EP1473755B1 - Vorrichtung und Verfahren zur Steuerung einer Dosis von von einem Mikroemitter emittierten Elektronen - Google Patents

Vorrichtung und Verfahren zur Steuerung einer Dosis von von einem Mikroemitter emittierten Elektronen Download PDF

Info

Publication number
EP1473755B1
EP1473755B1 EP04101249A EP04101249A EP1473755B1 EP 1473755 B1 EP1473755 B1 EP 1473755B1 EP 04101249 A EP04101249 A EP 04101249A EP 04101249 A EP04101249 A EP 04101249A EP 1473755 B1 EP1473755 B1 EP 1473755B1
Authority
EP
European Patent Office
Prior art keywords
micro
current
electrons
module
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04101249A
Other languages
English (en)
French (fr)
Other versions
EP1473755A2 (de
EP1473755A3 (de
Inventor
Jean-Luc Martin
Claude Bieth
Nicolas Delorme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1473755A2 publication Critical patent/EP1473755A2/de
Publication of EP1473755A3 publication Critical patent/EP1473755A3/de
Application granted granted Critical
Publication of EP1473755B1 publication Critical patent/EP1473755B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present invention relates to a device and a method for controlling and controlling a dose of electrons emitted by a micro-transmitter, for example by a microtip.
  • micro-transmitters of the micropoint type will be considered as nonlimiting examples.
  • microtips joined today by that of nanotubes, defines a field of applications both in the field of FED ("Field Emission Display”) displays and that of micro-transmitters, in which the requirements in terms of order and control of emitted flows are very severe.
  • FED Field Emission Display
  • the electrons acquire, by thermal agitation, a sufficient energy (called "work output") to reach above the potential barrier, which holds them back. to the nuclei. They then move towards the surface of the material and, if there is an electric field that attracts, they can be extracted from this material. At ordinary temperature, the thermal stirring energy is insufficient for the electrons to leave the material.
  • a tunnel effect allows the electrons to be extracted from the emitter (cathode) in a vacuum, then to be collected on an anode.
  • Transmitters working in cold emission are considered as voltage-controlled current sources, the flow of electrons emitted obeying the Fowler-Nordheim equations.
  • FIG. 1A This is for example the case of a microtip 10 Tungsten, used in electron emitter. His electrical diagram is represented on the Figure 1A . An electron flow is established between the anode 11 and the cathode 12. A control voltage is applied between the extraction grid 13, called gate, and the cathode 12.
  • Figure 1B presents the behavioral symbol of such a microtip 10 usable with a generic electric simulator ("Spice" type).
  • the emission regime of such a microtip 10 is characterized by a strong non-linearity of the emission current I tip as a function of the voltage applied to the extraction grid 13.
  • the coefficients a fn and b fn depend on the geometric characteristics of the microtip. Such a current-voltage characteristic is illustrated on the figure 2 .
  • the ideal characteristic is referenced 14.
  • One of the drawbacks of the cold emission is therefore to reveal a certain instability in the current value, which is equivalent to a noise that is generated by fluctuations in the output work inherent in local surface contaminations. These fluctuations vary from one microtip to another and are also variable over time, for the same microtip.
  • the device of the invention is a circuit of this type, which is naturally faster and whose linearity defects noted are corrected, the HV extraction gate control circuits being independent of LV circuits for controlling the electric charge, which simplifies the implementation of the circuit and reduces the sensitivity to noise.
  • the specifications of the system must allow sequential persistence of the necessary instants to carry out the calibrations. Such an embodiment does not make it possible to correct imperfections of the electron beam whose frequency of recurrence is greater than the refreshing frequency of the calibrations.
  • the stability of the feedback port is essential and must be guaranteed most often at the cost of active compensation of the bandwidth of the looped system, and therefore to the detriment of its performance in speed.
  • a global method for conducting a low electrical charge check consists, by using a few configuration input variables, in defining the desired quantity of charge, interrupting the electron beam when such a desired dose has been reached ( "Dose control").
  • Dose control the quantity of electrical charges is defined a priori.
  • the device allowing such a control must operate on a peak current dynamics, including in particular the fluctuations of the current in time for the same microtip.
  • Such a method theoretically allows a very good linearity.
  • the use of real functional modules and the requirement of high frequency operation results in strong nonlinearities of the controlled electric charge as a function of the current regime.
  • a document of known art describes a two-dimensional array of miniature cathodes used as electron beam emitters, which are addressable numerically.
  • This network comprises an internal electronic focusing for each transmitter, a closed-loop electron dose control circuit for controlling each transmitter by precisely controlling the electron flow.
  • Such a circuit of Dose control connected to a transmitter, provides a dose, delivered during each write cycle, adapted despite transmitter-to-transmitter mismatch, temperature and aging effects.
  • This control circuit makes it possible to terminate the emission at a fixed dose and not at a fixed time. It is an integrated component and connected to the transmitter.
  • control circuit is a source of non-linearities. It also does not allow, for a linear or two-dimensional array of microtips, to compensate for the dispersion of doses emitted due to the current dispersions inherent in the microtips.
  • the object of the invention is to compensate for such nonlinearities so as to make the control device linear and usable, and to provide specific solutions for linear or two-dimensional devices.
  • the device of the invention comprises means for modulating in time the threshold voltage from the initialization signal so as to program a variable dose control over time such that the excess of electrons emitted during the initialization and extinction times is strictly compensated by a decrease over time of the programmed dose.
  • the device for controlling and controlling a dose of electrons emitted by a micro-transmitter illustrated on the figure 4 , consists of a microtip 10, with an anode 11, a cathode 12, and an extraction grid 13, capable of supplying a current when the voltage of the extraction grid 13 with respect to the cathode 12 becomes greater than the extraction voltage in the vacuum.
  • Spur capacitances 20 and 21 are inherent in the manufacture of such a microtip 10 in microtechnology.
  • This device is indeed applicable to an arrangement of several microtips either in the form of a linear arrangement (barette), or in the form of a two-dimensional arrangement (matrix). All combinations of arrangements are also possible.
  • This device can be realized in specific high-voltage technology, and can control the electron doses emitted with high rates.
  • This module 30 The role of this module 30 is to process the basic information available on the microtip 10 and to convert it into a quantity that can be compared to an input quantity, in order to take a decision on the number N of emitted electrons .
  • This module may advantageously consist of a CTIA amplifier ("capacitive transimpedance amplifier”) which performs a current-voltage conversion.
  • the input variable is then the cathode current of the microtip I c .
  • This amplifier is characterized by its conversion gain R which is expressed in Volt / e - . It consists of an amplifier 35, a feedback capacitor (C fb ) 36, and a resetting device 37.
  • This module is initialized by a start signal start at the beginning of the sequence, and obeys the data signal, as illustrated by the following table: Data Action 1 Issue of the microtip 0 No issue of the microtip
  • This module 33 is responsible for setting the extraction gate voltage necessary for the microtip to transmit the desired current synchronously with the appearance of the start signal. When the dose of electrons emitted has been reached (Vcom decision signal emitted by the comparator module 31). This module 33 cuts the flow by bringing the extraction gate voltage to a level such that the current electronics is diminished by several decades. These ignition and extinction values depend on the transconductance of the microtip and its geometric model. The control voltages can be switched from 20V to approximately 50V, which then requires the use of a specific high voltage technology (HVCMOS). The main function of this module 33 is therefore to perform the translation level [0-3v] to [20v-50v].
  • HVCMOS high voltage technology
  • the voltage V is obtained at the output of the sensor module 30 is proportional to the cathode current I c emitted by the microtip.
  • V1 the initialization voltage level
  • the overall duration of the current pulse is not linear as a function of the programmed current level. Indeed, because of parasitic capacitances 20 and 21 mentioned above, a switching of several tens of volts of the extraction grid 13 transiently disturbs the input of the sensor module 30 whose polarization must be maintained to avoid any saturation thereof. this. Such saturation would then require a significant time constant for a return to equilibrium and would not allow operation at high frequency. During this time maintaining the polarization of the 30 sensor module at the establishment of the electronic flow, electronic charges are already issued and are recorded in the overall balance of charges, although we can not measure because they depend on the level of current that is not known from the outset. Such a phenomenon is a first source of non-linearities.
  • the comparator module 31 has a delay in the decision-making inherent in any electronic module. During this delay, the microtip 10 continues to emit and there is therefore an additional extinguishing charge which is added to the overall balance of the charges emitted.
  • the figure 8 which represents a materialization of the error on the number N of programmed electrons, illustrates such a phenomenon. If one traces, as a function of time, the number of electrons emitted with respect to the number of electrons programmed, with constant delay, an error is noted on the number of electrons emitted which depends on the level of current.
  • the curve 45 corresponds to 2 * Iinom
  • the curve 46 corresponds to Iinom
  • the curve 47 corresponds to Iinom / 2
  • the curve 48 corresponds to the number of electrons emitted.
  • a first solution for compensating for such nonlinearities uses a comparison threshold that varies as a function of time. Simply send a ramp 50, or a "staircase", on the input V2 of the comparator module 31 as illustrated on the figure 9 .
  • the object of the invention is to compensate for such non-linearities by proposing other methods of compensation by controlling the cathode current I c and by feedback on the value of the threshold V 2.
  • the current reaches its nominal value I steady_state rapidly during the initialization time t start and that it is maintained during the extinction time t off , it is therefore at first constant order for the duration of the current pulse. Indeed, at the beginning, the V gate establishment time is short, and in the end, the logical gate delay and V gate delays are largely dominated by the delay of the comparator module 31 in decision making.
  • the predicted electron dose is fixed by N measure , but an excess dose is actually added because of non-zero initialization and extinction times.
  • the figure 12 illustrates a curve of the number of electrons emitted as a function of the current regime.
  • the number of electrons emitted should remain the same whatever the current I tip , as illustrated by the horizontal curve 56.
  • the curves 57 and 58 illustrate the number of electrons emitted respectively during the initialization and extinction times.
  • the sequencing can be such that the times t start and t off remain constant whatever the current, that is to say that the electrons emitted during these times t start and t off depend only on the current regime (affine function ).
  • the object of the device of the invention is to be able to accurately transmit a programmed number of electrons regardless of the current regime of the microtip and to interrupt the electron beam as soon as this value has been reached.
  • the sum of the electrons emitted during each of the times described above must therefore remain constant, ie the total number of electrons emitted is linear and constant, regardless of the peak current I tip .
  • the value of the threshold detection voltage V2 is modified during the electronic exposure.
  • the compensation is carried out on quantities of surplus electrons answering the law: I tip * t q e
  • FIGS. 13A and 13B respectively illustrate the theoretical curves 60 and measured 61 and the theoretical curves 60 and measured 61 'of the relative number of electrons as a function of the peak current I tip , respectively without compensation and with compensation as a function of the current.
  • Curve 61 ' illustrates the improvement that is desired by using such active compensation as a function of current.
  • the invention also relates to a linear or array device for controlling and controlling electron doses emitted by a set of micro-transmitters, which comprises, for each micro-transmitter, the different modules 30, 31, 32 and 33 as well as means for variations of the threshold voltage, as described above.
  • Such compensation is illustrated on the figure 14 . It does not cover all the needs. It is able to compensate for differences between microtips, but not for high frequency fluctuations on the same microtip. However, it can be used when it is certain that the frequency of recurrence of the current fluctuations is lower than the frequency of appearance of the programmed pulses.
  • the threshold voltage V2 is modulated in time from the start initialization signal so as to program a variable dose control over time such that the excess of electrons emitted during the phases t start and t off is strictly compensated. by the decrease over time of the programmed dose.
  • This temporal variation is controlled by the generator 65.
  • the figure 15 illustrates a simplified scheme of compensation according to the peak current.
  • a peak current detection module 67 is able to reproduce exactly the peak current or to introduce a gain (X) on this current, for example by means of a current mirror. It is this output current that is measured by the sensor module 30.
  • the decision on the time is always taken by the comparator module 31, but the decision threshold V2 is indexed on the instantaneous value of the emission current. This leads to an optimal compensation.
  • V2 to be programmed The capacity of the sensor block and the times ⁇ t start + t off ⁇ being known, the variation of V2 to be programmed is directly proportional to I.
  • this voltage R L * I must be added to the voltage Vref to stop, faster than in the ideal case (without Nstart and Nstop), the power of the micropoint and so his show.
  • Block 68 of the figure 15 can then for example be realized in the manner illustrated on the figure 16 .
  • the dimensions of the transistors are chosen to fulfill the specified function in a manner known to those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electron Beam Exposure (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Measuring Fluid Pressure (AREA)

Claims (8)

  1. Vorrichtung zum Anweisen und zur Regelung/Steuerung einer von einem Mikroemitter emittierten Elektronendosis, umfassend
    - ein Sensormodul (30), das den durch den Mikroemitter bereitgestellten Strom ebenso wie eine Spannung zum Einstellen des Polarisationspunktes der Vorrichtung empfängt,
    - ein Vergleichsmodul (31), das das Ausgangssignal des Sensormoduls ebenso wie eine Schwellenspannung empfängt, die die Regelung/Steuerung der Menge von zu emittierenden Elektronen erlaubt,
    - ein Logikmodul (32), das das Ausgangssignal von dem Vergleichsmodul (31) ebenso wie ein Startsignal zur Initialisierung der Elektronenemission und ein Logiksignal empfängt, um zu bestimmen, ob der Mikroemitter emittieren soll oder nicht,
    - ein Anweisungsmodul (33), das das Ausgangssignal des Logikmoduls empfängt, welches die Spannungen bereitstellt, welche zur Initialisierung und zum Beenden des Strompulses des Mikroemitters notwendig sind,
    dadurch gekennzeichnet, dass die Vorrichtung aufweist:
    - Mittel zur Variation der Schwellenspannung, so dass während der Emission von Elektronen die Summe S=Nstart+Nmeasure+Noff im Wesentlichen konstant bleibt, wobei Nstart die Anzahl von Elektronen zur Zeit der Initialisierung des Strompulses ist, wobei Nmeasure die Anzahl von Elektronen zur Zeit einer Messung dieses Strompulses ist und wobei Noff die Anzahl von Elektronen zur Zeit eines Beendens dieses Strompulses ist.
  2. Vorrichtung nach Anspruch 1, welche Mittel zur zeitlichen Modulation der Schwellenspannung (V2) ausgehend von dem Initialisierungssignal (start) umfasst, wobei eine zeitlich variable Elektronendosis-Regelung/Steuerung derart programmiert ist, dass der während der Initialisierungszeit (tstart) und der Beendungszeit (toff) emittierte Elektronenüberschuss vollständig oder teilweise durch eine Verringerung der programmierten Dosis im Laufe der Zeit kompensiert wird.
  3. Vorrichtung nach einem der Ansprüche 1 oder 2, umfassend:
    - ein Modul zur Detektion des Stroms des Mikroemitters (67), wobei das Modul dazu in der Lage ist, den Spitzenstrom Itip zu reproduzieren oder eine Verstärkung des Stroms bereitzustellen,
    - ein Modul zur Erzeugung einer variablen Spannung (68), das eine Ausgangsssollspannung V2=f(Itip) bereitstellt.
  4. Linear- oder Matrixvorrichtung zum Anweisen und zur Regelung/Steuerung von Elektronendosen, welche von einer Menge von Mikroemittern emittiert werden, für jeden Mikroemitter umfassend:
    - ein Sensormodul (30), das den durch den Mikroemitter bereitgestellten Strom ebenso wie eine Spannung zum Einstellen des Polarisationspunktes empfängt,
    - ein Vergleichsmodul (31), das das Ausgangssignal von dem Sensormodul ebenso wie eine Schwellenspannung empfängt, die die Regelung/Steuerung der Menge von zu emittierenden Elektronen erlaubt,
    - ein Logikmodul (32), das das Ausgangssignal von dem Vergleichsmodul (31) ebenso wie ein Startsignal zur Initialisierung der Elektronenemission und ein Logiksignal empfängt, um zu bestimmen, ob der Mikroemitter emittieren soll oder nicht,
    - ein Anweisungsmodul (33), das das Ausgangssignal des Logikmoduls empfängt, welches die Spannungen bereitstellt, welche zur Initialisierung und zum Beenden des Strompulses des Mikroemitters notwendig sind,
    dadurch gekennzeichnet, dass die Vorrichtung für jeden Mikroemitter aufweist:
    - Mittel zur Variation der Schwellenspannung, so dass während der Emission von Elektronen die Summe S=Nstart+Nmeasure+Noff im Wesentlichen konstant bleibt, wobei Nstart die Anzahl von Elektronen zur Zeit der Initialisierung des Strompulses ist, wobei Nmeasure die Anzahl von Elektronen zur Zeit einer Messung dieses Strompulses ist und wobei Noff die Anzahl von Elektronen zur Zeit eines Beendens dieses Strompulses ist.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei jeder Mikroemitter eine Mikrospitze ist.
  6. Verfahren zum Anweisen und zur Regelung/Steuerung einer von einem Mikroemitter emittierten Elektronendosis, umfassend
    - einen Schritt zur Wandlung von durch den Mikroemitter bereitgestelltem Strom und eines Einstellens des Betriebspolarisationspunktes,
    - einen Schritt eines Vergleichs des erhaltenen Ausgangssignals des vorhergehenden Schritts mit einer Schwellenspannung, welche die Regelung/Steuerung der Menge von zu emittierenden Elektronen erlaubt,
    - einen Logikschritt zum Initialisieren der Elektronenemission und eines Logiksignals, um zu bestimmen, ob der Mikroemitter emittieren soll oder nicht,
    - einen Anweisungsschritt, der die Spannungen bereitstellt, welche zur Initialisierung und zum Beenden des Strompulses von dem Mikroemitter notwendig sind,
    dadurch gekennzeichnet, dass das Verfahren umfasst:
    - einen Schritt einer Variation der Schwellenspannung (V2), so dass während der Emission von Elektronen die Summe S=Nstart+Nmeasure+Noff im Wesentlichen konstant bleibt, wobei Nstart die Anzahl von Elektronen zur Zeit der Initialisierung des Strompulses ist, wobei Nmeasure die Anzahl von Elektronen zur Zeit einer Messung dieses Strompulses ist und wobei Noff die Anzahl von Elektronen zur Zeit eines Beendens dieses Strompulses ist.
  7. Verfahren nach Anspruch 6, umfassend einen Schritt einer zeitlichen Modulation der Schwellenspannung (V2) ausgehend von dem Initialisierungssignal (start), wobei eine zeitlich variable Elektronendosis-Regelung/Steuerung derart programmiert ist, dass der während der Initialisierungszeit (tstart) und der Beendungszeit (toff) emittierte Elektronenüberschuss vollständig oder teilweise kompensiert wird durch eine Verringerung der programmierten Dosis im Laufe der Zeit.
  8. Verfahren nach Anspruch 6, umfassend:
    - einen Schritt zur Detektion des Spitzenstroms, um den Spitzenstrom Itip zu reproduzieren oder eine Verstärkung des Stroms bereitzustellen,
    - einen Schritt zur Erzeugung einer variablen Spannung (68), in welchem eine Ausgangssollspannung V2=f(Itip) bereitstellt wird.
EP04101249A 2003-03-27 2004-03-25 Vorrichtung und Verfahren zur Steuerung einer Dosis von von einem Mikroemitter emittierten Elektronen Expired - Fee Related EP1473755B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350071 2003-03-27
FR0350071A FR2853133B1 (fr) 2003-03-27 2003-03-27 Dispositif et procede de commande et de controle d'une dose d'electrons emise par un micro-emetteur

Publications (3)

Publication Number Publication Date
EP1473755A2 EP1473755A2 (de) 2004-11-03
EP1473755A3 EP1473755A3 (de) 2008-11-12
EP1473755B1 true EP1473755B1 (de) 2011-08-31

Family

ID=32947402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04101249A Expired - Fee Related EP1473755B1 (de) 2003-03-27 2004-03-25 Vorrichtung und Verfahren zur Steuerung einer Dosis von von einem Mikroemitter emittierten Elektronen

Country Status (4)

Country Link
US (1) US7088048B2 (de)
EP (1) EP1473755B1 (de)
JP (1) JP2004295124A (de)
FR (1) FR2853133B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110847B2 (ja) * 2005-10-18 2012-12-26 株式会社半導体エネルギー研究所 表示装置
EP1777690B1 (de) * 2005-10-18 2012-08-01 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung
CN113036855B (zh) * 2021-03-12 2023-03-31 宁波美蕾电器有限公司 一种铅酸式多功能应急电源

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936756A (en) * 1971-04-30 1976-02-03 Nihon Denshi Kabushiki Kaisha Field emission electron gun having automatic current control
US5656892A (en) * 1995-11-17 1997-08-12 Micron Display Technology, Inc. Field emission display having emitter control with current sensing feedback
JP2950274B2 (ja) * 1997-01-28 1999-09-20 日本電気株式会社 電界放出型冷陰極素子の駆動方法及び電界放出型冷陰極電子銃
US6498349B1 (en) * 1997-02-05 2002-12-24 Ut-Battelle Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy
JP3764906B2 (ja) * 1997-03-11 2006-04-12 独立行政法人産業技術総合研究所 電界放射型カソード
US6060840A (en) * 1999-02-19 2000-05-09 Motorola, Inc. Method and control circuit for controlling an emission current in a field emission display
US6914372B1 (en) * 1999-10-12 2005-07-05 Matsushita Electric Industrial Co., Ltd. Electron-emitting element and electron source, field emission image display device, and fluorescent lamp utilizing the same and methods of fabricating the same
TW464947B (en) * 1999-11-29 2001-11-21 Ushio Electric Inc Measuring apparatus of electron beam quantity and processing apparatus of electron beam irradiation
JP2001202059A (ja) * 2000-01-19 2001-07-27 Mitsubishi Electric Corp 冷陰極発光素子の駆動方法、冷陰極発光素子の駆動回路およびディスプレイ装置
US6362574B1 (en) * 2000-05-31 2002-03-26 Sri International System for emitting electrical charge from a space object in a space plasma environment using micro-fabricated gated charge emission devices
US6577130B1 (en) * 2000-05-31 2003-06-10 Sri International System and method for sensing and controlling potential differences between a space object and its space plasma environment using micro-fabricated field emission devices
JP2002328645A (ja) * 2001-05-01 2002-11-15 Canon Inc 画像表示装置及びその駆動方法及び回路
EP1426997A1 (de) * 2002-12-06 2004-06-09 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik Mbh Feldemissionsstrahlenquelle und Strahlstromsteuerverfahren

Also Published As

Publication number Publication date
EP1473755A2 (de) 2004-11-03
US20040222391A1 (en) 2004-11-11
EP1473755A3 (de) 2008-11-12
FR2853133B1 (fr) 2005-04-29
JP2004295124A (ja) 2004-10-21
FR2853133A1 (fr) 2004-10-01
US7088048B2 (en) 2006-08-08

Similar Documents

Publication Publication Date Title
EP1644913B1 (de) Anzeigegeräte und steuerschaltung für einen lichtmodulator
US6198497B1 (en) Adjustment of a laser diode output power compensator
EP1231529B1 (de) Referenzspannungsgeneratoreinrichtung mit hoher Genauigkeit
EP2302341A2 (de) Detektionsschaltung mit verbessertem Blendschutz
US4292514A (en) Apparatus for, and method for, achieving a temperature compensation of an avalanche photodiode
EP1473755B1 (de) Vorrichtung und Verfahren zur Steuerung einer Dosis von von einem Mikroemitter emittierten Elektronen
EP1647091B1 (de) Spannungsverstärker mit niedrigem verbrauch
EP1299876B1 (de) Verfahren und vorrichtung zur steuerung einer elektronenquelle in matrixstruktur, mit regulierung durch die emittierte ladung
CA2736593C (fr) Systeme de controle de derive de gain de photomultiplicateur et procede associe
EP1313088A1 (de) Verfahren und Vorrichtung zur Spannungssteuerung einer Elektronenquelle mit Matrixstruktur, mit Regulierung von emittierter Ladung
EP1771838B1 (de) Bildanzeigevorrichtung und steuerungsverfahren für die anzeigevorrichtung
EP2372917A1 (de) Gerät zur parallelen Analog-Digital-Wandlung und ein solches Gerät umfassender Bildgebungsdetektor
EP1697920A1 (de) Einrichtung zum anzeigen von bildern auf einer aktivmatrix
EP1085624A1 (de) Verfahren und Vorrichtung zur optischen Leistungsstabilisierung eines Lasers
FR3050889A1 (fr) Circuit d'emission optique en creneaux
EP0011533A1 (de) Sägezahngenerator, insbesondere für die Zeilenablenkung in einer Kathodenstrahlröhre und Vorrichtung mit einem solchen Generator
FR3032063A1 (fr) Circuit electronique configure pour calibrer un dispositif de detection de photons a photomultiplicateurs silicium, dispositif de detection de photons, procede de calibration, et programme d'ordinateur correspondant.
JP2020106350A (ja) 投受光装置、投受光方法、プログラム及び記録媒体
WO2010079702A1 (ja) 撮像装置
FR2604583A1 (fr) Dispositif de conditionnement de signaux video de transmission d'images
EP0530091B1 (de) Sperrspannungregelkreis für Kathodenstrahlröhre mit Luminanzmessung
JP2015128249A (ja) アナログ信号処理回路
EP4363899A1 (de) Gepulstes lidar mit einem durch ein moduliertes signal gesteuerten optischen halbleiterverstärker
JPS6251279A (ja) 半導体レ−ザ駆動回路
JPS644391B2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 7/44 20060101ALI20081007BHEP

Ipc: H01J 1/304 20060101AFI20081007BHEP

17P Request for examination filed

Effective date: 20090429

AKX Designation fees paid

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602004034187

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01J0007440000

Ipc: G09G0003220000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G09G 3/22 20060101AFI20110222BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004034187

Country of ref document: DE

Effective date: 20111110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004034187

Country of ref document: DE

Effective date: 20120601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120325

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004034187

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121002