EP1458578B1 - Diffractive safety element - Google Patents

Diffractive safety element Download PDF

Info

Publication number
EP1458578B1
EP1458578B1 EP02805743A EP02805743A EP1458578B1 EP 1458578 B1 EP1458578 B1 EP 1458578B1 EP 02805743 A EP02805743 A EP 02805743A EP 02805743 A EP02805743 A EP 02805743A EP 1458578 B1 EP1458578 B1 EP 1458578B1
Authority
EP
European Patent Office
Prior art keywords
diffraction
surface element
security element
elements
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02805743A
Other languages
German (de)
French (fr)
Other versions
EP1458578A1 (en
Inventor
Andreas Schilling
Wayne Robert Tompkin
René Staub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OVD Kinegram AG
Original Assignee
OVD Kinegram AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OVD Kinegram AG filed Critical OVD Kinegram AG
Publication of EP1458578A1 publication Critical patent/EP1458578A1/en
Application granted granted Critical
Publication of EP1458578B1 publication Critical patent/EP1458578B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0033Owner certificates, insurance policies, guarantees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0053Forms specially designed for commercial use, e.g. bills, receipts, offer or order sheets, coupons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0073Printed matter of special format or style not otherwise provided for characterised by shape or material of the sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/40Agents facilitating proof of genuineness or preventing fraudulent alteration, e.g. for security paper
    • D21H21/42Ribbons or strips

Definitions

  • the invention relates to a diffractive security element according to the preamble of claim 1.
  • diffractive security elements are used to authenticate items, such as banknotes, ID cards of all kinds, and valuable documents, to determine the authenticity of the item without much effort.
  • the diffractive security element is firmly connected to the object in the output of the article in the form of a cut from a thin layer composite brand.
  • Diffractive security elements of the type mentioned are from the EP 0 105 099 A1 and the EP 0 375 833 A1 known. These security elements comprise a pattern of tessellated surface elements having a diffraction grating. The diffraction gratings are azimuthally arranged in such a way that, during a rotation, the visible pattern produced by diffracted light changes optically.
  • the surface elements have asymmetrical diffraction gratings.
  • the asymmetrical diffraction gratings are arranged in pairs and in mirror symmetry.
  • Special asymmetric diffraction gratings, which look like oblique mirrors, are in the WO 97/19821 described.
  • the diffraction properties of the diffraction grating can be depicted using a Fourier space representation.
  • the Fourier space representation indicates in a circle the direction of the diffracted light rays by means of a point, the light being incident perpendicular to the diffraction grating in the center of the circle.
  • Polar angles of different points in the Fourier space representation reflect the azimuthal orientation of the diffraction gratings.
  • the diffractive security elements generally consist of one piece of a thin laminate of plastic.
  • the boundary layer between two of the layers has microscopically fine reliefs of light-diffracting structures. To increase the reflectivity, the boundary layer between the two layers is covered with a reflective layer.
  • the structure of the thin layer composite and the materials used for this purpose are, for example, in US 4,856,857 and the WO 99/47983 described. From the DE 33 08 831 A1 It is known to apply the thin layer composite with the aid of a carrier film on the object.
  • the disadvantage of these diffractive security elements is due to the narrow solid angle and the extremely high surface brightness, under which a surface element occupied by a diffraction grating is visible to an observer.
  • the high surface brightness can also make the recognizability of the shape of the surface element more difficult.
  • the invention has for its object to provide a cost-effective, diffractive security element that shows a highly visible, static surface pattern in a large angular range in the diffracted light.
  • FIG. 1 3 denotes a layer composite, 2 a security element, 3 a substrate, 4 a cover layer, 5 an impression layer, 6 a protective layer, 7 an adhesive layer, 8 a reflective boundary layer, 9 an optically active structure and 10 a transparent site in the reflective boundary layer 8.
  • the composite layer 1 consists of several layers of different, successively applied to a carrier film not shown here plastic layers and includes in the order typically the top layer 4, the impression layer 5, the protective layer 6 and the adhesive layer 7.
  • the carrier film is in one embodiment, the cover layer 4 itself, in another embodiment, the carrier film is used for applying the thin layer composite 1 on the substrate 3 and is then removed from the layer composite 1, as in the above-mentioned DE 33 08 831 A1 is described.
  • the boundary layer 8 forms the common contact surface between the impression layer 5 and the protective layer 6.
  • the optically active structures 9 of an optically variable pattern are formed in the impression layer 5. Since the protective layer 6 fills the valleys of the optically active structures 9, the boundary layer 8 has the shape of the optically active structures 9.
  • a jump in the refractive index is required at the boundary layer 8. This jump in the refractive index generates, for example, a metal coating, preferably of aluminum, silver, gold, copper, chromium, tantalum, which as boundary layer 8 separates the impression layer 5 and the protective layer 6. Due to its electrical conductivity, the metal coating causes a high reflectivity for visible light at the boundary layer 8.
  • the jump in the refractive index can instead of a metal coating also produce a coating of an inorganic, dielectric material with the advantage that the dielectric coating is additionally transparent.
  • Suitable dielectric materials are, for example, in the writings mentioned above US 4,856,857 , Table 1 and WO 99/47983 listed.
  • the composite layer 1 can be produced as a plastic laminate in the form of a long film web with a multiplicity of juxtaposed copies of the optically variable pattern.
  • the security elements 2 are cut out of the film web and joined to a substrate 3 by means of the adhesive layer 7.
  • the substrate 3 usually in the form of a document, a banknote, a bank card, a passport or other important or valuable object, is provided with the security element 2 in order to authenticate the authenticity of the object.
  • At least the cover layer 4 and the impression layer 5 are transparent to visible light 11 incident on the security element 2.
  • the incident light 11 is reflected and deflected in a predetermined manner by the optically active structure 9.
  • the optically active structures 9 are, for example, diffractive structures, light-scattering relief structures and planar mirror surfaces.
  • FIG. 2 shows the applied to the substrate 3 security element 2 in plan view.
  • Surface elements 12 form a mosaic-like surface pattern in the plane of the security element 2.
  • Each surface element 12 is provided with one of the optically active structure 9 (FIG. Fig. 1 ).
  • transparent locations 10, at which the reflective metal coating is interrupted are introduced into the boundary layer 8 (FIG. Fig. 1 ), so that lying under the security element 2, located on the substrate 3 Indicia 13 can be seen through the security element 2 therethrough.
  • the boundary layer 8 has a transparent dielectric coating so that the indicia 13 remain visible under the security element 2.
  • the protective layer 6 ( Fig. 1 ) and the adhesive layer 7 Fig.
  • the adhesive layer 7 is then applied directly to the optically active structures 9.
  • the adhesive is a hot-melt adhesive, which develops its adhesion only at a temperature around 100 ° C.
  • a diffraction grating 24 ( Fig. 1 ) is characterized by its parameters spatial frequency, azimuth, profile shape and profile height h ( Fig. 1 ), certainly.
  • the linear asymmetric diffraction gratings 24 mentioned in the Examples described below have a spatial frequency in the range of 50 lines / mm to 2,000 lines / mm, with the range of 100 lines / mm to about 1,500 lines / mm being preferred.
  • the geometric profile height h has a value from the range 50 nm to 5,000 nm, preferred values being between 100 nm and 2,000 nm. Since the shaping of the diffraction gratings 24 into the impression layer 5 (FIG. Fig. 1 ) for geometric profile heights h which are greater than the reciprocal of the spatial frequency, is technically difficult, large values for the geometric profile height h only make sense at low values for the spatial frequency.
  • FIG. 3 is the diffraction property of a linear diffraction grating 24 (FIG. Fig. 1 ) Based on the Fourierraumdar ein described above with the first and second diffraction orders 14, 15, wherein a grating vector 26 of the diffraction grating 24 is parallel to the direction x.
  • the diffraction grating 24 of the surface element 12 arranged in the center of the circle disassembles the light 11 which is incident perpendicular to the plane of the drawing (FIG. Fig. 1 ) in spectral colors. Rays of the diffracted light of the different orders of diffraction 14, 15 are in the same, determined by the incident light 11 and the grating vector 26, not representable here diffraction plane and are therefore strongly directed.
  • the number of propagating diffraction orders 14, 15 depends on the spatial frequency of the diffraction grating 24. In the range below a spatial frequency of about 300 lines / mm, the higher diffraction orders overlap, so that the diffracted light is achromatic there.
  • the surface element 12 occupied by the diffraction grating 24 becomes invisible to the observer viewing the diffraction grating 24 from the x coordinate direction, since the grating vector 26 and thus the diffraction plane with the rays of the diffracted light no longer point in the direction of the x - coordinate.
  • the matte structures have microscopic scale fine relief features that determine the scattering power and can only be described with statistical parameters, such as average roughness R a and correlation length I c , the values for the average roughness R a in the range 20 nm to 2,000 nm with preferred values of 50 nm to 500 nm, while the correlation length l c in at least one direction values in the range of 200 nm to 50,000 nm, preferably between 500 nm to 10,000 nm.
  • statistical parameters such as average roughness R a and correlation length I c , the values for the average roughness R a in the range 20 nm to 2,000 nm with preferred values of 50 nm to 500 nm, while the correlation length l c in at least one direction values in the range of 200 nm to 50,000 nm, preferably between 500 nm to 10,000 nm.
  • FIG. 4 shows the Fourier space representation for the surface element 12 (shown in FIG. 2) with an isotropic matt structure.
  • FIG. Fig. 3 with vertically incident light 11 (FIG. Fig. 1 ).
  • the microscopically fine relief structure elements of the isotropic matt structure have no azimuthal preferred direction, which is why the scattered Light with an intensity greater than a predetermined limit, for example, given by the visual recognizability, evenly distributed in a predetermined by the scattering power of the matte structure solid angle 16 in all azimuthal directions and the surface element 12 appears white to gray in daylight. In all other directions, the surface element 12 is dark. Strongly scattered matt structures distribute the scattered light into a larger solid angle 16 than a weakly scattering matt structure.
  • the relief elements of the matt structure have a preferred direction of the microscopically fine relief structure elements parallel to the coordinate x.
  • the scattered light therefore has an anisotropic distribution.
  • the security element 2 has the pattern of the surface elements 12 which are connected to the optically active structures 9 (FIG. Fig. 1 ) are occupied.
  • the direction of the incident light 11, the surface normal 17 and the reflected beam 18 together span a diffraction plane 19 which is in the FIG. 6 is arranged parallel to the plane of the drawing.
  • the optically active structure 9 has the shape of the linear diffraction grating 24 (FIG. Fig. 1 ) whose grating vector 26 ( Fig.
  • the incident light 11 is irradiated according to its wavelength ⁇ at the diffraction angles ⁇ 1 , ⁇ 2 as diffracted beams 20, 21 in each of the diffraction orders 14 (FIG. Fig. 3 ), 15 ( Fig. 3 ) is deflected from the direction of the reflected beam 18.
  • the optically effective structure 9 is one of the matt structures
  • the end points of intensity vectors of the backscattered light form club-shaped surfaces.
  • the club-shaped surfaces intersect the diffraction plane 19, for example in sectional curves 22, 23. If the relief structure elements of the matt structure have no preferred direction, the light beams are scattered almost concentrically around the direction of the reflected beam 18.
  • the matt structure with the cutting curve 22 scatters the incident Light 11 stronger and into a larger solid angle 16 ( Fig. 4 Because of the greater scattering, the intensity of the light scattered in the direction of the reflected beam 18 is weaker, as indicated by the cutting curve 22 in comparison to the cutting curve 23.
  • the locations of equal intensity are on flattened, club-shaped surfaces which have an elliptical cross section in a sectional plane perpendicular to the reflected beam 18, not shown here on the sectional plane of the centroid of the cross section coincides with the piercing point of the reflected beam 18 and the longitudinal axis of the elliptical cross section is aligned perpendicular to the diffraction plane 19.
  • the distribution of the scattered light is therefore anisotropic.
  • the matt structures are unable to split the incident light 11 into the spectral colors.
  • asymmetric linear diffraction gratings 24 shown are the intensity l - of the diffracted beam 20 ( Fig. 6 ) in the negative diffraction order 14 ( Fig. 3 ), 15 ( Fig. 3 ) and the intensity I + of the diffracted beam 21 (FIG. Fig. 6 ) in the positive diffraction order 14, 15 unequal.
  • the factor p depends essentially on the formation of the sawtooth-shaped profile of the diffraction grating 24, the profile height h and the Spatialfrequenz. Below a spatial frequency of about 300 lines / mm, the asymmetric diffraction grating 24 acts like an inclined mirror, ie, the intensity l + of the diffracted beam 21 in the positive diffraction orders almost reaches the intensity of the incident light 11, while the intensity l - of the diffracted beam 20 is practically vanishingly small in the negative diffraction orders.
  • the factor p reaches values of 100 or more. A splitting of the incident light 11 into the spectral colors no longer occurs, which is why such diffraction gratings 24 are characterized by the term "achromatic". More about this can be found in the document mentioned above WO 97/19821 ,
  • FIG. 7 shows a schematic representation of the embedded in the molding layer 5 and the protective layer 6, optically active structure 9 (FIG. Fig. 1 ), which generates a diffraction structure 25 generated by an additive superimposition from the linear asymmetric diffraction grating 24 (FIG. Fig. 1 ) and the matt structure is.
  • the matt structure is drawn for illustrative reasons with a small average roughness value R a compared to the profile height h and much too regular.
  • the profile of the linear asymmetrical diffraction grating 24 has, as further parameters, blaze angles ⁇ 1 and ⁇ 2 , which have both profile surfaces of the asymmetrical diffraction grating 24 with the plane of the security element 2 (FIG. Fig. 6 ) lock in.
  • FIG. 8 is the Fourier space of the diffraction structure 25 (FIG. Fig. 7 ), wherein the matte structure is isotropic.
  • the means of the diffraction grating 24 ( Fig. 1 ) strongly directed diffracted beams 20 ( Fig. 6 21, Fig. 6 ) are widened by the matt structure.
  • the intensity I + of the rays 20 diffracted into the plus first diffraction order 14 is about Factor p greater than the intensity I - the rays diffracted into the minus first diffraction order 14 '. This is shown in the drawing of FIG. 7 represented by differently dense dot patterns in the solid angles 16.
  • the incident light 11 split into spectral colors.
  • the matt structure causes a smearing of the pure spectral colors to pastel shades to virtually white scattered light regardless of the Spatialfrequenz the diffraction grating 24.
  • the FIG. 9 1 shows a simple example of the quasi-static pattern element formed of two surface elements 27, 28 in the security element 2.
  • the first surface element 27 with the first diffraction structure 25 (FIG. Fig. 7 ) adjoins the second surface element 28 with the second diffraction structure 25.
  • the first surface element 27 and the second surface element 28 are arranged in a surface pattern on the security element 2 with regions 29 occupied by other optically active structures.
  • the first and the second diffraction structure 25 differ only by the direction of their grating vector 26 (FIG. Fig. 3 ) and have that in the FIG. 8 shown diffraction behavior.
  • the grating vectors 26 are in the FIG.
  • the grating vector 26 of the first diffraction structure 25 is aligned parallel to the coordinate x.
  • the matt structure extends homogeneously over the entire surface of the two surface elements 27, 28.
  • the observer looks in the direction of the coordinate x and sees the first surface element 27 with a low surface brightness, whereas the second one Surface element 28 with a high surface brightness, as in the drawing of the FIGS. 9 and 10 used dot matrix implies.
  • the security element 2 is rotated in its plane by 180 °, as in the FIG. 10 shown, the security element 2 is considered against the direction of the coordinate x.
  • the surface brightnesses of the two surface elements 27, 28 are then reversed, that is, the contrast between the two surface elements 27, 28 is opposite to the representation in the FIG. 9 vice versa.
  • both the parameters of the asymmetric diffraction gratings 24 (FIG. Fig. 1 ) as well as the parameters of the different matt structures depending on the location within the surface element 12, or of a surface element 12, 27, 28 to the other, independently of each other or coupled together according to Table 1 changeable to easily observable, different, striking optical effects to achieve the quasi-static pattern elements.
  • Table 1 Examples (overview) example Asymmetrical diffraction grating 24 ( Fig.
  • matt structure 1 homogeneously homogeneous and isotropic 2 varies locally (area coverage or profile shape) homogeneous and isotropic 3 homogeneously varies locally 4 varies locally (orientation of the lattice vector 26) varies locally 5 varies locally (tread depth) homogeneous and anisotropic
  • a plurality of the first surface elements 27 are arranged on the second surface element 28 as a background surface, wherein the grating vectors 26 (FIG. Fig. 3 ) of each asymmetrical diffraction grating 24 ( Fig. 1 ) in the diffraction structure 25 (FIG. Fig. 7 ) of the first surface elements 27 on the one hand and the second surface element 28 on the other hand are aligned substantially anti-parallel.
  • the first surface elements 27 have, in a preferred direction 30, a surface coverage ratio of the diffraction structure 25 that decreases from surface element 27 to surface element 27, by inserting a plurality of partial surfaces 31 having dimensions in at least one dimension of less than 0.3 mm into the first Surface elements 27 can be achieved.
  • the diffraction structure 25 of the second Surface element 28 molded.
  • the small sub-areas 31 are not visible to the naked eye, but effectively reduce the surface brightness of the first area elements 27.
  • a similar effect is achieved in another embodiment by changing the asymmetry of the profile shape of the diffraction grating 24 from surface element 27 to surface element 27 in the preferred direction 30.
  • the profile shape of the diffraction grating 24 changes from a first strongly asymmetrical shape via a symmetrical profile back to a mirror-symmetrical shape to the first asymmetric shape.
  • the surface brightness of the first surface elements 27 therefore decreases in the preferred direction 30.
  • the matt structure extends homogeneously over the entire quasi-stationary pattern element. When rotating through 180 ° of the pattern element in the plane spanned by the coordinates x and y, the observer noticeably changes the contrasts between the first surface elements 27 and the second surface element 28.
  • the quasi-stationary pattern element 27 at least a partial surface 31 is disposed within the first surface element.
  • the first surface element 27 and the partial surfaces 31 differ only by the scattering property of the diffraction structure 25 (FIG. Fig. 7 ) used matt structure.
  • the asymmetrical diffraction grating 24 (FIG. Fig. 7 ) superimposed on a strongly scattering matt structure
  • the asymmetrical diffraction grating 24 is superimposed on a weakly scattering matt structure.
  • the faces 31 are clearly visible against the background of the first surface element 27 because of their higher surface brightness.
  • the contrast between the partial surfaces 31 and the first surface element 27 is reversed, so that the partial surfaces 31 are darkly recognized against the light background of the surface of the first surface element 27.
  • the partial surfaces 31 may form a lettering or logo and have at least a font height of 1.5 mm for easy recognition; this requires correspondingly large surface elements 27, 28.
  • the contrast between the first surface element 27 and the partial surfaces 31 disappears outside the larger solid angle 16 of the diffraction structure 25 in the first surface element 27;
  • the first surface element 27 and the partial surfaces 31 are uniformly dark, eg also as in the US Pat FIG. 13 shown after the rotation of the security element 2 ( Fig. 1 ) in the range of the azimuth angle ⁇ of about 180 °.
  • the first surface element 27 adjoins the second surface element 28 in order to obtain an additional contrast change between the first and the second surface element 27, 28, which facilitates the observer finding the information contained in the surface portions 31.
  • the relief elements of the matt structure in the diffraction structure 25 (FIG. Fig. 7 ) has a preferred direction oriented to the grating vector 26 with the azimuth ⁇ .
  • the microscopically fine relief structure elements of the matt structure are perpendicular to the lattice vector 26 of the asymmetrical diffraction grating 24 (FIG. Fig. 1 ).
  • the scattered incident light 11 ( Fig. 6 ) therefore has an anisotropic distribution.
  • the solid angles 32 and 33 of the two diffraction orders 14 (15) predetermined by the scattering power of the matt structure.
  • Fig. 3 are pulled apart in the form of an ellipse along the grid vector 26.
  • the major axis of the ellipse of the solid angles 32 and 33 transversely to the lattice vector 26 is very small so that the surface element 12 (FIG. Fig. 2 ) is visible in the scattered light in a large angular range when tilted about an axis transverse to the grating vector 26 and only in a narrow range in the azimuth.
  • the intensity l + in the solid angle 32 of the positive diffraction order 12 ( Fig. 3 ) diffracted beams 21 ( Fig. 6 ) is larger by the factor p than the intensity I - of the rays 20 diffracted into the solid angle 33 of the negative diffraction order 12 ( Fig. 6 ).
  • a plurality of elliptical, self-contained narrow bands 34 form the surface pattern of the security element 2.
  • the bands 34 are evenly distributed in azimuth arranged so that their centers of gravity 35 coincide.
  • the four bands 34 with the same azimuth of the grating vector 26 are simultaneously visible from the same direction.
  • each of the bands 34 forms the pattern element described above and is divided into the two surface elements 27 (FIG. Fig. 9 ), 28 ( Fig. 9 ).
  • the division into the two with the diffraction structures 25 (FIG. Fig. 7 ) occupied surface elements 27, 28 is carried out according to an outline 36 in a predetermined shape, such as a simple logo, a letter, a number, for example, for the in the FIG. 15 shown outline 36 is selected the shape of a cross.
  • a part of the band 34 located outside the cross is designed, for example, as the first surface element 27 and the part of the band 34 located inside the cross as the second surface element 28.
  • the direction of the grating vectors 26 of the diffraction structures 25 in the first surface elements 27 and the diffraction structures 25 in the second surface elements 28 are substantially antiparallel in each band 34.
  • the relief elements of the matt structures are aligned in each band 34 transversely to the grating vector 26.
  • the brightness of the band parts lying within the outline 36 is, for example, greater than that of the band parts outside the outline 36.
  • the contrast does not change, but the mixed color perceived by the observer, as long as the viewing direction of the observer within the solid angle 32 (FIG. Fig. 14 ) of the positive diffraction order remains.
  • the contrast between the lying within the outline band parts 36 and lying outside the outline 36 band parts is reversed, ie the band parts within the outline 36 are less bright than the outboard Band parts.
  • the areas of the bands 34 are uniformly dark or unobservable.
  • FIG. 16 the fifth example is illustrated.
  • a plurality of the surface elements 12 is disposed within the surface pattern of the security element 2 predetermined along the preferred direction 30, wherein adjacent surface elements 12 are spaced or aligned directly abutting.
  • the blaze angle ⁇ 2 ( Fig. 7 ) of the wider profile flank of a surface element 12 to the adjacent surface element 12 between the extreme values ⁇ ⁇ 2 Max . changes in steps by one of the predetermined Blazewinkelworkn ⁇ 2 .
  • the blaze angle ⁇ 1 Fig.
  • the diffraction structures 25 of the two outer surface elements 12 have the blaze angle + ⁇ 2Max . or - ⁇ 2 Max . on.
  • the matte structure is homogeneous in all surface elements 12 and anisotropic as shown by the FIG. 5 is beschieben.
  • the elliptical solid angles 16 ( Fig. 5 ) of each of the surface elements 12 are in the Fourier space representation along the coordinate x ( Fig. 5 ) arranged in accordance with the blaze angle ⁇ 2 of the diffraction structure 25 shifted next to each other.
  • the grating vectors 26 are aligned substantially parallel or antiparallel to the preferred direction 30.
  • the security element 2 is tilted about an axis 37 aligned transversely to the preferred direction 30, one of the surface elements 12 lights up brightly for the observer looking in the preferred direction 30, so that the observer lights a bright strip 38 on the security element 2 in the preferred direction 30 sees.
  • the strip 38 remains visible in a large tilt angle dependent on the solid angle 16.
  • anisotropic matt structures can also be used.
  • anisotropic matt structures used in the above examples can be replaced by isotropic matt structures.

Abstract

A security element ( 2 ) comprising a plastic laminate ( 1 ) has a surface pattern which is composed mosaic-like at least from surface elements, wherein in the surface elements a reflecting interface ( 8 ) between a shaping layer ( 5 ) and a protective layer ( 6 ) of the plastic laminate ( 1 ) forms optically effective structures ( 9 ). Light ( 11 ) which is incident on the plastic laminate ( 1 ) and which passes through a cover layer ( 4 ) of the plastic laminate ( 1 ) and through the shaping layer ( 5 ) is deflected in a predetermined manner by means of the optically effective structures ( 9 ). Shaped in the surface of at least one of the surface elements is a diffraction structure which is produced by a superimposition of a linear asymmetrical diffraction grating ( 24 ) with a matt structure. The linear asymmetrical diffraction grating ( 24 ) has a spatial frequency from the range of values of between 50 lines/mm and 2,000 lines/mm. The matt structure has a mean roughness value from the range of between 20 nm and 2,000 nm and at least in one direction a correlation length of between 200 nm and 50,000 nm.

Description

Die Erfindung bezieht sich auf ein diffraktives Sicherheitselement gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a diffractive security element according to the preamble of claim 1.

Solche diffraktive Sicherheitselemente werden zum Beglaubigen von Gegenständen, wie Banknoten, Ausweisen aller Art, und wertvollen Dokumenten, verwendet, um die Echtheit des Gegenstands ohne grossen Aufwand feststellen zu können. Das diffraktive Sicherheitselement wird bei der Ausgabe des Gegenstands in Form einer aus einem dünnen Schichtverbund geschnittenen Marke mit dem Gegenstand fest verbunden.Such diffractive security elements are used to authenticate items, such as banknotes, ID cards of all kinds, and valuable documents, to determine the authenticity of the item without much effort. The diffractive security element is firmly connected to the object in the output of the article in the form of a cut from a thin layer composite brand.

Diffraktive Sicherheitselemente der eingangs genannten Art sind aus der EP 0 105 099 A1 und der EP 0 375 833 A1 bekannt. Diese Sicherheitselemente umfassen ein Muster aus mosaikartig angeordneten Flächenelementen, die ein Beugungsgitter aufweisen. Die Beugungsgitter sind azimutal so vorbestimmt angeordnet, dass sich bei einer Drehung das durch gebeugtes Licht erzeugte, sichtbare Muster optisch verändert.Diffractive security elements of the type mentioned are from the EP 0 105 099 A1 and the EP 0 375 833 A1 known. These security elements comprise a pattern of tessellated surface elements having a diffraction grating. The diffraction gratings are azimuthally arranged in such a way that, during a rotation, the visible pattern produced by diffracted light changes optically.

In der EP 0 360 969 A1 sind diffraktive Sicherheitselemente beschrieben, bei denen die Flächenelemente asymmetrische Beugungsgitter aufweisen. Jeweils in zwei Flächenelementen mit einer gemeinsamen Grenze sind die asymmetrischen Beugungsgitter paarweise und spiegelsymmetrisch angeordnet. Spezielle asymmetrische Beugungsgitter, die wie schief gestellte Spiegel wirken, sind in der WO 97/19821 beschrieben.In the EP 0 360 969 A1 diffractive security elements are described in which the surface elements have asymmetrical diffraction gratings. In each case in two surface elements with a common border, the asymmetrical diffraction gratings are arranged in pairs and in mirror symmetry. Special asymmetric diffraction gratings, which look like oblique mirrors, are in the WO 97/19821 described.

Die Beugungseigenschaften des Beugungsgitters können anhand einer Fourierraumdarstellung bildlich dargestellt werden. Die Fourierraumdarstellung zeigt in einem Kreis die Richtung der gebeugten Lichtstrahlen mittels eines Punktes an, wobei das Licht senkrecht auf das Beugungsgitter im Kreiszentrum einfällt. Das Kreiszentrum entspricht dem Beugungswinkel β = 0° und der Umfang dem Beugungswinkel β = 90°, während ein Radius einem im Kreis gelegenen Punkt den Beugungswinkel β der an den Beugungsgittern gebeugten Lichtstrahlen anzeigt. Polarwinkel verschiedener Punkte in der Fourierraumdarstellung reflektieren die azimutale Ausrichtung der Beugungsgitter.The diffraction properties of the diffraction grating can be depicted using a Fourier space representation. The Fourier space representation indicates in a circle the direction of the diffracted light rays by means of a point, the light being incident perpendicular to the diffraction grating in the center of the circle. The circle center corresponds to the diffraction angle β = 0 ° and the circumference to the diffraction angle β = 90 °, while a radius indicating a point located in a circle indicates the diffraction angle β of the light rays diffracted at the diffraction gratings. Polar angles of different points in the Fourier space representation reflect the azimuthal orientation of the diffraction gratings.

Die diffraktiven Sicherheitselemente bestehen im allgemeinen aus einem Stück eines dünnen Schichtverbunds aus Kunststoff. Die Grenzschicht zwischen zwei der Schichten weist mikroskopisch feine Reliefs von lichtbeugenden Strukturen auf. Zur Erhöhung der Reflektivität ist die Grenzschicht zwischen den beiden Schichten mit einer Reflexionsschicht überzogen. Der Aufbau des dünnen Schichtverbunds und die dazu verwendbaren Materialien sind beispielsweise in der US 4,856,857 und der WO 99/47983 beschrieben. Aus der DE 33 08 831 A1 ist bekannt, den dünnen Schichtverbund mit Hilfe einer Trägerfolie auf den Gegenstand aufzubringen.The diffractive security elements generally consist of one piece of a thin laminate of plastic. The boundary layer between two of the layers has microscopically fine reliefs of light-diffracting structures. To increase the reflectivity, the boundary layer between the two layers is covered with a reflective layer. The structure of the thin layer composite and the materials used for this purpose are, for example, in US 4,856,857 and the WO 99/47983 described. From the DE 33 08 831 A1 It is known to apply the thin layer composite with the aid of a carrier film on the object.

Der Nachteil dieser diffraktiven Sicherheitselemente ist im engen Raumwinkel und der extrem hohen Flächenhelligkeit begründet, unter denen ein mit einem Beugungsgitter belegtes Flächenelement für einen Beobachter sichtbar ist. Die hohe Flächenhelligkeit kann zudem die Erkennbarkeit der Form des Flächenelements erschweren.The disadvantage of these diffractive security elements is due to the narrow solid angle and the extremely high surface brightness, under which a surface element occupied by a diffraction grating is visible to an observer. The high surface brightness can also make the recognizability of the shape of the surface element more difficult.

Es ist auch aus der EP 0 712 012 A1 bekannt, bei einem sinusförmigen, submikroskopisch feinen Beugungsgitter das Verhältnis der Strukturtiefe zur Talbreite lokal zu variieren. In einer Ausführungsform bewirken nicht reproduzierbare, anisotrope Prozessschritte eine solche Veränderung des Beugungsgitters. In einer anderen Ausführungsform ist das Beugungsgitter mit einer Makro-Rauhigkeit zur Modulation der Strukturtiefe überlagert. Auf das Beugungsgitter einfallendes weisses Licht wird unter dem Winkel der Reflexion gebeugt und reflektiert, wobei eine von der Spatialfrequenz des Beugungsgitters abhängige Interferenzfarbe mit einer Farbsättigung auftritt, wobei der Anteil an reflektiertem Weisslicht im gebeugten Licht, durch die Strukturtiefe bestimmt ist.It is also from the EP 0 712 012 A1 In the case of a sinusoidal, submicroscopically fine diffraction grating, it is known to locally vary the ratio of the structure depth to the valley width. In one embodiment, non-reproducible, anisotropic process steps cause such a change in the diffraction grating. In another embodiment, the diffraction grating is superimposed with a macro roughness for the modulation of the structure depth. White light incident on the diffraction grating is diffracted and reflected at the angle of reflection, with an interference color dependent on the spatial frequency of the diffraction grating occurring with color saturation, the proportion of reflected white light in the diffracted light being determined by the texture depth.

Der Erfindung liegt die Aufgabe zugrunde, ein kostengünstiges, diffraktives Sicherheitselement zu schaffen, das im gebeugten Licht ein gut sichtbares, statisches Flächenmuster in einem grossen Winkelbereich zeigt.The invention has for its object to provide a cost-effective, diffractive security element that shows a highly visible, static surface pattern in a large angular range in the diffracted light.

Die genannte Aufgabe wird erfindungsgemäss durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.The above object is achieved by the features specified in the characterizing part of claim 1 according to the invention. Advantageous embodiments of the invention will become apparent from the dependent claims.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben.Embodiments of the invention are illustrated in the drawings and will be described in more detail below.

Es zeigen:

Figur 1
ein Sicherheitselement im Querschnitt,
Figur 2
das Sicherheitselement in Draufsicht,
Figur 3
eine Fourierraumdarstellung eines linearen Beugungsgitters,
Figur 4
die Fourierraumdarstellung einer isotropen Mattstruktur,
Figur 5
die Fourierraumdarstellung einer anisotropen Mattstruktur,
Figur 6
Ablenkcharakteristiken optisch wirksamer Strukturen,
Figur 7
eine Beugungsstruktur in einem Schichtverbund,
Figur 8
die Fourierraumdarstellung der Beugungsstruktur,
Figur 9
das Sicherheitselement mit einem Musterelement in Draufsicht,
Figur 10
das Sicherheitselement nach der Figur 9 um 180° gedreht,
Figur 11
eine zweite Ausführungsform des Musterelements,
Figur 12
eine dritte Ausführungsform des Musterelements,
Figur 13
die dritte Ausführungsform des Musterelements um 180° gedreht,
Figur 14
die Fourierraumdarstellung einer anderen Beugungsstruktur,
Figur 15
ein Flächenmuster als vierte Ausführungsform und
Figur 16
eine fünfte Ausführung des Musterelements.
Show it:
FIG. 1
a security element in cross section,
FIG. 2
the security element in plan view,
FIG. 3
a Fourier space representation of a linear diffraction grating,
FIG. 4
the Fourier space representation of an isotropic matt structure,
FIG. 5
the Fourier space representation of an anisotropic matt structure,
FIG. 6
Deflection characteristics of optically active structures,
FIG. 7
a diffraction structure in a layer composite,
FIG. 8
the Fourier space representation of the diffraction structure,
FIG. 9
the security element with a pattern element in plan view,
FIG. 10
the security element after the FIG. 9 turned 180 °,
FIG. 11
a second embodiment of the pattern element,
FIG. 12
a third embodiment of the pattern element,
FIG. 13
the third embodiment of the pattern element rotated by 180 °,
FIG. 14
the Fourier space representation of another diffraction structure,
FIG. 15
a surface pattern as the fourth embodiment and
FIG. 16
a fifth execution of the pattern element.

In der Figur 1 bedeutet 1 ein Schichtverbund, 2 ein Sicherheitselement, 3 ein Substrat, 4 eine Deckschicht, 5 eine Abformschicht, 6 eine Schutzschicht, 7 eine Kleberschicht, 8 eine reflektierende Grenzschicht, 9 eine optisch wirksame Struktur und 10 eine transparente Stelle in der reflektierenden Grenzschicht 8. Der Schichtverbund 1 besteht aus mehreren Lagen von verschiedenen, nacheinander auf eine hier nicht gezeigte Trägerfolie aufgebrachten Kunststoffschichten und umfasst in der angegebenen Reihenfolge typisch die Deckschicht 4, die Abformschicht 5, die Schutzschicht 6 und die Kleberschicht 7. Die Trägerfolie ist in einer Ausführung die Deckschicht 4 selbst, in einer anderen Ausführung dient die Trägerfolie zum Applizieren des dünnen Schichtverbunds 1 auf das Substrat 3 und wird danach vom Schichtverbund 1 entfernt, wie dies in der eingangs erwähnten DE 33 08 831 A1 beschrieben ist.In the FIG. 1 3 denotes a layer composite, 2 a security element, 3 a substrate, 4 a cover layer, 5 an impression layer, 6 a protective layer, 7 an adhesive layer, 8 a reflective boundary layer, 9 an optically active structure and 10 a transparent site in the reflective boundary layer 8. The composite layer 1 consists of several layers of different, successively applied to a carrier film not shown here plastic layers and includes in the order typically the top layer 4, the impression layer 5, the protective layer 6 and the adhesive layer 7. The carrier film is in one embodiment, the cover layer 4 itself, in another embodiment, the carrier film is used for applying the thin layer composite 1 on the substrate 3 and is then removed from the layer composite 1, as in the above-mentioned DE 33 08 831 A1 is described.

Die Grenzschicht 8 bildet die gemeinsame Berührungsfläche zwischen der Abformschicht 5 und der Schutzschicht 6. In die Abformschicht 5 sind die optisch wirksamen Strukturen 9 eines optisch variablen Musters abgeformt. Da die Schutzschicht 6 die Täler der optisch wirksamen Strukturen 9 verfüllt, weist die Grenzschicht 8 die Form der optisch wirksamen Strukturen 9 auf. Um eine hohe Reflektivität der optisch wirksamen Strukturen 9 zu erhalten, ist an der Grenzschicht 8 ein Sprung im Brechungsindex erforderlich. Diesen Sprung im Brechungsindex erzeugt z.B. ein Metallbelag, vorzugsweise aus Aluminium, Silber, Gold, Kupfer, Chrom, Tantal, der als Grenzschicht 8 die Abformschicht 5 und die Schutzschicht 6 trennt. Infolge seiner elektrischen Leitfähigkeit bewirkt der Metallbelag ein hohes Reflexionsvermögen für sichtbares Licht an der Grenzschicht 8. Den Sprung im Brechungsindex kann anstelle eines Metallbelags auch ein Belag aus einem anorganischen, dielektrischen Material erzeugen mit dem Vorteil, dass der dielektrische Belag zusätzlich transparent ist. Geeignete dielektrische Materialien sind beispielsweise in den eingangs erwähnten Schriften US 4,856,857 , Tabelle 1 und WO 99/47983 aufgeführt.The boundary layer 8 forms the common contact surface between the impression layer 5 and the protective layer 6. The optically active structures 9 of an optically variable pattern are formed in the impression layer 5. Since the protective layer 6 fills the valleys of the optically active structures 9, the boundary layer 8 has the shape of the optically active structures 9. In order to obtain a high reflectivity of the optically active structures 9, a jump in the refractive index is required at the boundary layer 8. This jump in the refractive index generates, for example, a metal coating, preferably of aluminum, silver, gold, copper, chromium, tantalum, which as boundary layer 8 separates the impression layer 5 and the protective layer 6. Due to its electrical conductivity, the metal coating causes a high reflectivity for visible light at the boundary layer 8. The jump in the refractive index can instead of a metal coating also produce a coating of an inorganic, dielectric material with the advantage that the dielectric coating is additionally transparent. Suitable dielectric materials are, for example, in the writings mentioned above US 4,856,857 , Table 1 and WO 99/47983 listed.

Der Schichtverbund 1 kann als Kunststofflaminat in Form einer langen Folienbahn mit einer Vielzahl von nebeneinander angeordneten Kopien des optisch variablen Musters hergestellt werden. Aus der Folienbahn werden die Sicherheitselemente 2 beispielsweise ausgeschnitten und mittels der Kleberschicht 7 mit einem Substrat 3 verbunden. Das Substrat 3, meist in Form eines Dokuments, einer Banknote, einer Bankkarte, eines Ausweises oder eines anderen wichtigen bzw. wertvollen Gegenstandes, wird mit dem Sicherheitselement 2 versehen, um die Echtheit des Gegenstandes zu beglaubigen.The composite layer 1 can be produced as a plastic laminate in the form of a long film web with a multiplicity of juxtaposed copies of the optically variable pattern. For example, the security elements 2 are cut out of the film web and joined to a substrate 3 by means of the adhesive layer 7. The substrate 3, usually in the form of a document, a banknote, a bank card, a passport or other important or valuable object, is provided with the security element 2 in order to authenticate the authenticity of the object.

Wenigstens die Deckschicht 4 und die Abformschicht 5 sind transparent für sichtbares, auf das Sicherheitselement 2 einfallendes Licht 11. An der Grenzschicht 8 wird das einfallende Licht 11 reflektiert und durch die optisch wirksame Struktur 9 vorbestimmt abgelenkt. Die optisch wirksamen Strukturen 9 sind z.B. diffraktive Strukturen, lichtstreuende Reliefstrukturen und ebene Spiegelflächen.At least the cover layer 4 and the impression layer 5 are transparent to visible light 11 incident on the security element 2. At the boundary layer 8, the incident light 11 is reflected and deflected in a predetermined manner by the optically active structure 9. The optically active structures 9 are, for example, diffractive structures, light-scattering relief structures and planar mirror surfaces.

Die Figur 2 zeigt das auf das Substrat 3 aufgebrachte Sicherheitselement 2 in Draufsicht. Flächenelemente 12 bilden ein mosaikartiges Flächenmuster in der Ebene des Sicherheitselements 2. Jedes Flächenelement 12 ist mit einer der optisch wirksamen Struktur 9 (Fig. 1) belegt. In einer Ausführungsform des Sicherheitselements 2 sind transparente Stellen 10, an denen der reflektierende Metallbelag unterbrochen ist, in die Grenzschicht 8 (Fig. 1) eingelassen, damit unter dem Sicherheitselement 2 liegende, auf dem Substrat 3 befindliche Indicia 13 durch das Sicherheitselement 2 hindurch erkennbar sind. In einer anderen Ausführungsform des Sicherheitselements 2 weist die Grenzschicht 8 einen transparenten dielektrischen Belag auf, damit die Indicia 13 unter dem Sicherheitselement 2 sichtbar bleiben. Selbstverständlich sind bei diesen transparenten Ausführungen auch die Schutzschicht 6 (Fig. 1) und die Kleberschicht 7 (Fig. 1) transparent. Für besonders dünne Ausführungsformen des Schichtverbunds 1 (Fig. 1) ist die Schutzschicht 6 weggelassen. Die Kleberschicht 7 ist dann direkt auf die optisch wirksamen Strukturen 9 aufgebracht. Mit Vorteil ist der Kleber ein Heisskleber, der seine Haftfähigkeit erst bei einer Temperatur um 100°C entwickelt. In der eingangs erwähnten US 4,856,857 sind verschiedene Ausführungsformen des Schichtverbunds 1 gezeigt und die dazu verwendbaren Materialien aufgelistet.The FIG. 2 shows the applied to the substrate 3 security element 2 in plan view. Surface elements 12 form a mosaic-like surface pattern in the plane of the security element 2. Each surface element 12 is provided with one of the optically active structure 9 (FIG. Fig. 1 ). In one embodiment of the security element 2, transparent locations 10, at which the reflective metal coating is interrupted, are introduced into the boundary layer 8 (FIG. Fig. 1 ), so that lying under the security element 2, located on the substrate 3 Indicia 13 can be seen through the security element 2 therethrough. In another embodiment of the security element 2, the boundary layer 8 has a transparent dielectric coating so that the indicia 13 remain visible under the security element 2. Of course, in these transparent embodiments, the protective layer 6 ( Fig. 1 ) and the adhesive layer 7 ( Fig. 1 ) transparent. For particularly thin embodiments of the layer composite 1 ( Fig. 1 ), the protective layer 6 is omitted. The adhesive layer 7 is then applied directly to the optically active structures 9. Advantageously, the adhesive is a hot-melt adhesive, which develops its adhesion only at a temperature around 100 ° C. In the aforementioned US 4,856,857 different embodiments of the layer composite 1 are shown and the materials that can be used for this purpose are listed.

Ein Beugunsgitter 24 (Fig. 1) ist durch seine Parameter Spatialfrequenz, Azimut, Profilform und Profilhöhe h (Fig. 1), bestimmt. Die in den nachstehend beschriebenen Beispielen erwähnten, linearen asymmetrischen Beugungsgitter 24 weisen eine Spatialfrequenz im Bereich von 50 Linien/mm bis 2'000 Linien/mm auf, wobei der Bereich von 100 Linien/mm bis etwa 1'500 Linien/mm bevorzugt ist. Die geometrische Profilhöhe h weist einen Wert aus dem Bereich 50 nm bis 5'000 nm auf, wobei Vorzugswerte zwischen 100 nm und 2'000 nm liegen. Da das Abformen der Beugungsgitter 24 in die Abformschicht 5 (Fig. 1) für geometrische Profilhöhen h die grösser als der Reziprokwert der Spatialfrequenz sind, technisch schwierig ist, sind grosse Werte für die geometrische Profilhöhe h nur bei tiefen Werten für die Spatialfrequenz sinnvoll.A diffraction grating 24 ( Fig. 1 ) is characterized by its parameters spatial frequency, azimuth, profile shape and profile height h ( Fig. 1 ), certainly. The linear asymmetric diffraction gratings 24 mentioned in the Examples described below have a spatial frequency in the range of 50 lines / mm to 2,000 lines / mm, with the range of 100 lines / mm to about 1,500 lines / mm being preferred. The geometric profile height h has a value from the range 50 nm to 5,000 nm, preferred values being between 100 nm and 2,000 nm. Since the shaping of the diffraction gratings 24 into the impression layer 5 (FIG. Fig. 1 ) for geometric profile heights h which are greater than the reciprocal of the spatial frequency, is technically difficult, large values for the geometric profile height h only make sense at low values for the spatial frequency.

In der Figur 3 ist die Beugungseigenschaft eines linearen Beugungsgitters 24 (Fig. 1) anhand der eingangs beschriebenen Fourierraumdarstellung mit ersten und zweiten Beugungsordnungen 14, 15 dargestellt, wobei ein Gittervektor 26 des Beugungsgitters 24 parallel zur Richtung x ist. Das Beugungsgitter 24 des im Kreiszentrum angeordneten Flächenelements 12 zerlegt das senkrecht auf die Zeichnungsebene einfallende Licht 11 (Fig. 1) in Spektralfarben. Strahlen des gebeugten Licht der verschiedenen Beugungsordnungen 14, 15 liegen in der gleichen, durch das einfallende Licht 11 und den Gittervektor 26 bestimmten, hier nicht darstellbaren Beugungsebene und sind daher stark gerichtet. Kurzwelligeres Licht mit der Wellenlänge λ = 380 nm (violett) weist in jeder der Beugungsordnungen 14, 15 einen kürzeren Abstand vom Kreismittelpunkt auf als langwelligeres Licht mit der Wellenlänge λ = 700 nm (rot). Die Anzahl der propagierenden Beugungsordnungen 14, 15 hängt von der Spatialfrequenz des Beugungsgitters 24 ab. Im Bereich unterhalb einer Spatialfrequenz von etwa 300 Linien/mm überlappen sich die höheren Beugungsordnungen, so dass dort das gebeugte Licht achromatisch ist. Nach einer Drehung des linearen Beugungsgitters 24 im Azimut um den Winkel θ von wenigen Winkelgraden wird für einen aus der Richtung der x - Koordinate auf das Beugungsgitter 24 blickenden Beobachter das mit dem Beugungsgitter 24 belegte Flächenelement 12 unsichtbar, da der Gittervektor 26 und damit die Beugungsebene mit den Strahlen des gebeugten Lichts nicht mehr in die Richtung der x - Koordinate weisen.In the FIG. 3 is the diffraction property of a linear diffraction grating 24 (FIG. Fig. 1 ) Based on the Fourierraumdarstellung described above with the first and second diffraction orders 14, 15, wherein a grating vector 26 of the diffraction grating 24 is parallel to the direction x. The diffraction grating 24 of the surface element 12 arranged in the center of the circle disassembles the light 11 which is incident perpendicular to the plane of the drawing (FIG. Fig. 1 ) in spectral colors. Rays of the diffracted light of the different orders of diffraction 14, 15 are in the same, determined by the incident light 11 and the grating vector 26, not representable here diffraction plane and are therefore strongly directed. Short-wave light with the wavelength λ = 380 nm (violet) has in each of the diffraction orders 14, 15 a shorter distance from the circle center than long-wavelength light with the wavelength λ = 700 nm (red). The number of propagating diffraction orders 14, 15 depends on the spatial frequency of the diffraction grating 24. In the range below a spatial frequency of about 300 lines / mm, the higher diffraction orders overlap, so that the diffracted light is achromatic there. After a rotation of the linear diffraction grating 24 in the azimuth by the angle θ of a few angular degrees, the surface element 12 occupied by the diffraction grating 24 becomes invisible to the observer viewing the diffraction grating 24 from the x coordinate direction, since the grating vector 26 and thus the diffraction plane with the rays of the diffracted light no longer point in the direction of the x - coordinate.

Die Mattstrukturen besitzen im mikroskopischen Massstab feine Reliefstrukturelemente, die das Streuvermögen bestimmen und nur mit statistischen Kenngrössen beschrieben werden können, wie z.B. Mittenrauhwert Ra und Korrelationslänge Ic, wobei die Werte für den Mittenrauhwert Ra im Bereich 20 nm bis 2'000 nm liegen mit Vorzugswerten von 50 nm bis 500 nm, während die Korrelationslänge lc in wenigstens einer Richtung Werte im Bereich von 200 nm bis 50'000 nm, vorzugsweise zwischen 500 nm bis 10'000 nm, aufweisen.The matte structures have microscopic scale fine relief features that determine the scattering power and can only be described with statistical parameters, such as average roughness R a and correlation length I c , the values for the average roughness R a in the range 20 nm to 2,000 nm with preferred values of 50 nm to 500 nm, while the correlation length l c in at least one direction values in the range of 200 nm to 50,000 nm, preferably between 500 nm to 10,000 nm.

Die Figur 4 zeigt die Fourierraumdarstellung für das mit einer isotropen Mattstruktur belegte Flächenelement 12 (Fig. 3) bei senkrecht einfallendem Licht 11 (Fig. 1). Die mikroskopisch feinen Reliefstrukturelemente der isotropen Mattstruktur weisen keine azimutale Vorzugsrichtung auf, weshalb das gestreute Licht mit einer Intensität grösser als ein vorbestimmter Grenzwert, z.B. durch die visuelle Erkennbarkeit vorgegeben, in einem durch das Streuvermögen der Mattstruktur vorbestimmten Raumwinkel 16 in allen azimutalen Richtungen gleichmässig verteilt ist und das Flächenelement 12 im Tageslicht weiss bis grau erscheint. In allen anderen Richtungen ist das Flächenelement 12 dunkel. Stark streuende Mattstrukturen verteilen das gestreute Licht in einen grösseren Raumwinkel 16 als eine schwach streuende Mattstruktur.The FIG. 4 FIG. 4 shows the Fourier space representation for the surface element 12 (shown in FIG. 2) with an isotropic matt structure. FIG. Fig. 3 ) with vertically incident light 11 (FIG. Fig. 1 ). The microscopically fine relief structure elements of the isotropic matt structure have no azimuthal preferred direction, which is why the scattered Light with an intensity greater than a predetermined limit, for example, given by the visual recognizability, evenly distributed in a predetermined by the scattering power of the matte structure solid angle 16 in all azimuthal directions and the surface element 12 appears white to gray in daylight. In all other directions, the surface element 12 is dark. Strongly scattered matt structures distribute the scattered light into a larger solid angle 16 than a weakly scattering matt structure.

In der Figur 5 weisen die Reliefelemente der Mattstruktur eine bevorzugte Richtung der mikroskopisch feinen Reliefstrukturelemente parallel zur Koordinate x auf. Das gestreute Licht weist daher eine anisotrope Verteilung auf. In der Darstellung der Figur 5 ist der durch das Streuvermögen der Mattstruktur vorbestimmte Raumwinkel 16 ellipsenförmig in Richtung der Koordinate y auseinander gezogen.In the FIG. 5 The relief elements of the matt structure have a preferred direction of the microscopically fine relief structure elements parallel to the coordinate x. The scattered light therefore has an anisotropic distribution. In the presentation of the FIG. 5 is the predetermined by the scattering power of the matte structure solid angle 16 ellipse-shaped in the direction of the coordinate y apart.

In der Figur 6 ist dieser Sachverhalt im Querschnitt dargestellt. Das Sicherheitselement 2 weist das Muster der Flächenelemente 12 auf, die mit den optisch wirksamen Strukturen 9 (Fig. 1) belegt sind. Eine ebene Spiegelfläche wirft das unter einem Einfallswinkel α zur Flächennormalen 17 einfallende Licht 11 als reflektierter Strahl 18 unter dem Reflexionswinkel α' zurück, wobei α = α'. Die Richtung des einfallenden Lichts 11, die Flächennormale 17 und der reflektierte Strahl 18 spannen zusammen eine Beugungsebene 19 auf, die in der Figur 6 parallel zur Zeichnungsebene angeordnet ist. Die optisch wirksame Struktur 9 weist die Form des linearen Beugungsgitters 24 (Fig. 1) auf, dessen Gittervektor 26 (Fig. 3) parallel zur Koordinate x ausgerichtet ist. Das einfallende Licht 11 wird entsprechend seiner Wellenlänge λ unter den Beugungswinkeln β1, β2 als gebeugte Strahlen 20, 21 in jeder der Beugungsordnungen 14 (Fig. 3), 15 (Fig. 3) aus der Richtung des reflektierten Strahls 18 abgelenkt. Ist die optisch wirksame Struktur 9 eine der Mattstrukturen, bilden die Endpunkte von Intensitätsvektoren des rückgestreuten Lichts keulenförmige Oberflächen. Die keulenförmigen Oberflächen schneiden die Beugungsebene 19 beispielsweise in Schnittkurven 22, 23. Weisen die Reliefstrukturelemente der Mattstruktur keine Vorzugsrichtung auf, werden die Lichtstrahlen fast konzentrisch um die Richtung des reflektierten Strahls 18 gestreut. Die Mattstruktur mit der Schnittkurve 22 streut das einfallende Licht 11 stärker und in einen grösseren Raumwinkel 16 (Fig. 4) wie eine Mattstruktur mit der Schnittkurve 23. Wegen der stärkeren Streuung ist die Intensität des in die Richtung des reflektierten Strahls 18 gestreuten Lichts schwächer, wie dies die Schnittkurve 22 im Vergleich zur Schnittkurve 23 anzeigt. Sind die Reliefstrukturelemente im wesentlichen zu einer bevorzugten Richtung, hier senkrecht zur Beugungsebene 19, ausgerichtet, so befinden sich die Orte gleicher Intensität auf abgeflachten, keulenförmigen Oberflächen, die in einer hier nicht gezeigten, zum reflektierten Strahl 18 senkrechten Schnittebene einen ellipsenförmigen Querschnitt aufweisen, wobei auf der Schnittebene der Flächenschwerpunkt des Querschnittes mit dem Durchstosspunkt des reflektierten Strahls 18 zusammenfällt und die Längsachse des ellipsenförmigen Querschnitts senkrecht zur Beugungsebene 19 ausgerichtet ist. Die Verteilung des gestreuten Lichts ist daher anisotrop. Im Gegensatz zu Beugungsstrukturen vermögen die Mattstrukturen das einfallende Licht 11 nicht in die Spektralfarben aufzuspalten.In the FIG. 6 this fact is shown in cross-section. The security element 2 has the pattern of the surface elements 12 which are connected to the optically active structures 9 (FIG. Fig. 1 ) are occupied. A plane mirror surface casts the light 11 incident at an incident angle α to the surface normal 17 as a reflected beam 18 at the reflection angle α ', where α = α'. The direction of the incident light 11, the surface normal 17 and the reflected beam 18 together span a diffraction plane 19 which is in the FIG. 6 is arranged parallel to the plane of the drawing. The optically active structure 9 has the shape of the linear diffraction grating 24 (FIG. Fig. 1 ) whose grating vector 26 ( Fig. 3 ) is aligned parallel to the coordinate x. The incident light 11 is irradiated according to its wavelength λ at the diffraction angles β 1 , β 2 as diffracted beams 20, 21 in each of the diffraction orders 14 (FIG. Fig. 3 ), 15 ( Fig. 3 ) is deflected from the direction of the reflected beam 18. If the optically effective structure 9 is one of the matt structures, the end points of intensity vectors of the backscattered light form club-shaped surfaces. The club-shaped surfaces intersect the diffraction plane 19, for example in sectional curves 22, 23. If the relief structure elements of the matt structure have no preferred direction, the light beams are scattered almost concentrically around the direction of the reflected beam 18. The matt structure with the cutting curve 22 scatters the incident Light 11 stronger and into a larger solid angle 16 ( Fig. 4 Because of the greater scattering, the intensity of the light scattered in the direction of the reflected beam 18 is weaker, as indicated by the cutting curve 22 in comparison to the cutting curve 23. If the relief structure elements are oriented essentially to a preferred direction, here perpendicular to the diffraction plane 19, the locations of equal intensity are on flattened, club-shaped surfaces which have an elliptical cross section in a sectional plane perpendicular to the reflected beam 18, not shown here on the sectional plane of the centroid of the cross section coincides with the piercing point of the reflected beam 18 and the longitudinal axis of the elliptical cross section is aligned perpendicular to the diffraction plane 19. The distribution of the scattered light is therefore anisotropic. In contrast to diffraction structures, the matt structures are unable to split the incident light 11 into the spectral colors.

Bei der Beugung des einfallenden Lichts 11 an dem in der Figur 1 gezeigten asymmetrischen linearen Beugungsgitter 24 sind die Intensität l- des gebeugten Strahls 20 (Fig. 6) in der negativen Beugungsordnung 14 (Fig. 3), 15 (Fig. 3) und die Intensität I+ des gebeugten Strahls 21 (Fig. 6) in der positiven Beugungsordnung 14, 15 ungleich. Die Intensität I+ des gebeugten Strahls 21 übertrifft die Intensität l- des gebeugten Strahls 20 wenigstens um einen Faktor p = 3, vorzugsweise p = 10 oder grösser, d.h. I+ = p•l-. Der Faktor p hängt im wesentlichen von der Ausbildung des sägezahnförmigen Profils des Beugungsgitters 24, der Profilhöhe h und der Spatialfrequenz ab. Unterhalb einer Spatialfrequenz von etwa 300 Linien/mm wirkt das asymmetrische Beugungsgitter 24 wie ein geneigter Spiegel, d.h. die Intensität l+ des gebeugten Strahls 21 in den positiven Beugungsordnungen erreicht fast die Intensität des einfallenden Lichts 11, während die Intensität l- des gebeugten Strahls 20 in den negativen Beugungsordnungen praktisch verschwindend klein ist. Der Faktor p erreicht Werte von 100 oder mehr. Eine Aufspaltung des einfallenden Lichts 11 in die Spektralfarben erfolgt nicht mehr, weshalb solche Beugungsgitter 24 durch den Zusatz "achromatisch" charakterisiert werden. Mehr dazu findet sich im eingangs erwähnten Dokument WO 97/19821 .In the diffraction of the incident light 11 at the in the FIG. 1 asymmetric linear diffraction gratings 24 shown are the intensity l - of the diffracted beam 20 ( Fig. 6 ) in the negative diffraction order 14 ( Fig. 3 ), 15 ( Fig. 3 ) and the intensity I + of the diffracted beam 21 (FIG. Fig. 6 ) in the positive diffraction order 14, 15 unequal. The intensity I + of the diffracted beam 21 exceeds the intensity l - of the diffracted beam 20 at least by a factor p = 3, preferably p = 10 or greater, ie I + = p • l - . The factor p depends essentially on the formation of the sawtooth-shaped profile of the diffraction grating 24, the profile height h and the Spatialfrequenz. Below a spatial frequency of about 300 lines / mm, the asymmetric diffraction grating 24 acts like an inclined mirror, ie, the intensity l + of the diffracted beam 21 in the positive diffraction orders almost reaches the intensity of the incident light 11, while the intensity l - of the diffracted beam 20 is practically vanishingly small in the negative diffraction orders. The factor p reaches values of 100 or more. A splitting of the incident light 11 into the spectral colors no longer occurs, which is why such diffraction gratings 24 are characterized by the term "achromatic". More about this can be found in the document mentioned above WO 97/19821 ,

Die Figur 7 zeigt in einer schematischen Darstellung die in die Abformschicht 5 und die Schutzschicht 6 eingebettete, optisch wirksame Struktur 9 (Fig. 1), die eine durch eine additive Überlagerung erzeugte Beugungsstruktur 25 aus dem linearen asymmetrischen Beugungsgitter 24 (Fig. 1) und der Mattstruktur ist. Die Mattstruktur ist aus darstellerischen Gründen mit einem im Vergleich zur Profilhöhe h kleinen Mittenrauhwert Ra und viel zu regelmässig gezeichnet. Das Profil des linearen asymmetrischen Beugungsgitter 24 weist als weitere Parameter Blazewinkel ε1 und ε2 auf, die beide Profilflächen des asymmetrischen Beugungsgitters 24 mit der Ebene des Sicherheitselements 2 (Fig. 6) einschliessen.The FIG. 7 shows a schematic representation of the embedded in the molding layer 5 and the protective layer 6, optically active structure 9 (FIG. Fig. 1 ), which generates a diffraction structure 25 generated by an additive superimposition from the linear asymmetric diffraction grating 24 (FIG. Fig. 1 ) and the matt structure is. The matt structure is drawn for illustrative reasons with a small average roughness value R a compared to the profile height h and much too regular. The profile of the linear asymmetrical diffraction grating 24 has, as further parameters, blaze angles ε 1 and ε 2 , which have both profile surfaces of the asymmetrical diffraction grating 24 with the plane of the security element 2 (FIG. Fig. 6 ) lock in.

In der Figur 8 ist der Fourierraum der Beugungsstruktur 25 (Fig. 7) - dargestellt, wobei die Mattstruktur isotrop ist. Die mittels des Beugungsgitters 24 (Fig. 1) stark gerichteten gebeugten Strahlen 20 (Fig. 6), 21 (Fig. 6) sind durch die Mattstruktur aufgeweitet. Das ergibt den Vorteil, dass die gebeugten Strahlen 20, 21 in die grossen Raumwinkel 16 abgestrahlt werden und dass für den Beobachter das Flächenelement 12 mit der Beugungsstruktur 25 im ganzen Raumwinkel 16, wenn auch mit einer reduzierten Flächenhelligkeit, leicht erkennbar ist. Je stärker die Mattstruktur streut, desto grösser ist der Raumwinkel 16 unter dem das Flächenelement 12 erkennbar ist und desto geringer ist für den Beobachter die Flächenhelligkeit des Flächenelements 12. Zudem ist die Intensität I+ der in die plus erste Beugungsordnung 14 gebeugten Strahlen 20 um den Faktor p grösser als die Intensität l- der in die minus erste Beugungsordnung 14' gebeugten Strahlen 21. Dies ist in der Zeichnung der Figur 7 durch unterschiedlich dichte Punktraster in den Raumwinkeln 16 dargestellt.In the FIG. 8 is the Fourier space of the diffraction structure 25 (FIG. Fig. 7 ), wherein the matte structure is isotropic. The means of the diffraction grating 24 ( Fig. 1 ) strongly directed diffracted beams 20 ( Fig. 6 21, Fig. 6 ) are widened by the matt structure. This results in the advantage that the diffracted beams 20, 21 are radiated into the large solid angles 16 and that for the observer, the surface element 12 with the diffraction structure 25 in the entire solid angle 16, albeit with a reduced surface brightness, is easily recognizable. The stronger the matt structure scatters, the greater is the solid angle 16 under which the surface element 12 can be seen and the lower the surface brightness of the surface element 12 is for the observer. In addition, the intensity I + of the rays 20 diffracted into the plus first diffraction order 14 is about Factor p greater than the intensity I - the rays diffracted into the minus first diffraction order 14 '. This is shown in the drawing of FIG FIG. 7 represented by differently dense dot patterns in the solid angles 16.

Für Spatialfrequenzen des Beugungsgitters 24 oberhalb etwa 300 Linien/mm ist das einfallende Licht 11 (Fig. 5) in Spektralfarben aufgespalten. Bei Tageslicht bewirkt die Mattstruktur eine Verschmierung der reinen Spektralfarben zu Pastelltönen bis hin zu praktisch weissem Streulicht unabhängig von der Spatialfrequenz des Beugungsgitters 24. Die Pastelltöne weisen mit abnehmender Spatialfrequenz des Beugungsgitters 24 einen immer höheren Weissanteil auf. Unterschreitet die Spatialfrequenz den Wert von etwa 300 Linien/mm, findet keine merkbare Aufspaltung des einfallenden Lichts 11 statt, d.h. das Flächenelement 12 ist in der Farbe des einfallenden Lichts 11 sichtbar.For spatial frequencies of the diffraction grating 24 above about 300 lines / mm, the incident light 11 (FIG. Fig. 5 ) split into spectral colors. In daylight, the matt structure causes a smearing of the pure spectral colors to pastel shades to virtually white scattered light regardless of the Spatialfrequenz the diffraction grating 24. The pastel shades with decreasing Spatialfrequenz the diffraction grating 24 to an ever higher proportion of white. If the spatial frequency falls below the value of about 300 lines / mm, none is found noticeable splitting of the incident light 11 instead, ie the surface element 12 is visible in the color of the incident light 11.

Aus der Fourierraumdarstellung geht hervor, dass bei dem Flächenelement 12 sowohl beim Kippen um eine in der von den Koordinaten x und y aufgespannten Ebene liegende Achse also auch bei einer Drehung um die Flächennormale 17 (Fig. 6) das von der Beugungsstruktur 25 abgelenkte Licht über einen grossen Winkelbereich, z.B. aus dem Bereich ± 20° bis ± 60°, für den Beobachter sichtbar bleibt, im Gegensatz zu diffraktiven Gittern gemäss der eingangs erwähnten EP 0 105 099 A1 , die nur in einem engen Winkelbereich von wenigen Winkelgraden sichtbar sind und daher beim Kippen und Drehen des Sicherheitselements 2 (Fig. 2) aufblinken. Das Flächenelement 12 mit der Beugungsstruktur 25 weist den Vorteil auf, dass das Flächenelement 12 im Flächenmuster des Sicherheitselements 2 ein quasi statisches Musterelement bildet.From the Fourier space representation, it can be seen that, in the case of the surface element 12, both during tilting about an axis lying in the plane spanned by the coordinates x and y, also during a rotation about the surface normal 17 (FIG. Fig. 6 ) the light deflected by the diffraction structure 25 remains visible to the observer over a wide angular range, for example from the range ± 20 ° to ± 60 °, in contrast to diffraction gratings according to the above-mentioned EP 0 105 099 A1 , which are visible only in a narrow angular range of a few degrees and therefore when tilting and rotating the security element 2 ( Fig. 2 ) flash. The surface element 12 with the diffraction structure 25 has the advantage that the surface element 12 forms a quasi-static pattern element in the surface pattern of the security element 2.

Die Figur 9 zeigt ein einfaches Beispiel des aus zwei Flächenelementen 27, 28 gebildetes quasi statisches Musterelements im Sicherheitselement 2. Das erste Flächenelement 27 mit der ersten Beugungsstruktur 25 (Fig. 7) grenzt an das zweite Flächenelement 28 mit der zweiten Beugungsstruktur 25. Das erste Flächenelement 27 und das zweite Flächenelement 28 sind mit anderen optisch wirksamen Strukturen belegten Gebieten 29 in einem Flächenmuster auf dem Sicherheitselement 2 angeordnet. Die erste und die zweite Beugungsstruktur 25 unterscheiden sich nur durch die Richtung ihres Gittervektors 26 (Fig. 3) und weisen das in der Figur 8 dargestellte Beugungsverhalten auf. Die Gittervektoren 26 sind in der Figur 9 in den Flächenelementen 27, 28 im wesentlichen antiparallel, d.h. der Azimut der zweiten Beugungsstruktur 25 (Fig. 7) ist gleich der Summe aus dem Azimut der ersten Beugungsstruktur 25 und einem zusätzlichen Azimutwinkel θ (Fig. 3) aus dem Wertebereich 120° bis 240°, wobei der Wert für den Azimutwinkel θ = 180° zu bevorzugen ist. Der Gittervektor 26 der ersten Beugungsstruktur 25 ist parallel zur Koordinate x ausgerichtet. Die Mattstruktur erstreckt sich homogen über die ganze Fläche der beiden Flächenelemente 27, 28. Der Beobachter schaut in die Richtung der Koordinate x und erblickt das erste Flächenelement 27 mit einer geringen Flächenhelligkeit, hingegen das zweite Flächenelement 28 mit einer hohen Flächenhelligkeit, wie dies der in der Zeichnung der Figuren 9 und 10 verwendete Punktraster andeutet. Wird nun das Sicherheitselement 2 in seiner Ebene um 180° gedreht, wie in der Figur 10 gezeigt, wird das Sicherheitselement 2 entgegen der Richtung der Koordinate x betrachtet. Die Flächenhelligkeiten der beiden Flächenelemente 27, 28 sind dann vertauscht, d.h. der Kontrast zwischen den beiden Flächenelementen 27, 28 ist gegenüber der Darstellung in der Figur 9 umgekehrt.The FIG. 9 1 shows a simple example of the quasi-static pattern element formed of two surface elements 27, 28 in the security element 2. The first surface element 27 with the first diffraction structure 25 (FIG. Fig. 7 ) adjoins the second surface element 28 with the second diffraction structure 25. The first surface element 27 and the second surface element 28 are arranged in a surface pattern on the security element 2 with regions 29 occupied by other optically active structures. The first and the second diffraction structure 25 differ only by the direction of their grating vector 26 (FIG. Fig. 3 ) and have that in the FIG. 8 shown diffraction behavior. The grating vectors 26 are in the FIG. 9 in the surface elements 27, 28 substantially antiparallel, ie the azimuth of the second diffraction structure 25 (FIG. Fig. 7 ) is equal to the sum of the azimuth of the first diffraction structure 25 and an additional azimuth angle θ ( Fig. 3 ) from the value range 120 ° to 240 °, wherein the value for the azimuth angle θ = 180 ° is to be preferred. The grating vector 26 of the first diffraction structure 25 is aligned parallel to the coordinate x. The matt structure extends homogeneously over the entire surface of the two surface elements 27, 28. The observer looks in the direction of the coordinate x and sees the first surface element 27 with a low surface brightness, whereas the second one Surface element 28 with a high surface brightness, as in the drawing of the FIGS. 9 and 10 used dot matrix implies. Now, the security element 2 is rotated in its plane by 180 °, as in the FIG. 10 shown, the security element 2 is considered against the direction of the coordinate x. The surface brightnesses of the two surface elements 27, 28 are then reversed, that is, the contrast between the two surface elements 27, 28 is opposite to the representation in the FIG. 9 vice versa.

In den folgenden Ausführungsbeispielen sind sowohl die Parameter der asymmetrischen Beugungsgitter 24 (Fig. 1) als auch die Parameter der verschiedenen Mattstrukturen in Abhängigkeit des Ortes innerhalb des Flächenelements 12, oder von einem Flächenelement 12, 27, 28 zum andern, unabhängig von einander oder miteinander gekoppelt gemäss der Tabelle 1 veränderbar, um leicht beobachtbare, unterschiedliche, auffällige optische Wirkungen der quasi statischen Musterelemente zu erzielen. Tabelle 1: Beispiele (Übersicht) Beispiel Asymmetrisches Beugungsgitter 24 (Fig. 1) Mattstruktur 1 homogen homogen und isotrop 2 lokal variiert (Flächendeckungsgrad oder Profilform) homogen und isotrop 3 homogen lokal variiert 4 lokal variiert (Orientierung des Gittervektors 26) lokal variiert 5 lokal variiert (Profiltiefe) homogen und anisotrop In the following embodiments, both the parameters of the asymmetric diffraction gratings 24 (FIG. Fig. 1 ) as well as the parameters of the different matt structures depending on the location within the surface element 12, or of a surface element 12, 27, 28 to the other, independently of each other or coupled together according to Table 1 changeable to easily observable, different, striking optical effects to achieve the quasi-static pattern elements. Table 1: Examples (overview) example Asymmetrical diffraction grating 24 ( Fig. 1 ) matt structure 1 homogeneously homogeneous and isotropic 2 varies locally (area coverage or profile shape) homogeneous and isotropic 3 homogeneously varies locally 4 varies locally (orientation of the lattice vector 26) varies locally 5 varies locally (tread depth) homogeneous and anisotropic

In einer zweiten Ausführungsform ist im quasi stationären Musterelement der Figur 11 eine Vielzahl der ersten Flächenelemente 27 auf dem zweiten Flächenelement 28 als Hintergrundfläche angeordnet, wobei die Gittervektoren 26 (Fig. 3) jedes asymmetrischen Beugungsgitters 24 (Fig. 1) in der Beugungsstruktur 25 (Fig. 7) der ersten Flächenelemente 27 einerseits und des zweiten Flächenelements 28 andererseits im wesentlichen antiparallel ausgerichtet sind. Bei einer Ausführungsform weisen die ersten Flächenelemente 27 in einer Vorzugsrichtung 30 einen von Flächenelement 27 zu Flächenelement 27 abnehmenden Flächendeckungsgrad der Beugungsstruktur 25 auf, was durch Einsetzen einer Vielzahl von Teilflächen 31 mit Abmessungen in wenigstens einer Dimension von weniger als 0,3 mm in die ersten Flächenelemente 27 erreicht werden kann. In den Teilflächen 31 ist die Beugungsstruktur 25 des zweiten Flächenelements 28 abgeformt. Die kleinen Teilflächen 31 sind von blossem Auge nicht wahrnehmbar, reduzieren jedoch wirksam die Flächenhelligkeit der ersten Flächenelemente 27. Ein ähnlicher Effekt wird in einer andern Ausführungsform durch Ändern der Asymmetrie der Profilform des Beugungsgitters 24 von Flächenelement 27 zu Flächenelement 27 in der Vorzugsrichtung 30 erreicht. Die Profilform des Beugungsgitters 24 ändert sich von einer ersten stark asymmetrischen Form über ein symmetrisches Profil wieder zu einer zur ersten asymmetrischen Form spiegelsymmetrischen Form. Die Flächenhelligkeit der ersten Flächenelemente 27 nimmt daher in der Vorzugsrichtung 30 ab. Die Mattstruktur hingegen erstreckt sich homogen über das ganze quasi stationären Musterelement. Beim Drehen um 180° des Musterelements in der von den Koordinaten x und y aufgespannten Ebene verändern sich für den Beobachter auffällig die Kontraste zwischen den ersten Flächenelementen 27 und dem zweiten Flächenelement 28.In a second embodiment, in the quasi-stationary pattern element of FIG. 11 a plurality of the first surface elements 27 are arranged on the second surface element 28 as a background surface, wherein the grating vectors 26 (FIG. Fig. 3 ) of each asymmetrical diffraction grating 24 ( Fig. 1 ) in the diffraction structure 25 (FIG. Fig. 7 ) of the first surface elements 27 on the one hand and the second surface element 28 on the other hand are aligned substantially anti-parallel. In one embodiment, the first surface elements 27 have, in a preferred direction 30, a surface coverage ratio of the diffraction structure 25 that decreases from surface element 27 to surface element 27, by inserting a plurality of partial surfaces 31 having dimensions in at least one dimension of less than 0.3 mm into the first Surface elements 27 can be achieved. In the partial areas 31, the diffraction structure 25 of the second Surface element 28 molded. The small sub-areas 31 are not visible to the naked eye, but effectively reduce the surface brightness of the first area elements 27. A similar effect is achieved in another embodiment by changing the asymmetry of the profile shape of the diffraction grating 24 from surface element 27 to surface element 27 in the preferred direction 30. The profile shape of the diffraction grating 24 changes from a first strongly asymmetrical shape via a symmetrical profile back to a mirror-symmetrical shape to the first asymmetric shape. The surface brightness of the first surface elements 27 therefore decreases in the preferred direction 30. In contrast, the matt structure extends homogeneously over the entire quasi-stationary pattern element. When rotating through 180 ° of the pattern element in the plane spanned by the coordinates x and y, the observer noticeably changes the contrasts between the first surface elements 27 and the second surface element 28.

Im dritten, in der Figur 12 gezeigten Beispiel des quasi stationären Musterelements ist innerhalb des ersten Flächenelements 27 wenigstens eine Teilfläche 31 angeordnet. Das erste Flächenelement 27 und die Teilflächen 31 unterscheiden sich nur durch die Streueigenschaft der zur Erzeugung der Beugungsstruktur 25 (Fig. 7) eingesetzten Mattstruktur. Beispielsweise ist im ersten Flächenelement 27 dem asymmetrischen Beugungsgitter 24 (Fig. 7) eine stark streuende Mattstruktur überlagert, während in der Teilfläche 31 dem asymmetrischen Beugungsgitter 24 eine schwach streuende Mattstruktur überlagert ist. Solange der Beobachter beim Kippen oder Drehen des Musterelements bzw. des Sicherheitselementes 2 (Fig. 9) innerhalb des kleineren der beiden Raumwinkel 16 (Fig. 4) bleibt, sind die Teilflächen 31 vor dem Hintergrund des ersten Flächenelements 27 wegen ihrer höheren Flächenhelligkeit klar erkennbar. Ausserhalb des kleineren Raumwinkels 16 (Fig. 4), jedoch noch innerhalb des grösseren Raumwinkels 16 der Beugungsstruktur 25 im ersten Flächenelement 27, ist der Kontrast zwischen den Teilflächen 31 und dem ersten Flächenelement 27 vertauscht, so dass die Teilflächen 31 dunkel vor dem hellen Hintergrund der Fläche des ersten Flächenelements 27 erkannt werden. Die Teilflächen 31 können einen Schriftzug oder Logo bilden und weisen zur guten Erkennbarkeit wenigstens eine Schrifthöhe von 1,5 mm auf; dies verlangt entsprechend grosse Flächenelemente 27, 28. Bei Spatialfrequenzen unter etwa 300 Linien/mm verschwindet der Kontrast zwischen dem ersten Flächenelement 27 und den Teilflächen 31 ausserhalb des grösseren Raumwinkels 16 der Beugungsstruktur 25 im ersten Flächenelement 27; für den Beobachter sind das erste Flächenelement 27 und die Teilflächen 31 gleichmässig dunkel, z.B. auch, wie in der Figur 13 dargestellt, nach der Drehung des Sicherheitselements 2 (Fig. 1) in den Bereich des Azimutwinkels θ von etwa 180°. Mit Vorteil wird wie im ersten Beispiel das erste Flächenelement 27 an das zweite Flächenelement 28 angrenzen, um noch einen zusätzlichen Kontrastwechsel zwischen dem ersten und dem zweiten Flächenelement 27, 28 zu erhalten, was dem Beobachter ein Auffinden der in den Teilflächen 31 enthaltenen Information erleichtert.In the third, in the FIG. 12 shown example of the quasi-stationary pattern element 27 at least a partial surface 31 is disposed within the first surface element. The first surface element 27 and the partial surfaces 31 differ only by the scattering property of the diffraction structure 25 (FIG. Fig. 7 ) used matt structure. For example, in the first surface element 27, the asymmetrical diffraction grating 24 (FIG. Fig. 7 ) superimposed on a strongly scattering matt structure, while in the sub-surface 31, the asymmetrical diffraction grating 24 is superimposed on a weakly scattering matt structure. As long as the observer when tilting or rotating the pattern element or the security element 2 ( Fig. 9 ) within the smaller of the two solid angles 16 ( Fig. 4 ) remains, the faces 31 are clearly visible against the background of the first surface element 27 because of their higher surface brightness. Outside the smaller solid angle 16 ( Fig. 4 ), but still within the larger solid angle 16 of the diffraction structure 25 in the first surface element 27, the contrast between the partial surfaces 31 and the first surface element 27 is reversed, so that the partial surfaces 31 are darkly recognized against the light background of the surface of the first surface element 27. The partial surfaces 31 may form a lettering or logo and have at least a font height of 1.5 mm for easy recognition; this requires correspondingly large surface elements 27, 28. At spatial frequencies below about 300 lines / mm, the contrast between the first surface element 27 and the partial surfaces 31 disappears outside the larger solid angle 16 of the diffraction structure 25 in the first surface element 27; For the observer, the first surface element 27 and the partial surfaces 31 are uniformly dark, eg also as in the US Pat FIG. 13 shown after the rotation of the security element 2 ( Fig. 1 ) in the range of the azimuth angle θ of about 180 °. Advantageously, as in the first example, the first surface element 27 adjoins the second surface element 28 in order to obtain an additional contrast change between the first and the second surface element 27, 28, which facilitates the observer finding the information contained in the surface portions 31.

In der Figur 14 weisen die Reliefelemente der Mattstruktur in der Beugungsstruktur 25 (Fig. 7) eine auf den Gittervektor 26 mit dem Azimut θ ausgerichtete bevorzugte Richtung auf. Die mikroskopisch feinen Reliefstrukturelemente der Mattstruktur sind senkrecht zum Gittervektor 26 des asymmetrischen Beugungsgitters 24 (Fig. 1) ausgerichtet. Das gestreute einfallende Licht 11 (Fig. 6) weist daher eine anisotrope Verteilung auf. In der Fourierraumdarstellung der Figur 14 sind die durch das Streuvermögen der Mattstruktur vorbestimmten Raumwinkel 32 und 33 der beiden Beugungsordnungen 14 (Fig. 3) in Form einer Ellipse längs des Gittervektors 26 auseinander gezogen. Die Hauptachse der Ellipse der Raumwinkel 32 und 33 quer zum Gittervektor 26 ist sehr klein, damit das Flächenelement 12 (Fig. 2) im gestreuten Licht in einem grossen Winkelbereich beim Kippen um eine Achse quer zum Gittervektor 26 und nur in einem engen Bereich im Azimut sichtbar ist. Die Intensität l+ der in den Raumwinkel 32 der positiven Beugungsordnung 12 (Fig. 3) gebeugten Strahlen 21 (Fig. 6) ist um den Faktor p grösser als die Intensität l- der in den Raumwinkel 33 der negativen Beugungsordnung 12 gebeugten Strahlen 20 (Fig. 6).In the FIG. 14 the relief elements of the matt structure in the diffraction structure 25 (FIG. Fig. 7 ) has a preferred direction oriented to the grating vector 26 with the azimuth θ. The microscopically fine relief structure elements of the matt structure are perpendicular to the lattice vector 26 of the asymmetrical diffraction grating 24 (FIG. Fig. 1 ). The scattered incident light 11 ( Fig. 6 ) therefore has an anisotropic distribution. In the Fourierraum representation of the FIG. 14 are the solid angles 32 and 33 of the two diffraction orders 14 (15) predetermined by the scattering power of the matt structure. Fig. 3 ) are pulled apart in the form of an ellipse along the grid vector 26. The major axis of the ellipse of the solid angles 32 and 33 transversely to the lattice vector 26 is very small so that the surface element 12 (FIG. Fig. 2 ) is visible in the scattered light in a large angular range when tilted about an axis transverse to the grating vector 26 and only in a narrow range in the azimuth. The intensity l + in the solid angle 32 of the positive diffraction order 12 ( Fig. 3 ) diffracted beams 21 ( Fig. 6 ) is larger by the factor p than the intensity I - of the rays 20 diffracted into the solid angle 33 of the negative diffraction order 12 ( Fig. 6 ).

Eine Anwendung dieser Beugungsstruktur 25 ist in der Figur 15 gezeigt. Eine Vielzahl von ellipsenförmigen, in sich geschlossenen schmalen Bändern 34 bildet das Flächenmuster des Sicherheitselements 2. Die Bänder 34 sind gleichmässig im Azimut verteilt derart angeordnet, dass ihre Schwerpunkte 35 zusammenfallen. Jedes Band 34 weist einen durch den Hauptachsen - Azimutwinkel vorbestimmten Azimut des Gittervektors 26 auf, beispielsweise bilden die Bänder 34 mit den Hauptachsenazimutwinkeln 0°, 45°, 90° und 135° eine Gruppe und haben denselben Azimut des Gittervektors 26 (Fig. 14) mit θ = 0°. Die vier Bänder 34 mit dem gleichen Azimut des Gittervektors 26 sind aus derselben Richtung gleichzeitig sichtbar. Die Fläche jedes der Bänder 34 bildet das oben beschriebene Musterelement und ist eingeteilt in die beiden Flächenelemente 27 (Fig. 9), 28 (Fig. 9). Die Einteilung in die beiden mit den Beugungsstrukturen 25 (Fig. 7) belegten Flächenelemente 27, 28 erfolgt gemäss einem Umriss 36 in einer vorbestimmten Form, z.B. einem einfachen Logo, einem Buchstaben, einer Ziffer, wobei beispielsweise für den in der Figur 15 gezeigten Umriss 36 die Form eines Kreuzes gewählt ist. Ein ausserhalb des Kreuzes gelegener Teil des Bandes 34 ist beispielsweise als erstes Flächenelement 27 und der innerhalb des Kreuzes gelegene Teil des Bandes 34 als zweites Flächenelement 28 ausgebildet. Die Richtung der Gittervektoren 26 der Beugungsstrukturen 25 in den ersten Flächenelementen 27 und der Beugungsstrukturen 25 in den zweiten Flächenelementen 28 sind in jedem Band 34 im wesentlichen antiparallel. Die Reliefelemente der Mattstrukturen sind in jedem Band 34 quer zum Gittervektor 26 ausgerichtet. Beim Drehen des Sicherheitselements 2 blinken für den Beobachter jeweils diejenigen Gruppen der Bänder 34 kurz auf, deren Beugungsebene 17 (Fig. 6) mit der Beobachtungsrichtung des Beobachters zusammenfällt, d.h. bezogen auf die Beobachtungsrichtung des Beobachters weisen die Gittervektoren 26 der sichtbaren Bänder 34 den Azimut θ = 0° bzw. 180° auf. Die Helligkeit der innerhalb des Umrisses 36 liegenden Bandteile ist beispielsweise grösser als diejenige der Bandteile ausserhalb des Umrisses 36. Beim Kippen verändert sich der Kontrast nicht wohl aber die vom Beobachter wahrgenommene Mischfarbe, solange die Blickrichtung des Beobachters innerhalb des Raumwinkels 32 (Fig. 14) der positiven Beugungsordnung bleibt. Sobald die Blickrichtung des Beobachters mit Richtungen innerhalb des Raumwinkels 33 (Fig. 14) der negativen Beugungsordnung zusammenfällt, ist der Kontrast zwischen den innerhalb des Umrisses 36 liegenden Bandteilen und den ausserhalb des Umrisses 36 liegenden Bandteilen vertauscht, d.h. die Bandteile innerhalb des Umrisses 36 sind weniger hell als die ausserhalb liegenden Bandteile. Ausserhalb der Raumwinkel 32 und 33 sind die Flächen der Bänder 34 einheitlich dunkel bzw. nicht beobachtbar.An application of this diffraction structure 25 is in the FIG. 15 shown. A plurality of elliptical, self-contained narrow bands 34 form the surface pattern of the security element 2. The bands 34 are evenly distributed in azimuth arranged so that their centers of gravity 35 coincide. Each band 34 has an azimuth of the grating vector 26 predetermined by the major axis azimuth angle, for example, the bands 34 having the main axis azimuth angles 0 °, 45 °, 90 ° and 135 ° form a group and have the same azimuth of the grating vector 26 (FIG. Fig. 14 ) with θ = 0 °. The four bands 34 with the same azimuth of the grating vector 26 are simultaneously visible from the same direction. The surface of each of the bands 34 forms the pattern element described above and is divided into the two surface elements 27 (FIG. Fig. 9 ), 28 ( Fig. 9 ). The division into the two with the diffraction structures 25 (FIG. Fig. 7 ) occupied surface elements 27, 28 is carried out according to an outline 36 in a predetermined shape, such as a simple logo, a letter, a number, for example, for the in the FIG. 15 shown outline 36 is selected the shape of a cross. A part of the band 34 located outside the cross is designed, for example, as the first surface element 27 and the part of the band 34 located inside the cross as the second surface element 28. The direction of the grating vectors 26 of the diffraction structures 25 in the first surface elements 27 and the diffraction structures 25 in the second surface elements 28 are substantially antiparallel in each band 34. The relief elements of the matt structures are aligned in each band 34 transversely to the grating vector 26. When the security element 2 is rotated, those groups of the bands 34 that are blinking for the observer flash briefly, whose diffraction plane 17 (FIG. Fig. 6 ) coincides with the observation direction of the observer, ie with respect to the observation direction of the observer, the grating vectors 26 of the visible bands 34 have the azimuth θ = 0 ° or 180 °. The brightness of the band parts lying within the outline 36 is, for example, greater than that of the band parts outside the outline 36. When tilting, the contrast does not change, but the mixed color perceived by the observer, as long as the viewing direction of the observer within the solid angle 32 (FIG. Fig. 14 ) of the positive diffraction order remains. Once the line of sight of the observer with directions within the solid angle 33 (FIG. Fig. 14 ) of the negative diffraction order coincides, the contrast between the lying within the outline band parts 36 and lying outside the outline 36 band parts is reversed, ie the band parts within the outline 36 are less bright than the outboard Band parts. Outside the solid angles 32 and 33, the areas of the bands 34 are uniformly dark or unobservable.

In der Figur 16 ist das fünfte Beispiel veranschaulicht. Eine Vielzahl der Flächenelemente 12 ist innerhalb des Flächenmusters der Sicherheitselements 2 vorbestimmt längs der Vorzugsrichtung 30 angeordnet, wobei benachbarte Flächenelemente 12 beabstandet oder unmittelbar anstossend ausgerichtet sind. In jedem Flächenelement 12 weist das für die Beugungsstruktur 25 (Fig. 7) verwendete Beugungsgitter 24 (Fig. 1) ein anderes Profil auf, wobei der Blazewinkel ε2 (Fig. 7) der breiteren Profilflanke von einem Flächenelement 12 zum benachbarten Flächenelement 12 zwischen den Extremwerten ±ε2 Max. sich in Stufen um eine der vorbestimmten Blazewinkelstufen Δε2 ändert. Beispielsweise sind in der Zeichnung der Figur 16 im mittleren Flächenelement 12 die Blazewinkel ε1 (Fig. 7) und ε2 der Beugungsstruktur 25 gleich null, d.h. die Beugungsstruktur 25 im mittleren Flächenelement 12 ist ein ebener Spiegel überlagert mit der Mattstruktur. Die Beugungsstrukturen 25 der beiden äusseren Flächenelemente 12 weisen den Blazewinkel +ε2Max. bzw. -ε2 Max. auf. Die Mattstruktur ist homogen in allen Flächenelementen 12 und anisotrop wie sie anhand der Figur 5 beschieben ist. Die ellipsenförmigen Raumwinkel 16 (Fig. 5) jedes der Flächenelemente 12 sind in der Fourierraumdarstellung längs der Koordinate x (Fig. 5) entsprechend dem Blazewinkel ε2 der Beugungsstruktur 25 verschoben nebeneinander angeordnet. Die Gittervektoren 26 (Fig. 3) sind im wesentlichen parallel bzw. antiparallel zur Vorzugsrichtung 30 ausgerichtet. Beim Kippen des Sicherheitselements 2 um eine quer zur Vorzugsrichtung 30 ausgerichtete Achse 37 leuchtet für den in der Vorzugsrichtung 30 blickenden Beobachter eines der Flächenelemente 12 nach dem andern hell auf, so dass der Beobachter einen hellen auf dem Sicherheitselement 2 in der Vorzugsrichtung 30 wandernden Streifen 38 erblickt. Beim Kippen um die Vorzugsachse 30 bleibt der Steifen 38 in einem grossen vom Raumwinkel 16 abhängigen Kippwinkel sichtbar.In the FIG. 16 the fifth example is illustrated. A plurality of the surface elements 12 is disposed within the surface pattern of the security element 2 predetermined along the preferred direction 30, wherein adjacent surface elements 12 are spaced or aligned directly abutting. In each surface element 12, that for the diffraction structure 25 (FIG. Fig. 7 ) used diffraction gratings 24 ( Fig. 1 ), the blaze angle ε 2 ( Fig. 7 ) of the wider profile flank of a surface element 12 to the adjacent surface element 12 between the extreme values ± ε 2 Max . changes in steps by one of the predetermined Blazewinkelstufen Δε 2 . For example, in the drawing of FIG. 16 in the middle area element 12, the blaze angle ε 1 ( Fig. 7 ) and ε 2 of the diffraction structure 25 equal zero, ie the diffraction structure 25 in the central surface element 12 is a plane mirror superimposed with the matte structure. The diffraction structures 25 of the two outer surface elements 12 have the blaze angle + ε 2Max . or -ε 2 Max . on. The matte structure is homogeneous in all surface elements 12 and anisotropic as shown by the FIG. 5 is beschieben. The elliptical solid angles 16 ( Fig. 5 ) of each of the surface elements 12 are in the Fourier space representation along the coordinate x ( Fig. 5 ) arranged in accordance with the blaze angle ε 2 of the diffraction structure 25 shifted next to each other. The grating vectors 26 ( Fig. 3 ) are aligned substantially parallel or antiparallel to the preferred direction 30. When the security element 2 is tilted about an axis 37 aligned transversely to the preferred direction 30, one of the surface elements 12 lights up brightly for the observer looking in the preferred direction 30, so that the observer lights a bright strip 38 on the security element 2 in the preferred direction 30 sees. When tilting about the preferred axis 30, the strip 38 remains visible in a large tilt angle dependent on the solid angle 16.

Anstelle der in den obigen Beispielen verwendeten isotropen Mattstrukturen sind auch anisotrope Mattstrukturen verwendbar. Umgekehrt lassen sich in den obigen Beispielen verwendete anisotrope Mattstrukturen durch isotrope Mattstrukturen ersetzen.Instead of the isotropic matt structures used in the above examples, anisotropic matt structures can also be used. Conversely, anisotropic matt structures used in the above examples can be replaced by isotropic matt structures.

Claims (11)

  1. Diffractive security element (2) made of a plastic laminate (1) with a mosaic-type surface pattern composed of surface elements (12; 27; 28), wherein a reflective boundary layer (8) between a moulded layer (5) and a protective layer (6) of the plastic laminate (1) forms optically active structures (9) in the surface elements (12; 27; 28) and light (11), which is incident on the plastic laminate (1) and passes through a cover layer (4) of the plastic laminate (1) and through the moulded layer (5), is deflected using the optically active structures (9) in a predetermined manner, characterized
    in that the optically active structure (9) of at least one of the surface elements (12; 27; 28) is a diffractive structure (25) produced from an additive superposition of a matt structure on a linear asymmetric diffraction grating (24),
    in that the linear asymmetric diffraction grating (24) has a spatial frequency from the value range of 50 lines/mm to 2000 lines/mm and
    in that the matt structure has an average roughness value from the range of 20 nm to 2000 nm and has at least in one direction a correlation length of 200 nm to 50,000 nm.
  2. Security element (2) according to Claim 1, characterized in that a second surface element (28) adjoins a first surface element (27), in that the diffractive structure (25) is moulded into the surface of the second surface element (28) and in that the grating vector (26) of the linear asymmetric diffraction gratings (24) in the first surface element (27) is orientated substantially antiparallel with respect to the grating vector (26) of the linear asymmetric diffraction gratings (24) in the second surface element (28).
  3. Security element (2) according to Claim 1 or 2, characterized in that partial surfaces (31) with a diffraction structure (25) are arranged in the surface element (12, 27), wherein the diffraction structure (25) of the partial surfaces (31) differs from the diffraction structure (25) of the surface element (12, 27) only in terms of the scattering capability of the matt structure.
  4. Security element (2) according to Claim 3, characterized in that the partial surfaces (31) form an item of information in the form of a logo or text.
  5. Security element (2) according to Claim 2, characterized in that a large number of the first surface elements (27) are arranged on the surface of the second surface element (28), in that the first surface elements (27) in a grid contain a large number of partial surfaces (31) with a maximum dimension in at least one dimension of less than 0.3 mm, in that the diffraction structure (25) of the second surface element (28) is moulded in the partial surfaces (31) and in that the degree of surface coverage of the diffraction structure (25) of the first surface element (27) varies from surface element (27) to surface element (27) along a preferential direction (30).
  6. Security element (2) according to Claim 2, characterized in that a large number of the first surface elements (27) are arranged on the surface of the second surface element (28) and in that the asymmetry of the diffraction gratings (24) used for the diffraction structure (25) in the first surface elements (12) varies from surface element (27) to surface element (27) along a preferential direction (30).
  7. Security element (2) according to Claim 1 or 2, characterized in that a large number of surface elements (12) are arranged next to one another on the surface of the surface pattern and in that a blaze angle (ε2) of the asymmetric diffraction grating (24) used for the diffraction structure (25) in the surface element (12) is varied from one surface element (12) to another surface element (12) by one of the predetermined blaze angle stages (Δε) along a preferential direction (30).
  8. Security element (2) according to one of Claims 1 to 7, characterized in that the matt structure is isotropic.
  9. Security element (2) according to one of Claims 1 to 7, characterized in that the matt structure is anisotropic.
  10. Security element (2) according to one of Claims 1 to 9, characterized in that the diffraction grating (24) is achromatic and has a spatial frequency of between 50 lines/mm and 300 lines/mm.
  11. Security element (2) according to one of the preceding claims, characterized in that the boundary layer (8) is a coating made of a metal from the group of aluminium, silver, gold, chromium or tantalum.
EP02805743A 2001-12-22 2002-11-02 Diffractive safety element Expired - Lifetime EP1458578B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH23642001 2001-12-22
CH23642001 2001-12-22
PCT/EP2002/012245 WO2003055691A1 (en) 2001-12-22 2002-11-02 Diffractive safety element

Publications (2)

Publication Number Publication Date
EP1458578A1 EP1458578A1 (en) 2004-09-22
EP1458578B1 true EP1458578B1 (en) 2009-04-08

Family

ID=4568800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805743A Expired - Lifetime EP1458578B1 (en) 2001-12-22 2002-11-02 Diffractive safety element

Country Status (14)

Country Link
US (1) US6924934B2 (en)
EP (1) EP1458578B1 (en)
JP (1) JP4377239B2 (en)
KR (1) KR100939886B1 (en)
CN (1) CN100427323C (en)
AT (1) ATE427837T1 (en)
AU (1) AU2002367089A1 (en)
DE (1) DE50213436D1 (en)
DK (1) DK1458578T3 (en)
ES (1) ES2325532T3 (en)
PL (1) PL203882B1 (en)
RU (1) RU2291061C2 (en)
TW (1) TWI245978B (en)
WO (1) WO2003055691A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230018648A1 (en) * 2020-04-17 2023-01-19 Illinois Tool Works Inc. Embossed film assembly having pastel holographic security features

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019105A1 (en) * 1996-10-25 1998-05-07 Omron Corporation Surface light source and liquid crystal display, portable telephone and information terminal employing the surface light source
DE10221491A1 (en) * 2002-05-14 2003-12-04 Kurz Leonhard Fa Optically variable surface pattern
DE10312708B4 (en) * 2003-03-21 2007-06-28 Ovd Kinegram Ag retroreflector
DE10351129B4 (en) 2003-11-03 2008-12-24 Ovd Kinegram Ag Diffractive security element with a halftone image
DE102004003984A1 (en) 2004-01-26 2005-08-11 Giesecke & Devrient Gmbh Lattice image with one or more grid fields
DE102004018702B4 (en) * 2004-04-17 2006-05-24 Leonhard Kurz Gmbh & Co. Kg Film with polymer layer
EA011968B1 (en) 2004-04-30 2009-06-30 Де Ля Рю Интернэшнл Лимитед Security devices
DE102004042136B4 (en) 2004-08-30 2006-11-09 Ovd Kinegram Ag Metallized security element
GB0504959D0 (en) * 2005-03-10 2005-04-20 Rue International De La Ltd Security device based on customised microprism film
DE102005027380B4 (en) 2005-06-14 2009-04-30 Ovd Kinegram Ag The security document
DE102005061749A1 (en) 2005-12-21 2007-07-05 Giesecke & Devrient Gmbh Optically variable security element for making valuable objects safe has an achromatic reflecting micro-structure taking the form of a mosaic made from achromatic reflecting mosaic elements
DE102006012732A1 (en) * 2006-03-17 2007-09-20 Giesecke & Devrient Gmbh grid image
JP4779792B2 (en) 2006-04-27 2011-09-28 凸版印刷株式会社 Information recording medium and information recording medium authenticity determination device
RU2009123538A (en) * 2006-11-21 2010-12-27 Циба Холдинг Инк. (Ch) DEVICE AND METHOD FOR MANUFACTURE OF PRODUCTS PROTECTED FROM FALSE
DE102007019522A1 (en) 2007-04-25 2008-10-30 Giesecke & Devrient Gmbh Through security element
GB0711434D0 (en) * 2007-06-13 2007-07-25 Rue De Int Ltd Holographic security device
CN101809471B (en) 2007-07-31 2013-12-25 高通Mems科技公司 Devices for enhancing colour shift of interferometric modulators
EP2215529B1 (en) * 2007-10-31 2022-05-11 Bundesdruckerei GmbH Method and device for producing holograms having an individually exposed watermark-type structure
DE102007052952A1 (en) * 2007-10-31 2009-05-07 Bundesdruckerei Gmbh Method and device for producing holograms with a watermark-like structure
CN101161482B (en) * 2007-11-13 2010-06-02 公安部交通管理科学研究所 False proof structure for driving license and its identifying method
EP2085948A1 (en) * 2007-11-26 2009-08-05 Hueck Folien Ges.m.b.H. Security elements with integral matt structure
FR2942811B1 (en) 2009-03-04 2011-05-06 Oberthur Technologies SECURITY ELEMENT FOR DOCUMENT-VALUE.
EP2239150B1 (en) * 2009-04-07 2013-10-23 Nanogate Industrial Solutions GmbH Security device
CN102722096B (en) * 2011-03-30 2016-05-11 武汉思臻光信息科技有限公司 A kind of for generating the method and system of holographic interference fringes
WO2012143426A1 (en) 2011-04-20 2012-10-26 Rolic Ag Asymmetric optically effective surface relief microstructures and method of making them
DE102012105571B4 (en) * 2012-06-26 2017-03-09 Ovd Kinegram Ag Decorative element as well as security document with a decorative element
FR2995245B1 (en) * 2012-09-10 2015-05-15 Saint Gobain DECORATIVE GLAZING WITH REFLECTIVE LAYER DEPOSITED ON A TEXTURED SUBSTRATE
DE102013108906A1 (en) * 2013-08-19 2015-02-19 Ovd Kinegram Ag System and method for producing an individualized security element
KR101867844B1 (en) * 2016-07-06 2018-06-18 주식회사 에이텍에이피 Information leakage prevention apparatus and information inputting apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155627A (en) * 1976-02-02 1979-05-22 Rca Corporation Color diffractive subtractive filter master recording comprising a plurality of superposed two-level relief patterns on the surface of a substrate
CH659433A5 (en) 1982-10-04 1987-01-30 Landis & Gyr Ag DOCUMENT WITH A REFLECTIVE OPTICAL SECURITY ELEMENT.
JPS5988780A (en) 1982-11-08 1984-05-22 アメリカン・バンク・ノ−ト・カムパニ− Making of optical refraction recording body and optical refraction pattern
DE3650027T2 (en) 1985-05-07 1995-01-26 Dainippon Printing Co Ltd Item with transparent hologram.
EP0360969B1 (en) * 1988-09-30 1993-12-15 Landis & Gyr Business Support AG Diffraction element
EP0375833B1 (en) 1988-12-12 1993-02-10 Landis & Gyr Technology Innovation AG Optically variable planar pattern
US5991078A (en) * 1992-08-19 1999-11-23 Dai Nippon Printing Co., Ltd. Display medium employing diffraction grating and method of producing diffraction grating assembly
EP0644508B1 (en) * 1993-08-31 1999-12-22 Control Module, Inc. Secure optical identification method and means
JP3392500B2 (en) * 1994-02-28 2003-03-31 凸版印刷株式会社 Display with diffraction grating pattern
EP0712012A1 (en) 1994-11-09 1996-05-15 International Business Machines Corporation Authentication label and authenticating pattern incorporating diffracting structure and method of fabricating them
DE59509939D1 (en) * 1994-12-22 2002-01-24 Ovd Kinegram Ag Zug Optically machine-readable information carrier
SI0868313T1 (en) 1995-11-28 2001-02-28 Ovd Kinegram Ag Optically variable surface pattern
CN1193299A (en) * 1996-02-29 1998-09-16 厄纳斯特·祝 Anti-fake document with transparent writable hologram
CN1122955C (en) * 1996-10-12 2003-10-01 陈旃 Composite optical anti-forging label
US6655719B1 (en) * 1998-02-05 2003-12-02 Yoram Curiel Methods of creating a tamper resistant informational article
CZ286152B6 (en) 1998-03-13 2000-01-12 Miroslav Ing. Csc. Vlček Transparent and semitransparent diffraction elements, particularly holograms and process of their production
JP4334656B2 (en) * 1999-03-15 2009-09-30 大日本印刷株式会社 Color-changing vapor deposition medium and manufacturing method thereof
JP4390913B2 (en) * 1999-06-25 2009-12-24 大日本印刷株式会社 Anti-counterfeit thread and anti-counterfeit paper using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230018648A1 (en) * 2020-04-17 2023-01-19 Illinois Tool Works Inc. Embossed film assembly having pastel holographic security features

Also Published As

Publication number Publication date
RU2004122474A (en) 2005-03-10
JP4377239B2 (en) 2009-12-02
RU2291061C2 (en) 2007-01-10
US20050068625A1 (en) 2005-03-31
CN1615226A (en) 2005-05-11
PL371024A1 (en) 2005-06-13
CN100427323C (en) 2008-10-22
EP1458578A1 (en) 2004-09-22
WO2003055691A1 (en) 2003-07-10
KR20040090971A (en) 2004-10-27
JP2005513568A (en) 2005-05-12
ATE427837T1 (en) 2009-04-15
US6924934B2 (en) 2005-08-02
DE50213436D1 (en) 2009-05-20
TW200301851A (en) 2003-07-16
PL203882B1 (en) 2009-11-30
DK1458578T3 (en) 2009-07-06
ES2325532T3 (en) 2009-09-08
TWI245978B (en) 2005-12-21
AU2002367089A1 (en) 2003-07-15
KR100939886B1 (en) 2010-01-29

Similar Documents

Publication Publication Date Title
EP1458578B1 (en) Diffractive safety element
EP2885135B1 (en) Security device
EP1465780B1 (en) Diffractive security element having an integrated optical waveguide
DE3206062C2 (en)
EP1446294B1 (en) Security element with diffraction structures
EP1966769B2 (en) Visually variable security element, and method for production thereof
EP1670647B1 (en) Diffractive security element comprising a half-tone picture
EP0375833B1 (en) Optically variable planar pattern
DE2743019C2 (en)
EP1492679B1 (en) Security element comprising micro- and macrostructures
DE102008046128B4 (en) Optically variable security element with matt area
EP2889152B1 (en) Security element for displaying at least one optically variable item of information
WO1995016574A1 (en) Visually identifiable, optical security element for security papers
EP2126615B1 (en) Grid image
WO2001080175A1 (en) Pattern
EP2853411B1 (en) Security element with lenticular image
DE10312708A1 (en) retroreflector
EP2029371B1 (en) Refractive transparent security element
DE4423295C2 (en) Diffractive-optical structure arrangement
DE102018010078A1 (en) Optically variable security element
EP3034315B1 (en) Security element, method for its production and data carrier equipped wth the security element
DE102007020026A1 (en) Security paper comprises a window covered by a transparent or translucent feature layer with motif zones comprising achromatic microstructures with angle-dependent transmission and reflection properties
WO2019068362A1 (en) Optically variable see-through security element and data carrier
WO1998010324A1 (en) Surface pattern with at least two different light-diffracting relief structures for optical security elements
EP1051648B1 (en) Planar patterns with superimposed diffraction grating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STAUB, RENE

Inventor name: SCHILLING, ANDREAS

Inventor name: TOMPKIN, WAYNE, ROBERT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI

REF Corresponds to:

Ref document number: 50213436

Country of ref document: DE

Date of ref document: 20090520

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2325532

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100111

BERE Be: lapsed

Owner name: OVD KINEGRAM A.G.

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090709

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20191023

Year of fee payment: 18

Ref country code: SE

Payment date: 20191125

Year of fee payment: 18

Ref country code: FI

Payment date: 20191119

Year of fee payment: 18

Ref country code: IE

Payment date: 20191120

Year of fee payment: 18

Ref country code: NL

Payment date: 20191121

Year of fee payment: 18

Ref country code: SK

Payment date: 20191023

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191120

Year of fee payment: 18

Ref country code: DK

Payment date: 20191121

Year of fee payment: 18

Ref country code: ES

Payment date: 20191216

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191030

Year of fee payment: 18

Ref country code: AT

Payment date: 20191119

Year of fee payment: 18

Ref country code: CH

Payment date: 20191125

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191126

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20201119

Year of fee payment: 19

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 427837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201102

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 5963

Country of ref document: SK

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211119

Year of fee payment: 20

Ref country code: DE

Payment date: 20211006

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50213436

Country of ref document: DE