppelt. Das Druckreduzierventil 24 reduziert den Druck im Hydraulikmittel auf 10 bar. Das Druckbegrenzungsventil 27 wird nun derart angesteuert, dass sich dort ein stetig aufbauender Druck im Hydraulikmittel einstellt. Somit dient das Druckbegrenzungsventil 27 im Bremsbetrieb als Lastelement für den im Umkehrbetrieb betriebenen Hydromotor 26. Der Hydromotor 26 wird durch die Drehung des Rotors 30 nun angetrieben, so dass dieser als Pumpe arbeitet. Folglich fördert der Hydromotor 26 das Hydraulikmittel weiter zum Druckbegrenzungsventil 24, wo ein Druckaufbau im Hydraulikmittel erfolgt. Dadurch wird eine Last für den rotierenden Rotor 30 erzeugt, das die Rotation abbremst und verlangsamt. Durch das Schließen des Druckbegrenzungsventils 27 wird das gewünschte Bremsmoment erzeugt, um den Rotor 30 zum Stillstand zu bringen.
Nach Unterschreiten der Grenzdrehzahl schaltet die Steuerung der Strömungsmaschine 31 zum Abschluss des Abfahrprogramms die Versorgung des Öllagers 21 des Rotors 3 selbsttätig aus. Durch die unterbundene Ölversorgung wird eine Reibung im Öllager 21 erzeugt, die den Rotor 30 in den Stillstand abbremst. Dies verhindert ebenso, dass der Rotor 30 der Strömungsmaschine 31 durch den Naturzug aus dem Stillstand in eine Drehungsbewegung versetzt wird.
Nach dem Abschalten des Öllagers 21 kann ebenfalls das Druckbegrenzungsventil 24 wieder geöffnet werden, um den Hydromotor 26 zu entlasten und den Druck im Hydraulikmittel zu senken.
Trotz der inneren Leckage der Hydromotoren 26 ist das Stillsetzen des Rotors 30 möglich.
Zur schnellen Stillsetzung des Rotors 3, 30 kann auch der Freilaufbetrieb übersprungen werden, so dass dem Drehbetrieb unmittelbar der Bremsbetrieb folgt.
Bei einer stationären Gasturbine kann auch die Arbeitsmaschine als Bremse eingesetzt werden, wobei anstelle einer Nutzlast eine Lastelement angeschlossen wird. Somit könnte z.B. der Generator als Arbeitsmaschine kurzgeschlossen werden, bei dem der Innenwiderstand des Generators dann als Lastelement dient.

Claims (11)

  1. Verfahren zum Abbremsen eines Rotors (3, 30) einer Strömungsmaschine (31), mit einer Drehvorrichtung (22), die einen von einer Energiequelle gespeisten Antrieb mit einer Antriebswelle (28) aufweist, an die der Rotor (3, 30) ankoppelbar ist,
    wobei während einer Abkühlphase der Turbine (8) der Rotor (3, 30) mittels der dann angekoppelten Antriebswelle (28) vom Antrieb angetrieben wird,
    dadurch gekennzeichnet, dass
    nach Abschluss der Abkühlphase zum Abbremsen des Rotors (3, 30) dieser mittels der angekoppelten Antriebswelle (28) den Antrieb im Umkehrbetrieb antreibt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    nach Abschluss der Abkühlphase der Antrieb von der Energiequelle getrennt und an ein Lastelement angeschlossenen wird.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Antrieb als Hydromotor (26) ausgebildet ist, der im Umkehrbetrieb als Hydropumpe arbeitet.
  4. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Antrieb als Elektromotor (33) ausgebildet ist, der im Umkehrbetrieb als Elektrogenerator arbeitet.
  5. Verfahren nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet, dass
    der Rotor (3, 30) mittels eines Öllagers (21) gelagert wird und dass
    nach dem Stillstand des Rotors (3, 30) die Energieversorgung des Öllagers (21) ausgeschaltet wird.
  6. Drehvorrichtung (22) zum Antreiben des Rotors (3, 30) einer Strömungsmaschine (31),
    mit einem von einer Energiequelle gespeisten Antrieb mit einer Antriebswelle (28), an welche der Rotor (3, 30) ankoppelbar ist,
    dadurch gekennzeichnet, dass
    der Antrieb von der Energiequelle trennbar und an ein Lastelement anschließbar ist und dass
    der Antrieb zum Abbremsen des Rotors (3, 30) im Umkehrbetrieb antreibbar ist.
  7. Vorrichtung nach Anspruch 6,
    dadurch gekennzeichnet, dass
    der Antrieb als Hydromotor (26) ausgebildet ist, der im Umkehrbetrieb als Hydropumpe arbeitet und dass
    als Lastelement eine Drossel oder ein Ventil vorgesehen ist.
  8. Vorrichtung nach Anspruch 6,
    dadurch gekennzeichnet, dass
    dass der Antrieb als Elektromotor (33) ausgebildet ist, der im Umkehrbetrieb als Elektrogenerator arbeitet und dass
    als Lastelement ein elektrischer Verbraucher vorgesehen ist.
  9. Vorrichtung nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet, dass
    das Lastelement als regelbares Lastelement ausgebildet ist.
  10. Vorrichtung nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    die Strömungsmaschine (31) als Gasturbine ausgebildet ist.
  11. Vorrichtung nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    die Strömungsmaschine (31) als Verdichter ausgebildet ist.
EP03018376A 2003-08-13 2003-08-13 Verfahren zum Abbremsen eines Rotors einer Strömungsmaschine und eine Drehvorrichtung zum Antreiben des Rotors einer Strömungsmaschine Withdrawn EP1507068A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP03018376A EP1507068A1 (de) 2003-08-13 2003-08-13 Verfahren zum Abbremsen eines Rotors einer Strömungsmaschine und eine Drehvorrichtung zum Antreiben des Rotors einer Strömungsmaschine
US10/568,338 US8641360B2 (en) 2003-08-13 2004-07-16 Method for braking a rotor of a turbine engine and a turning gear for driving the rotor of a turbine engine
PCT/EP2004/007945 WO2005019603A1 (de) 2003-08-13 2004-07-16 Verfahren zum abbremsen eines rotors einer strömungsmaschine und eine drehvorrichtung zum antreiben des rotors einer strömungsmaschine
DE502004003297T DE502004003297D1 (de) 2003-08-13 2004-07-16 Verfahren zum abbremsen eines rotors einer strömungsmaschine und eine drehvorrichtung zum antreiben des rotors einer strömungsmaschine
EP04763286A EP1654443B1 (de) 2003-08-13 2004-07-16 Verfahren zum abbremsen eines rotors einer strömungsmaschine und eine drehvorrichtung zum antreiben des rotors einer strömungsmaschine
CNB2004800228332A CN100543276C (zh) 2003-08-13 2004-07-16 制动涡轮发动机转子的方法和一种用于驱动涡轮发动机转子的旋转装置
ES04763286T ES2281820T3 (es) 2003-08-13 2004-07-16 Procedimiento para frenar un rotor de una turbomaquina y un dispositivo giratorio para accionar el rotor de una turbomaquina.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03018376A EP1507068A1 (de) 2003-08-13 2003-08-13 Verfahren zum Abbremsen eines Rotors einer Strömungsmaschine und eine Drehvorrichtung zum Antreiben des Rotors einer Strömungsmaschine

Publications (1)

Publication Number Publication Date
EP1507068A1 true EP1507068A1 (de) 2005-02-16

Family

ID=33560790

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03018376A Withdrawn EP1507068A1 (de) 2003-08-13 2003-08-13 Verfahren zum Abbremsen eines Rotors einer Strömungsmaschine und eine Drehvorrichtung zum Antreiben des Rotors einer Strömungsmaschine
EP04763286A Not-in-force EP1654443B1 (de) 2003-08-13 2004-07-16 Verfahren zum abbremsen eines rotors einer strömungsmaschine und eine drehvorrichtung zum antreiben des rotors einer strömungsmaschine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04763286A Not-in-force EP1654443B1 (de) 2003-08-13 2004-07-16 Verfahren zum abbremsen eines rotors einer strömungsmaschine und eine drehvorrichtung zum antreiben des rotors einer strömungsmaschine

Country Status (6)

Country Link
US (1) US8641360B2 (de)
EP (2) EP1507068A1 (de)
CN (1) CN100543276C (de)
DE (1) DE502004003297D1 (de)
ES (1) ES2281820T3 (de)
WO (1) WO2005019603A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101043A1 (de) * 2008-03-11 2009-09-16 Siemens Aktiengesellschaft Verfahren zum Aufwärmen einer Dampfturbine
EP3124761A1 (de) * 2015-07-28 2017-02-01 Siemens Aktiengesellschaft Turbinenanlage
EP2831381B1 (de) 2012-03-29 2018-10-24 Ansaldo Energia IP UK Limited Verfahren zum betreiben eines turbinenmotors nach flammenaus
EP3399157A1 (de) * 2017-03-31 2018-11-07 The Boeing Company Gasturbinendrehantrieb über einen pneumatik- oder hydraulikmotor
US10378442B2 (en) 2017-03-31 2019-08-13 The Boeing Company Mechanical flywheel for bowed rotor mitigation
US10427632B2 (en) 2017-03-31 2019-10-01 The Boeing Company Bowed rotor nacelle cooling
US11022004B2 (en) 2017-03-31 2021-06-01 The Boeing Company Engine shaft integrated motor
DE102012208762B4 (de) 2012-05-24 2022-05-05 Robert Bosch Gmbh Verfahren zum Abbremsen einer Strömungsmaschine mit einer Synchronmaschine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333272B1 (de) * 2009-12-04 2013-02-13 Perkins Engines Company Limited Turboladerbremse
DE102010054841A1 (de) * 2010-12-16 2012-06-21 Andreas Stihl Ag & Co. Kg Blasgerät mit einem elektrischen Antriebsmotor
US20140069744A1 (en) * 2012-09-12 2014-03-13 General Electric Company System and method for supplying lube oil to a gas turbine
DE102012222637A1 (de) 2012-12-10 2014-06-12 Senvion Se Turnantrieb für eine Windenergieanlage und Verfahren zum Drehen der Rotorwelle einer Windenergieanlage
EP2757230A1 (de) * 2013-01-16 2014-07-23 Alstom Technology Ltd Verfahren zum Sperren eines Rotors einer Turbomaschine und Sperrvorrichtung zur Durchführung eines solchen Verfahrens
CN105604997A (zh) * 2014-11-21 2016-05-25 北京中如技术有限公司 高速动平衡机液压系统的高压顶升液压系统
EP3103974A1 (de) * 2015-06-09 2016-12-14 General Electric Technology GmbH Turbinengetriebedrehvorrichtungssystem
WO2018075020A1 (en) * 2016-10-19 2018-04-26 Halliburton Energy Services, Inc. Control of engine combustion shut down
GB201720944D0 (en) * 2017-12-15 2018-01-31 Rolls Royce Plc Rotor bow management
CN114635760A (zh) * 2022-03-30 2022-06-17 岭澳核电有限公司 核电厂用汽轮机盘车控制系统和汽轮机盘车设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE431934C (de) * 1925-08-01 1926-07-19 Brown Boveri & Cie Akt Ges Einrichtung zur gleichmaessigen Waermeverteilung bei Dampfturbinenwellen
DE524329C (de) * 1928-08-31 1931-05-13 Siemens Schuckertwerke Akt Ges Einrichtung zum langsamen Drehen einer Dampfturbinenwelle
US3203177A (en) * 1963-08-19 1965-08-31 Caterpillar Tractor Co Brake and reverse drive for gas turbine engines
US4854120A (en) * 1986-09-26 1989-08-08 Cef Industries, Inc. Performance envelope extension method for a gas turbine engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3655293A (en) * 1970-08-11 1972-04-11 Sorvall Inc Ivan Variable and reversing hydraulic drive system for turbines
EP0908602B1 (de) * 1997-10-06 2003-03-12 ALSTOM (Switzerland) Ltd Verfahren zum Betrieb einer Kombianlage
US7387182B2 (en) * 2002-04-08 2008-06-17 Patrick Fleming Turbine generator regenerative braking system
JP5178400B2 (ja) * 2008-08-28 2013-04-10 株式会社東芝 洗濯乾燥機
JP5359225B2 (ja) * 2008-11-26 2013-12-04 日本精工株式会社 電動機、産業機械用モータ及び電気自動車用ホイールモータ
US8226522B2 (en) * 2008-12-29 2012-07-24 Hamilton Sundstrand Corporation Coupling for generator/starter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE431934C (de) * 1925-08-01 1926-07-19 Brown Boveri & Cie Akt Ges Einrichtung zur gleichmaessigen Waermeverteilung bei Dampfturbinenwellen
DE524329C (de) * 1928-08-31 1931-05-13 Siemens Schuckertwerke Akt Ges Einrichtung zum langsamen Drehen einer Dampfturbinenwelle
US3203177A (en) * 1963-08-19 1965-08-31 Caterpillar Tractor Co Brake and reverse drive for gas turbine engines
US4854120A (en) * 1986-09-26 1989-08-08 Cef Industries, Inc. Performance envelope extension method for a gas turbine engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101043A1 (de) * 2008-03-11 2009-09-16 Siemens Aktiengesellschaft Verfahren zum Aufwärmen einer Dampfturbine
EP2831381B1 (de) 2012-03-29 2018-10-24 Ansaldo Energia IP UK Limited Verfahren zum betreiben eines turbinenmotors nach flammenaus
EP2831381B2 (de) 2012-03-29 2023-10-25 Ansaldo Energia IP UK Limited Verfahren zum betreiben eines turbinenmotors nach flammenaus
DE102012208762B4 (de) 2012-05-24 2022-05-05 Robert Bosch Gmbh Verfahren zum Abbremsen einer Strömungsmaschine mit einer Synchronmaschine
EP3124761A1 (de) * 2015-07-28 2017-02-01 Siemens Aktiengesellschaft Turbinenanlage
EP3399157A1 (de) * 2017-03-31 2018-11-07 The Boeing Company Gasturbinendrehantrieb über einen pneumatik- oder hydraulikmotor
US10378442B2 (en) 2017-03-31 2019-08-13 The Boeing Company Mechanical flywheel for bowed rotor mitigation
US10427632B2 (en) 2017-03-31 2019-10-01 The Boeing Company Bowed rotor nacelle cooling
US10753225B2 (en) 2017-03-31 2020-08-25 The Boeing Company Engine turning motor via pneumatic or hydraulic motor
US11022004B2 (en) 2017-03-31 2021-06-01 The Boeing Company Engine shaft integrated motor

Also Published As

Publication number Publication date
ES2281820T3 (es) 2007-10-01
DE502004003297D1 (de) 2007-05-03
EP1654443A1 (de) 2006-05-10
US20110027061A1 (en) 2011-02-03
CN100543276C (zh) 2009-09-23
EP1654443B1 (de) 2007-03-21
US8641360B2 (en) 2014-02-04
CN1833095A (zh) 2006-09-13
WO2005019603A1 (de) 2005-03-03

Similar Documents

Publication Publication Date Title
EP1654443B1 (de) Verfahren zum abbremsen eines rotors einer strömungsmaschine und eine drehvorrichtung zum antreiben des rotors einer strömungsmaschine
EP2681425B1 (de) Regelbares kühlsystem für ein kraftfahrzeug, kühlmittelpumpe hierfür, in der kühlmittelpumpe verwendbares flügelrad sowie verfahren zum regeln eines kühlmittelflusses in einem derartigen kühlsystem
DE602005001528T2 (de) Gasturbinentriebwerk
JP2007518615A (ja) プロペラエンジン装置用の加圧オイル供給
DE69923716T2 (de) Hochdruckgasturbinenaggregat mit hochdruckkolbenkompressor
EP2184487A1 (de) Windturbinen-Schmiermittelsystem
DE2721165A1 (de) Verfahren und vorrichtung fuer den luftstart eines turbofan-triebwerks
EP1316699A2 (de) Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betrieb einer aufgeladenen Brennkraftmaschine
JP2019163763A (ja) 風車状態中のガスタービンエンジンギアボックス用の受動的潤滑システム
DE2805115A1 (de) Motorturboladereinrichtung
DE2059314A1 (de) Integriertes Brennstoff-Steuersystem fuer einen Gasturbinenmotor
DE1476806A1 (de) Verfahren und Vorrichtung zum Bereitschafts-Leerlaufbetrieb eines Gasturbogenerators,der an ein elektrisches Kraftversorgungsnetz angeschlossen ist
DE112016001877T5 (de) Kompressorangetriebene ORC-Abwärmerückgewinnungseinheit und Steuerungsverfahren
AT398811B (de) Verdichteraggregat mit einem schraubenverdichter
CH271479A (de) Gasturbinen-Kraftanlage.
DE1601643B2 (de) Gasturbinenanlage
DE595658C (de) Brennkraftmaschine mit mindestens einer Abgasturbine zum Antriebe eines Ladegeblaeses
EP2002088B1 (de) Gasturbine für ein thermisches kraftwerk und verfahren zum betreiben einer derartigen gasturbine
DE102008045871A1 (de) Turbolader
EP2636872A2 (de) Getriebeanordnung einer Turbomaschine
DE1956178A1 (de) Wellendrehvorrichtung fuer Turbomaschinen,insbesondere Gasturbinen
DE918620C (de) Windkraftanlage mit verstellbaren Fluegeln und einer Anlaufhilfseinrichtung
AT227497B (de) Antriebsvorrichtung
DE703504C (de) Fahrzeug-, insbesondere Schiffsantriebsanlage mit ganz oder teilweise gegenlaeufigerDampf- oder Gasturbine
CH654626A5 (de) Verfahren zum anfahren eines pumpspeicherwerkes im pumpenbetrieb.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050817