EP1468436B1 - Systeme micro-electromecanique et procede de fabrication - Google Patents

Systeme micro-electromecanique et procede de fabrication Download PDF

Info

Publication number
EP1468436B1
EP1468436B1 EP02796487A EP02796487A EP1468436B1 EP 1468436 B1 EP1468436 B1 EP 1468436B1 EP 02796487 A EP02796487 A EP 02796487A EP 02796487 A EP02796487 A EP 02796487A EP 1468436 B1 EP1468436 B1 EP 1468436B1
Authority
EP
European Patent Office
Prior art keywords
micro
face
substrate
electromechanical system
movable part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02796487A
Other languages
German (de)
English (en)
Other versions
EP1468436A1 (fr
Inventor
Ralf Strümpler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2002/001662 external-priority patent/WO2002058089A1/fr
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP02796487A priority Critical patent/EP1468436B1/fr
Publication of EP1468436A1 publication Critical patent/EP1468436A1/fr
Application granted granted Critical
Publication of EP1468436B1 publication Critical patent/EP1468436B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0042Bistable switches, i.e. having two stable positions requiring only actuating energy for switching between them, e.g. with snap membrane or by permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0078Switches making use of microelectromechanical systems [MEMS] with parallel movement of the movable contact relative to the substrate

Definitions

  • micro-electro-mechanical system micro electro-mechanical system, MEMS
  • a micromechanical switch which a flat carrier substrate, one on the carrier substrate fixed contact piece, a movable electrode and a fixed with the Carrier substrate connected counter electrode comprises.
  • the movable electrode has a free end and a fixed, connected to the carrier substrate The End.
  • the movable electrode and the counter electrode face each other Surfaces on.
  • the movable electrode bent, that is elastically deformed, that the free end of the movable electrode of the counter electrode and thereby also approximates the contact piece until it comes to contact between the free end the movable electrode and the contact piece comes.
  • the movement of the free end of the movable electrode takes place laterally, that is parallel to the sheet carrier substrate.
  • the electrostatic forces of attraction between the facing each other Surfaces of the movable electrode and the counter electrode is through the application of a voltage between the movable electrode and the Counter electrode generated.
  • a voltage between the movable electrode and the Counter electrode generated.
  • stoppers are introduced into the counter electrode, over the protrude the surface of the counter electrode facing the movable electrode and not at the same potential as the counter electrode.
  • springs may be provided, which on the Counter electrode opposite side of the movable electrode attached are and the movement of the movable electrode in the direction of the counter electrode limit.
  • the counter electrode facing surface of the movable electrode with be provided an electrically insulating layer.
  • the force thus decreases linearly with the surface, square with the stress and inversely proportional to the square of the distance.
  • a sacrificial shift process is applied, which is the free end of the mobile Electrode separates from the carrier substrate.
  • DE 42 05 029 C1 shows an electrostatically operated microelectromechanical Relay working horizontally. That means the switching movement this relay is substantially perpendicular to a carrier substrate. From a silicon substrate is a tongue-shaped electrode with contact piece etched. The substrate is then coated with a counter substrate a counter electrode and a mating contact applied to the electrode with the counter electrode encloses a wedge-shaped gap. By Applying a switching voltage between the electrode and the counter electrode these are movable towards each other, creating an electrically conductive Achieve connection between contact and mating contact. Size Contact forces can be achieved by relatively wide electrodes.
  • the bistable Mechanism By applying a perpendicular to the spring tongues and parallel to the carrier substrate directed force is the bistable Mechanism between the two stable states back and forth switchable, wherein the respective mirror-image to the initial position end position finally reached by a snap of the mechanism independently becomes.
  • MEMS microelectromechanical system
  • Improved switchability for example, can mean a shift Already at lower switching voltages can be triggered.
  • New functionalities For example, the realization of closed without voltage Terminals or of micro-relays with both open without voltage as well as dead terminals mean.
  • micro actuators can be new or be realized easier or in an improved form.
  • the second micro-element has a first fixedly connected to the substrate End and a movable part, wherein in the working position of the first micro-element of the movable part of the second micro-element by electrostatic forces between the first micro-element and the second micro-element from a switch-off position into a switch-on position is movable, and wherein the two micro-elements in the area of the body, at the said smaller distance between the two micro-elements is present, have contact points and formed electrically non-conductive are.
  • the fact that there are points of contact means that the mentioned lower Distance is zero.
  • Electrode gaps result in improved switchability. A switching of the actuator at very low switching voltages is possible.
  • the first micro-element is designed such that there is a matched counter electrode, that of the shape of the second micro-element is adapted: the adapted counterelectrode is shaped in such a way that in the on position of the second micro-element, the adapted Counter electrode and the second micro-element in the range of said Overlap contact areas over a large area.
  • the switch-on position of the second micro-element thus nestle the adapted counter electrode and the second micro-element to each other. This will be a Maximizing the areas reached, between which the electrostatic Attractions act, resulting in greater electrostatic attractions and thus has an improved switchability result. A switching of the actuator at very low switching voltages is possible.
  • said adapted Counter electrode additionally has a second section opposite the section of the counterelectrode which conforms to the second microelement stepped back. In the switch-on position of the second micro-element close this second section of the adapted Counter electrode and the second micro-element a gap.
  • the force that can be selected in this way can be, for example a contact force of the second micro-element on one or two electrical Be contacts that the second micro-element in its on position contacted, creating a secure electrical contact can be made.
  • a changeover relay realized.
  • the movable part of the second micro-element by switching the first micro-element from the initial position to the working position elastically deformable. Thereby it is possible to realize dead-ended connections.
  • the inventive method includes after the structuring of two Micro-elements with facing surfaces switching the bistable switchable micro-element.
  • This can be new or improved MEMS, such as those mentioned above, are produced.
  • Fig. 1 shows a schematic plan view of a first according to the invention microelectromechanical system (MEMS). It includes a first micro-element 1 and a second micro-element 2, both of which are rigid with one Substrate S are connected.
  • MEMS microelectromechanical system
  • the substrate S is a wafer of monocrystalline silicon in which one of the two largest surfaces forms a major surface of the substrate. In Fig. 1, this major surface is in the plane of the paper.
  • ionic charges DRIE, dry reactive ion etching
  • sacrificial layer technology the first micro-element 1 and the second micro-element 2 from the Substrate S shaped.
  • the structuring method DRIE has the property of a material-removing To be a method; it is an etching process. It also has the property good for creating narrow but deep channels, columns or Being suitable trenches, whereby the DRIE awarded a preferred direction which can be the direction of the preferred material removal indicates and is thus perpendicular to the main surface of the substrate. Perpendicular again to this preferred direction is the width of a DRIE trench down, ie narrow trenches limited.
  • micro-elements 1,2 are formed from the substrate can, is known in the art and can, for example, the said Publication DE 198 00 189 A1 are taken, the thereby incorporated with their entire disclosure content in the description becomes.
  • DRIE generated microelements typically have side surfaces, which are aligned almost perpendicular to the main surface of the substrate S, or in other words: (local) surface normal vectors of the side surfaces run virtually parallel to the main surface of the substrate S.
  • microelements are essentially in the shape of a straight one (right - angled) prism whose base is parallel to the main surface of the Substrates S is aligned.
  • the height of such Micro-element very large compared to the (narrowest) width of such a micro-element.
  • the first micro-element and the second micro-element are of this type.
  • the first micro-element 1 is a bistable elastic MEMS mechanism as described in the cited publication J. Qiu et al., "A Centrally-Clamped Parallel-Beam Bistable MEMS Mechanism ", Proc. Of MEMS 2001, Interlaken, Switzerland, Jan. 20-22, 2001. Details too Embodiments, characteristics and for the production of such Micro-element can be found in this publication, which thereby incorporated with their entire disclosure content in the description becomes.
  • the first micro-element 1 is at a first end 6 and a second end 7 fixed on the substrate S. In between, this points first micro-element 1 two parallel, cosinusoidal curved Spring tongues, which in the middle 8 between the two ends 6,7 with each other are connected. Considering their small width and big ones Height (perpendicular to the substrate main surface) you can use these spring tongues also as a parallel membrane.
  • the first micro-element 1 is bistable between an initial position A and a working position B switchable (the latter shown in phantom in Fig. 1). That is, the micro-element 1 has two mechanically stable states or positions A and B, between which it is applied by applying a lateral, So substrate-parallel force is reciprocable; the movement takes place substantially laterally. Possible intermediate positions are not stable, but lead independently to a rapid transition into one of the two stable states A or B. The transition takes place by preferably elastic deformation of the first micro-element 1.
  • the first micro-element 1 consists here only of a switching part 5, through which it is bistable switchable.
  • the first micro-element 1 has on the second micro-element 2 facing Page on a formed by DRIE side surface, the first Surface 3a is called.
  • This first surface 3a has a first coating 3b, which is electrically insulating and whose outer, that is from the surface facing away from the first surface 3a, the first surface 3 of the first Micro-element 1 forms.
  • the first coating 3b will typically produced by oxidation of the silicon.
  • the second micro-element 2 has a first fixed end 10 on which it is set on the substrate S, and a movable part 11; it is arranged adjacent to the first micro-element 1.
  • the second micro-element 2 On the side of the second micro-element facing the first micro-element 1 is, the second micro-element 2 has a DRIE formed side surface referred to as the second surface 4a.
  • This second surface 4a has a second coating 4b, which is electrically insulating and whose outer, so facing away from the second surface 4a surface second surface 4 of the second micro-element 2 forms.
  • the first surface 3 and the second surface 4 are facing surfaces, as well as the first surface 3a and the second surface 4a facing each other are.
  • the second coating 4b also typically becomes oxidized of silicon.
  • the first micro-element 1 in the initial position A and the second micro-element 2 in an off position A ' is the first micro-element 1 in the initial position A and the second micro-element 2 in an off position A '. Since the areas 3a and 4a mittes DRIE are formed, they have a distance from each other, at least is as large as a minimum distance given by DRIE. With the Distance of the surfaces from each other is meant the distance that such two Have points that are closest to each other, with the one Point on the first surface 3a and the other point on the second surface 4a lies. The distance is thus the width of the trench between the first Surface 3a and the second surface 4a at its narrowest point. In Fig. 1 is this point at a corner of the first fixed end 10 of the second micro-element 2 and near the first end 6 of the first micro-element 1 at the membrane of the first micro-element 1, which has the first surface 3a.
  • the initial position A of the first micro-element 1 is a production-related Initial position.
  • the arrangement of the first micro-element 1 and of the second micro-element 2 is selected such that after switching of the first micro-element 1 from the initial position A to the working position B is the distance of the first surface 3a from the second surface 4a smaller than the one mentioned, by the manufacturing method (for example DRIE) given minimum distance.
  • the distance is even zero, that is, in working position A, the first micro-element touch 1 and the second micro-element 2.
  • In the working position A can a intended interaction of the first micro-element 1 with the second micro-element 2 within the MEMS.
  • the MEMS in Fig. 1 represents a microactuator, that of the first micro-element 1 and the second micro-element 2, together with the substrate S. is formed.
  • the second micro-element 2 acts as a movable, electrostatically switchable electrode and the bistable switchable first micro-element 1 as an associated electrostatic counter electrode.
  • the first Micro-element 1 is in working position A.
  • the operation of the microactuator when it is in working position B is essentially known from the prior art: On the first fixed End 6 of the first micro-element 1 is a contacting electrode C, and at the first fixed end 10 of the second micro-element 2 a contacting electrode C 'is provided. These contacting electrodes C, C 'serve to apply switching voltages to the microelements 1,2, through which the micro-elements electrostatically charge, so that electrostatic forces between the micro-elements 1 and 2 Act.
  • the material from which the micro-elements are made be sufficiently conductive, which, for example, by appropriate doping of silicon is achieved.
  • the electrostatic force decreases inversely proportional to the distance.
  • the MEMS according to the invention Fig. 1 thus has the great advantage, even with smaller switching voltages to be switchable than they would be needed for a MEMS whose spacing between electrode and counter electrode greater than or equal to that through the Structuring method given minimum distance.
  • the micro-actuator in Fig. 1 for example, as an optical micro-switch be used by passing a Lichstrahl to be switched or interrupted by the movable part 11 of the second micro-element 2 is, depending on whether the second micro-element 2 in the off position A 'or in the switch-on position B' is located.
  • the redirecting a light beam with the micro-actuator in Fig. 1 possible, for example if in the movable part 11 of the second micro-element 2 a is arranged reflective area (not shown).
  • the switch-on position B ' is, by definition, present when appropriate switching voltages are applied; otherwise the switch-off position A 'is present.
  • the bistable switchable first micro-element 1 is called an electrostatic Electrode or counter electrode used.
  • Fig. 2 shows a MEMS which largely corresponds to the MEMS of Fig. 1; Indeed is the first micro-element 1 constructed differently.
  • the first micro-element 1 is here as another lateral, bistable and preferably elastic switchable mechanism formed.
  • the first micro-element 1 is also here at a first end 6 and a second end 7 on the substrate S set.
  • a curved Spring tongue which has the shape of a vibration belly.
  • this spring tongue In view of its small width and its high height (perpendicular to the Substrate main surface) can also be this spring tongue as a membrane describe.
  • the first micro-element 1 In the initial position A, ie in the state in which the first micro-element 1, the first micro-element 1 describes a symmetrical antinode, in working position B an asymmetric Antinode (the latter in Fig. 2 drawn by dashed lines).
  • asymmetric antinode represents the second stable position of the first Micro-element 1 is and is due to the fact that one with the Substrate S firmly connected stop the first micro-element 1 in the working position B touches and to the corresponding deformation of the first Micro-element 1 leads.
  • This stop is here by a corresponding formed and arranged first fixed end 10 of the second micro-element 2 formed.
  • the corresponding touch point is conveniently to the right of a link leading from the second end 7 extends to the first end 6 of the first micro-element 1 when the symmetrical antinode in the initial position A to the left of this Link is arranged.
  • the value of a parallel to this link guided position coordinate of the point of contact is not 0.5 (no asymmetric antinode) and is preferably between 0.52 and 0.92 of the length of the link; he is here about 0.84.
  • the stop can also by a correspondingly shaped first End 6 or second end 7 of the first micro-element 1 are formed or as a separately on the substrate S fixed stop (which then to be considered as belonging to the first micro-element 1).
  • the bistable micro-element 1 generated in the initial position A (structured), the distance between first micro-element 1 and the second micro-element 2 at least as big is like a minimum distance given by the structuring method (between these micro-elements 1,2).
  • the MEMS becomes the first after application of coatings 3b, 4b Micro-element 1 switched from the initial position A in the working position B, wherein in the working position B, the distance between the two Micro-elements 1.2 is smaller than the said minimum distance.
  • FIG. 3 shows a MEMS according to the invention, which largely corresponds to that in FIG. 1 corresponds to the embodiment shown; however, here is the first one Micro-element 1 not only from a switching part 5, but additionally includes another electrode 9.
  • the electrode 9 has an elongated part, the first surface 3a, the first coating 3b and the first surface 3 of the first micro-element 1 includes. This part is by means of another elongate member which is approximately perpendicular to the said aligned is, with the switching part 5 in the middle 8 between the ends 6,7 of the first Micro-element 1 connected.
  • the electrode 9 Since the electrode 9 is fixed to the switching part 5, it moves with the Switching part 5 with when from the initial position A to the working position B (and possibly back again) is switched. Are by applying appropriate Switching voltages electrostatic forces of attraction between the first Micro-element 1 (of course in the working position A) and the second micro-element 2 generates, the movable part 11 of the second micro-element 2 elastically deformed and approaches the electrode 9: It is from the switch-off position A 'is switched to the switch-on position B'.
  • the shape of the Electrode 9, and in particular the shape of the first surface 3, is preferably shaped such that the first surface 3 and the second Touch surface 4 fully in the switch-on position.
  • Fig. 4 shows a MEMS, which represents a micro-relay.
  • the embodiment corresponds largely to that of FIG. 3. It also includes a (adapted) Electrode 9 and a cosinus formed bistable elastic switchable micro-element 1.
  • the second micro-element 2 or more precisely: the movable part 11 of the second micro-element 2, a Contact area 16, which is electrically conductive.
  • the Contact area 16 in the region of that end of the movable part 11th of the second micro-element 2, which is not at the first fixed end 10 of the second micro-element 2 is adjacent.
  • the contact region 16 forms a part of a side surface of the second micro-element 2 and is preferably formed as a coating by means of vapor deposition or Sputtering techniques is applied to the second micro-element 2.
  • the MEMS comprises two fixed on the substrate S, electrically conductive fixed contacts 17,18.
  • the arrangement of the fixed contacts 17,18 and the contact region 16 is selected such that when concerns appropriate Switching voltages on the first micro-element 1 and the second micro-element 2 (ie in the switch-on position B 'of the second micro-element 2) the contact region 16 is an electrically conductive connection between the Fixed contact 17 and the fixed contact 18 generated. In the off state A 'is this is not the case. So there is an electrostatic micro-relay, through which by means of the switching voltages formed by the fixed contacts 17,18 Connection can be switched.
  • the contact region 16 in FIG. 4 is on the side of the second microelement 2, which faces the first micro-element 1, So on the side that includes the surface 4.
  • the fixed contacts 17,18 are in that region of the substrate S which is located on the the first micro-element 1 side facing away from the second micro-element 2 lies.
  • the contact area 16 will then be corresponding to that Side of the movable part 11 of the second micro-element 2, which faces away from the first micro-element 1.
  • the relay can be switched by means of repelling electrostatic forces.
  • this micro-relay or the in Fig. 4 shown micro-relay without (matched) electrode 9 build (analogous to the structure in Fig. 1).
  • Fig. 5 shows an inventive micro-changeover relay. It contains all the features of such a MEMS, as related to Fig. 4 has been described.
  • the MEMS includes but one more third micro-element 1 'and two further fixed contacts 17', 18 '; and the second micro-element 2 has a further electrically conductive contact area 16 ', which on one side of the movable part 11 of the second Micro-element 2 is arranged, which is opposite to the side which the Contact area 16 has.
  • the third micro-element 1 'and the others Fixed contacts 17 ', 18' are with respect to the elongated movable Part 11 of the second micro-element 2 arranged in mirror image to the first micro-element 1 and the fixed contacts 17,18.
  • the arrangement needs not exactly mirror image; it is enough if the third micro-element 1 'in a region of the substrate S connected to the substrate is, on the side facing away from the first micro-element 1 side of the second Micro-element (2) is located and the other fixed contacts 17 ', 18' in a range of the substrate S are connected to the substrate on the den Fix contacts 17,18 opposite side of the second micro-element 2 is located.
  • the structure of the third micro-element 1 ' corresponds to the structure of the first Micro-element 1.
  • the other fixed contacts 17 ', 18' are similar designed as the fixed contacts 17,18.
  • the interaction between the third micro-element 1 'and the second micro-element (2) and the other fixed contacts (17 ', 18') corresponds the above-described interaction between the first micro-element 1 and the second micro-element 2 and the fixed contacts 17,18.
  • When applying appropriate switching voltages to the third micro-element 1 ' and the second micro-element 2 may be an electrically conductive connection between the other fixed contacts 17 ', 18' through the further contact area 16 'are created.
  • FIG. 6 shows a further MEMS according to the invention, which largely corresponds to the MEMS of FIG. 4. It contains the features of the MEMS Fig. 4, for which reference is made to the corresponding part of the description.
  • the electrode 9 of the first micro-element 1 is special here educated.
  • the electrode 9 has an (optionally stepped) recess on.
  • the electrode 9 comprises a gap-forming surface 1 2, which with respect to the first surface 3 of the first micro-element 1 stepped is set back. You can this electrode 9 as a stepped Designate electrode 9.
  • This MEMS will be attractive electrostatic Forces to switch from the switch-off position A 'to the switch-on position B' used.
  • the length of the gap and the width of the gap ie the Distance between the movable part 11 of the second micro-element 2 and the gap-forming surface 12
  • the course of the Width of the gap can be selected.
  • the length of the gap by about one order of magnitude, preferably by about two orders of magnitude greater than the width of the gap.
  • such a MEMS has the advantage that any problems that may arise when switching from the switch-on position B 'to the switch-off position A', by a slow or poor detachment of the movable part 11th of the second micro-element 2 of the electrode 9 (that is, more precisely: of the first surface 3), for example due to surface effects can occur can be reduced.
  • the (air) gap 13 allows a rapid detachment of the movable part 11 of the second micro-element 2 from the electrode 9 when switching from the on position B 'to the off position A ', while still in the on position B' large electrostatic Attractiveness between the first micro-element 1 and the second micro-element 2 act when the gap width accordingly was chosen low.
  • a further advantageous embodiment of the invention is shown. It largely corresponds to the embodiment shown in Fig. 6 and will be described starting therefrom.
  • the movable part 11 of the second Micro-element 2 is specially designed here. He has a first area 14 and a second region 15, wherein the first region 14 less stiff, so easier deformable, is formed as the second region 15th And the first area is between the fixed first end 10 of the second Micro-element 2 and the second region 15 is arranged.
  • the contact area 16 is advantageously arranged in the second region 15, in particular in the Area of the first area 15 opposite end of the second Area 16.
  • the second area 15 comprises at least those Area of the movable part 11, in which the movable part 11th and the second micro-element 2 do not face each other. Especially advantageous is a (slight) overlap of the second area 15 with the area of the movable part 11, in which the movable part 11 and the second Micro-element 2 face.
  • the second region 15 comprises Advantageously, at least even that portion of the movable Part 11, in which the movable part 11 and the gap-forming surface 12 face each other. Is particularly advantageous in this case, if the second area 15 also a (small) overlap with the first Surface 3 has.
  • the greater rigidity of the second region 15 with respect to the first region 14 is achieved in the embodiment of FIG. 7 in that the second region 15 is thicker or wider than the first region 14. It is also possible to make the second region 15 harder to bend make, for example, by applying a coating there; to the Example on a base of the straight prismatic body, the second region 15 forms, or on at least one of the side surfaces. through a corresponding (large, long) trained contact area, the As a coating is formed, this could be achieved.
  • Fig. 8 shows a further advantageous embodiment of the invention, namely a changeover relay, which except a Normally Open connection (NO connection) additionally also a Normally Closed connection (NC connection).
  • NO connection means that the connection is open when there is no appropriate switching voltage (opened without voltage), as in the above-mentioned embodiments (Fig. 4 to Fig. 7) is the case.
  • NC connections which are not required a suitable switching voltage are closed (dead closed), are, however, difficult to realize, and will be in this Embodiment realized.
  • here is an NC port in realized by means of DRIE structured MEMS.
  • the MEMS in Fig. 8 is a mirror image and includes a first micro-element 1, a third micro-element 1 ', a fourth micro-element 19 and a fifth micro-element 20, all of which are bistable switchable and one Stable initial position A (solid line) and stable working position B (shown in dashed lines). They are here as such formed bistable micro-Elerriente, as described in connection with FIG. 1 are described in more detail (two parallel, cosinus-shaped, connected in their midst Spring tongues). The position in which these micro-elements using DRIE be structured, is the initial position A.
  • the first micro-element 1 and the third micro-element 1 ' correspond to each other largely in their Function. They only consist of a switching part 5.
  • the fourth micro-element 19 and the fifth micro-element 20 also correspond to each other largely in their function. They each have a contacting electrode D, D '(for applying a signal to be switched, for example one electric current) and an electrically conductive contact electrode 21,22 on.
  • the conductivity of the contact electrodes 21,22 is preferably by produces a metallic coating.
  • the contact electrodes 21, 22 are elongated, finger-shaped and approximately in the middle 8 between the two Ends of the respective micro-element 19,20 on the respective micro-element 19,20 attached.
  • the MEMS still has two with the Substrate S connected Fixelektroden 17,18 on (to create another electric current to be switched).
  • the MEMS in Fig. 8 further comprises a second micro-element 2.
  • the second micro-element 2 is a monostable micro-element; it thus has only one stable position. It comprises a first fixed end 10 and a second fixed end 10 ', which ends 10, 10' on the substrate S are fixed, and one between these two fixed ends 10,10 ' arranged movable part 11.
  • the movable part 11 is as one, preferably Vibration-shaped, curved structure formed at the the two fixed ends 10,10 'of the second micro-element 2 is attached and an electrically conductive contact region 16.
  • the mobile one Part 11 further has a second surface 4, which is an optional one second coating 4b is formed, and which second surface 4 a first surface 3 of the first micro-element 1 faces is. The same applies to a fourth surface 4 'of the second micro-element 2 and a third surface 3 'of the third micro-element 1'.
  • the second surface 4 is between the first fixed end 10 and the Contact area 16 arranged.
  • the fourth surface 4 ' is between the second fixed end 10 'and the contact region 16 are arranged.
  • To the structuring of the second micro-element 2 is the movable Part 11 in the switch-off position A ', the stable position of the second Micro-element 2.
  • the bistable micro-elements 1,1 ', 19,20 Due to the existence of the already mentioned minimum distance between two are DRIE generated micro-elements or surfaces the bistable micro-elements 1,1 ', 19,20 from the second micro-element 2 spaced with at least such a minimum distance.
  • the optional non-conductive coatings 3b, 3b 'of the first or third micro-element 1,1 'and the optional electrically conductive Coatings of the contact electrodes 21, 22 are used in the context of inventive manufacturing method of the MEMS the bistable micro-elements 1,1 ', 19,20 switched from the initial position A in the working position B. This will change the distance between the micro elements or Surfaces smaller than said minimum distance; in Fig. 8 touch even the micro elements. In particular, both contact electrodes touch 21,22 the contact area 16.
  • the surfaces 3,4 and the surfaces 3 ', 4' also touch each other. This can already be done by applying relatively low switching voltages between the second micro-element. 2 and the first micro-element 1 and between the second micro-element 2 and the third micro-element 1 'sufficiently large electrostatic Attractive forces between the second micro-element 2 and the Micro-elements 1,1 'are generated, which cause a switching of the second Micro-element 2 from the switch-off position A 'to the switch-on position B' to lead.
  • Fig. 9 shows a changeover relay, which except a Normally Open connection (NO connection) additionally also a Normally Closed connection (NC connection).
  • NO connection Normally Open connection
  • NC connection Normally Closed connection
  • the MEMS is very similar in construction that described in Fig. 8; for corresponding features is based on the above Text directed.
  • the second micro-element 2 is not monostable here, but bistable executed. In particular, it has a structure with two parallel, cosinusoidal spring tongues connected in their middle, as described in detail in connection with FIG. 1. The two stable positions of the second micro-element 2 are the off position A 'and the switch-on position B'.
  • a big advantage of the bistability of the second micro-element 2 is that there is no applied switching voltage required to the second micro-element 2 in the off position A 'or the Hold position B '. After applying a suitable switching voltage and the switching process thereby caused to the other state A ', B' remains the second micro-element 2 automatically in this state FROM'. This allows each of the two pairs of contacts to which one switching signal is applied (Fixelektroden 17,18 or micro-elements 19,20) should be a NO connection or an NC connection.
  • the MEMS in Fig. 9 two more bistable switchable micro-elements on: the sixth micro-element 23 and the seventh micro-element 24. These are also here with two parallel, cosinusoid, built in their middle connected spring tongues and each have one (adapted) electrode 9. They are arranged in the region of the substrate S, which is on the side of the second micro-element 2, the Is remote micro-elements 1,1 '.
  • the micro-elements 23,24 act in analogous manner with the second micro-element 2 together as the micro-elements 1.1 '.
  • the second micro-element 2 has a sixth surface 26a and an eighth surface 26a ', which with a fifth Surface 25a (the sixth micro-element 23) or a seventh Surface 25a '(the seventh micro-element 24) cooperate.
  • the second micro-element 2 may be switched from the turn-on state B 'in FIG Off state A 'are switched.
  • Fig. 10a shows the MEMS in the state after structuring by means of DRIE: The first micro-element 1 is in the initial position A.
  • Fig. 10b shows the MEMS in a state in which the first micro-element 1 is in the working position B, and the second micro-element 2 is in the off state A '.
  • Fig. 10c shows the MEMS in a state in which the first micro-element 1 is in the working position B, and the second micro-element 2 in the On state B 'is located.
  • the first micro-element 1 after switching from the initial position A in the working position B comes closer than the given by DRIE minimum distance and the second micro-element 2 only (slightly) touched.
  • the movable part 11 of the second micro-element 2 is deformed in such a way that the electrically conductive contact region 16 of the second micro-element 2 the fixed contacts 17,18 conductively connects:
  • the NC port is closed. It becomes a dead, but detachable contact realized; in a structured using DRIE MEMS.
  • By switching the first micro-element 1 from the initial position A in the working position B is a switching operation of the second micro-element 2 caused. Since there is no switching voltage for it, is the second micro-element 2 after this switching operation in the Switch-off position A '.
  • one must suitable switching voltage between the first micro-element 1 and the second micro-element 2 are created.
  • the NC port is opened, and the second micro element 2 goes into the on state B '(see Fig. 10c).
  • the electrode 9 can be formed differently.
  • the electrode 9 and the micro-elements Arrange 1.2 to each other such that the points of contact between the two micro-elements 1,2, (when the first micro-element 1 in the working position A and the second micro-element 2 in the off position A 'is) lie substantially on a straight line with the middle 8 in the initial position A and the middle 8 in the working position.
  • This can be a achieved low mechanical stress of the first micro-element 1 be, while large contact forces on the fixed contacts 17,18 can be exercised (secure contacts).
  • a second pair of fixed contacts 17 ', 18' (not shown in Fig. 10) provide, these fixed contacts 17 ', 18' are to be arranged such that the contact region 16 of the second micro-element 2 these fixed contacts 17 ', 18' electrically conductively interconnects when the second micro-element 2 is in the switch-on position B '.
  • the movable part 11 of the second micro-element 2 are formed in two parts (analogous to the Embodiment of Fig. 7).
  • FIG. 11a and 11b show a possible embodiment in which the moving parts of the MEMS are substantially horizontally movable.
  • Fig. 11a is a sectional side view of that shown in Fig. 11b in plan view MEMS.
  • Fig. 11b with Xla-Xla, the line of the section is Fig. 11a shown.
  • the MEMS is a micro-relay with an NC connection.
  • the first micro-element 1 is here as a schwabungsbauchförmiges bistable formed elastically switchable micro-element, analogous to that in Fig. 2nd shown in the first micro-Efement 1.
  • the initial position A is the symmetrical Vibration belly arched away from the substrate S.
  • the second end 7 of the first micro-element 1 is formed here like a bridge. Thereby can be arranged below the antinode second micro-element 2 to outside the area between the first end 6 and second end 7 of the first micro-element 1 extend.
  • the first solid End 10 of the second micro-element 2 serves as a stop for the Formation of the asymmetric antinode of the first microelement 1 in working position B.
  • the movable part 11 of the second micro-element 2 runs initially (after structuring) substantially parallel to the major surface of the Substrate S. After switching the first micro-element 1 from the initial position A in the working position B exerts the first micro-element 1 a Compressive force on the movable part 11 of the second micro-element 2 from.
  • the second micro-element 2 is elastically deformed. It gets into his Off position A ', in softer one attached to the movable part 11 movable contact electrode E a fixed on the Sustrat S Fixelektrode 17 touched. This creates an NC connection between the moving Contact electrode E and the Fixelektrode 17. This generation of a NC connection is quite analogous to that in connection with the Fig. 10a to 10c described method.
  • the second micro-element 2 goes into the on state B 'over, in which the movable part 11 of the second micro-element 2 is bent away from the substrate and the NC port opened is.
  • the contacting electrodes C, C ' serve to apply Switching voltages.
  • contacting electrodes D, D ' The contacting electrode D, which is electrically is connected to the movable contact electrode E, here is on the first fixed end 10 of the second micro-element 2 is arranged. With the fixed contact 17 electrically connected contacting electrode D 'is on arranged the substrate S.
  • Fig. 11a, b Very advantageous in this embodiment of Fig. 11a, b is that the distance in the opened state between the movable contact electrode E. of the second micro-element 2 and the fixed contact 17 can be selected and manufacturing technology is very well reproducible. The same applies to the next Embodiments discussed above, provided that they are analogous to Fig. 11a, b with a movable contact electrode E performs.
  • a MEMS according to the invention is not only, as in the above examples, as Switch or relay executable. There are a variety of micro-actuators feasible. For example, inventive MEMS micro-valves or Represent or operate micro-pumps.
  • the substrate S used for producing a MEMS according to the invention is preferably formed fläching. It typically has one Main surface, which is structured to produce the MEMS, wherein the Movement of the moving parts of the MEMS substantially parallel or are movable perpendicular to this main surface.
  • this is
  • monocrystalline silicon is under mechanical stress standing bistable switchable micro-elements 1,1 ', 2,19,20,23,24 advantageously no or only very slowly taking place Relaxation to be expected.
  • an SOI wafer silicon-on-insulator
  • silicon oxide layer serves as a sacrificial layer
  • the mentioned structuring method is typically a material removal Method, preferably an etching method.
  • the LIGA technique or in particular the reactive ion etching and particularly advantageous the ion etching (DRIE) come here in question.
  • the DRIE method has the advantage very well suited to the production of areas that (relative to their subordinate vertical height) are closely spaced and practically perpendicular to the main surface of the substrate S run.
  • the material Apply are conceivable, for example, when so produced facing each other Surfaces due to the process have a minimum distance. For example using photopolymerization rapid prototyping method.
  • Electromagnetically or piezoelectrically actuated actuators will be realized.
  • the actuating forces can be repulsive or attractive be.
  • a bistable switchable micro-element according to the invention can also be tristable or otherwise multistable switchable. It is for some applications also not necessary that the micro-elements 1,1 ', 19,20,23,24 after the first switching from the initial position A to the working position B are also Mullschalbar in the initial position A are. One can also consider a one-time, for example plastic, deformation. However, the micro-elements 1,1 ', 19,20,23,24 are preferably bistable elastic switchable and switch back to the initial position A.
  • bistable micro-elements 1,1 ', 2,19,20,23,24 as the described cosinusoidal or as the described oscillation bulbous Forming micro-elements, these also being modified Form and combined within a MEMS are feasible.
  • the micro-elements can optionally be electrically conductive or electrically non-conductive coated.
  • a non-conductive coating Preferably, it serves to prevent discharges between each other touching electrostatic electrodes.
  • stopper or Springs are used, as they are already quoted from DE 198 00 189 A1 are known.
  • the contacting electrodes C, C ', D, D' can be produced in a known manner (for example by sputtering) and for example contactable by bonding.
  • the first switching of the first micro-element 1 and also the other bistable switchable micro-elements 1 ', 19,20,23,24 of the initial position A in the working position B as to the manufacturing process of the MEMS is considered.
  • This initial switching process can be done mechanically. Preferably, this switching operation but in Frame of a quality or functional test (burn-in) of the MEMS, whereby other units connected to the substrate are also tested or initialized.
  • the initial switching process can then preferably by creating an attractive force between the bistable Micro-element 1,1 ', 19,20,23,24 and the second micro-element 2 take place, this force advantageous by applying a switching chip he follows.
  • Such a switching voltage is typically higher than one Switching voltage for switching the second micro-element 2 between OFF position A 'and ON position B' is used.
  • the linear expansion of the described MEMS is typically between 0.2 mm and 5 mm, preferably 0.8 mm to 2 mm.
  • minimum distance minimum trench width
  • he has a low dependence on the Depth of the structured trench.
  • the depth of the structured trench 300 microns to 550 microns.
  • the switching voltages for the described MEMS are typically 10 V to 80 V, preferably 25 V to 50 V.
  • electrostatic attractions typically become Switching voltages between 70 V and 300 V, preferably between 100 V. and 200V used.

Landscapes

  • Micromachines (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Claims (23)

  1. Système micro-électromécanique qui comprend un substrat (S) ainsi qu'un premier micro-élément (1) et un deuxième micro-élément (2), dans lequel :
    (a) le premier micro-élément (1) et le deuxième micro-élément (2) sont reliés au substrat (S) et
    (b) le premier micro-élément (1) présente une première face (3a) et le deuxième micro-élément (2) une deuxième face (4a), lesquelles faces (3a, 4a) sont tournées l'une vers l'autre et sont créées par une opération de structuration,
    caractérisé en ce que
    (c) le deuxième micro-élément (2) présente une pièce mobile (11),
    (d) le premier micro-élément (1) contient une pièce de commutation (5) par laquelle il peut être commuté de manière bistable entre une position initiale (A) et une position de travail (B),
    (e) la distance entre la première face (3a) et la deuxième face (4a) lorsque le micro-élément (1) est dans la position de travail (B) est plus petite qu'une distance minimale qui peut être créée entre la première face (3a) et la deuxième face (4a) par l'opération de structuration.
  2. Système micro-électromécanique selon la revendication 1, caractérisé en ce que :
    (a) le premier micro-élément (1) présente une première surface (3) qui est identique à la première face (3a) ou qui, lorsque la première face (3a) est dotée d'un premier revêtement (3b), est identique à la surface de ce revêtement (3b) et
    (b) en ce que le deuxième micro-élément (2) présente une deuxième surface (4) qui est identique à la deuxième face (4a) ou qui, lorsque la deuxième face (4a) est dotée d'un deuxième revêtement (4b), est identique à la surface de ce revêtement (4b).
  3. Système micro-électromécanique selon la revendication 2, dans lequel
    (a) le deuxième micro-élément (2) présente une première extrémité fixe (10) reliée fixement au substrat (S) ainsi qu'une pièce mobile (11), caractérisé en ce que :
    (b) la première surface (3) et la deuxième surface (4) sont électriquement non conductrices et
    (c) en ce que la première surface (3) et la deuxième surface (4) présentent des emplacements de contact dans la position de travail (B) et
    (d) en ce que le deuxième micro-élément (2) peut être commuté depuis une position de débranchement (A') jusque dans une position de branchement (B') par le fait que lorsque le premier micro-élément (1) se trouve dans la position de travail (B), la pièce mobile (11) du deuxième micro-élément (2) peut être déplacée par des forces électrostatiques entre le premier micro-élément (1) et le deuxième micro-élément (2).
  4. Système micro-électromécanique selon la revendication 3, caractérisé en ce que :
    (a) le premier micro-élément (1) comporte une électrode (9), laquelle électrode (9) contient la première surface (3) et
    (b) en ce que l'électrode (9) et le deuxième micro-élément (2) sont configurés de telle sorte que lorsque le deuxième micro-élément (2) se trouve dans la position de branchement (B'), la première surface (3) et la deuxième surface (4) se touchent sur toute leur étendue.
  5. Système micro-électromécanique selon la revendication 4, caractérisé en ce que l'électrode (9) présente une surface (12) de formation d'interstice configurée de telle sorte qu'elle soit reculée en gradin par rapport à la première surface (3) et forme avec le deuxième micro-élément (2) un interstice (13) lorsque le premier micro-élément (1) se trouve dans la position de travail (B) et que le deuxième micro-élément (2) se trouve dans la position de branchement (B').
  6. Système micro-électromécanique selon l'une des revendications 3 à 5, caractérisé en ce que la pièce mobile (11) du deuxième micro-élément (2) présente une première zone (14) et une deuxième zone (15), la première zone (14)
    étant disposée entre la deuxième zone (15) et la première extrémité fixe (10) du deuxième micro-élément (2),
    comportant une partie de la deuxième surface (4) et
    étant moins rigide que la deuxième zone (15).
  7. Système micro-électromécanique selon l'une des revendications 3 à 5, caractérisé en ce que :
    (a) le système micro-électromécanique présente deux contacts fixes (17, 18) reliés fixement au substrat et
    (b) en ce que la pièce mobile (11) du deuxième micro-élément (2) présente une zone de contact (16) électriquement conductrice,
    laquelle zone de contact (16) étant disposée dans la zone d'une extrémité du deuxième micro-élément (2) opposée à la première extrémité fixe (10) du deuxième micro-élément (2) et
    les deux contacts fixes (17, 18) étant reliés l'un à l'autre de manière conductrice par ladite zone de contact (16) lorsque le deuxième micro-élément (2) est en position de branchement (B').
  8. Système micro-électromécanique selon la revendication 7, caractérisé en ce que :
    (a) le système électromécanique comporte un troisième micro-élément (1')
    qui peut être commuté de manière bistable,
    qui est relié au substrat (S) et
    qui est disposé dans une zone qui est située sur le côté du deuxième micro-élément (2) qui n'est pas tourné vers le premier micro-élément (1) et
    (b) en ce que le système micro-électromécanique présente deux autres contacts fixes (17', 18'), lesquels autres contacts fixes (17', 18') sont reliés fixement au substrat (s) et sont disposés dans une zone qui est située sur le côté du deuxième micro-élément (2) qui n'est pas tourné vers les contacts fixes (17, 18),
    (c) en ce que la pièce mobile (11) du deuxième micro-élément (2) présente une autre zone de contact (16') électriquement conductrice qui est disposée dans la zone d'une extrémité du deuxième micro-élément (2) opposée à la première extrémité fixe (10) du deuxième micro-élément (2) sur le côté du deuxième micro-élément (2) qui n'est pas tourné vers la zone de contact (16) et
    (d) le troisième micro-élément (1') coopérant avec le deuxième micro-élément (2) et avec les autres contacts fixes (17', 18') de la même manière que le premier micro-élément (1) coopère avec le deuxième micro-élément (2) et avec les contacts fixes (17, 18).
  9. Système micro-électromécanique selon les revendications 6 et 7 ou selon les revendications 6 et 8, caractérisé en ce que la zone de contact (16) est disposée dans la deuxième zone (15) de la pièce mobile (11) du deuxième micro-élément (2).
  10. Système micro-électromécanique selon la revendication 1, caractérisé en ce que :
    (a) le système micro-électromécanique comporte un troisième micro-élément (1') qui
    est relié au substrat (S) et
    présente une troisième face (3a'),
    (b) en ce que le deuxième micro-élément (2) contient une pièce de commutation qui
    présente une première extrémité fixe (10) reliée fixement au substrat (S),
    une deuxième extrémité fixe (10') reliée fixement au substrat (S),
    une pièce mobile (11) disposée entre ces deux extrémités fixes (10, 10') et
    une quatrième face (4a'),
    (c) le deuxième micro-élément (2) pouvant être commuté entre une position de débranchement (A') et une position de branchement (B') par cette pièce de commutation,
    (d) la pièce mobile (11) du deuxième micro-élément (2) comportant une zone de contact (16) électriquement conductrice,
    (e) la deuxième face (4a) étant disposée entre la première extrémité fixe (10) et la zone de contact (16),
    (f) la quatrième face (4a') étant disposée entre la deuxième extrémité fixe (10') et la zone de contact (16),
    (g) la troisième face (3a') et la quatrième face (4a') étant créées par l'opération de structuration et étant tournées l'une vers l'autre,
    (h) le troisième micro-élément (1') contenant une pièce de commutation par laquelle il peut être commuté de manière bistable entre une position initiale (A) et une position de travail (B) et
    (i) la distance entre la troisième face (3a') et la quatrième face (4a') lorsque le troisième micro-élément (1') se trouve dans la position de travail (B) est plus petite que la distance minimale qui peut être créée entre la troisième face (3a') et la quatrième face (4a') par l'opération de structuration.
  11. Système micro-électromécanique selon la revendication 10, caractérisé en ce que :
    (a) le troisième micro-élément (1') présente une troisième surface (3') qui est identique à la troisième face (3a') ou qui, lorsque la troisième face (3a') est dotée d'un troisième revêtement (3b') est identique à la surface de ce revêtement (3b') et
    (b) en ce que le deuxième micro-élément (2) présente une quatrième surface (4') qui est identique à la quatrième face (4a') ou qui, lorsque la quatrième face (4a') est dotée d'un quatrième revêtement (4b'), est identique à la surface de ce revêtement (4b').
  12. Système micro-électromécanique selon la revendication 11, caractérisé en ce que :
    (a) le système micro-électromécanique contient deux contacts fixes (17, 18) qui sont reliés fixement au substrat (S),
    (b) en ce que le deuxième micro-élément (2) peut être commuté depuis sa position de débranchement (A') jusque dans sa position de branchement (B') par le fait que lorsque le premier micro-élément (1) et le troisième micro-élément (1') se trouvent dans la position de travail (B), la pièce mobile (11) du deuxième micro-élément (2) peut être déplacée élastiquement par des forces électrostatiques exercées entre le premier micro-élément (1) et le deuxième micro-élément (2) et entre le troisième micro-élément (1') et le deuxième micro-élément (2), et
    (c) en ce que lorsque le deuxième micro-élément (2) se trouve dans la position de branchement (B'), les deux contacts fixes (17, 18) sont reliés l'un à l'autre de manière conductrice par l'intermédiaire de la zone de contact (16).
  13. Système micro-électromécanique selon la revendication 12, caractérisé en ce que :
    (a) le système micro-électromécanique comporte
    un quatrième micro-élément (19) et
    un cinquième micro-élément (20),
    (b) lesdits micro-éléments (19, 20)
    étant reliés au substrat (S) dans une zone qui est située sur le côté du deuxième micro-élément (2) qui n'est pas tourné vers les contacts fixes (17, 18),
    contiennent des pièces de contact par lesquelles ils peuvent être commutés de manière bistable entre une position initiale (A) et une position de travail (B) et
    présentent tous deux une électrode de contact (21, 22) respective dotée d'un revêtement électriquement conducteur et
    (c) en ce que lorsque le deuxième micro-élément (2) se trouve dans la position de débranchement (A') et que le quatrième micro-élément (19) et le cinquième micro-élément (20) se trouvent dans la position de travail (B), les deux électrodes de contact (21, 22) sont reliées l'une à l'autre de manière électriquement conductrice par l'intermédiaire de la zone de contact (16).
  14. Système micro-électromécanique selon l'une des revendications 10 à 13, caractérisé en ce que le deuxième micro-élément (2) peut être commuté de manière bistable et élastiquement entre sa position de débranchement (A') et sa position de branchement (B').
  15. Système micro-électromécanique selon la revendication 14, caractérisé en ce que :
    (a) le système micro-électromécanique comporte
    un sixième micro-élément (23) et
    un septième micro-élément (24),
    (b) lesdits micro-éléments (23, 24)
    étant reliés au substrat (S),
    étant disposés sur le côté du deuxième micro-élément (2) qui n'est pas tourné vers la deuxième surface (4) et la quatrième surface (4'),
    contiennent des pièces de contacts par lesquels ils peuvent être commutés de manière bistable entre une position initiale (A) et une position de travail (B),
    (c) en ce que le sixième micro-élément (23) présente une cinquième face (25a),
    (d) en ce que le deuxième micro-élément (2) comporte une sixième face (26a) qui est disposée entre la première extrémité fixe (10) et la zone de contact (16) sur le côté du deuxième micro-élément (2) qui n'est pas tourné vers la deuxième surface (4),
    (e) la cinquième surface (25a) et la sixième surface (26a) étant tournées l'une vers l'autre et étant créées par l'opération de structuration,
    en ce que le septième micro-élément (24) présente une septième face (25a'),
    (g) en ce que le deuxième micro-élément (2) comporte une huitième face (26a') qui est disposée entre la deuxième extrémité fixe (10') et la zone de contact (16) sur le côté du deuxième micro-élément (2) qui n'est pas tourné vers la quatrième surface (4'),
    (h) la septième face (25a') et la huitième face (26a') étant tournées l'une vers l'autre et étant créées par l'opération de structuration,
    (i) en ce que la distance entre la cinquième face (25a) et la sixième face (26a) lorsque le sixième micro-élément (23) se trouve dans la position de travail (B) est plus petite que la distance minimale créée entre la cinquième face (25a) et la sixième face (26a) par l'opération de structuration,
    (j) en ce que la distance entre la septième face (25a') et la huitième face (26a') lorsque le septième micro-élément (24) se trouve dans la position de travail (B) est plus petite que la distance minimale créée entre la septième face (25a') et la huitième face (26a') par l'opération de structuration et en ce que
    (k) le deuxième micro-élément (2) peut être commuté depuis sa position de branchement (B') jusque dans sa position de débranchement (A') du fait que lorsque le sixième micro-élément (23) et le septième micro-élément (24) se trouvent dans la position de travail (B), la pièce mobile (11) du deuxième micro-élément (2) peut être déplacée élastiquement par des forces électrostatiques exercées entre le sixième micro-élément (23) et le deuxième micro-élément (2) et entre le septième micro-élément (24) et le deuxième micro-élément (2).
  16. Système micro-électromécanique selon l'une des revendications 14 ou 15, dans lequel
    (a) le substrat (S) est configuré comme corps solide allongé plat doté d'une surface principale,
    (b) les micro-éléments (1, 1', 2, 19, 20, 23, 24) sont configurés comme corps prismatiques rectilignes dont la surface de base est orientée parallèlement à la surface principale,
    caractérisé en ce que
    (c) la pièce mobile (11) du deuxième micro-élément (2)
    est configurée comme corps prismatique rectiligne et
    peut être déplacée latéralement et en ce que
    (d) la surface de base du corps prismatique rectiligne qui forme la pièce mobile (11) présente
    soit la forme d'un ventre de vibration symétrique dans la position de débranchement (A') et
    la forme d'un ventre de vibration asymétrique dans la position de branchement (B') ou
    soit décrit deux lignes parallèles en forme de cosinus qui sont reliées l'une à l'autre au milieu (8) situé entre leurs deux extrémités (6, 7).
  17. Système micro-électromécanique selon l'une des revendications 1 à 16, dans lequel
    (a) le substrat (S) est configuré comme corps allongé plat doté d'une surface principale et
    (b) les micro-éléments (1, 1', 2, 19, 20, 23, 24) sont configurés comme corps prismatiques rectilignes dont la surface de base est orientée parallèlement à la surface principale,
    caractérisé en ce que
    (c) au moins un micro-élément (1, 1', 2, 19, 20, 23, 24) qui peut être commuté de manière bistable entre une position initiale (A) et une position de travail (B) est prévu, et sa pièce de commutation
    contient une première extrémité fixe reliée fixement au substrat (S),
    une deuxième extrémité fixe reliée fixement au substrat (S) et
    une pièce mobile disposée entre ces deux extrémités fixes,
    (d) laquelle pièce mobile
    est configurée comme corps prismatique rectiligne et
    peut être déplacée latéralement, et
    (e) en ce que la surface de base du corps prismatique rectiligne qui forme la pièce mobile
    soit présente la forme d'un ventre de vibration symétrique dans la position de débranchement (A') et
    la forme d'un ventre de vibration asymétrique dans la position de branchement (B'), ou
    soit décrit deux lignes parallèles en forme de cosinus qui sont reliées l'une à l'autre au milieu situé entre leurs deux extrémités.
  18. Système micro-électromécanique selon la revendication 3, caractérisé en ce que la pièce mobile (11) du deuxième micro-élément (2) est déformable élastiquement lorsque le premier micro-élément (1) est commuté de sa position initiale (A) jusque dans sa position de travail (B).
  19. Système micro-électromécanique selon la revendication 18, caractérisé en ce que :
    (a) le système micro-électromécanique présente deux contacts fixes (17, 18) reliés fixement au substrat et
    (b) en ce que la pièce mobile (11) du deuxième micro-élément (2) présente une zone de contact (16) électriquement conductrice,
    laquelle zone de contact (16) est disposée dans la zone d'une extrémité du deuxième micro-élément (2) opposée à la première extrémité (10) du deuxième micro-élément (2) et
    les deux contacts fixes (17, 18) étant reliés l'un à l'autre de manière conductrice par ladite zone de contact (16) lorsque le deuxième micro-élément (2) est dans la position de débranchement (A').
  20. Système micro-électromécanique selon l'une des revendications 1 à 9 ou 18 ou 19, dans lequel
    (a) le substrat (S) est configuré comme corps allongé plat doté d'une surface principale, caractérisé en ce que :
    (b) la pièce de commutation (5) du premier micro-élément (1) peut être déplacée à l'horizontale et
    (c) en ce que la pièce mobile (11) du deuxième micro-élément (2) peut être déplacée à l'horizontale.
  21. Procédé de fabrication d'un système micro-électromécanique, dans lequel
    (a) un premier micro-élément (1) relié au substrat est créé dans un substrat (S) et
    (b) un deuxième micro-élément (2) relié au substrat est créé dans le substrat, et
    (c) une première face (3a) du premier micro-élément (1) et une deuxième face (4a) du deuxième micro-élément (2), lesquelles faces (3a, 4a) sont tournées l'une vers l'autre et situées à distance l'une de l'autre, sont formées en recourant à une opération de structuration,
    caractérisé en ce que
    (d) le deuxième micro-élément (2) a une forme telle qu'il présente une pièce mobile (11),
    (e) le premier micro-élément (1) a une forme telle que
    il se trouve dans une position initiale (A),
    il peut être commuté de manière bistable depuis la position initiale (A) jusque dans une position de travail (B),
    la distance entre la première (3a) et la deuxième face (4a) dans la position de travail (B) est plus petite que la distance minimale qui peut être créée entre la première face (3a) et la deuxième face (4a) par l'opération de structuration et
    (f) en ce qu'après la formation de la première face (3a) et la deuxième face (4a) par l'opération de structuration, le premier micro-élément (1) est commuté dans la position de travail (B).
  22. Procédé de fabrication selon la revendication 21,
    caractérisé en ce qu'avant la commutation du premier micro-élément (1) de la position de travail (B), la première face (3a) du premier micro-élément (1) est dotée d'un premier revêtement (3b) électriquement conducteur ou électriquement non conducteur,
    et/ou en ce que
    la deuxième surface (4a) du deuxième micro-élément (2) est dotée d'un deuxième revêtement (4b) électriquement conducteur ou électriquement non conducteur.
  23. Procédé de fabrication selon l'une des revendications 21 à 22, caractérisé en ce qu'il fournit l'un des systèmes micro-électromécaniques selon l'une des revendications 1 à 20.
EP02796487A 2002-01-18 2002-12-23 Systeme micro-electromecanique et procede de fabrication Expired - Lifetime EP1468436B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02796487A EP1468436B1 (fr) 2002-01-18 2002-12-23 Systeme micro-electromecanique et procede de fabrication

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US1662 2002-01-18
WOPCT/US02/01662 2002-01-18
PCT/US2002/001662 WO2002058089A1 (fr) 2001-01-19 2002-01-18 Techniques, mecanismes et applications d'actionnement bistables
EP02405334 2002-04-24
EP02405334A EP1357571A1 (fr) 2002-04-24 2002-04-24 Système microélectromécanique et son procédé de fabrication
EP02796487A EP1468436B1 (fr) 2002-01-18 2002-12-23 Systeme micro-electromecanique et procede de fabrication
PCT/CH2002/000722 WO2003060940A1 (fr) 2002-01-18 2002-12-23 Systeme micro-electromecanique et procede de fabrication

Publications (2)

Publication Number Publication Date
EP1468436A1 EP1468436A1 (fr) 2004-10-20
EP1468436B1 true EP1468436B1 (fr) 2005-09-14

Family

ID=28686037

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02405334A Withdrawn EP1357571A1 (fr) 2002-01-18 2002-04-24 Système microélectromécanique et son procédé de fabrication
EP02796487A Expired - Lifetime EP1468436B1 (fr) 2002-01-18 2002-12-23 Systeme micro-electromecanique et procede de fabrication

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02405334A Withdrawn EP1357571A1 (fr) 2002-01-18 2002-04-24 Système microélectromécanique et son procédé de fabrication

Country Status (4)

Country Link
EP (2) EP1357571A1 (fr)
AT (1) ATE304736T1 (fr)
AU (1) AU2002361920A1 (fr)
WO (1) WO2003060940A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052006A2 (fr) 1998-04-08 1999-10-14 Etalon, Inc. Modulation interferometrique de rayonnement
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
MX2007003577A (es) * 2004-09-27 2007-05-23 Idc Llc Conmutadores mems con membranas de deformacion.
US7446927B2 (en) 2004-09-27 2008-11-04 Idc, Llc MEMS switch with set and latch electrodes
US7532195B2 (en) 2004-09-27 2009-05-12 Idc, Llc Method and system for reducing power consumption in a display
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
EP1850360A1 (fr) 2006-04-26 2007-10-31 Seiko Epson Corporation Microrupteur avec une première pièce commandable et une seconde pièce de contact
US7724417B2 (en) 2006-12-19 2010-05-25 Qualcomm Mems Technologies, Inc. MEMS switches with deforming membranes
US8022896B2 (en) 2007-08-08 2011-09-20 Qualcomm Mems Technologies, Inc. ESD protection for MEMS display panels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9309327D0 (en) * 1993-05-06 1993-06-23 Smith Charles G Bi-stable memory element
ATE294461T1 (de) * 1996-02-10 2005-05-15 Fraunhofer Ges Forschung Bistabiler microantrieb mit gekoppelten membranen

Also Published As

Publication number Publication date
WO2003060940A1 (fr) 2003-07-24
AU2002361920A1 (en) 2003-07-30
ATE304736T1 (de) 2005-09-15
EP1468436A1 (fr) 2004-10-20
EP1357571A1 (fr) 2003-10-29

Similar Documents

Publication Publication Date Title
DE60225484T2 (de) Membranakivierter mikroelektromechanischer schalter
US6798315B2 (en) Lateral motion MEMS Switch
DE602005003008T2 (de) RF MEMS Schalter mit einer flexiblen und freien Schaltmembran
EP0485739B2 (fr) Microvalve dans une structure à plusieurs couches
DE60222075T2 (de) Elektrostatischer Betätiger, und elektrostatisches Relais und andere Vorrichtungen unter Benutzung derselben
DE112011102203B4 (de) Elektromechanische Schaltereinheit und Verfahren zum Betätigen derselben
DE69806487T2 (de) Mikromechanische vorrichtungen mit thermischer bogentraverse und zugehörige herstellungsverfahren
EP1252640A1 (fr) Microrelais
EP1468436B1 (fr) Systeme micro-electromecanique et procede de fabrication
WO2022189056A1 (fr) Commutateur de mems à commande électrique
EP1163692B1 (fr) Microrelais fonctionnant par deplacement d'un element de contact parallelement a un substrat
WO2008110389A1 (fr) Dispositif de commutateur micromécanique à amplification de force mécanique
WO2021123147A1 (fr) Élément piézoélectrique mobile et son procédé de production
WO1999043013A1 (fr) Relais micromecanique electrostatique
DE112011101117B4 (de) Integrierter elektromechanischer Aktuator und Verfahren zur Herstellung desselben
DE19800189C2 (de) Mikromechanischer Schalter
DE102007015726B4 (de) Auslenkbare Struktur, mikromechanische Struktur mit derselben und Verfahren zur Einstellung einer mikromechanischen Struktur
EP1246215B1 (fr) Microrelais à nouvelle construction
EP1719144B1 (fr) Interrupteur mems haute frequence comportant un element de commutation courbe, et son procede de production
EP1156504A2 (fr) Relais micromécanique à commutation améliorée
DE60217802T2 (de) Durch niedrige Spannung gesteuertes Mikroschaltbauelement
EP1312100B1 (fr) Microcontact
DE19950964A1 (de) Mikromechanisches Relais und Verfahren zur Herstellung
DE19937811A1 (de) Relais, insbesondere Mikro Relais zum Schalen eines Stromkreises
EP1394825B1 (fr) Dispositif de contact microméchanique et microrelais utilisant le même

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050914

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050914

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50204300

Country of ref document: DE

Date of ref document: 20051020

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051223

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060214

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: ABB RESEARCH LTD.

Effective date: 20051231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100108

Year of fee payment: 8

Ref country code: GB

Payment date: 20091218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110210

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50204300

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703