EP1465780B1 - Diffractive security element having an integrated optical waveguide - Google Patents

Diffractive security element having an integrated optical waveguide Download PDF

Info

Publication number
EP1465780B1
EP1465780B1 EP02806315A EP02806315A EP1465780B1 EP 1465780 B1 EP1465780 B1 EP 1465780B1 EP 02806315 A EP02806315 A EP 02806315A EP 02806315 A EP02806315 A EP 02806315A EP 1465780 B1 EP1465780 B1 EP 1465780B1
Authority
EP
European Patent Office
Prior art keywords
security element
diffractive security
layer
waveguide
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02806315A
Other languages
German (de)
French (fr)
Other versions
EP1465780A1 (en
Inventor
Andreas Schilling
Wayne Robert Tompkin
René Staub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OVD Kinegram AG
Original Assignee
OVD Kinegram AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4340047&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1465780(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by OVD Kinegram AG filed Critical OVD Kinegram AG
Publication of EP1465780A1 publication Critical patent/EP1465780A1/en
Application granted granted Critical
Publication of EP1465780B1 publication Critical patent/EP1465780B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0033Owner certificates, insurance policies, guarantees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0053Forms specially designed for commercial use, e.g. bills, receipts, offer or order sheets, coupons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0073Printed matter of special format or style not otherwise provided for characterised by shape or material of the sheets

Definitions

  • the invention relates to a diffractive security element according to the preamble of claim 1.
  • diffractive security elements are used to authenticate items such as banknotes, ID cards of all kinds, valuable documents, in order to determine the authenticity of the item without much effort.
  • the diffractive security element is firmly connected to the object in the output of the article in the form of a cut from a thin layer composite brand.
  • Diffractive security elements of the type mentioned are from the EP 0 105 099 A1 and the EP 0 375 833 A1 known. These security elements comprise a pattern of tessellated surface elements having a diffraction grating. The diffraction gratings are azimuthally arranged in such a way that upon rotation the visible pattern generated by diffracted light performs a predetermined course of motion.
  • the US 4,856,857 describes the construction of transparent security elements with embossed microscopically fine relief structures. These diffractive security elements generally consist of one piece of a thin laminate of plastic.
  • the boundary layer between two of the layers has microscopically fine reliefs of light-diffracting structures. To increase the reflectivity, the boundary layer between the two layers is coated with a mostly metallic reflection layer.
  • the structure of the thin layer composite and the materials used for this purpose are, for example, in US 4,856,857 and the WO 99/47983 described. From the DE 33 08 831 A1 It is known to apply the thin layer composite with the aid of a carrier film on an object.
  • the disadvantage of the known diffractive security elements is the difficulty of visually recognizing complicated, optically changing patterns in a narrow solid angle and the extremely high Surface brightness justified, under which a surface area occupied by a diffraction grating is visible to an observer.
  • the high surface brightness can also make the recognizability of the shape of the surface element more difficult.
  • An easy to recognize security element is from the WO 83/00395 known. It consists of a diffractive subtractive color filter which, when illuminated with, for example, daylight, reflects red light in one viewing direction and, after rotation of the security element, reflects 90 ° light of another color in its plane.
  • the security element consists of plastic-embedded fine fins made of a transparent dielectric with a refractive index that is much larger than the refractive index of the plastic.
  • the lamellae form a lattice structure with a spatial frequency of 2500 lines / mm and reflect red light with very high efficiency in the zeroth order of diffraction when the white light incident on the lamellar structure is polarized such that the E-vector of the incident light is parallel to the light Slats is aligned.
  • the lamellar structure reflects green light in the zeroth diffraction order; for even higher spatial frequencies, the reflected color in the spectrum goes into the blue region.
  • the US 4,426,130 describes transparent, reflective sinusoidal phase grating structures.
  • the phase grating structures are designed such that they have the greatest possible diffraction efficiency in one of the first two diffraction orders.
  • the invention has for its object to provide a cost-effective and easy to recognize, diffractive security element that is easily visually verifiable in daylight.
  • FIG. 1 1 denotes a layer composite, 2 a security element, 3 a substrate, 4 a base layer, 5 an optical waveguide, 6 a protective layer, 7 an adhesive layer, 8 indicia and 9 an optically active structure at the boundary layer between the base layer 4 and the waveguide 5.
  • the composite layer 1 consists of several layers of different, successively applied to a support film not shown here dielectric layers and comprises in the order given at least the base layer 4, the waveguide 5, the protective layer 6 and the adhesive layer 7.
  • the carrier film is part of the base layer 4 and forms a stabilization layer 10 for an impression layer 11 arranged on the surface of the stabilization layer 10 facing the waveguide 5.
  • the connection between the stabilization layer 10 and the impression layer 11 has a very high adhesive strength.
  • a separating layer is arranged between the base layer 4 and the carrier film, since the carrier film serves only for applying the thin layer composite 1 to the substrate 3 and is then removed from the layer composite 1.
  • the stabilization layer 10 is, for example, a scratch-resistant lacquer for protecting the softer impression layer 11.
  • This embodiment of the layer composite 1 is mentioned in the introduction DE 33 08 831 A1 described.
  • the base layer 4, the waveguide 5, the protective layer 6 and the adhesive layer 7 are transparent to at least part of the visible spectrum, but are preferably crystal clear. Therefore, the on the substrate possibly covered with the composite layer 1 Indicia 8 visible through the layer composite 1 through.
  • the protective layer 6 and / or the adhesive layer 7 is colored or black.
  • a further embodiment of the security element has only the protective layer 6, if this embodiment is not intended for sticking.
  • the layer composite 1 is used as e.g. Plastic laminate produced in the form of a long film web with a plurality of juxtaposed copies of the security element 2.
  • the security elements 2 are cut out of the film web and joined to the substrate 3 by means of the adhesive layer 7.
  • the waveguide 5 In order for the waveguide 5 to be optically effective, the waveguide 5 consists of a transparent dielectric whose refractive index is significantly higher than the refractive indices of the plastics for the base layer 4, the protective layer 6 and the adhesive layer 7.
  • Suitable dielectric materials are, for example, in the publications mentioned above WO 99/47983 and US 4,856,857 , Tables 1 and 6 listed.
  • Preferred dielectrics are ZnS, TiO 2 , etc. with refractive indices of n ⁇ 2.3.
  • the waveguide 5 conforms to the interface having the optically active structure 9 for the impression layer 11 and is therefore modulated with the optically active structure 9.
  • a lower limit of about 2200 lines / mm or an upper limit for a period length d of 450 nm is set for the spatial frequency f.
  • diffraction gratings become zeroth diffraction gratings Called "order" and are meant by “diffraction gratings.”
  • the diffraction grating has the FIG. 1 for example, a sinusoidal profile, but other known profiles are usable.
  • the waveguide 5 begins to perform its function, i. to influence the reflected light 14 when the waveguide 5 comprises at least 10 to 20 periods of the optically active structure 9 and therefore has a minimum, dependent on the period length d length L of L> 10d.
  • the lower limit of the length L of the waveguide 5 is in the range of 50 to 100 period lengths d, so that the waveguide 5 exhibits its optimum effectiveness.
  • the security element 2 has on its entire surface a uniform diffraction grating for the optically active structure 9 and a waveguide 5 of uniform layer thickness s.
  • mosaic-shaped surface parts form an optically easily recognizable pattern. In order for a surface part of the mosaic to be visible in its outlines to the naked eye observer, the dimensions should be greater than 0.3 mm, ie. the waveguide 5 has a sufficient minimum length L in each case.
  • the security element 2 illuminated with white diffuse incident light 13 changes the color of the reflected diffracted light 14 when its orientation to the observation direction is changed by means of a tilting or rotary movement.
  • the rotational movement has the surface normal 12 as the axis of rotation, the tilting movement takes place about an axis of rotation lying in the plane of the security element 2.
  • the respective embodiments of the security element 2 have different optical behavior. Such embodiments are described in the following non-exhaustive examples.
  • the waveguide 5 is shown enlarged in cross section.
  • the plastic layers, stabilization layer 10, the impression layer 11, the protective layer 6 and the adhesive layer 7 (FIG. Fig. 1 ) according to US 4,856,857 , Table 6 refractive indices n 1 in the range of 1.5 to 1.6.
  • optically active structure 9 On the introduced into the molding layer 11 optically active structure 9 is the visible light 13 (FIG. Fig.1 ) transparent dielectric with the refractive index n 2 uniformly deposited in the layer thickness s, so that on the interface against the protective layer 6, the surface of the waveguide 5 also has the optically active structure 9.
  • the layer thickness s ⁇ t 75 ⁇ 3 nm.
  • the light beam B pTM incident in the other diffraction plane 15 at the same angle of incidence ⁇ 25 ° leaves the security element 2 as diffracted light 14 in red color, while the diffracted light 14 produced by the light beam B pTE produces an orange mixed color with one in comparison with the reflected light 14 of the light beam B pTM has weak intensity.
  • the color of the security element 2 changes when illuminated with white, unpolarized incident light 13 for an observer from green to red with a rotation of the security element 2 by 90 °.
  • the tilting of the security element 2 in the range of ⁇ 25 ° ⁇ 5 ° changes the color only insignificantly; the change is barely noticeable with the naked eye.
  • This behavior of the security element 2 does not change substantially, except for slight color shifts, when the layer thickness s of the waveguide 5 is varied between 65 nm and 85 nm and the profile depth t between 60 nm and 90 nm.
  • a shortening of the period length d to 260 nm shifts the color of the diffracted light 14 with the incident light beam B nTE from green to red, and in the incident light beam B pTM from red to green.
  • the diffracted light 14 has a red color to which mainly the light beams B pTM contribute.
  • the security element 2 rotates by a few azimuth angle degrees, the reflected color remains red, and as the rotation angle continues to increase, two colors are reflected symmetrically to red, from which the shorter-wavelength color shifts toward the ultraviolet and the longer-wavelength color rapidly disappears in the infrared range.
  • the shorter wavelength color is an orange; the longer-wavelength color is invisible to the observer.
  • the optically active structure 9 consists of at least two intersecting diffraction gratings.
  • the diffraction gratings intersect with advantage at crossing angles in the range of 10 ° to 30 °.
  • Example 5 With asymmetric sawtooth relief profile
  • the optically active structure 9 is a superposition of the diffraction grating zeroth order with the diffraction grating vector 19 (FIG. Figure 5 ) and with an asymmetrical, sawtooth-shaped relief profile 17 of a low spatial frequency of F ⁇ 200 lines / mm.
  • This is advantageous for a consideration of the security element 2, since for many persons the consideration of the security elements 2 described above under the angle of reflection ⁇ (FIG. Fig. 1 ) is very unusual.
  • the highest permissible spatial frequency F depends on the period length d ( Fig. 3 ) of the optically active structure 9.
  • the diffracted light 14 is reflected at a larger angle of reflection ⁇ 1 when illuminating the security element 2 by means of incident light angle 13 to the surface normal 12.
  • the incident light 13 is incident at the angle ⁇ + ⁇ to the vertical 18 on the inclined plane of the waveguide 5 due to the relief profile 17 and is reflected as diffracted light 14 at the same angle to the vertical 18.
  • the FIG. 5 shows the optically active structure 9, which is a superposition of the diffraction grating with an asymmetric, sawtooth-shaped relief profile 17.
  • the azimuthal orientation of the diffraction grating is determined by means of its diffraction grating vector 19.
  • the relief structure 17 has the azimuthal orientation indicated by the relief vector 20.
  • these security elements 2 ( Fig. 3 ) have a high diffraction efficiency of almost 100%, at least for one polarization.
  • the most important parameter of the color shifting capability security element 2 is the period length d ( Fig. 3 ).
  • the layer thickness s ( Fig. 3 ) of the waveguide and the tread depth t ( Fig. 3 ) are not so critical to the ZnS and TiO 2 dielectrics and have little effect on the diffraction efficiency and exact location of the color in the visible spectrum, but do affect the spectral purity of the reflected diffracted light 14 (FIG. Fig. 4 ).
  • the parameter period length d determines the color of the light reflected in the zeroth order reflected light 14.
  • a change in the parameter layer thickness s of the waveguide 5 (FIG. Fig. 4 ) mainly influences the spectral purity of the color of the diffracted light 14 and shifts the position of the color in the spectrum to a small extent.
  • the tread depth t affects the modulation of the waveguide 5 and thus its efficiency. Deviations of ⁇ 5% from the values given in the examples for d, s, t and ⁇ do not appreciably affect the described optical effects for the naked eye. This large tolerance facilitates the fabrication of the security element 2 considerably.
  • Table 1 Parameters (in nanometers) limit area preferred range minimum maximum minimum maximum Period length d 100 500 200 450 Tread depth t 20 1000 50 500 Layer thickness s 5 500 10 100
  • FIGS. 6 and 7 is an embodiment of the security element 2 ( Fig. 3 ), on the surface of which a combination of a plurality of partial surfaces 21, 22 is arranged.
  • the partial surfaces 21, 22 contain waveguides 5 (FIG. Fig. 3 ) and differ in the optically active structure 9 (FIG. Fig. 3 ) and in the azimuthal orientation of the diffraction grating vector 19 (FIG. Fig. 5 ).
  • Technically difficult to realize are in layer composite 1 ( Fig. 1 ) Differences in the layer thickness s of the waveguide 5; but these are not explicitly excluded here.
  • a mark 23 is cut out and adhered to the substrate 3.
  • the mark 23 has two partial surfaces 21, 22.
  • the mark 23 has two partial surfaces 21, 22.
  • the mark 23 has two partial surfaces 21, 22.
  • the mark 23 has two partial surfaces 21, 22.
  • the mark 23 has two partial surfaces 21, 22.
  • the mark 23 has two partial surfaces 21, 22.
  • the mark 23 has two partial surfaces 21, 22.
  • the security element 2 of Example 1 described above is used, the orientation of the diffraction grating vector 19 (FIG. Fig. 5 ) of the first partial surface 21 is orthogonal to the diffraction grating vector 19 of the second partial surface 22.
  • the observation direction is in a plane containing the surface normal 12 whose trace in the plane of the FIGS. 6 and 7 indicated by the dashed line 24.
  • the white, unpolarized incident light 13 ( Fig. 1 ) perpendicular to the grid lines and the second sub-area 22, the incident light 13 parallel to the grid lines at the angle of incidence ⁇ 25 °.
  • the observer therefore sees the first partial surface 21 in a green color and the second partial surface 22 in a red color. Since the layer composite 1 ( Fig. 1 ) is transparent, indicia 8 of the substrate can be seen under the mark 23.
  • the incident light 13 ( Fig. 1 ) on the first face 21 perpendicular to the grid lines of the diffraction grating and on the second face 22 parallel to the grid lines, as indicated by the angle between hatching of the faces 21, 22 and the line 24 in the drawing of FIG. 7 is indicated.
  • the substrate 3 By turning the substrate 3 by 90 ° to swap the Colors of the partial surfaces 21, 22; ie, the first partial surface 21 shines in red and the second partial surface 22 in green.
  • the arrangement of a plurality of equal sub-areas 21 on the mark 23 form a circular ring, wherein the diffraction grating vectors 19 are aligned with the circular center.
  • the farthest (0 ° ⁇ 20 °) and the nearest (180 ° ⁇ 20 °) portions of the annulus glow in a green color and the portions farthest from the diameter when viewed along a diameter of the annulus at 90 ° ⁇ 20 ° or 270 ° ⁇ 20 ° of the annulus in a red color.
  • Intermediate areas have the above-described mixed color of two adjacent spectral regions.
  • the color pattern is invariant with respect to a rotation of the substrate 3 and appears to be relative to any indicia 8 (FIG. Fig. 1 ) to move.
  • a circular ring with curved grid lines produces the same effect when the grid lines are concentric with the center of the annulus.
  • the faces 21, 22 are arranged on a background 25.
  • the partial surfaces 21 and 22 contain the optically active structure 9 (FIG. Fig. 4 ) from example 5, wherein the relief vector 20 (FIG. Fig. 5 ) of a partial surface 21 is opposite to the relief vector 20 of the other partial surface 22.
  • the optically effective structure 9 of the background 25 consists only of the diffraction grating that is not covered by the relief structure 17 (FIG. Fig. 5 ) is modulated.
  • the diffraction grating vector 19 may be aligned parallel or perpendicular to the relief vectors 20; the angle ⁇ ( Fig. 5 ) may well have other values.
  • FIG. Fig. 6 field portions 26 with grating structures with spatial frequencies in the range of 300 lines / mm to 1800 lines / mm and azimuth angles in the range 0 ° to 360 °, which in in the aforementioned EP 0 105 099 A1 and the EP 0 375 833 A1 surface patterns described are used.
  • the field components 26 extend over the security element 2 or over the partial surfaces 21, 22, 25 and form one of the known optically variable patterns, which changes in a predetermined manner during rotation or tilting independently of the optical effects of the waveguide structures under the same observation conditions.
  • the advantage of this combination is that the surface patterns increase the security against forgery of the security element 2.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Credit Cards Or The Like (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A diffractive security element ( 2 ) is divided into surface portions, having an optically effective structure ( 9 ) at interfaces embedded between two layers of a layer composite ( 1 ) of plastic material. At least the base layer ( 4 ), which is to be illuminated, of the layer composite ( 1 ) is transparent. The optically effective structure ( 9 ) as a base structure has a zero order diffraction grating with a period length of at most 500 nm. In at least one of the surface portions an integrated optical waveguide ( 5 ) with a layer thickness (s) of a transparent dielectric is embedded between the base layer ( 4 ) and an adhesive layer ( 7 ) of the layer composite ( 1 ) and/or a protective layer ( 6 ) of the layer composite ( 1 ), wherein the profile depth of the optically effective structure ( 9 ) is in a predetermined relationship with the layer thickness (s). Upon illumination with white incident light ( 13 ) the security element ( 2 ) produces light ( 14 ) which is diffracted in the zero diffraction order, of high intensity and with an intensive color.

Description

Die Erfindung bezieht sich auf ein diffraktives Sicherheitselement gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a diffractive security element according to the preamble of claim 1.

Solche diffraktive Sicherheitselemente werden zum Beglaubigen von Gegenständen, wie Banknoten, Ausweisen aller Art, wertvollen Dokumenten, verwendet, um die Echtheit des Gegenstands ohne grossen Aufwand feststellen zu können. Das diffraktive Sicherheitselement wird bei der Ausgabe des Gegenstands in Form einer aus einem dünnen Schichtverbund geschnittenen Marke mit dem Gegenstand fest verbunden.Such diffractive security elements are used to authenticate items such as banknotes, ID cards of all kinds, valuable documents, in order to determine the authenticity of the item without much effort. The diffractive security element is firmly connected to the object in the output of the article in the form of a cut from a thin layer composite brand.

Diffraktive Sicherheitselemente der eingangs genannten Art sind aus der EP 0 105 099 A1 und der EP 0 375 833 A1 bekannt. Diese Sicherheitselemente umfassen ein Muster aus mosaikartig angeordneten Flächenelementen, die ein Beugungsgitter aufweisen. Die Beugungsgitter sind azimutal so vorbestimmt angeordnet, dass bei einer Drehung das durch gebeugtes Licht erzeugte, sichtbare Muster einen vorbestimmten Bewegungsablauf ausführt.Diffractive security elements of the type mentioned are from the EP 0 105 099 A1 and the EP 0 375 833 A1 known. These security elements comprise a pattern of tessellated surface elements having a diffraction grating. The diffraction gratings are azimuthally arranged in such a way that upon rotation the visible pattern generated by diffracted light performs a predetermined course of motion.

Die US 4,856,857 beschreibt den Aufbau transparenter Sicherheitselemente mit eingeprägten mikroskopisch feinen Reliefstrukturen. Diese diffraktiven Sicherheitselemente bestehen im allgemeinen aus einem Stück eines dünnen Schichtverbunds aus Kunststoff. Die Grenzschicht zwischen zwei der Schichten weist mikroskopisch feine Reliefs von lichtbeugenden Strukturen auf. Zur Erhöhung der Reflektivität ist die Grenzschicht zwischen den beiden Schichten mit einer meist metallischen Reflexionsschicht überzogen. Der Aufbau des dünnen Schichtverbunds und die dazu verwendbaren Materialien sind beispielsweise in der US 4,856,857 und der WO 99/47983 beschrieben. Aus der DE 33 08 831 A1 ist bekannt, den dünnen Schichtverbund mit Hilfe einer Trägerfolie auf einen Gegenstand aufzubringen.The US 4,856,857 describes the construction of transparent security elements with embossed microscopically fine relief structures. These diffractive security elements generally consist of one piece of a thin laminate of plastic. The boundary layer between two of the layers has microscopically fine reliefs of light-diffracting structures. To increase the reflectivity, the boundary layer between the two layers is coated with a mostly metallic reflection layer. The structure of the thin layer composite and the materials used for this purpose are, for example, in US 4,856,857 and the WO 99/47983 described. From the DE 33 08 831 A1 It is known to apply the thin layer composite with the aid of a carrier film on an object.

Der Nachteil der bekannten diffraktiven Sicherheitselemente ist in der Schwierigkeit des visuellen Wiedererkennens von komplizierten, sich optisch verändernden Mustern in einem engen Raumwinkel und der extrem hohen Flächenhelligkeit begründet, unter denen ein mit einem Beugungsgitter belegtes Flächenelement für einen Beobachter sichtbar ist. Die hohe Flächenhelligkeit kann zudem die Erkennbarkeit der Form des Flächenelements erschweren.The disadvantage of the known diffractive security elements is the difficulty of visually recognizing complicated, optically changing patterns in a narrow solid angle and the extremely high Surface brightness justified, under which a surface area occupied by a diffraction grating is visible to an observer. The high surface brightness can also make the recognizability of the shape of the surface element more difficult.

Ein einfach zu erkennendes Sicherheitselement ist aus der WO 83/00395 bekannt. Es besteht aus einem diffraktiven subtraktiven Farbfilter, das bei Beleuchtung mit z.B. Tageslicht in einer Betrachtungsrichtung rotes Licht reflektiert und nach einer Drehung des Sicherheitselements in seiner Ebene um 90° Licht einer anderen Farbe reflektiert. Das Sicherheitselement besteht aus in Kunststoff eingebetteten, feinen Lamellen aus einem transparenten Dielektrikum mit einem Brechungsindex, der viel grösser ist als der Brechungsindex des Kunststoffs. Die Lamellen bilden eine Gitterstruktur mit einer Spatialfrequenz von 2500 Linien/mm und reflektieren in der nullten Beugungsordnung rotes Licht mit einer sehr hohen Effizienz, wenn das auf die Lamellenstruktur einfallende weisse Licht so polarisiert ist, dass der E-Vektor des einfallenden Lichts parallel zu den Lamellen ausgerichtet ist. Für Spatialfrequenzen von 3100 Linien/mm reflektiert die Lamellenstruktur in der nullten Beugungsordnung grünes Licht, für noch höhere Spatialfrequenzen geht die reflektierte Farbe im Spektrum in den blauen Bereich. Nach van Renesse, Optical Document Security, 2nd Ed., pp. 274 - 277, ISBN 0-89006-982-4 sind solche Strukturen in grossen Mengen schwierig kostengünstig herzustellen.An easy to recognize security element is from the WO 83/00395 known. It consists of a diffractive subtractive color filter which, when illuminated with, for example, daylight, reflects red light in one viewing direction and, after rotation of the security element, reflects 90 ° light of another color in its plane. The security element consists of plastic-embedded fine fins made of a transparent dielectric with a refractive index that is much larger than the refractive index of the plastic. The lamellae form a lattice structure with a spatial frequency of 2500 lines / mm and reflect red light with very high efficiency in the zeroth order of diffraction when the white light incident on the lamellar structure is polarized such that the E-vector of the incident light is parallel to the light Slats is aligned. For spatial frequencies of 3100 lines / mm, the lamellar structure reflects green light in the zeroth diffraction order; for even higher spatial frequencies, the reflected color in the spectrum goes into the blue region. To van Renesse, Optical Document Security, 2nd ed., pp. 274-277, ISBN 0-89006-982-4 Such structures are difficult to produce in large quantities at low cost.

Die US 4,426,130 beschreibt transparente, reflektierende sinusförmige Phasengitterstrukturen. Die Phasengitterstrukturen sind so ausgelegt, dass sie in der einen der beiden ersten Beugungsordnungen eine möglichst grosse Beugungseffizienz aufweisen.The US 4,426,130 describes transparent, reflective sinusoidal phase grating structures. The phase grating structures are designed such that they have the greatest possible diffraction efficiency in one of the first two diffraction orders.

Der Erfindung liegt die Aufgabe zugrunde, ein kostengünstiges und einfach zu erkennendes, diffraktives Sicherheitselement zu schaffen, das im Tageslicht einfach visuell überprüfbar ist.The invention has for its object to provide a cost-effective and easy to recognize, diffractive security element that is easily visually verifiable in daylight.

Die genannte Aufgabe wird erfindungsgemäss durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Unteransprüchen.The above object is achieved by the features specified in the characterizing part of claim 1 according to the invention. Advantageous embodiments of the invention will become apparent from the dependent subclaims.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben.Embodiments of the invention are illustrated in the drawings and will be described in more detail below.

Es zeigen:

Figur 1
ein Sicherheitselement im Querschnitt,
Figur 2
Beugungsebenen und Beugungsgitter,
Figur 3
einen vergrösserten Ausschnitt aus Fig. 1,
Figur 4
ein anderes Sicherheitselement im Querschnitt,
Figur 5
Gittervektoren einer optisch wirksamen Struktur,
Figur 6
eine Sicherheitsmarke in Draufsicht mit dem Azimut 0° und
Figur 7
die Sicherheitsmarke in Draufsicht mit dem Azimut 90°.
Show it:
FIG. 1
a security element in cross section,
FIG. 2
Diffraction planes and diffraction gratings,
FIG. 3
an enlarged section Fig. 1 .
FIG. 4
another security element in cross section,
FIG. 5
Lattice vectors of an optically active structure,
FIG. 6
a safety mark in plan view with the azimuth 0 ° and
FIG. 7
the safety mark in plan view with the azimuth 90 °.

In der Figur 1 bezeichnet 1 einen Schichtverbund, 2 ein Sicherheitselement, 3 ein Substrat, 4 eine Basisschicht, 5 einen optischen Wellenleiter, 6 eine Schutzschicht, 7 eine Kleberschicht, 8 Indicia und 9 eine optisch wirksame Struktur an der Grenzschicht zwischen der Basisschicht 4 und dem Wellenleiter 5. Der Schichtverbund 1 besteht aus mehreren Lagen von verschiedenen, nacheinander auf eine hier nicht gezeigte Trägerfolie aufgebrachten dielektrischen Schichten und umfasst in der angegebenen Reihenfolge wenigstens die Basisschicht 4, den Wellenleiter 5, die Schutzschicht 6 und die Kleberschicht 7. Für besonders dünne Schichtverbunde 1 bestehen die Schutzschicht 6 und die Kleberschicht 7 aus demselben Material, z.B. einem Heisskleber. Die Trägerfolie ist in einer Ausführungsform Teil der Basisschicht 4 und bildet eine Stabilisationsschicht 10 für eine auf der dem Wellenleiter 5 zugewandten Oberfläche der Stabilisationsschicht 10 angeordnete Abformschicht 11. Die Verbindung zwischen der Stabilisationsschicht 10 und der Abformschicht 11 weist eine sehr hohe Haftfestigkeit auf. Bei einer anderen Ausführungsform ist zwischen der Basisschicht 4 und der Trägerfolie eine hier nicht gezeigte Trennschicht angeordnet, da die Trägerfolie lediglich zum Applizieren des dünnen Schichtverbunds 1 auf das Substrat 3 dient und danach vom Schichtverbund 1 entfernt wird. Die Stabilisationsschicht 10 ist z.B. ein kratzfester Lack zum Schützen der weicheren Abformschicht 11. Diese Ausführung des Schichtverbunds 1 ist in der eingangs erwähnten DE 33 08 831 A1 beschrieben. Die Basisschicht 4, der Wellenleiter 5, die Schutzschicht 6 und die Kleberschicht 7 sind wenigstens für einen Teil des sichtbaren Spektrums transparent, vorzugsweise jedoch glasklar. Daher sind die auf dem Substrat allfällig mit dem Schichtverbund 1 abgedeckten Indicia 8 durch den Schichtverbund 1 hindurch sichtbar.In the FIG. 1 1 denotes a layer composite, 2 a security element, 3 a substrate, 4 a base layer, 5 an optical waveguide, 6 a protective layer, 7 an adhesive layer, 8 indicia and 9 an optically active structure at the boundary layer between the base layer 4 and the waveguide 5. The composite layer 1 consists of several layers of different, successively applied to a support film not shown here dielectric layers and comprises in the order given at least the base layer 4, the waveguide 5, the protective layer 6 and the adhesive layer 7. For particularly thin laminates 1 exist Protective layer 6 and the adhesive layer 7 of the same material, such as a hot melt adhesive. In one embodiment, the carrier film is part of the base layer 4 and forms a stabilization layer 10 for an impression layer 11 arranged on the surface of the stabilization layer 10 facing the waveguide 5. The connection between the stabilization layer 10 and the impression layer 11 has a very high adhesive strength. In another embodiment, a separating layer, not shown here, is arranged between the base layer 4 and the carrier film, since the carrier film serves only for applying the thin layer composite 1 to the substrate 3 and is then removed from the layer composite 1. The stabilization layer 10 is, for example, a scratch-resistant lacquer for protecting the softer impression layer 11. This embodiment of the layer composite 1 is mentioned in the introduction DE 33 08 831 A1 described. The base layer 4, the waveguide 5, the protective layer 6 and the adhesive layer 7 are transparent to at least part of the visible spectrum, but are preferably crystal clear. Therefore, the on the substrate possibly covered with the composite layer 1 Indicia 8 visible through the layer composite 1 through.

In einer anderen Ausführungsform des Sicherheitselements, bei der die Transparenz nicht erforderlich ist, ist die Schutzschicht 6 und/oder die Kleberschicht 7 eingefärbt oder schwarz. Eine weitere Ausführung des Sicherheitselements weist nur die Schutzschicht 6 auf, falls diese Ausführungsform nicht zum Aufkleben bestimmt ist.In another embodiment of the security element, in which the transparency is not required, the protective layer 6 and / or the adhesive layer 7 is colored or black. A further embodiment of the security element has only the protective layer 6, if this embodiment is not intended for sticking.

Der Schichtverbund 1 wird als z.B. Kunststofflaminat in Form einer langen Folienbahn mit einer Vielzahl von nebeneinander angeordneten Kopien des Sicherheitselementes 2 hergestellt. Aus der Folienbahn werden die Sicherheitselemente 2 beispielsweise ausgeschnitten und mittels der Kleberschicht 7 mit dem Substrat 3 verbunden. Das Substrat 3, meist in Form eines Dokuments, einer Banknote, einer Bankkarte, eines Ausweises oder eines anderen wichtigen bzw. wertvollen Gegenstandes, wird mit dem Sicherheitselement 2 versehen, um die Echtheit des Gegenstandes zu beglaubigen.The layer composite 1 is used as e.g. Plastic laminate produced in the form of a long film web with a plurality of juxtaposed copies of the security element 2. For example, the security elements 2 are cut out of the film web and joined to the substrate 3 by means of the adhesive layer 7. The substrate 3, usually in the form of a document, a banknote, a bank card, a passport or other important or valuable object, is provided with the security element 2 in order to authenticate the authenticity of the object.

Damit der Wellenleiter 5 optisch wirksam wird, besteht der Wellenleiter 5 aus einem transparenten Dielektrikum, dessen Brechungsindex erheblich höher ist als die Brechungsindices der Kunststoffe für die Basisschicht 4, die Schutzschicht 6 und die Kleberschicht 7. Geeignete dielektrische Materialien sind beispielsweise in den eingangs erwähnten Schriften WO 99/47983 und US 4,856,857 , Tabellen 1 und 6 aufgeführt. Bevorzugte Dielektrika sind ZnS, TiO2 usw. mit Brechungsindices von n ≈ 2,3.In order for the waveguide 5 to be optically effective, the waveguide 5 consists of a transparent dielectric whose refractive index is significantly higher than the refractive indices of the plastics for the base layer 4, the protective layer 6 and the adhesive layer 7. Suitable dielectric materials are, for example, in the publications mentioned above WO 99/47983 and US 4,856,857 , Tables 1 and 6 listed. Preferred dielectrics are ZnS, TiO 2 , etc. with refractive indices of n ≈ 2.3.

Der Wellenleiter 5 schmiegt sich der die optisch wirksame Struktur 9 aufweisenden Grenzfläche zur Abformschicht 11 an und ist daher mit der optisch wirksamen Struktur 9 moduliert. Die optisch wirksame Struktur 9 ist ein Beugungsgitter mit einer so hohen Spatialfrequenz f, dass das unter einem Einfallswinkel α zur Flächennormale 12 des Sicherheitselements 2 einfallende Licht 13 vom Sicherheitselement 2 nur in die nullte Beugungsordnung gebeugt wird und das gebeugte Licht 14 unter dem Ausfallswinkel β reflektiert wird, wobei gilt: Einfallswinkel α = Ausfallswinkel β. Damit ist für die Spatialfrequenz f eine untere Grenze von etwa 2200 Linien/mm bzw. eine obere Grenze für eine Periodenlänge d von 450 nm festgelegt. Diese Beugungsgitter werden "Beugungsgitter nullter Ordnung" genannt und sind mit "Beugungsgitter" gemeint. Das Beugungsgitter weist in der Zeichnung der Figur 1 als Beispiel ein sinusförmiges Profil auf, jedoch sind auch andere bekannte Profile verwendbar.The waveguide 5 conforms to the interface having the optically active structure 9 for the impression layer 11 and is therefore modulated with the optically active structure 9. The optically active structure 9 is a diffraction grating with a spatial frequency f that is high, such that the light 13 incident at an angle of incidence α to the surface normal 12 of the security element 2 is diffracted by the security element 2 only into the zeroth diffraction order and the diffracted light 14 is reflected at the angle of reflection β is, where: angle of incidence α = angle of failure β. Thus, a lower limit of about 2200 lines / mm or an upper limit for a period length d of 450 nm is set for the spatial frequency f. These diffraction gratings become zeroth diffraction gratings Called "order" and are meant by "diffraction gratings." In the drawing, the diffraction grating has the FIG. 1 for example, a sinusoidal profile, but other known profiles are usable.

Der Wellenleiter 5 beginnt seine Funktion zu erfüllen, d.h. das reflektierte Licht 14 zu beeinflussen, wenn der Wellenleiter 5 wenigstens 10 bis 20 Perioden der optisch wirksamen Struktur 9 umfasst und daher eine minimale, von der Periodenlänge d abhängige Länge L von L > 10d aufweist. Vorzugsweise liegt die untere Grenze der Länge L des Wellenleiters 5 im Bereich 50 bis 100 Periodenlängen d, damit der Wellenleiter 5 seine optimale Wirksamkeit entfaltet.The waveguide 5 begins to perform its function, i. to influence the reflected light 14 when the waveguide 5 comprises at least 10 to 20 periods of the optically active structure 9 and therefore has a minimum, dependent on the period length d length L of L> 10d. Preferably, the lower limit of the length L of the waveguide 5 is in the range of 50 to 100 period lengths d, so that the waveguide 5 exhibits its optimum effectiveness.

Das Sicherheitselement 2 weist in einer Ausführungsform auf seiner ganzen Fläche ein uniformes Beugungsgitter für die optisch wirksame Struktur 9 und einen Wellenleiter 5 von gleichförmiger Schichtdicke s auf. In einer anderen Ausführungsform bilden mosaikförmig angeordnete Flächenteile ein optisch leicht erkennbares Muster. Damit ein Flächenteil des Mosaiks in seinen Umrissen für einen Beobachter mit den blossen Auge erkennbar ist, sind die Abmessungen grösser als 0,3 mm zu wählen, d.h. der Wellenleiter 5 weist in jedem Fall eine genügende minimale Länge L auf.In one embodiment, the security element 2 has on its entire surface a uniform diffraction grating for the optically active structure 9 and a waveguide 5 of uniform layer thickness s. In another embodiment, mosaic-shaped surface parts form an optically easily recognizable pattern. In order for a surface part of the mosaic to be visible in its outlines to the naked eye observer, the dimensions should be greater than 0.3 mm, ie. the waveguide 5 has a sufficient minimum length L in each case.

Das mit weissem diffusen einfallendem Licht 13 beleuchtete Sicherheitselement 2 verändert die Farbe des reflektierten gebeugten Lichts 14, wenn seine Orientierung zur Beobachtungsrichtung mittels einer Kipp- oder Drehbewegung verändert wird. Die Drehbewegung hat als Drehachse die Flächennormale 12, die Kippbewegung erfolgt um eine in der Ebene des Sicherheitselements 2 liegende Drehachse.The security element 2 illuminated with white diffuse incident light 13 changes the color of the reflected diffracted light 14 when its orientation to the observation direction is changed by means of a tilting or rotary movement. The rotational movement has the surface normal 12 as the axis of rotation, the tilting movement takes place about an axis of rotation lying in the plane of the security element 2.

Die Beugungsgitter nullter Ordnung zeigen ein von der azimutalen Ausrichtung des Beugungsgitters abhängiges, ausgeprägtes Verhalten gegenüber polarisiertem Licht 13. Für das Beschreiben der optischen Eigenschaften werden in der Figur 2 Beugungsebenen 15, 16 parallel und quer zu den Gitterlinien definiert, wobei die Beugungsebenen 15, 16 zudem die Flächennormale 12 auf das Sicherheitselement 2 (Fig. 1) enthalten. Die Bezeichnungen von Lichtstrahlen Bp, Bn des einfallenden Lichts 13 (Fig. 1) und von Richtungen der Polarisation des einfallenden Lichts 13 seien wie folgt festgelegt:

  • Ein tiefgestelltes "p" bezeichnet den parallel zu Gitterlinien einfallenden Lichtstrahl Bp, während ein tiefgestelltes "n" den senkrecht zu den Gitterlinien einfallenden Lichtstrahl Bn bezeichnet;
  • Ein tiefgestelltes "TE" beim Lichtstrahl Bp, Bn bedeutet eine Polarisation des elektrischen Felds senkrecht zur entsprechenden Beugungsebene 15 bzw. 16 und ein tiefgestelltes "TM" weist auf eine Polarisation des elektrischen Felds in der entsprechenden Beugungsebene 15 bzw. 16 hin.
Beispielsweise fällt der Lichtstrahl BnTM in der Beugungsebene 16 senkrecht auf die Gitterlinien des Sicherheitselementes 2 ein mit einer Polarisation des elektrischen Felds in der Beugungsebene 16.The zeroth-order diffraction gratings show a pronounced polar-light behavior 13 dependent on the azimuthal orientation of the diffraction grating. For the description of the optical properties, in the FIG. 2 Diffraction planes 15, 16 defined parallel and transverse to the grid lines, wherein the diffraction planes 15, 16 also the surface normal 12 to the security element 2 (FIG. Fig. 1 ) contain. The names of light beams B p , B n of the incident light 13 ( Fig. 1 ) and directions of polarization of the incident light 13 are defined as follows:
  • A subscript "p" denotes the incident parallel to grid lines Light beam B p , while a subscript "n" designates the light beam B n incident perpendicularly to the grating lines;
  • A subscript "TE" at the light beam B p , B n means a polarization of the electric field perpendicular to the respective diffraction plane 15 or 16 and a subscript "TM" indicates a polarization of the electric field in the corresponding diffraction plane 15 and 16, respectively.
For example, the light beam B nTM in the diffraction plane 16 is perpendicular to the grating lines of the security element 2 with a polarization of the electric field in the diffraction plane 16.

Je nach den Parametern der optisch wirksamen Struktur 9 und des Wellenleiters 5 (Fig. 1) weisen die jeweiligen Ausführungsformen des Sicherheitselements 2 unterschiedliches optisches Verhalten auf. Derartige Ausführungsformen werden in den nachfolgenden, nicht abschliessend aufgeführten Beispielen beschrieben.Depending on the parameters of the optically active structure 9 and the waveguide 5 (FIG. Fig. 1 ), the respective embodiments of the security element 2 have different optical behavior. Such embodiments are described in the following non-exhaustive examples.

Beispiel 1: Farbwechsel bei DrehungExample 1: Color change on rotation

In der Figur 3 ist der Wellenleiter 5 im Querschnitt vergrössert dargestellt. Die Kunststoffschichten, Stabilisationsschicht 10, die Abformschicht 11, die Schutzschicht 6 und die Kleberschicht 7 (Fig. 1) weisen gemäss US 4,856,857 , Tabelle 6 Brechungsindices n1 im Bereich von 1,5 bis 1,6 auf. Auf die in die Abformschicht 11 eingebrachte optisch wirksame Struktur 9 wird das für sichtbares Licht 13 (Fig.1) transparente Dielektrikum mit dem Brechungsindex n2 in der Schichtdicke s gleichmässig abgeschieden, so dass auf der Grenzfläche gegen die Schutzschicht 6 die Oberfläche des Wellenleiters 5 ebenfalls die optisch wirksame Struktur 9 aufweist. Das Dielektrikum ist eine anorganische Verbindung, wie sie z.B. in der US 4,856,857 , Tabelle 1 und in der WO 99/47983 erwähnt sind, und weist einen Wert für den Brechungsindex n2 von wenigstens n2 = 2 auf.In the FIG. 3 the waveguide 5 is shown enlarged in cross section. The plastic layers, stabilization layer 10, the impression layer 11, the protective layer 6 and the adhesive layer 7 (FIG. Fig. 1 ) according to US 4,856,857 , Table 6 refractive indices n 1 in the range of 1.5 to 1.6. On the introduced into the molding layer 11 optically active structure 9 is the visible light 13 (FIG. Fig.1 ) transparent dielectric with the refractive index n 2 uniformly deposited in the layer thickness s, so that on the interface against the protective layer 6, the surface of the waveguide 5 also has the optically active structure 9. The dielectric is an inorganic compound, such as in the US 4,856,857 , Table 1 and in the WO 99/47983 and has a value for the refractive index n 2 of at least n 2 = 2.

In einer Ausführungsform des Sicherheitselements 2 sind die Werte für die Profiltiefe t der optisch wirksamen Struktur 9 und der Schichtdicke s etwa gleich; d.h. s ≈ t, wobei der Wellenleiter 5 mit der Periode d = 370 nm moduliert ist. Vorzugsweise ist die Schichtdicke s ≅ t = 75±3 nm. Fällt der in der einen Beugungsebene 16 (Fig. 2) einfallende Lichtstrahl BnTE unter einem Einfallswinkel α = 25° auf das Sicherheitselement 2 ein, reflektiert das Sicherheitselement 2 das gebeugte Licht 14 (Fig. 1) mit einer grünen Farbe. Vom orthogonal polarisierten Lichtstrahl BnTM wird nur im infraroten, unsichtbaren Teil des Spektrums Licht 14 reflektiert. Der in der anderen Beugungsebene 15 unter dem gleichen Einfallswinkel α = 25° einfallende Lichtstrahl BpTM verlässt das Sicherheitselement 2 als gebeugtes Licht 14 in roter Farbe, während das vom Lichtstrahl BpTE erzeugte gebeugte Licht 14 eine orange Mischfarbe mit einer im Vergleich zum reflektierten Licht 14 des Lichtstrahls BpTM schwachen Intensität aufweist. Die Farbe des Sicherheitselementes 2 wechselt bei einer Beleuchtung mit weissem, unpolarisiert einfallendem Licht 13 für einen Beobachter von Grün auf Rot bei einer Drehung des Sicherheitselementes 2 um 90°. Das Kippen des Sicherheitselementes 2 im Bereich von α = 25°±5° verändert die Farbe nur unwesentlich; die Veränderung ist mit dem blossen Auge kaum zu bemerken. Im Drehwinkelbereich 0°± 20° ist nur die rote BpTM Reflexion, im Drehwinkelbereich 90°± 20° nur die grüne BnTE Reflexion sichtbar. Im Zwischenbereich 20° bis 70° gibt es eine Mischfarbe aus zwei benachbarten Spektralbereichen, die eine für die Komponente von BnTE, die andere für die Komponente von BpTM.In one embodiment of the security element 2, the values for the tread depth t of the optically active structure 9 and the layer thickness s are approximately equal; ie s ≈ t, wherein the waveguide 5 is modulated with the period d = 370 nm. Preferably, the layer thickness s ≅ t = 75 ± 3 nm. If in one diffraction plane 16 ( Fig. 2 ) incident light beam B nTE at an incident angle α = 25 ° on the security element 2, the security element 2 reflects the diffracted light 14 ( Fig. 1 ) with a green color. The orthogonally polarized light beam B nTM reflects light 14 only in the infrared, invisible part of the spectrum. The light beam B pTM incident in the other diffraction plane 15 at the same angle of incidence α = 25 ° leaves the security element 2 as diffracted light 14 in red color, while the diffracted light 14 produced by the light beam B pTE produces an orange mixed color with one in comparison with the reflected light 14 of the light beam B pTM has weak intensity. The color of the security element 2 changes when illuminated with white, unpolarized incident light 13 for an observer from green to red with a rotation of the security element 2 by 90 °. The tilting of the security element 2 in the range of α = 25 ° ± 5 ° changes the color only insignificantly; the change is barely noticeable with the naked eye. In the rotation angle range 0 ° ± 20 ° only the red B pTM reflection is visible , in the rotation angle range 90 ° ± 20 ° only the green B nTE reflection is visible. In the intermediate range 20 ° to 70 ° there is a mixed color of two adjacent spectral regions , the one for the component of B nTE , the other for the component of B pTM .

Dieses Verhalten des Sicherheitselementes 2 ändert sich bis auf leichte Farbverschiebungen nicht wesentlich, wenn die Schichtdicke s des Wellenleiters 5 zwischen 65 nm und 85 nm und die Profiltiefe t zwischen 60 nm und 90 nm variiert wird.This behavior of the security element 2 does not change substantially, except for slight color shifts, when the layer thickness s of the waveguide 5 is varied between 65 nm and 85 nm and the profile depth t between 60 nm and 90 nm.

Ein Verkürzen der Periodenlänge d auf 260 nm bei anderen Ausführungsformen verschiebt die Farbe des gebeugten Lichts 14 bei einfallenden Lichtstrahl BnTE von Grün nach Rot und bei einfallenden Lichtstrahl BpTM von Rot nach Grün. Die vom Lichtstrahl BnTE erzeugte Farbe Rot verändert sich beim Kippen des Sicherheitselementes 2 in Richtung kleinerer Winkel im Bereich von α = 20° zu Orange.A shortening of the period length d to 260 nm, in other embodiments shifts the color of the diffracted light 14 with the incident light beam B nTE from green to red, and in the incident light beam B pTM from red to green. The color red produced by the light beam B nTE changes when tilting the security element 2 in the direction of smaller angles in the range of α = 20 ° to orange.

Beispiel 2: Kippinvariante FarbeExample 2: Tip-inverted color

Eine andere Ausführungsform des Sicherheitselements 2 zeigt ein vorteilhaftes optisches Verhalten, da bei der Beleuchtung mit weissem unpolarisierten Licht 13 für kleine Kippwinkel, entsprechend dem Einfallwinkel zwischen α = 10° und α = 40°, die Farbe des gebeugten Lichts 14 praktisch invariant bleibt. Die Parameter des Wellenleiters 5, die Schichtdicke s und die Profiltiefe t, sind hier durch die Beziehung s ≈ 2t verknüpft. Beispielsweise ist die Schichtdicke s = 115 nm und die Profiltiefe t = 65 nm. Die Periodenlänge d der optisch wirksamen Struktur 9 beträgt d = 345 nm. Im angegebenen Bereich des Kippwinkels bei der Beleuchtung mit weissem unpolarisierten Licht 13 parallel zu den Gitterlinien der optisch wirksamen Struktur 9 weist das gebeugte Lichts 14 eine rote Farbe auf, zu der hauptsächlich die Lichtstrahlen BpTM beitragen. Bei einer Drehbewegung des Sicherheitselements 2 um wenige Azimutwinkelgrade bleibt die reflektierte Farbe rot, bei weiter zunehmendem Drehwinkel werden symmetrisch zu Rot zwei Farben reflektiert, wovon sich die kurzwelligere Farbe in Richtung Ultraviolett verschiebt und die langwelligere Farbe rasch im infraroten Bereich verschwindet. Beispielsweise ist bei einem Azimutwinkel von 30° die kurzwelligere Farbe ein Orange; die langwelligere Farbe ist für den Beobachter unsichtbar.Another embodiment of the security element 2 shows an advantageous optical behavior, since with illumination with white unpolarized light 13 for small tilt angles, corresponding to the angle of incidence between α = 10 ° and α = 40 °, the color of the diffracted light 14 remains practically invariant. The parameters of the waveguide 5, the layer thickness s and the tread depth t, are here by the Relationship s ≈ 2t linked. For example, the layer thickness s = 115 nm and the tread depth t = 65 nm. The period d of the optically active structure 9 is d = 345 nm. In the specified range of the tilt angle in the illumination with white unpolarized light 13 parallel to the grating lines of the optically active Structure 9, the diffracted light 14 has a red color to which mainly the light beams B pTM contribute. When the security element 2 rotates by a few azimuth angle degrees, the reflected color remains red, and as the rotation angle continues to increase, two colors are reflected symmetrically to red, from which the shorter-wavelength color shifts toward the ultraviolet and the longer-wavelength color rapidly disappears in the infrared range. For example, at an azimuth angle of 30 °, the shorter wavelength color is an orange; the longer-wavelength color is invisible to the observer.

Beispiel 3: Farbwechsel beim KippenExample 3: Color change during tilting

Wird das Sicherheitselement 2 so gedreht, dass das einfallende Licht 13 senkrecht zu den Gitterlinien gerichtet ist, zeigt das Sicherheitselement 2 des Beispiels 2 beim Kippen um eine Achse parallel zu den Gitterlinien des Beugungsgitters eine Farbverschiebung: beispielsweise erblickt der Beobachter die Fläche des Sicherheitselements 2 bei senkrechtem Lichteinfall, d.h. beim Einfallswinkel α = 0° in einem Orange, beim Einfallswinkel α = 10° eine Mischfarbe aus etwa 67 % Grün und 33 % Rot und beim Einfallswinkel α = 30° ein fast spektral reines Blau.If the security element 2 is rotated so that the incident light 13 is directed perpendicular to the grid lines, the security element 2 of Example 2 shows a color shift when tilted about an axis parallel to the grating lines of the diffraction grating: for example, the observer sees the surface of the security element 2 vertical incidence of light, ie at the angle of incidence α = 0 ° in an orange, at the angle of incidence α = 10 ° a mixed color of about 67% green and 33% red and at the angle of incidence α = 30 ° an almost spectrally pure blue.

Beispiel 4: Drehinvarianter Farbwechsel beim KippenExample 4: Drehinvarianter color change when tilting

Bei einer anderen Ausführungsform des Sicherheitselements 2 besteht die optisch wirksame Struktur 9 aus wenigstens zwei sich kreuzenden Beugungsgittern. Die Beugungsgitter kreuzen sich mit Vorteil unter Kreuzungswinkel im Bereich 10° bis 30°. Jedes Beugungsgitter ist z.B. durch eine Profiltiefe t von 150 nm und eine Periodenlänge von d = 417 nm bestimmt. Die Schichtdicke s des Wellenleiters 5 beträgt s = 60 nm, so dass die Parameter s und t des Wellenleiters 5 die Beziehung t ≈ 3s erfüllen. Bei der Beleuchtung mit weissem, unpolarisierten einfallendem Licht 13 senkrecht zu den Gitterlinien des ersten Beugungsgitters gibt es beim Kippen um eine Achse parallel zu den Gitterlinien des ersten Beugungsgitters eine Farbverschiebung, z.B. von Rot zu Grün oder umgekehrt. Dieses Verhalten bleibt nach einer Drehung um den Kreuzungswinkel erhalten, da jetzt die Kippachse parallel zu den Gitterlinien des zweiten Beugungsgitters ausgerichtet ist.In another embodiment of the security element 2, the optically active structure 9 consists of at least two intersecting diffraction gratings. The diffraction gratings intersect with advantage at crossing angles in the range of 10 ° to 30 °. Each diffraction grating is determined, for example, by a profile depth t of 150 nm and a period length of d = 417 nm. The layer thickness s of the waveguide 5 is s = 60 nm, so that the parameters s and t of the waveguide 5 satisfy the relationship t ≈ 3s. When illuminated with white, unpolarized incident light 13 perpendicular to the grating lines of the first diffraction grating there is a color shift when tilting about an axis parallel to the grating lines of the first diffraction grating, eg from red to green or vice versa. This behavior remains obtained after a rotation about the crossing angle, since now the tilting axis is aligned parallel to the grating lines of the second diffraction grating.

Beispiel 5: Mit asymmetrischem Sägezahn-ReliefprofilExample 5: With asymmetric sawtooth relief profile

In der in der Figur 4 im Querschnitt gezeigten weiteren Ausführungsform des Sicherheitselements 2 ist die optisch wirksame Struktur 9 eine Überlagerung des Beugungsgitters nullter Ordnung mit dem Beugungsgittervektor 19 (Fig.5) und mit einem asymmetrischen, sägezahnförmigen Reliefprofil 17 einer niedrigen Spatialfrequenz von F ≤ 200 Linien/mm. Dies ist für eine Betrachtung des Sicherheitselements 2 von Vorteil, da für viele Personen die Betrachtung der oben beschriebenen Sicherheitselemente 2 unter dem Reflexionswinkel β (Fig. 1) sehr ungewohnt ist. Die höchste zulässige Spatialfrequenz F hängt von der Periodenlänge d (Fig. 3) der optisch wirksamen Struktur 9 ab. Nach den oben genannten Kriterien für eine gute Effizienz ist die Länge L des Wellenleiters 5 innerhalb einer Periode des Reliefprofils 17 wenigstens L = 10d bis 20d vorzugsweise aber L = 50d bis 100d. Bei einer grössten Periodenlänge d = 450 nm ist bei L = 10d bzw. 20d die Spatialfrequenz F des Reliefprofils 17 demnach kleiner als F = 1/L < 220 Linien/mm bzw. 110 Linien/mm zu wählen.In the in the FIG. 4 shown in cross-section further embodiment of the security element 2, the optically active structure 9 is a superposition of the diffraction grating zeroth order with the diffraction grating vector 19 (FIG. Figure 5 ) and with an asymmetrical, sawtooth-shaped relief profile 17 of a low spatial frequency of F ≦ 200 lines / mm. This is advantageous for a consideration of the security element 2, since for many persons the consideration of the security elements 2 described above under the angle of reflection β (FIG. Fig. 1 ) is very unusual. The highest permissible spatial frequency F depends on the period length d ( Fig. 3 ) of the optically active structure 9. According to the above-mentioned criteria for good efficiency, the length L of the waveguide 5 within a period of the relief profile 17 is at least L = 10d to 20d, but preferably L = 50d to 100d. With a maximum period length d = 450 nm, the spatial frequency F of the relief profile 17 is accordingly smaller at L = 10d or 20d than F = 1 / L <220 lines / mm or 110 lines / mm.

Entsprechend der Höhe des Reliefprofils 17 bzw. einem Blazewinkel γ des Sägezahnprofils wird bei der Beleuchtung des Sicherheitselements 2 mittels unter dem zur Flächennormale 12 gemessenen Einfallswinkel α einfallenden Lichtes 13 das gebeugte Licht 14 unter einem grösseren Ausfallwinkel β1 reflektiert. Das einfallende Licht 13 fällt unter dem Winkel γ + α zur Senkrechten 18 auf die wegen des Reliefprofils 17 geneigte Ebene des Wellenleiters 5 ein und wird als gebeugtes Licht 14 unter dem gleichen Winkel zur Senkrechten 18 reflektiert. Der auf die Flächennormale 12 bezogene Ausfallwinkel β1 beträgt β1 = 2γ + α. Der Vorteil dieser Anordnung ist ein erleichtertes Betrachten des vom Sicherheitselement 2 erzeugten, optischen Effekts. Hier ist anzumerken, dass in der Zeichnung der Figur 4 die Refraktion in den Materialien des Schichtverbunds 1 (Fig. 1) vernachlässigt ist. Unter der Berücksichtigung der Refraktionseffekte im Schichtverbund 1 sind Periodenlängen d bis ca. d = 500 nm für die Sicherheitselemente 2 verwendbar, da bei dieser Periodenlänge selbst die Blauanteile des in die ersten Ordnungen gebeugten Lichts 14 wegen Totalreflexion den Schichtverbund 1 (Fig. 1) nicht verlassen können. Der Blazewinkel γ weist einen Wert aus dem Bereich von γ = 1 ° bis γ = 15° auf.Corresponding to the height of the relief profile 17 or a blaze angle γ of the sawtooth profile, the diffracted light 14 is reflected at a larger angle of reflection β 1 when illuminating the security element 2 by means of incident light angle 13 to the surface normal 12. The incident light 13 is incident at the angle γ + α to the vertical 18 on the inclined plane of the waveguide 5 due to the relief profile 17 and is reflected as diffracted light 14 at the same angle to the vertical 18. The related to the surface normal 12 angle of reflection β 1 is β 1 = 2γ + α. The advantage of this arrangement is a facilitated viewing of the optical effect generated by the security element 2. It should be noted that in the drawing of the FIG. 4 the refraction in the materials of the layer composite 1 ( Fig. 1 ) is neglected. Taking account of the refraction effects in layer composite 1, period lengths d to about d = 500 nm can be used for the security elements 2, since at this period length even the blue components of the light 14 diffracted into the first orders due to total internal reflection form the layer composite 1 (FIG. Fig. 1 ) Not being able to leave. The blaze angle γ has a value in the range of γ = 1 ° to γ = 15 °.

Die Figur 5 zeigt die optisch wirksame Struktur 9, die eine Überlagerung des Beugungsgitter mit einem asymmetrischen, sägezahnförmigen Reliefprofil 17 ist. Die azimutale Orientierung des Beugungsgitters ist mittels dessen Beugungsgittervektor 19 festgelegt. Die Reliefstruktur 17 weist die durch den Reliefvektor 20 angegebene azimutale Orientierung auf. Die optisch wirksame Struktur 9 ist durch einen weiteren Parameter definiert, einen vom Beugungsgittervektor 19 und vom Reliefvektor 20 eingeschlossenen Azimutdifferenzwinkel ψ. Bevorzugte Werte für den Azimutdifferenzwinkel sind ψ = 0°, 45°, 90° usw.The FIG. 5 shows the optically active structure 9, which is a superposition of the diffraction grating with an asymmetric, sawtooth-shaped relief profile 17. The azimuthal orientation of the diffraction grating is determined by means of its diffraction grating vector 19. The relief structure 17 has the azimuthal orientation indicated by the relief vector 20. The optically active structure 9 is defined by a further parameter, an azimuth difference angle ψ enclosed by the diffraction grating vector 19 and the relief vector 20. Preferred values for the azimuth difference angle are ψ = 0 °, 45 °, 90 ° etc.

Ganz allgemein sind diesen Sicherheitselementen 2 (Fig. 3) eine hohe Beugungseffizienz von fast 100% wenigstens für eine Polarisation eigen. Der wichtigste Parameter des Sicherheitselementes 2 für das Farbverschiebungs-Vermögen ist die Periodenlänge d (Fig. 3). Die Schichtdicke s (Fig. 3) des Wellenleiters und die Profiltiefe t (Fig. 3) sind für die Dielektrika ZnS und TiO2 nicht so kritisch und beeinflussen die Beugungseffizienz und die exakte Lage der Farbe im sichtbaren Spektrum nur gering, beeinflussen jedoch die spektrale Reinheit des reflektierten gebeugten Lichts 14 (Fig. 4).In general, these security elements 2 ( Fig. 3 ) have a high diffraction efficiency of almost 100%, at least for one polarization. The most important parameter of the color shifting capability security element 2 is the period length d ( Fig. 3 ). The layer thickness s ( Fig. 3 ) of the waveguide and the tread depth t ( Fig. 3 ) are not so critical to the ZnS and TiO 2 dielectrics and have little effect on the diffraction efficiency and exact location of the color in the visible spectrum, but do affect the spectral purity of the reflected diffracted light 14 (FIG. Fig. 4 ).

Für diese Sicherheitselemente 2 sind die Parameter nach der Tabelle 1 verwendbar.For these security elements 2, the parameters according to Table 1 can be used.

Der Parameter Periodenlänge d bestimmt die Farbe des in die nullte Ordnung reflektiert gebeugten Lichts 14. Eine Veränderung des Parameters Schichtdicke s des Wellenleiters 5 (Fig. 4) beeinflusst hauptsächlich die spektrale Reinheit der Farbe des gebeugten Lichts 14 und verschiebt die Lage der Farbe im Spektrum in einem geringen Ausmass. Die Profiltiefe t beeinflusst die Modulation des Wellenleiters 5 und damit dessen Wirkungsgrad. Abweichungen von ±5% von den in den Beispielen angegeben Werten für d, s, t und ψ beeinflussen die beschriebenen optischen Effekte für das blosse Auge nicht merklich. Diese grosse Toleranz erleichtert die Fabrikation des Sicherheitselementes 2 erheblich. Tabelle 1: Parameter (in Nanometer) Grenzwertbereich Vorzugsbereich Minimum Maximum Minimum Maximum Periodenlänge d 100 500 200 450 Profiltiefe t 20 1000 50 500 Schichtdicke s 5 500 10 100 The parameter period length d determines the color of the light reflected in the zeroth order reflected light 14. A change in the parameter layer thickness s of the waveguide 5 (FIG. Fig. 4 ) mainly influences the spectral purity of the color of the diffracted light 14 and shifts the position of the color in the spectrum to a small extent. The tread depth t affects the modulation of the waveguide 5 and thus its efficiency. Deviations of ± 5% from the values given in the examples for d, s, t and ψ do not appreciably affect the described optical effects for the naked eye. This large tolerance facilitates the fabrication of the security element 2 considerably. Table 1: Parameters (in nanometers) limit area preferred range minimum maximum minimum maximum Period length d 100 500 200 450 Tread depth t 20 1000 50 500 Layer thickness s 5 500 10 100

In den Figuren 6 und 7 ist eine Ausführungsform des Sicherheitselements 2 (Fig. 3) gezeigt, auf dessen Fläche eine Kombinationen einer Vielzahl von Teilflächen 21, 22 angeordnet ist. Die Teilflächen 21, 22 enthalten Wellenleiter 5 (Fig. 3) und unterscheiden sich in der optisch wirksamen Struktur 9 (Fig. 3) und in der azimutalen Orientierung des Beugungsgittervektors 19 (Fig. 5). Technisch schwierig zu realisieren sind im Schichtverbund 1 (Fig. 1) Unterschiede in der Schichtdicke s der Wellenleiter 5; diese sind aber hier ausdrücklich nicht ausgeschlossen. Aus dem Schichtverbund 1 ist eine Marke 23 ausgeschnitten und auf das Substrat 3 aufgeklebt. Im gezeigten Beispiel weist die Marke 23 zwei Teilflächen 21, 22 auf. Zur Illustration ist in der Figur 6 das Sicherheitselement 2 des vorstehend beschriebenen Beispiels 1 eingesetzt, wobei die Orientierung des Beugungsgittervektors 19 (Fig. 5) der ersten Teilfläche 21 orthogonal zum Beugungsgittervektor 19 der zweiten Teilfläche 22 ist. Die Beobachtungsrichtung ist in einer die Flächennormale 12 enthaltenden Ebene, deren Spur in der Zeichenebene der Figuren 6 und 7 mit der gestrichelten Linie 24 angegeben ist. Für die erste Teilfläche 21 fällt das weisse, unpolarisierte einfallende Licht 13 (Fig. 1) senkrecht zu den Gitterlinien und bei der zweiten Teilfläche 22 das einfallende Licht 13 parallel zu den Gitterlinien unter dem Einfallswinkel α = 25° ein. Der Beobachter erblickt daher die erste Teilfläche 21 in einer grünen Farbe und die zweite Teilfläche 22 in einer roten Farbe. Da der Schichtverbund 1 (Fig. 1) transparent ist, sind Indicia 8 des Substrats unter der Marke 23 erkennbar.In the FIGS. 6 and 7 is an embodiment of the security element 2 ( Fig. 3 ), on the surface of which a combination of a plurality of partial surfaces 21, 22 is arranged. The partial surfaces 21, 22 contain waveguides 5 (FIG. Fig. 3 ) and differ in the optically active structure 9 (FIG. Fig. 3 ) and in the azimuthal orientation of the diffraction grating vector 19 (FIG. Fig. 5 ). Technically difficult to realize are in layer composite 1 ( Fig. 1 ) Differences in the layer thickness s of the waveguide 5; but these are not explicitly excluded here. From the layer composite 1, a mark 23 is cut out and adhered to the substrate 3. In the example shown, the mark 23 has two partial surfaces 21, 22. For illustration is in the FIG. 6 the security element 2 of Example 1 described above is used, the orientation of the diffraction grating vector 19 (FIG. Fig. 5 ) of the first partial surface 21 is orthogonal to the diffraction grating vector 19 of the second partial surface 22. The observation direction is in a plane containing the surface normal 12 whose trace in the plane of the FIGS. 6 and 7 indicated by the dashed line 24. For the first sub-area 21, the white, unpolarized incident light 13 ( Fig. 1 ) perpendicular to the grid lines and the second sub-area 22, the incident light 13 parallel to the grid lines at the angle of incidence α = 25 °. The observer therefore sees the first partial surface 21 in a green color and the second partial surface 22 in a red color. Since the layer composite 1 ( Fig. 1 ) is transparent, indicia 8 of the substrate can be seen under the mark 23.

Nach einer Drehung des Substrats 3 mit der Marke 23 um einen Winkel von 90°, wie in der Figur 7 gezeigt, fällt das einfallende Licht 13 (Fig. 1) auf die erste Teilfläche 21 senkrecht zu den Gitterlinien des Beugungsgitters und auf die zweite Teilfläche 22 parallel zu den Gitterlinien ein, wie dies durch den Winkel zwischen Schraffierungen der Teilflächen 21, 22 und der Linie 24 in der Zeichnung der Figur 7 angedeutet ist. Durch das Drehen des Substrats 3 um 90° vertauschen sich die Farben der Teilflächen 21, 22; d.h. die erste Teilfläche 21 erstrahlt in Rot und die zweite Teilfläche 22 in Grün.After rotation of the substrate 3 with the mark 23 at an angle of 90 °, as in the FIG. 7 shown, the incident light 13 ( Fig. 1 ) on the first face 21 perpendicular to the grid lines of the diffraction grating and on the second face 22 parallel to the grid lines, as indicated by the angle between hatching of the faces 21, 22 and the line 24 in the drawing of FIG. 7 is indicated. By turning the substrate 3 by 90 ° to swap the Colors of the partial surfaces 21, 22; ie, the first partial surface 21 shines in red and the second partial surface 22 in green.

Bei einer anderen Ausführungsform des Sicherheitselements 2 kann die Anordnung einer Vielzahl gleicher Teilflächen 21 auf der Marke 23 einen Kreisring bilden, wobei die Beugungsgittervektoren 19 auf das Kreisringzentrum ausgerichtet sind. Bei Betrachtungsrichtung längs eines Durchmessers des Kreisrings leuchten unabhängig von der azimutalen Lage des Substrats 3 die entferntesten (0° ± 20°) und die nächstgelegenen (180° ± 20°) Teilbereiche des Kreisrings in einer grünen Farbe und die am weitesten vom Durchmesser entfernten Bereiche bei 90° ± 20° bzw. 270° ± 20° des Kreisrings in einer roten Farbe auf. Dazwischen liegende Bereiche weisen die oben beschriebene Mischfarbe aus zwei benachbarten Spektralbereichen auf. Das Farbmuster ist gegenüber einer Drehung des Substrates 3 invariant und scheint sich relativ zu allfälligen Indicia 8 (Fig. 1) zu bewegen. Ein Kreisring mit gekrümmten Gitterlinien erzeugt den gleichen Effekt, wenn die Gitterlinien konzentrisch zum Mittelpunkt des Kreisrings angeordnet sind.In another embodiment of the security element 2, the arrangement of a plurality of equal sub-areas 21 on the mark 23 form a circular ring, wherein the diffraction grating vectors 19 are aligned with the circular center. Regardless of the azimuthal position of the substrate 3, the farthest (0 ° ± 20 °) and the nearest (180 ° ± 20 °) portions of the annulus glow in a green color and the portions farthest from the diameter when viewed along a diameter of the annulus at 90 ° ± 20 ° or 270 ° ± 20 ° of the annulus in a red color. Intermediate areas have the above-described mixed color of two adjacent spectral regions. The color pattern is invariant with respect to a rotation of the substrate 3 and appears to be relative to any indicia 8 (FIG. Fig. 1 ) to move. A circular ring with curved grid lines produces the same effect when the grid lines are concentric with the center of the annulus.

In einer weiteren Ausgestaltung der Figur 7 sind beispielsweise die Teilflächen 21, 22 auf einem Hintergrund 25 angeordnet. Die Teilflächen 21 und 22 enthalten die optisch wirksame Struktur 9 (Fig. 4) aus dem Beispiel 5, wobei der Reliefvektor 20 (Fig. 5) der einen Teilfläche 21 dem Reliefvektor 20 der anderen Teilfläche 22 entgegengesetzt ist. Die optisch wirksame Struktur 9 des Hintergrunds 25 besteht nur aus dem Beugungsgitter, das nicht durch die Reliefstruktur 17 (Fig. 5) moduliert ist. Der Beugungsgittervektor 19 kann parallel oder senkrecht zu den Reliefvektoren 20 ausgerichtet sein; der Winkel γ (Fig. 5) kann durchaus auch andere Werte aufweisen.In a further embodiment of the FIG. 7 For example, the faces 21, 22 are arranged on a background 25. The partial surfaces 21 and 22 contain the optically active structure 9 (FIG. Fig. 4 ) from example 5, wherein the relief vector 20 (FIG. Fig. 5 ) of a partial surface 21 is opposite to the relief vector 20 of the other partial surface 22. The optically effective structure 9 of the background 25 consists only of the diffraction grating that is not covered by the relief structure 17 (FIG. Fig. 5 ) is modulated. The diffraction grating vector 19 may be aligned parallel or perpendicular to the relief vectors 20; the angle γ ( Fig. 5 ) may well have other values.

Selbstverständlich sind ohne Einschränkung alle vorstehend beschriebenen Ausführungsformen der Sicherheitselemente 2 mit Vorteil kombinierbar, da die spezifischen, vom Azimut bzw. vom Kippwinkel abhängigen optischen Effekte durch die gegenseitige Referenzierung wesentlich auffälliger und daher leichter erkennbar sind.Of course, without limitation, all embodiments of the security elements 2 described above can be combined with advantage since the specific optical effects, which are dependent on the azimuth or the tilt angle, are much more conspicuous due to the mutual referencing and are therefore easier to recognize.

Schliesslich weisen andere Ausführungen des Sicherheitselements 2 auch Feldanteile 26 (Fig. 6) mit Gitterstrukturen mit Spatialfrequenzen im Bereich von 300 Linien/mm bis 1800 Linien/mm und Azimutwinkel im Bereich 0° bis 360° auf, die in den in der eingangs erwähnten EP 0 105 099 A1 und der EP 0 375 833 A1 beschriebenen Flächenmustern verwendet sind. Die Feldanteile 26 erstrecken sich über das Sicherheitselement 2 bzw. über die Teilflächen 21, 22, 25 und bilden eines der bekannten optisch variablen Muster, das sich beim Drehen oder Kippen unabhängig von den optischen Effekten der Wellenleiterstrukturen unter gleichen Beobachtungsbedingungen vorbestimmt verändert. Der Vorteil dieser Kombination ist, dass die Flächenmuster die Fälschungssicherheit des Sicherheitselements 2 erhöhen.Finally, other embodiments of the security element 2 also have field portions 26 (FIG. Fig. 6 ) with grating structures with spatial frequencies in the range of 300 lines / mm to 1800 lines / mm and azimuth angles in the range 0 ° to 360 °, which in in the aforementioned EP 0 105 099 A1 and the EP 0 375 833 A1 surface patterns described are used. The field components 26 extend over the security element 2 or over the partial surfaces 21, 22, 25 and form one of the known optically variable patterns, which changes in a predetermined manner during rotation or tilting independently of the optical effects of the waveguide structures under the same observation conditions. The advantage of this combination is that the surface patterns increase the security against forgery of the security element 2.

Claims (15)

  1. Diffractive security element (2) having an optical waveguide (5) composed of a transparent dielectric integrated into a layer composite (1) and embedded between a transparent base layer (4) to be illuminated and a protective layer (6), the dielectric having a considerably higher refractive index than the plastic of the adjoining layers (4; 6) and in partial areas (21; 22; 25) nestling against an optically active structure (9) of an interface with the base layer (4),
    characterized
    in that in the waveguide (5) the transparent dielectric is of uniform layer thickness (s) and has a value of the refractive index of at least 2,
    in that the waveguide is modulated by means of the optically active structures (9) and the optically active structure (9) has, as a basic structure, a diffraction grating of zeroth order with a diffraction grating vector (19), a period length (d) from the range of 100 - 500 nm and a profile depth (t) from the range of 20 nm to 1 µm,
    in that the waveguide (5) has a minimum length (L) of at least 10 to 20 period lengths (d) of the diffraction grating of zeroth order,
    and
    in that, in at least one of the partial areas (21; 22; 25), the profile depth (t) and layer thickness (s) for the modulation of the waveguide (5) are in one of the predetermined relations t ≈ 3s or s ≈ t or s ≈ 2t.
  2. Diffractive security element (2) according to Claim 1, characterized in that the values of the period length (d), of the profile depth (t) and of the layer thickness (s) exhibit a tolerance of ± 5%.
  3. Diffractive security element (2) according to Claim 1 or 2, characterized in that the layer thickness (s) has values from the range of 65 nm to 85 nm and the profile depth (t) has values from the range of 60 nm to 90 nm, and in that a value from the range of 260 nm to 370 nm is selected for the period length (d).
  4. Diffractive security element (2) according to Claim 1 or 2, characterized in that the layer thickness (s) is chosen with a value of 115 nm, the profile depth (t) is chosen with a value of 65 nm and the period length (d) is chosen with a value of 345 nm.
  5. Diffractive security element (2) according to Claim 1 or 2, characterized in that the layer thickness (s) has a value of 60 nm, the profile depth (t) has a value of 150 nm, and the period length (d) has a value of 417 nm.
  6. Diffractive security element (2) according to one of Claims 1 to 5, characterized in that the basic structure of the optically active structure (9) is a diffraction grating comprising two mutually crossing diffraction gratings of zeroth order.
  7. Diffractive security element (2) according to Claim 6, characterized in that the crossing angle of the diffraction gratings of zeroth order lies within the range of 10° to 30°.
  8. Diffractive security element (2) according to one of Claims 1 to 7, characterized in that the optically active structure (9) is a superimposition of the basic structure with a sawtooth-shaped relief structure (17) with a relief vector (20), in that the relief structure (17) has a spatial frequency (F) lower than the reciprocal of the minimum length (L) of the waveguide (5).
  9. Diffractive security element (2) according to Claim 8, characterized in that the sawtooth-shaped relief structure (17) is asymmetrical with a blaze angle (γ) and the blaze angle (γ) has a value in the range of 1° to 15°.
  10. Diffractive security element (2) according to Claim 8 or 9, characterized in that the diffraction grating vector (19) and the relief vector (20) form an azimuth difference angle (ψ) having one of the values from the series 0°, 45°, 90°, etc.
  11. Diffractive security element (2) according to one of Claims 1 to 10, characterized in that ZnS or TiO2 is used as the dielectric of the waveguide.
  12. Diffractive security element (2) according to one of Claims 1 to 11, characterized in that the waveguides (5) of the partial areas (21; 22) differ in terms of the optically active structure (9).
  13. Diffractive security element (2) according to one of Claims 1 to 12, characterized in that the waveguides (5) of the partial areas (21; 22; 25) differ in terms of the azimuthal orientation of the diffraction grating vectors (19).
  14. Diffractive security element (2) according to Claim 12 or 13, characterized in that the diffraction grating vector (19) of one partial area (21) is oriented orthogonally with respect to the diffraction grating vector (19) of one of the other partial areas (22; 25).
  15. Diffractive security element (2) according to one of Claims 1 to 14, characterized in that field components (26) with grating structures of the spatial frequencies within the range of 300 lines/mm to 1800 lines/mm and azimuth angles within the range of 0° to 360° are arranged in the partial areas (21; 22; 25).
EP02806315A 2002-01-18 2002-11-02 Diffractive security element having an integrated optical waveguide Expired - Lifetime EP1465780B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH842002 2002-01-18
CH842002 2002-01-18
PCT/EP2002/012243 WO2003059643A1 (en) 2002-01-18 2002-11-02 Diffractive security element having an integrated optical waveguide

Publications (2)

Publication Number Publication Date
EP1465780A1 EP1465780A1 (en) 2004-10-13
EP1465780B1 true EP1465780B1 (en) 2008-05-21

Family

ID=4340047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02806315A Expired - Lifetime EP1465780B1 (en) 2002-01-18 2002-11-02 Diffractive security element having an integrated optical waveguide

Country Status (12)

Country Link
US (1) US7102823B2 (en)
EP (1) EP1465780B1 (en)
JP (1) JP2005514672A (en)
KR (1) KR20040083078A (en)
CN (1) CN100519222C (en)
AT (1) ATE396059T1 (en)
AU (1) AU2002367080A1 (en)
DE (1) DE50212303D1 (en)
PL (1) PL202810B1 (en)
RU (1) RU2309048C2 (en)
TW (1) TWI265319B (en)
WO (1) WO2003059643A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014079A1 (en) * 2014-09-23 2016-03-24 Giesecke & Devrient Gmbh Optically variable security element with reflective surface area
DE102014014082A1 (en) * 2014-09-23 2016-03-24 Giesecke & Devrient Gmbh Optically variable security element with reflective surface area
DE102015016713A1 (en) * 2015-12-22 2017-06-22 Giesecke & Devrient Gmbh Optically variable security element with reflective surface area

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100498878C (en) * 2003-12-19 2009-06-10 中国科学院光电技术研究所 Sub-wavelength grating guided-mode resonance anti-counterfeiting trademark and manufacturing method thereof
CN1689844B (en) * 2004-04-26 2011-06-15 中国科学院光电技术研究所 Plastic bill sub-wavelength grating guided-mode resonance anti-counterfeiting mark and manufacturing method thereof
GB0417422D0 (en) 2004-08-05 2004-09-08 Suisse Electronique Microtech Security device
GB0422266D0 (en) 2004-10-07 2004-11-10 Suisse Electronique Microtech Security device
DE102005006231B4 (en) * 2005-02-10 2007-09-20 Ovd Kinegram Ag Method for producing a multilayer body
DE102005027380B4 (en) 2005-06-14 2009-04-30 Ovd Kinegram Ag The security document
ATE495026T1 (en) 2005-09-26 2011-01-15 Suisse Electronique Microtech A DIFFRACTIVE SECURITY ELEMENT
DE102005052326A1 (en) * 2005-11-02 2007-05-03 Giesecke & Devrient Gmbh Security element for security papers, value documents, has open image information and hidden image information selectable by illumination of security elements whereby rendering range with first image element and second image element
CA2570965A1 (en) * 2005-12-15 2007-06-15 Jds Uniphase Corporation Security device with metameric features using diffractive pigment flakes
JP4779792B2 (en) * 2006-04-27 2011-09-28 凸版印刷株式会社 Information recording medium and information recording medium authenticity determination device
JP2008279597A (en) * 2006-05-10 2008-11-20 Oji Paper Co Ltd Concavo-convex pattern forming sheet and its manufacturing method, reflection preventing body, phase difference plate, process sheet original plate, and method for manufacturing optical element
EP1862827B2 (en) 2006-05-31 2012-05-30 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Nano-structured Zero-order diffractive filter
JP2008083599A (en) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd Optical element and display body using the same
DE102007019522A1 (en) * 2007-04-25 2008-10-30 Giesecke & Devrient Gmbh Through security element
EP1990661B1 (en) 2007-05-07 2018-08-15 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Isotropic zero-order diffractive filter
JP5040557B2 (en) * 2007-09-26 2012-10-03 凸版印刷株式会社 Optical element, labeled article and optical kit
JP5251236B2 (en) * 2008-04-30 2013-07-31 凸版印刷株式会社 Diffraction structure having fine uneven diffraction structure
FR2940179B1 (en) * 2008-12-23 2017-06-02 Arjowiggins SECURITY DOCUMENT COMPRISING AT LEAST ONE COMBINED IMAGE AND A REVELATION MEANS, AND ASSOCIATED METHOD.
EP2239150B1 (en) * 2009-04-07 2013-10-23 Nanogate Industrial Solutions GmbH Security device
EA201000350A1 (en) * 2009-11-24 2011-06-30 Закрытое Акционерное Общество "Голографическая Индустрия" IDENTIFICATION FORMAT
JP5740811B2 (en) * 2009-12-09 2015-07-01 凸版印刷株式会社 Display body and article with display body
JP5605538B2 (en) * 2009-12-10 2014-10-15 大日本印刷株式会社 Diffraction structure display
FR2959830B1 (en) 2010-05-07 2013-05-17 Hologram Ind OPTICAL AUTHENTICATION COMPONENT AND METHOD FOR MANUFACTURING THE SAME
AT509928A2 (en) 2010-05-26 2011-12-15 Hueck Folien Gmbh SECURITY ELEMENT WITH LIGHTING STRUCTURES
WO2012019226A1 (en) * 2010-08-11 2012-02-16 Securency International Pty Ltd Optically variable device
JP5659786B2 (en) * 2010-12-27 2015-01-28 凸版印刷株式会社 Laminated body and method for producing the same
DE102011014114B3 (en) 2011-03-15 2012-05-10 Ovd Kinegram Ag Multi-layer body and method for producing a multi-layer body
FR2973917B1 (en) 2011-04-08 2014-01-10 Hologram Ind OPTICAL SECURITY COMPONENT WITH TRANSMISSIVE EFFECT, MANUFACTURE OF SUCH A COMPONENT AND SECURE DOCUMENT EQUIPPED WITH SUCH A COMPONENT
DE102011107421A1 (en) 2011-07-07 2013-01-10 Leonhard Kurz Stiftung & Co. Kg Multilayered film body
EA018164B1 (en) * 2011-09-26 2013-05-30 Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" Micro-optical system for forming images for visual control of product identity
CN102411697A (en) * 2011-11-11 2012-04-11 陈银洋 Variable-frequency multilayer invisible latent image anti-counterfeiting technology
AU2012100265B4 (en) * 2012-03-09 2012-11-08 Innovia Security Pty Ltd An optical security element and method for production thereof
JP2013214434A (en) * 2012-04-03 2013-10-17 Sony Corp Laminate structure manufacturing method, laminate structure and electronic apparatus
DE102012105444A1 (en) 2012-06-22 2013-12-24 Ovd Kinegram Ag Security element with diffractive structure
DE102012110630A1 (en) 2012-11-06 2014-05-08 Ovd Kinegram Ag Multi-layer body and method for producing a security element
DE102013105246B4 (en) 2013-05-22 2017-03-23 Leonhard Kurz Stiftung & Co. Kg Optically variable element
FR3013258B1 (en) 2013-11-19 2016-02-19 Hologram Ind CUSTOMIZABLE DOCUMENT FOR THE MANUFACTURE OF A SAFETY DOCUMENT, PERSONALIZED SECURITY DOCUMENT AND THE PRODUCTION OF SUCH A SECURITY DOCUMENT
JP6256018B2 (en) * 2014-01-14 2018-01-10 凸版印刷株式会社 Diffraction structure and anti-counterfeit medium using the same
FR3019496A1 (en) * 2014-04-07 2015-10-09 Hologram Ind OPTICAL SECURITY COMPONENT WITH REFLECTIVE EFFECT, MANUFACTURE OF SUCH A COMPONENT AND SECURE DOCUMENT EQUIPPED WITH SUCH A COMPONENT
JP6164248B2 (en) * 2015-04-30 2017-07-19 凸版印刷株式会社 Display body and article with display body
WO2017010548A1 (en) * 2015-07-15 2017-01-19 凸版印刷株式会社 Display body
JP6777101B2 (en) * 2016-02-09 2020-10-28 凸版印刷株式会社 Anti-counterfeiting optical elements, anti-counterfeiting optical element laminates, information recording media
JP7196842B2 (en) * 2017-06-30 2022-12-27 凸版印刷株式会社 optical structure
EP3740793A4 (en) 2018-01-17 2022-02-23 Nanotech Security Corp. Nano-structures patterned on micro-structures
WO2019182050A1 (en) * 2018-03-20 2019-09-26 凸版印刷株式会社 Optical element, transfer foil, authentication object, and method for verifying authentication object
JP7322871B2 (en) * 2018-03-20 2023-08-08 凸版印刷株式会社 Optical element and authenticator
JP7334414B2 (en) * 2018-03-20 2023-08-29 凸版印刷株式会社 Optical elements, transfer foils, and authenticators
GB2572745B (en) 2018-03-22 2021-06-09 De La Rue Int Ltd Security elements and methods of manufacture thereof
DE102018008146A1 (en) * 2018-10-15 2020-04-16 Giesecke+Devrient Currency Technology Gmbh Security element with microreflectors for the perspective representation of a motif
JP7259381B2 (en) * 2019-02-12 2023-04-18 凸版印刷株式会社 Labels, plates, transfer foils, adhesive labels and articles with labels
JP7306148B2 (en) * 2019-08-07 2023-07-11 凸版印刷株式会社 Labels, plates, transfer foils, adhesive labels and articles with labels
WO2021060543A1 (en) 2019-09-25 2021-04-01 凸版印刷株式会社 Color display body, authentication medium and authenticity determination method of color display body
WO2021151459A1 (en) 2020-01-27 2021-08-05 Orell Füssli AG Security document with lightguide having a sparse outcoupler structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375833A1 (en) * 1988-12-12 1990-07-04 Landis &amp; Gyr Technology Innovation AG Optically variable planar pattern

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892385A (en) * 1981-02-19 1990-01-09 General Electric Company Sheet-material authenticated item with reflective-diffractive authenticating device
US4426130A (en) 1981-02-19 1984-01-17 Rca Corporation Semi-thick transmissive and reflective sinusoidal phase grating structures
US4484797A (en) * 1981-07-20 1984-11-27 Rca Corporation Diffractive subtractive color filter responsive to angle of incidence of polychromatic illuminating light
CH659433A5 (en) 1982-10-04 1987-01-30 Landis & Gyr Ag DOCUMENT WITH A REFLECTIVE OPTICAL SECURITY ELEMENT.
JPS5988780A (en) 1982-11-08 1984-05-22 アメリカン・バンク・ノ−ト・カムパニ− Making of optical refraction recording body and optical refraction pattern
KR860009325A (en) 1985-05-07 1986-12-22 기다지마 요시도시 Transparent Hologram
US5218423A (en) 1991-09-27 1993-06-08 Hughes Aircraft Company Method and apparatus for generating a plurality of radiation beams from incident radiation in a multiple wavelength interferometer
US5886798A (en) * 1995-08-21 1999-03-23 Landis & Gyr Technology Innovation Ag Information carriers with diffraction structures
JP3472092B2 (en) * 1997-07-28 2003-12-02 キヤノン株式会社 Diffractive optical element and optical system using the same
CZ286152B6 (en) 1998-03-13 2000-01-12 Miroslav Ing. Csc. Vlček Transparent and semitransparent diffraction elements, particularly holograms and process of their production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375833A1 (en) * 1988-12-12 1990-07-04 Landis &amp; Gyr Technology Innovation AG Optically variable planar pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014079A1 (en) * 2014-09-23 2016-03-24 Giesecke & Devrient Gmbh Optically variable security element with reflective surface area
DE102014014082A1 (en) * 2014-09-23 2016-03-24 Giesecke & Devrient Gmbh Optically variable security element with reflective surface area
DE102015016713A1 (en) * 2015-12-22 2017-06-22 Giesecke & Devrient Gmbh Optically variable security element with reflective surface area

Also Published As

Publication number Publication date
AU2002367080A1 (en) 2003-07-30
DE50212303D1 (en) 2008-07-03
RU2004125166A (en) 2005-05-10
CN1615224A (en) 2005-05-11
JP2005514672A (en) 2005-05-19
PL202810B1 (en) 2009-07-31
RU2309048C2 (en) 2007-10-27
CN100519222C (en) 2009-07-29
EP1465780A1 (en) 2004-10-13
US20050128590A1 (en) 2005-06-16
TW200302358A (en) 2003-08-01
ATE396059T1 (en) 2008-06-15
TWI265319B (en) 2006-11-01
WO2003059643A1 (en) 2003-07-24
US7102823B2 (en) 2006-09-05
PL370298A1 (en) 2005-05-16
KR20040083078A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
EP1465780B1 (en) Diffractive security element having an integrated optical waveguide
EP2892729B1 (en) Security element and security document
DE3206062C2 (en)
EP1446294B1 (en) Security element with diffraction structures
EP2909040B1 (en) Optically variable surface pattern
DE102008005019B4 (en) Foil element and the use of this foil element
EP2501553B1 (en) Security element having a microstructure
EP2766192B1 (en) Security element
EP1458578B1 (en) Diffractive safety element
DE102004044458B4 (en) The security document
EP2228671B1 (en) Safety element
WO2014023415A1 (en) Security element having a structure creating colour effects
EP3406457A1 (en) Security element for securing valuable documents
EP2228672A1 (en) Safety element with multicoloured image
EP2885135A1 (en) Security device
DE102012105444A1 (en) Security element with diffractive structure
DE102014117877A1 (en) security element
EP2335100B1 (en) Grid image having achromatic grid fields
DE102020000732A1 (en) Optically variable security element
EP2225107B1 (en) Security element, and method for the production thereof
EP3691911A1 (en) Optically variable see-through security element and data carrier
WO2008055658A1 (en) Safety foil
DE102007020026A1 (en) Security paper comprises a window covered by a transparent or translucent feature layer with motif zones comprising achromatic microstructures with angle-dependent transmission and reflection properties
EP3541630B1 (en) Security element having a subwavelength grating
EP3921679B1 (en) Grid structure image for representing a multi-colour diffraction image

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TOMPKIN, WAYNE, ROBERT

Inventor name: STAUB, RENE

Inventor name: SCHILLING, ANDREAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50212303

Country of ref document: DE

Date of ref document: 20080703

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080901

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081021

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAZ Examination of admissibility of opposition: despatch of communication + time limit

Free format text: ORIGINAL CODE: EPIDOSNOPE2

26 Opposition filed

Opponent name: HOLOGRAM INDUSTRIES

Effective date: 20090226

D26N No opposition filed (deleted)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080821

BERE Be: lapsed

Owner name: OVD KINEGRAM A.G.

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PLBA Examination of admissibility of opposition: reply received

Free format text: ORIGINAL CODE: EPIDOSNOPE4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PLBG Opposition deemed not to have been filed

Free format text: ORIGINAL CODE: 0009274

26D Opposition deemed not to have been filed

Opponent name: HOLOGRAM INDUSTRIES

Effective date: 20091105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081102

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080822

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26D Opposition deemed not to have been filed (corrected)

Opponent name: HOLOGRAM INDUSTRIES

Effective date: 20091105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OVD KINEGRAM AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20191023

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191030

Year of fee payment: 18

Ref country code: CH

Payment date: 20191125

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191126

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201106

Year of fee payment: 19

Ref country code: FR

Payment date: 20201119

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50212303

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130