EP1480780A1 - Laserbearbeitungsverfahren - Google Patents

Laserbearbeitungsverfahren

Info

Publication number
EP1480780A1
EP1480780A1 EP03709643A EP03709643A EP1480780A1 EP 1480780 A1 EP1480780 A1 EP 1480780A1 EP 03709643 A EP03709643 A EP 03709643A EP 03709643 A EP03709643 A EP 03709643A EP 1480780 A1 EP1480780 A1 EP 1480780A1
Authority
EP
European Patent Office
Prior art keywords
laser
pulse
substrate
holes
drilled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03709643A
Other languages
English (en)
French (fr)
Inventor
Hubert De Steur
Eddy Roelants
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1480780A1 publication Critical patent/EP1480780A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material

Definitions

  • the invention relates to a laser processing method for the rapid drilling of holes in dielectric substrates.
  • blind holes can also be drilled in addition to through holes, which are particularly important for multilayer printed circuit boards, since a subsequent metallization of a blind hole makes different metallic layers of the multilayer printed circuit board electrically conductive with one another can be connected and thus the integration density on a substrate can be increased significantly.
  • a laser processing device is known, by means of which holes with a diameter between 50 and 200 ⁇ can be drilled in multi-layer substrates.
  • a continuously pumped, Q-switched Nd: YAG laser is used as the laser light source, which generates light pulses in the ultraviolet spectral range after frequency conversion.
  • the individual light pulses have one average pulse power of approximately 250 mW and a pulse length of the order of 100 ns. This results in a relatively low energy of the individual light pulses of approximately 25 nJ, so that a large number of laser pulses must be used to drill a single hole.
  • the pulse repetition frequency is limited to a few kHz
  • the throughput ie the number of holes that can be drilled per unit of time
  • the throughput is correspondingly low, so that with this laser processing device it depends on the material and the thickness of the layers to be drilled per unit of time only a relatively small number of holes can be drilled.
  • pulsed CO 2 lasers with a wavelength of 9.2-10.6 ⁇ m or pulsed solid-state lasers, such as, for example, Nd: YAG lasers or Nd: YV0 4 -Lasers with a fundamental wavelength of 1064 n can be used.
  • Nd: YAG lasers or Nd: YV0 4 -Lasers with a fundamental wavelength of 1064 n can be used.
  • the use of such conventional CO 2 laser light sources emitting in the infrared spectral range has the disadvantage that the laser pulses generated are relatively long with a pulse length of the order of ⁇ s.
  • the substrate to be processed is exposed to a high thermal load, so that the geometry of the drilled holes deviates significantly from the optimal (cylindrical or conical) shape due to a burr or precipitation at the edge of the hole, thus reducing the quality of the drilled holes .
  • the precipitates arise, for example, from solidified steam, which was previously generated by sublimation from the substrate material as a result of heating by the laser beam.
  • the precipitate can also consist of small grains of solid substrate material which are thrown onto the edge of the hole due to a strong inhomogeneous heating of the substrate.
  • DE 100 20 559 discloses a method for processing a material with ultrashort laser pulses in the visible or in the near-infrared spectral range.
  • Laser pulses with a pulse duration of less than 300 ps and a repetition rate between 100 kHz and 1 GHz are generated by means of a laser light source.
  • the intensity of individual laser pulses is amplified in an optical amplifier from the total laser pulses generated.
  • the amplified laser pulses, which have a pulse duration of less than 300 ps and a repetition rate between 1 Hz and 1 MHz, are used for material processing.
  • the non-amplified pulses, which are also directed onto the material to be processed, are used for an examination of the material to be processed.
  • the so-called optical coherence tomography for example, is suitable as an examination method.
  • the invention has for its object to provide a method for drilling holes in dielectric substrates, wherein a large number of high quality holes can be drilled within a short period of time.
  • the invention is based on the knowledge that with suitable parameters, ie the wavelength, the pulse lengths, the repetition rate and the pulse energy of the processed laser beam, both the throughput, ie the number of holes drilled per unit of time, and the resulting hole quality can be improved.
  • a Q-switched C0 2 laser is used to generate the pulsed laser beam.
  • the Q0 2 laser can be Q-switched using a so-called acousto-optical switch.
  • a CdTe crystal, for example, which is excited to mechanical vibrations with a frequency in the MHz range, is suitable for this.
  • the focusing of the processing laser beam according to claim 4 to a diameter of 50 to 200 microns can be realized in particular if the laser beam emitted by the laser light source is broadened by means of a beam expansion in front of the actual focusing optics. It is pointed out that the use of a beam expansion results in a smaller depth of focus of the laser beam to be processed, so that the distance between the focusing optics and the object surface to be processed must be maintained with the highest possible accuracy. In this way, undesired widening or conical geometries of the drilled holes can be avoided.
  • the drilling of so-called blind holes according to claim 5 is used in particular in the processing of multilayer substrates.
  • the hole is drilled either by means of a single laser pulse or by means of a sequence of laser pulses directed one after the other at the object to be processed.
  • a sequence of several laser pulses it must be ensured that the individual laser pulses hit the same place on the object as possible to avoid poor hole quality.
  • pulses with a maximum length of 150 ns are preferably used.
  • a pulse repetition frequency of at least 50 kHz and preferably a pulse repetition frequency between 60 kHz is suitable and 100 kHz.
  • the processing of an epoxy material such as the material RCC (resin coated copper) frequently used as a standard substrate in electronics production, requires a pulse repetition frequency of at least 80 kHz and preferably a pulse repetition frequency of approximately 100 kHz.
  • FIG. 1 shows the drilling of holes through a substrate in a schematic representation
  • FIG. 2 shows a graphical representation of the maximum achievable throughput of drilled holes as a function of the thickness of the LCP substrate used.
  • the drilling is carried out by means of a laser processing device in that a laser beam emitted by a C0 2 laser, not shown, with a wavelength of 9.2 ⁇ 0.2 ⁇ m is expanded by means of a beam expander 1 such that the diameter of the laser beam is increased by a factor of 1.5 to 2 compared to the diameter of the laser beam at the coupling-out mirror of the laser.
  • the flared one The laser beam is deflected by 90 ° by means of a deflection unit 2, which contains at least two movable mirrors (not shown).
  • the deflected laser beam is then focused by means of telecentric focusing optics 3 such that a laser beam 4 with an effective focus diameter of 100 ⁇ m to 200 ⁇ m is directed onto the object to be processed, which is a single-layer substrate 6 according to the exemplary embodiment shown here.
  • the two mirrors of the deflection unit 2 are mounted in such a way that the laser beam 4 can be directed to any desired location within a predetermined range on the surface of the substrate 6 within a short time.
  • the substrate 6 is made of the material LCP.
  • This material is offered, for example, under the name Vectra H840 by the company Ticona or under the name Zenite 7738 by the company Dupont de Nemours.
  • other dielectric materials such as FR4 or the epoxy material RCC, can also be used for the substrate.
  • the laser beam 4 generated by the Q-switched C0 2 laser light source emits laser light pulses with a repetition frequency of at least 50 kHz with a pulse duration of less than 150 ns and with a pulse energy of at least 0.7 mJ.
  • the diameter of the laser beam 4 striking the substrate 6 to be processed is 100 ⁇ m to 200 ⁇ m. In this way, holes 5 with a diameter of 120 ⁇ m to 250 ⁇ m are drilled, the resulting hole quality being considerably improved compared to holes drilled with conventional laser processing devices.
  • the imaging unit 2 in order to achieve a high throughput of drilled holes, the imaging unit 2 must be designed in such a way that the laser beam 4 directed onto the substrate 6 to be processed moves quickly from a position on the substrate surface that is as precisely defined as possible can be directed to another position of the substrate surface that is also as precisely defined as possible.
  • a fast deflection unit 2 because of the relatively large pulse energies, the short pulse lengths and the wavelength of the laser beam 4 used, both a high throughput of drilled holes can be achieved and the thermal load on the substrate material can be minimized and thus a burr or deposits all around the drilled hole can be avoided.
  • FIG. 2 shows the result of an experimental investigation in which the maximum number of holes that can be drilled with a high hole quality is shown graphically as a function of the thickness of the substrate.
  • the thickness d in mm is plotted on the abscissa.
  • the ordinate indicates the throughput N / t of holes drilled per second.
  • the substrate used is in turn made of the material LCP. The thinner the LCP substrate to be drilled, the higher the throughput of drilled holes. With a thickness of 0.5 mm, 300 holes can be drilled per second. With a thickness of 0.4 mm, the number of holes that can be drilled with a constant quality increases to 500 per second. With a thickness of 0.15 mm, the throughput of drilled holes increases further to 1250 holes per second.
  • LCP substrates with a thickness of 0.4 mm are often used as so-called injection molding substrates in electronics production, so that the throughput of drilled holes of 500 per second compared to the throughput that can be achieved with conventional laser processing machines, is significantly increased.
  • the invention provides a laser processing method for quickly drilling holes in dielectric substrates (6).
  • a Q-switched C0 2 laser is used as the laser light source, which generates a pulsed laser beam (4) with a pulse repetition frequency greater than 50 kHz, with pulse lengths shorter than 200 ns and with an energy per laser pulse of at least 10 "4 joules
  • the laser beam (4) is deflected onto the substrate (6) to be processed by means of the parameters which characterize the laser beam (4), both a high throughput of drilled holes (5) and a high hole quality can be ensured a 0.4 mm thick LCP substrate is drilled 500 holes per second, the geometry of the drilled holes is approximately cylindrical or approximately conical, the high throughput and the simultaneously high hole quality are a consequence of the selected wavelength, the short pulse length, the high repetition rate and also in comparison to conventional laser processing devices in the field of Electronics manufacturing high pulse energy.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Die Erfindung schafft ein Laserbearbeitungsverfahren zum schnellen Bohren von Löchern in dielektrische Substrate (6). Als Laserlichtquelle wird ein gütegeschalteter CO2-Laser verwendet, welcher einen gepulsten Laserstrahl (4) mit einer Puls-Wiederholfrequenz größer als 50 kHz, mit Pulslängen kürzer als 200 ns und mit einer Energie pro Laserpuls von mindestens 10-4 Joule erzeugt. Mittels einer Ablenkeinheit wird der Laserstrahl (4) auf das zu bearbeitende Substrat (6) gelenkt. Mit den genannten den Laserstrahl (4) charakterisierenden Parametern kann sowohl ein hoher Durchsatz an gebohrten Löchern (5) als auch eine hohe Lochqualität gewährleistet werden. So können beispielweise in ein 0,4 mm dickes LCP-Substrat 500 Löcher pro Sekunde gebohrt werden, wobei die Geometrie der gebohrten Löcher annähernd zylindrisch bzw. annähernd kegelförmig ist. Der hohe Durchsatz und die gleichzeitig hohe Lochqualität sind eine Folge der gewählten Wellenlänge, der kurzen Pulslänge, der hohen Repetitionsrate und der ebenfalls im Vergleich zu herkömmlichen Laserbearbeitungsvorrichtungen im Bereich der Elektronikfertigung hohen Pulsenergie.

Description

Beschreibung
Laserbearbeitungsverfahren
Die Erfindung betrifft ein Laserbearbeitungsverfahren zum schnellen Bohren von Löchern in dielektrische Substrate.
Die Materialbearbeitung mittels Laserstrahlen hat durch die rasante Entwicklung der Lasertechnologie in den letzten Jahren zunehmend an Bedeutung gewonnen. Insbesondere auf dem Gebiet der Elektronikfertigung ist durch die zunehmende Miniaturisierung der Bauelemente eine Laserbearbeitung von Leiterplatten bzw. Substraten zu einem unverzichtbaren Werkzeug geworden, um die aufgrund der Miniaturisierung der Bauelemente erforderliche Mikrostrukturierung von Bauelementen und/oder Substraten zu ermöglichen. So können beispielsweise Löcher in Substrate gebohrt werden, welche einen Durchmesser aufweisen, der im Vergleich zu den Lochdurchmessern von mit herkömmlichen Bohrern gebohrten Löchern wesentlich kleiner ist. Unter der Voraussetzung, dass die Laserleistung des auf das Substrat treffenden Laserstrahls genau bekannt ist, können außer Durchgangslöchern auch sogenannte Sacklöcher gebohrt werden, die insbesondere für mehrschichtige Leiterplatten wichtig sind, da durch eine nachfolgende Metallisierung eines Sackloches verschiedene metallische Schichten der mehrschichtigen Leiterplatte elektrisch leitend miteinander verbunden werden können und somit die Integrationsdichte auf einem Substrat deutlich erhöht werden kann.
Aus der US 5,593,606 ist eine Laserbearbeitungsvorrichtung bekannt, mittels der Löcher mit einem Durchmesser zwischen 50 und 200 μ in mehrschichtige Substrate gebohrt werden können. Als Laserlichtquelle wird ein kontinuierlich gepumpter, gütegeschalteter Nd:YAG-Laser verwendet, welcher nach einer Frequenzkonvertierung Lichtpulse im ultravioletten Spektralbereich erzeugt. Die einzelnen Lichtpulse haben eine mittlere Pulsleistung von ungefähr 250 mW und eine Pulslänge in der Größenordnung von 100 ns . Damit ergibt sich eine verhältnismäßig geringe Energie der einzelnen Lichtpulse von ungefähr 25 nJ, so dass zum Bohren eines einzigen Lochs eine Vielzahl von Laserpulsen verwendet werden muss. Da ferner die Puls-Repetitionsfrequenz auf wenige kHz begrenzt ist, ist der Durchsatz, d.h. die Anzahl an Löchern, die pro Zeiteinheit gebohrt werden können, entsprechend gering, so dass mit dieser Laserbearbeitungsvorrichtung abhängig von dem Material und der Dicke der zu durchbohrenden Schichten pro Zeiteinheit nur eine relativ geringe Anzahl von Löchern gebohrt werden kann.
Ferner ist bekannt, dass zur Materialbearbeitung und insbesondere auch zum Bohren von Löchern in Substrate gepulste C02-Laser mit einer Wellenlänge von 9,2-10,6 μm oder gepulste Festkörperlaser, wie zum Beispiel Nd:YAG-Laser oder Nd: YV04-Laser mit einer Grundwellenlänge von 1064 n verwendet werden können. Die Verwendung derartiger im infraroten Spektralbereich emittierenden herkömmlichen C02- Laserlichtquellen hat den Nachteil, dass die erzeugten Laserpulse mit einer Pulslänge in der Größenordnung von μs relativ lang sind. Damit ist das zu bearbeitende Substrat einer hoher thermischen Belastung ausgesetzt, so dass die Geometrie der gebohrten Löcher durch einen Bohrgrat oder durch Niederschläge am Rand des Loches erheblich von der optimalen (zylindrischen bzw. kegelförmigen) Form abweicht und somit die Qualität der gebohrten Löcher reduziert ist. Die Niederschläge entstehen beispielsweise durch verfestigten Dampf, welcher zuvor durch Sublimation aus dem Substratmaterial infolge der Erhitzung durch den Laserstrahl erzeugt wurde. Der Niederschlag kann aber auch aus kleinen Körnern des festen Substratmaterials bestehen, welche aufgrund einer starken inhomogenen Erhitzung der Substrates an den Rand des Loches geschleudert werden. Aus der DE 100 20 559 ist ein Verfahren zur Bearbeitung eines Materials mit ultrakurzen Laserpulsen im sichtbaren oder im nah-infraroten Spektralbereich bekannt. Dabei werden mittels einer Laserlichtquelle Laserpulse mit einer Pulsdauer von weniger als 300 ps und mit einer Repetitionsrate zwischen 100 kHz und 1 GHz erzeugt. Von den insgesamt erzeugten Laserpulsen wird die Intensität einzelner Laserpulse in einem optischen Verstärker verstärkt. Die verstärkten Laserpulse, welche eine Pulsdauer von weniger als 300 ps und eine Repetitionsrate zwischen 1 Hz und 1 MHz aufweisen, werden für eine Materialbearbeitung verwendet. Die nicht verstärkten Pulse, welche ebenfalls auf das zu bearbeitende Material gerichtet werden, werden für eine Untersuchung des zu bearbeitenden Materials verwendet. Als Untersuchungsmethode eignet sich beispielweise die sog. optische Kohärenztomographie .
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Bohren von Löchern in dielektrische Substrate zu schaffen, wobei innerhalb einer kurzen Zeitdauer eine Vielzahl von qualitativ hochwertigen Löchern gebohrt werden kann.
Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des unabhängigen Anspruchs 1.
Der Erfindung liegt die Erkenntnis zugrunde, dass bei geeigneten Parametern, d.h. die Wellenlänge, die Pulslängen, die Repetitionsrate und die Pulsenergie des bearbeiteten Laserstrahls sowohl der Durchsatz, d.h. die Anzahl der gebohrten Löcher pro Zeiteinheit erhöht als auch die resultierende Lochqualität verbessert werden kann. Erfindungsgemäß wird zur Erzeugung des gepulsten Laserstrahls ein gütegeschalteter C02-Laser verwendet. Die Güteschaltung des C02-Lasers kann mittels eines sogenannten akustooptischen Schalters realisiert werden. Dafür eignet sich beispielsweise ein CdTe-Kristall, welcher mit einer Frequenz im MHz Bereich zu mechanischen Schwingungen angeregt wird. Die Fokussierung des bearbeitenden Laserstrahls gemäß Anspruch 4 auf einen Durchmesser von 50 bis 200 μm kann insbesondere dann realisiert werden, wenn der von der Laserlichtquelle emittierte Laserstrahl vor der eigentlichen Fokussieroptik mittels einer Strahlaufweitung verbreitert wird. Es wird darauf hingewiesen, dass die Verwendung einer Strahlaufweitung eine geringere Tiefenschärfe des zu bearbeitenden Laserstrahls zur Folge hat, so dass der Abstand zwischen der Fokussieroptik und der zu bearbeitenden Objektoberfläche mit einer möglichst hohen Genauigkeit eingehalten werden muss. Auf diese Weise können unerwünschte Verbreiterungen oder konischen Geometrien der gebohrten Löcher vermieden werden.
Das Bohren von sogenannten Sacklöchern gemäß Anspruch 5 wird insbesondere bei der Bearbeitung von Mehrschichtsubstraten verwendet .
Gemäß Anspruch 6 wird abhängig von dem Substratmaterial und der Dicke bzw. der Tiefe des zu bohrenden Loches das Loch entweder mittels eines einzigen Laserpulses oder mittels einer Abfolge von nacheinander auf das zu bearbeitende Objekt gerichteten Laserpulse gebohrt. Bei der Verwendung einer Abfolge von mehreren Laserpulsen ist darauf zu achten, dass zur Vermeidung einer schlechten Lochqualität die einzelnen Laserpulse möglichst an der gleichen Stelle des Objekts auftreffen. Bei durchgeführten Experimenten hat sich herausgestellt, dass dafür eine räumliche Überlappung der resultierenden Fokusflächen von mindestens 66% eingehalten werden sollte.
Gemäß Anspruch 7 werden für die Bearbeitung von Substraten aus dem Substratmaterial LCP (Liquid Cristalline Polymer) , welches hervorragende elektrische Eigenschaften bis hin zu Frequenzen von 40 GHz aufweist und welches nahezu undurchdringbar sowohl für Feuchtigkeit, Sauerstoff als auch für andere Gase und Flüssigkeiten ist, bevorzugt Pulse mit einer Länge von maximal 150 ns verwendet.
Zur Bearbeitung des mit einem Glasfasermaterial mechanisch verstärkten dielektrischen Substrats FR4 (Flame Retard 4), wie beispielsweise das Material C-1080 der Firma ISOLA, eignet sich gemäß Anspruch 8 eine Puls-Wiederholfrequenz von mindestens 50 kHz und bevorzugt eine Puls-Wiederholfrequenz zwischen 60 kHz und 100 kHz.
Gemäß Anspruch 9 erfordert die Bearbeitung eines Epoxy Materials, wie beispielsweise das als Standardsubstrat in der Elektronikfertigung häufig verwendete Material RCC (Resin Coated Copper) , eine Puls-Wiederholfrequenz von mindestens 80 kHz und bevorzugt eine Puls-Wiederholfrequenz von annähernd 100 kHz.
Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung einer derzeit bevorzugten Ausführungsform.
In der Zeichnung zeigen
Figur 1 das Bohren von Löchern durch ein Substrat in einer schematischen Darstellung und Figur 2 eine graphische Darstellung des maximal erreichbaren Durchsatzes von gebohrten Löchern in Abhängigkeit der Dicke des verwendeten LCP-Substrates .
Gemäß dem in Figur 1 dargestellten Ausführungsbeispiel der Erfindung erfolgt das Bohren mittels einer Laserbearbeitungsvorrichtung dadurch, dass ein von einem nicht dargestellten C02-Laser emittierter Laserstrahl mit einer Wellenlänge von 9,2 ± 0,2 μm mittels eines Strahlaufweiters 1 derart aufgeweitet wird, dass der Durchmesser des Laserstrahls im Vergleich zu dem Durchmesser des Laserstrahls am Auskoppelspiegel des Lasers um einen Faktor 1,5 bis 2 vergrößert wird. Der aufgeweitete Laserstrahl wird mittels einer Ablenkeinheit 2, welche zumindest zwei nicht dargestellte bewegliche Spiegel enthält, um 90° abgelenkt. Der abgelenkte Laserstrahl wird dann mittels einer telezentrischen Fokussieroptik 3 derart fokussiert, dass ein Laserstrahl 4 mit einem wirksamen Fokusdurchmesser von 100 μm bis 200 μm auf das zu bearbeitende Objekt gerichtet wird, welches gemäß dem hier dargestellten Ausführungsbeispiel ein einschichtiges Substrat 6 ist. Die beiden Spiegel der Ablenkeinheit 2 sind derart gelagert, dass der Laserstrahl 4 innerhalb einer kurzen Zeit auf beliebige Stellen innerhalb eines vorgegebenen Bereiches auf der Oberfläche des Substrates 6 gerichtet werden kann.
Das Substrat 6 ist aus dem Material LCP hergestellt. Dieses Material wird beispielsweise unter der Bezeichnung Vectra H840 von der Firma Ticona oder unter der Bezeichnung Zenite 7738 von der Firma Dupont de Nemours angeboten. Es wird allerdings darauf hingewiesen, dass für das Substrat auch andere dielektrische Materialien, wie beispielsweise FR4 oder das Epoxy Material RCC, verwendet werden können.
Der von der nicht dargestellten gütegeschalteten C02- Laserlichtquelle erzeugte Laserstrahl 4 emittiert mit einer Repititionsfrequenz von mindestens 50 kHz Laserlichtpulse mit einer Pulsdauer von weniger als 150 ns und mit einer Pulsenergie von mindestens 0,7 mJ. Der Durchmesser des auf das zu bearbeitende Substrat 6 auftreffenden Laserstrahls 4 beträgt 100 μm bis 200 μm. Auf diese Weise werden Löcher 5 mit einem Durchmesser von 120 μm bis 250 μm gebohrt, wobei die resultierende Lochqualität im Vergleich zu Löchern, die mit herkömmlichen Laserbearbeitungsvorrichtungen gebohrt wurden, erheblich verbessert ist.
Es wird darauf hingewiesen, dass zur Erreichung eines hohen Durchsatzes an gebohrten Löchern die Abbildungseinheit 2 derart ausgebildet sein muss, dass der auf das zu bearbeitende Substrat 6 gelenkte Laserstrahl 4 zügig von einer möglichst genau definierten Position auf der Substratoberfläche zu einer anderen, ebenfalls möglichst genau definierten Position der Substratoberfläche gelenkt werden kann. Bei Verwendung einer derart schnellen Ablenkeinheit 2 kann somit aufgrund der relativ großen Pulsenergien, aufgrund der kurzen Pulslängen und der verwendeten Wellenlänge des Laserstrahls 4 sowohl ein hoher Durchsatz an gebohrten Löchern erreicht als auch die thermische Belastung des Substratmaterials minimiert und somit ein Bohrgrat oder Ablagerungen rund um das gebohrte Loch vermieden werden.
Figur 2 zeigt das Ergebnis einer experimentellen Untersuchung, bei der die maximale Anzahl an Löchern, welche mit einer hohen Lochqualität gebohrt werden können, in Abhängigkeit von der Dicke des Substrates grafisch dargestellt wird. Dabei ist auf der Abszisse die Dicke d in der Einheit mm aufgetragen. Die Ordinate gibt den Durchsatz N/t der gebohrten Löcher pro Sekunde an. Das verwendete Substrat ist wiederum aus dem Material LCP hergestellt. Je dünner das zu durchbohrende LCP-Substrat ist, desto höher ist der Durchsatz an gebohrten Löchern. Bei einer Dicke von 0,5 mm können 300 Löcher pro Sekunde gebohrt werden. Bei einer Dicke von 0,4 mm erhöht sich die Anzahl der Löcher, die mit einer gleichbleibenden Qualität gebohrt werden können, auf 500 pro Sekunde. Bei einer Dicke von 0,15 mm erhöht sich der Durchsatz an gebohrten Löchern weiter bis auf 1250 Löcher pro Sekunde.
Es wird darauf hingewiesen, dass LCP-Substrate mit einer Dicke von 0,4 mm häufig als sogenannte Spritzgusssubstrate in der Elektronikfertigung eingesetzt werden, so dass der Durchsatz an gebohrten Löchern von 500 pro Sekunde gegenüber dem Durchsatz, welcher mit herkömmlichen Laserbearbeitungsmaschinen erreicht werden kann, erheblich erhöht ist. Zusammenfassend schafft die Erfindung ein Laserbearbeitungsverfahren zum schnellen Bohren von Löchern in dielektrische Substrate (6) . Als Laserlichtquelle wird ein gütegeschalteter C02-Laser verwendet, welcher einen gepulsten Laserstrahl (4) mit einer Puls-Wiederholfrequenz größer als 50 kHz, mit Pulslängen kürzer als 200 ns und mit einer Energie pro Laserpuls von mindestens 10"4 Joule erzeugt. Mittels einer Ablenkeinheit wird der Laserstrahl (4) auf das zu bearbeitende Substrat (6) gelenkt. Mit den genannten den Laserstrahl (4) charakterisierenden Parametern kann sowohl ein hoher Durchsatz an gebohrten Löchern (5) als auch eine hohe Lochqualität gewährleistet werden. So können beispielweise in ein 0,4 mm dickes LCP-Substrat 500 Löcher pro Sekunde gebohrt werden, wobei die Geometrie der gebohrten Löcher annähernd zylindrisch bzw. annähernd kegelförmig ist. Der hohe Durchsatz und die gleichzeitig hohe Lochqualität sind eine Folge der gewählten Wellenlänge, der kurzen Pulslänge, der hohen Repetitionsrate und der ebenfalls im Vergleich zu herkömmlichen Laserbearbeitungsvorrichtungen im Bereich der Elektronikfertigung hohen Pulsenergie.

Claims

Patentansprüche
1. Laserbearbeitungsverfahren zum schnellen Bohren von Löchern in dielektrische Substrate , bei dem • als Laserlichtquelle ein gütegeschalteter C02-Laser verwendet wird, welcher einen gepulsten Laserstrahl (4)
- mit einer Puls-Wiederholfrequenz größer als 50 kHz,
- mit Pulslängen kürzer als 200 ns und
- mit einer Energie pro Laserpuls von mindestens 10-4 Joule erzeugt, und
• der Laserstrahl (4) mittels einer Ablenkeinheit (2) auf das zu bearbeitende Substrat (6) gelenkt wird.
2. Laserbearbeitungsverfahren gemäß Anspruch 1, bei dem ein Laserstrahl (4) mit einer Wellenlänge im Bereich von 9,2 ±
0,2 μm verwendet wird.
3. Laserbearbeitungsverfahren gemäß einem der Ansprüche 1 bis
2, bei dem Laserpulse mit einer Energie von 0,7 mJoule verwendet werden.
4. Laserbearbeitungsverfahren gemäß einem der Ansprüche 1 bis
3, bei dem der Laserstrahl (4) auf das zu bearbeitende Substrat (6) mit einem Durchmesser von 50 μm - 200 μm fokussiert wird.
5. Laserbearbeitungsverfahren gemäß einem der Ansprüche 1 bis
4, bei dem Sacklöcher in das zu bearbeitende Substrat (6) gebohrt werden.
6. Laserbearbeitungsverfahren gemäß einem der Ansprüche 1 bis
5, bei dem ein Loch (5) mittels eines einzigen Laserpulses oder mittels mehrerer Laserpulse gebohrt wird, welche nacheinander auf das zu bearbeitende Substrat (6) gerichtet werden.
7. Laserbearbeitungsverfahren gemäß einem der Ansprüche 1 bis 6, bei dem ein LCP-Substrat bearbeitet wird, wobei Pulslängen kürzer als 150 ns verwendet werden.
8. Laserbearbeitungsverfahren gemäß einem der Ansprüche 1 bis 6, bei dem ein mit einem Glasfasermaterial mechanisch verstärktes dielektrisches Substrat bearbeitet wird, wobei eine Puls-Wiederholfrequenz von mindestens 50 kHz und insbesondere von 60 kHz bis 100 kHz verwendet wird.
9. Laserbearbeitungsverfahren gemäß einem der Ansprüche 1 bis 6, bei dem ein Epoxy Material bearbeitet wird, wobei eine Puls-Wiederholfrequenz von mindestens 80 kHz und insbesondere von annähernd 100 kHz verwendet wird.
EP03709643A 2002-03-05 2003-02-24 Laserbearbeitungsverfahren Withdrawn EP1480780A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10209617 2002-03-05
DE10209617A DE10209617C1 (de) 2002-03-05 2002-03-05 Laserbeschriftungsverfahren
PCT/DE2003/000579 WO2003074224A1 (de) 2002-03-05 2003-02-24 Laserbearbeitungsverfahren

Publications (1)

Publication Number Publication Date
EP1480780A1 true EP1480780A1 (de) 2004-12-01

Family

ID=7714021

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03709643A Withdrawn EP1480780A1 (de) 2002-03-05 2003-02-24 Laserbearbeitungsverfahren

Country Status (7)

Country Link
US (1) US6833528B2 (de)
EP (1) EP1480780A1 (de)
JP (1) JP2005518945A (de)
KR (1) KR20040083546A (de)
CN (1) CN1328001C (de)
DE (1) DE10209617C1 (de)
WO (1) WO2003074224A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829850A (zh) * 2010-04-01 2010-09-15 深圳市大族激光科技股份有限公司 盲孔加工方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806440B2 (en) * 2001-03-12 2004-10-19 Electro Scientific Industries, Inc. Quasi-CW diode pumped, solid-state UV laser system and method employing same
US6781090B2 (en) * 2001-03-12 2004-08-24 Electro Scientific Industries, Inc. Quasi-CW diode-pumped, solid-state harmonic laser system and method employing same
US7985942B2 (en) * 2004-05-28 2011-07-26 Electro Scientific Industries, Inc. Method of providing consistent quality of target material removal by lasers having different output performance characteristics
US7352784B2 (en) * 2004-07-20 2008-04-01 Jds Uniphase Corporation Laser burst boosting method and apparatus
KR100710854B1 (ko) * 2005-10-19 2007-04-23 (주)하드램 유리 천공장치 및 유리 천공방법
ES2302418B1 (es) * 2005-12-21 2009-05-08 Universidad De Cadiz Metodo de mecanizado laser de materiales compuestos de resina epoxi reforzada con fibras de carbono.
CN100441360C (zh) * 2005-12-21 2008-12-10 北京工业大学 一种激光打孔方法及其打孔装置
US8237080B2 (en) * 2008-03-27 2012-08-07 Electro Scientific Industries, Inc Method and apparatus for laser drilling holes with Gaussian pulses
US10286489B2 (en) 2010-12-30 2019-05-14 3M Innovative Properties Company Apparatus and method for laser cutting using a support member having a gold facing layer
JP6392514B2 (ja) 2010-12-30 2018-09-19 スリーエム イノベイティブ プロパティズ カンパニー レーザー切断方法及びこれにより製造された物品
CN103252587A (zh) * 2013-04-27 2013-08-21 北京工业大学 玻璃表面盲孔加工方法
CN103240531B (zh) * 2013-05-10 2015-02-11 中国电子科技集团公司第五十四研究所 一种分段激光打孔方法
CN105081564B (zh) * 2015-08-31 2017-03-29 大族激光科技产业集团股份有限公司 一种强化玻璃内形孔的加工方法
CN105263266A (zh) * 2015-10-30 2016-01-20 江苏博敏电子有限公司 一种镭射盲钻加工方法
CN108422108A (zh) * 2018-02-28 2018-08-21 重庆市健隆家具有限公司 一种型材钻孔工艺
CN109648192A (zh) * 2018-12-10 2019-04-19 成都莱普科技有限公司 激光钻孔机能量控制方法
CN113369719B (zh) * 2021-05-14 2023-01-31 惠州中京电子科技有限公司 用于led载板的激光打孔方法
CN113732527A (zh) * 2021-09-08 2021-12-03 常州英诺激光科技有限公司 一种用于切割lcp材料的紫外皮秒激光切割方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027137A (en) * 1975-09-17 1977-05-31 International Business Machines Corporation Laser drilling nozzle
US4044222A (en) * 1976-01-16 1977-08-23 Western Electric Company, Inc. Method of forming tapered apertures in thin films with an energy beam
JP3066659B2 (ja) * 1991-05-31 2000-07-17 日立ビアメカニクス株式会社 レーザ加工機の加工ポイント補正方法及びその装置
CN1029513C (zh) * 1992-11-27 1995-08-16 中国科学院力学研究所 高重频调制多脉冲yag激光刻花系统及加工方法
GB2286787A (en) * 1994-02-26 1995-08-30 Oxford Lasers Ltd Selective machining by dual wavelength laser
US5493096A (en) * 1994-05-10 1996-02-20 Grumman Aerospace Corporation Thin substrate micro-via interconnect
US5593606A (en) * 1994-07-18 1997-01-14 Electro Scientific Industries, Inc. Ultraviolet laser system and method for forming vias in multi-layered targets
US6150630A (en) * 1996-01-11 2000-11-21 The Regents Of The University Of California Laser machining of explosives
WO1998022252A1 (fr) * 1996-11-20 1998-05-28 Ibiden Co., Ltd. Appareil d'usinage laser, et procede et dispositif de fabrication d'une carte imprimee multicouche
JP3691221B2 (ja) * 1997-09-24 2005-09-07 三菱電機株式会社 レーザ加工方法
GB9811328D0 (en) * 1998-05-27 1998-07-22 Exitech Ltd The use of mid-infrared lasers for drilling microvia holes in printed circuit (wiring) boards and other electrical circuit interconnection packages
JP3346374B2 (ja) * 1999-06-23 2002-11-18 住友電気工業株式会社 レーザ穴開け加工装置
DE10020559A1 (de) * 2000-04-27 2001-10-31 Hannover Laser Zentrum Laser-Bearbeitung von Materialien
US6784399B2 (en) * 2001-05-09 2004-08-31 Electro Scientific Industries, Inc. Micromachining with high-energy, intra-cavity Q-switched CO2 laser pulses
DE10145184B4 (de) * 2001-09-13 2005-03-10 Siemens Ag Verfahren zum Laserbohren, insbesondere unter Verwendung einer Lochmaske

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03074224A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829850A (zh) * 2010-04-01 2010-09-15 深圳市大族激光科技股份有限公司 盲孔加工方法

Also Published As

Publication number Publication date
KR20040083546A (ko) 2004-10-02
JP2005518945A (ja) 2005-06-30
CN1328001C (zh) 2007-07-25
WO2003074224A1 (de) 2003-09-12
CN1638913A (zh) 2005-07-13
US6833528B2 (en) 2004-12-21
US20030168435A1 (en) 2003-09-11
DE10209617C1 (de) 2003-08-07

Similar Documents

Publication Publication Date Title
EP1480780A1 (de) Laserbearbeitungsverfahren
DE69911963T2 (de) Verfahren und vorrichtung zum bohren von mikrosacklöchern in elektrischen schaltungspackungen
DE60130068T2 (de) Vorrichtung und Verfahren zur Laserbehandlung
EP2931467B1 (de) Verfahren zur herstellung von linienförmig aufgereihten schädigungsstellen durch ultrakurz fokussierter gepulster laserstrahlung ; verfahren und vorrichtung zum trennen eines werkstückes mittels ultrakurz fokussierter laserstrahlung unter verwendung einer schutzgasatmosphäre
DE69935943T2 (de) Verfahren zum Erzeugen von Durchgangslöchern
CH691672A5 (de) Verfahren zur Laserverarbeitung eines Targets.
DE10149559A1 (de) Verfahren und Vorrichtung zum Bohren gedruckter Verdrahtungsplatten
DE112006002322T5 (de) Energieüberwachung oder Steuerung von individuellen Kontaktlöchern, die während Lasermikrobearbeitung ausgebildet werden
EP1219150B1 (de) Verfahren und einrichtung zum laserbohren von laminaten
EP1276587A1 (de) Vorrichtung zum bearbeiten von substraten und verfahren unter verwendung einer solchen vorrichtung
EP1071534A1 (de) Verfahren zur erzeugung definiert konischer löcher mittels eines laserstrahls
DE102014113339A1 (de) Verfahren zur Erzeugung von Ausnehmungen in einem Material
DE112006001294T5 (de) Bearbeitung mit synthetischer Impulswiederholungsrate für Mikrobearbeitungssysteme mit Doppelkopflaser
DE10307309B4 (de) Vorrichtung und Verfahren zur Bearbeitung von elektrischen Schaltungssubstraten mittels Laser
DE102004062381B4 (de) Vorrichtung zum Umschalten eines Laserstrahls, Laserbearbeitungsvorrichtung
DE102018120011B4 (de) Schweißverfahren zum Verbinden eines transparenten, aluminiumoxidhaltigen ersten Substrats mit einem opaken zweiten Substrat
WO2006018370A1 (de) Verfahren zum bearbeiten eines werkstücks mittels pulslaserstrahlung mit steuerbaren energie einzelner laserpulse und zeitlichem abstand zwischen zwei aufeinanderfolgen laserpulsen, laserbearbeitungssystem dafür
WO2005080044A1 (de) Verfahren zum formen eines laserstrahls, laserbearbeitungsverfahren
DE102013002222B4 (de) Verfahren zur Modifikation der Oberfläche eines Metalls
EP1291117A1 (de) Verfahren und Vorrichtung zum Erzeugen einer Bohrung in einem Werkstück mit Laserstrahlung
EP1245137B1 (de) Verfahren und einrichtung zum laserbohren von organischen materialien
DE10140533A1 (de) Verfahren und Vorrichtung zur Mikrobearbeitung eines Werkstücks mit Laserstrahlung
EP2559514B1 (de) Verfahren zur Herstellung einer Hausgerätevorrichtung und Hausgerätevorrichtung
EP3643149B1 (de) Durchkontaktierung in einer beidseitig bedruckten trägerfolie
EP1289354B1 (de) Verfahren zum Herstellen von Löchern in einer Mehrlagenleiterplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HITACHI VIA MECHANICS, LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070814