EP1460641B1 - Strahlungsabschirmungsanordnung - Google Patents

Strahlungsabschirmungsanordnung Download PDF

Info

Publication number
EP1460641B1
EP1460641B1 EP04006054A EP04006054A EP1460641B1 EP 1460641 B1 EP1460641 B1 EP 1460641B1 EP 04006054 A EP04006054 A EP 04006054A EP 04006054 A EP04006054 A EP 04006054A EP 1460641 B1 EP1460641 B1 EP 1460641B1
Authority
EP
European Patent Office
Prior art keywords
radiation
gypsum
radiation shielding
arrangement according
shielding arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04006054A
Other languages
English (en)
French (fr)
Other versions
EP1460641A1 (de
Inventor
Willi Brüchle
Georg Fehrtenbacher
Torsten Radon
Frank Gutermuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GSI Helmholtzzentrum fuer Schwerionenforschung GmbH
Original Assignee
GSI Helmholtzzentrum fuer Schwerionenforschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GSI Helmholtzzentrum fuer Schwerionenforschung GmbH filed Critical GSI Helmholtzzentrum fuer Schwerionenforschung GmbH
Publication of EP1460641A1 publication Critical patent/EP1460641A1/de
Application granted granted Critical
Publication of EP1460641B1 publication Critical patent/EP1460641B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/04Concretes; Other hydraulic hardening materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials

Definitions

  • the invention relates generally to a radiation shielding arrangement and to a radiation shielding arrangement for shielding neutron radiation and gamma radiation from particle accelerators or storage rings, in particular for synchrotron radiation sources in particular.
  • HERA has a scope of 6.3 km, so that cost savings are of particular interest.
  • the EP 0 585 184 A1 relates to a building material for shielding electromagnetic radiation containing, for example Portland cement or gypsum.
  • the gypsum only serves as a building material and has no radiation-shielding function.
  • the manufactured plate is provided as a shield against electrosmog and not suitable for high-energy gamma radiation and / or fast neutrons.
  • the JP 11202090 describes a neutron shielding body with combustion ash.
  • the gypsum is only used as a binder and not as a shielding material.
  • the U.S. Patent 3,705,101 describes a neutron absorber with gypsum as a hydrogen source for moderating neutrons.
  • the material is intended for a container for transporting nuclear fuel and does not seem to be suitable for shielding particle accelerators.
  • the RU 19950119981 describes a radiation shield in which gypsum wastes are used. A plate only 150 mm thick is described for the shielding of beta and gamma radiation. This does not appear to be suitable for shielding neutrons from accelerator systems.
  • the DE 36 07 190 A1 relates to a gypsum radiation protection plate. However, this is based on a conventional drywall of only 12.5 mm thickness, wherein the gypsum barium is added as an absorber for X-rays.
  • the plate is neither suitable for shielding gamma radiation nor neutrons, in particular not for particle accelerators and the energies occurring. Furthermore, the plate is also not suitable for the absorption or moderation of high-energy neutrons.
  • the GB 1 200 926 relates to radiation shielding for gamma rays and neutrons for which dysprosium and carbon are used as moderators and gadolinium as absorber after the thermalization of the neutrons. This material is only designed to shield spacecraft and rockets. Gypsum is not mentioned as a hydrogen supplier for moderating fast neutrons nor is it suitable for shielding high-energy accelerators.
  • the WO 96/36972 relates to a method for producing shielding elements.
  • the shielding elements are apparently intended for immersion in a sinking basin.
  • an electrolytic coating with cadmium of a thickness of only up to 300 ⁇ is proposed.
  • these shielding elements are neither intended nor suitable for shielding particle accelerators.
  • the U.S. Patent 3,995,163 describes a device for neutron therapy in which neutrons with the characteristic energy up to 14 MeV are generated during tritium decay. Thus, the neutron energies are orders of magnitude lower than at High-energy accelerators. Further, no gypsum is used, but metals such as iron, nickel or copper are used to decelerate the neutrons. Again, this does not seem to be suitable for high energy particle accelerators or storage rings.
  • Yet another object of the invention is to provide a radiation shielding arrangement for shielding neutron radiation and gamma radiation from particle accelerators or storage rings which has low activation even at high gamma and neutron energies.
  • Another object is to provide a radiation shielding arrangement for shielding neutron radiation and gamma radiation from particle accelerators or storage rings which avoids or at least mitigates the disadvantages of the prior art.
  • the radiation shielding arrangement according to the invention comprises a shielding element of hydrous material, e.g. with chemically bound water, especially water of crystallization.
  • the water content of the material is at least 5, 10 or 20 percent by weight.
  • the shielding element is at least 75 weight percent, at least 90 weight percent or im essentially entirely of plaster.
  • gypsum in particular a gypsum wall consisting essentially of set or hardened gypsum, chemically CaSO 4 .2H 2 O, has proven to be particularly suitable since the calcium absorbs gamma radiation relatively effectively due to its nuclear charge of 20.
  • the bound water of crystallization about 20% by weight relative to the total weight of the gypsum, in turn provides the protons.
  • the thickness of the shielding element is particularly related to the radiation spectra of a high energy particle accelerator and / or high energy particle storage ring for electrons, positrons or ions, e.g. a synchrotron, especially adapted for particle energies of greater than 10 GeV or greater than 30 GeV.
  • neutron absorber layer of a material which absorbs the moderated neutrons.
  • Boron, boron-paraffin, cadmium and / or gadolinium have proved particularly suitable for this purpose.
  • a multilayer arrangement, in particular the attachment of a separate neutron absorber layer on the plaster wall is particularly advantageous in this regard, since the stability of the gypsum is maintained.
  • no boron or other neutron absorbing material has to be mixed into the gypsum.
  • the assembly may be modular, e.g. block formed.
  • one-sided or two-sided support layers or cladding e.g. to provide concrete, which cause a double benefit, namely a stabilization and an additional shield against gamma radiation.
  • the concrete formwork can provide the necessary stability, so that radiation shielding arrangements can be used whose gypsum wall alone would not be self-supporting, but then self-supporting in connection with the shuttering, i. the radiation shielding arrangement has self-supporting stability properties due to the base layer or base layers. The thickness of the base layer will be especially dimensioned accordingly.
  • a neutron absorber layer containing a neutron absorbing material is provided. This is mounted on the side facing away from the accelerator, in particular directly on the shielding element.
  • the neutron absorber layer contains e.g. Boron, boron-containing glass or boron paraffin.
  • the neutron absorber layer is preferably arranged within the casing and / or between the casing and the wall made of gypsum.
  • the casing in particular the concrete casing, itself contains a neutron-absorbing material, e.g. a boron-containing material.
  • a neutron-absorbing material e.g. a boron-containing material.
  • It can e.g. Boric acid or boron carbide the casing material, e.g. be mixed with the concrete.
  • the casing has boron-containing glass. This is significantly less expensive than boron carbide and, even when blended, preserves the stability of the concrete better than boric acid.
  • Boron-containing glass may in particular be used instead of or in addition to commonly used additives such as e.g. Gravel are added.
  • the material of the shielding element in particular the gypsum, may also contain boron-containing glass.
  • REA gypsum flue gas desulphurisation plants
  • This is deposited at millions of tons expensive dumps. Every year more than 3 million tonnes of REA gypsum are produced in Germany. Therefore, the electricity providers may even be ashamed if they can deliver the material.
  • the REA gypsum is chemically very pure, thereby diminishing long-lived radiant activity from high atomic number elements. Therefore, REA gypsum is also more suitable as concrete from the point of view of activation.
  • shielding or gypsum walls of about 1 m to 10 m, preferably 2 m to 8 m, more preferably 4 m to 7 m thickness will be required.
  • the quantity of gypsum should therefore be at least 100,000 tonnes or even a multiple thereof.
  • the radiation shielding arrangement according to the invention is thus prepared, in particular with regard to the shielding effect or the thickness of the shielding element, to shield neutron radiation and gamma radiation from high energy particle accelerators, storage rings, target, experimental and / or analytical devices, in particular at particle energies greater than 1 GeV or even greater than 10 GeV.
  • FIG. 1 Figure 4 shows the simulation results of penetrating dose or residual radiation dose through a shielding element or screen in Pico-Sievert (pSv) per proton as a function of shielding or wall thickness in centimeters (cm).
  • pSv Pico-Sievert
  • the results are broken down by neutron dose and dose of electromagnetic radiation (gamma dose) as well as the total dose each for gypsum and concrete.
  • the shielding effect is more than a factor of two higher than for concrete and the total dose shielding is about 20% to 25% better for gypsum than for concrete.
  • the maximum of the curves represents the secondary radiation equilibrium, from which an attenuation effect occurs.
  • the secondary radiation equilibrium thickness is approximately between 60 cm and 70 cm.
  • Table 1 shows values for the generation of radioactivity during a 30-year blasting operation and a subsequent cooldown of 5 years for concrete and gypsum.
  • the radionuclides listed in Table 1 are mainly produced, namely H-3, Na-22, Mn-54 and Fe-55.
  • the values for the activity are normalized to the total activity of gypsum.
  • gypsum produces a radioactivity which is lower by a factor of about 1.2. Furthermore, the type of radioactivity generated, i. the distribution of the radionuclides produced in gypsum more favorably than in concrete, if one takes the release values according to the current radiation protection law as a yardstick (factor 4.41). It follows that the costs for a subsequent disposal after the end of the use of the radiation shielding arrangement according to the invention will be lower than in conventional shields.
  • FIG. 2 shows a multilayer radiation shielding assembly 10 having one, the radiation source and the particle beam 20 facing first layer or spallation layer 11 consisting of or containing a metal, in particular with a core mass> 50 atomic mass units (amu), eg iron.
  • a first shielding element a wall or a first shielding layer 12 consisting of or containing a material for decelerating neutrons, eg plaster and / or concrete, is arranged.
  • a neutron absorber layer 13 consisting of or containing a material which is suitable for absorbing thermalized neutrons, for example boron, cadmium or gadolinium.
  • a second shielding layer 14 which is of a smaller thickness than the wall 12, consisting of or containing a material for decelerating neutrons, such as plaster and / or concrete arranged.
  • the iron induced by the high-energy neutrons 21, causes spallation reactions, which in turn release neutrons 22 with lower energy. This achieves an indirect first moderation.
  • spallation neutrons 22 are further decelerated in the wall 12, to be finally captured and absorbed by the atomic nuclei of the neutron absorbing layer 13.
  • the material for the spallation layer 11 can also come from the disposal of materials from nuclear facilities, where weakly activated metals are produced in larger quantities.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)
  • Packages (AREA)
  • Laminated Bodies (AREA)

Description

  • Die Erfindung betrifft eine Strahlungsabschirmungsanordnung im Allgemeinen und eine Strahlungsabschirmungsanordnung zur Abschirmung von Neutronenstrahlung und Gammastrahlung von Teilchenbeschleunigern oder -speicherringen, insbesondere für Synchrotronstrahlungsquellen im Speziellen.
  • Bei der Beschleunigung von Teilchen entsteht biologisch schädliche Strahlung, insbesondere Gammastrahlung, d.h. hochenergetische Photonenstrahlung bzw. elektromagnetische Strahlung. Zur Abschirmung von Gammastrahlung wird bislang typischerweise Beton verwendet.
  • In den letzten Jahrzehnten hat jedoch die mögliche maximale Energie und Intensität der Teilchen in Teilchenbeschleunigern, insbesondere in solchen, die oberflächennah aufgebaut sind, zugenommen. Hierzu zählen Synchrotronanlagen zur Erzeugung von Synchrotronstrahlung, der neue Freie Elektronen Laser (FEL) TESLA bei DESY in Hamburg und neue Beschleunigeranlagen bei der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt. Bei zukünftigen Beschleunigern, insbesondere Synchrotrons sind Teilchenenergien im Bereich mehrerer hundert GeV oder sogar größer als 1 TeV zu erwarten.
  • Bei derartigen Hochenergie-Beschleunigern fällt jedoch nicht nur hochenergetische Photonenstrahlung an, sondern es werden in besonderem Maße auch schnelle Neutronen erzeugt. Letztere können aber sogar bereits bei Teilchenenergien im MeV-Bereich auftreten und sind biologisch besonders wirksam, d.h. schädlich. Z.B. werden bei den vorstehend beschriebenen Synchrotrons mit Teilchenenergien von einigen 100 MeV oder größer 1 TeV eine maßgebliche Zahl von schnellen Neutronen mit Energien im Bereich von 100 MeV erzeugt. Auf der anderen Seite ist Beton zur Abschirmung von schnellen Neutronen aber wenig geeignet.
  • Daher besteht, insbesondere für derartige Beschleuniger und Speicherringe, aber auch für Targeteinrichtungen sowie Experimentier- und Analyseeinrichtungen ein Bedarf an effektiven Strahlungsabschirmungen, welche auch schnelle Neutronen, insbesondere im MeV- oder sogar GeV-Bereich wirksam abschirmen, was im Vergleich zu elektromagnetischer Strahlung und zu thermalisierten oder zumindest relativ langsamen Neutronen im Bereich einiger Elektronenvolt (eV) eine völlig neue Anforderung darstellt. Gerade die Kombination einer wirksamen Abschirmung gegen elektromagnetische Strahlung und gleichzeitig gegen schnelle Neutronen erweist sich in der Praxis als schwierig.
  • Ein weiteres Problem resultiert aus der Aktivierung, insbesondere auch durch die schnellen Neutronen, welche zum Teil zu langlebigen Radionukliden führt. Dies macht den Abbau und die Entsorgung des Abschirmungsmaterials höchst problematisch. Auch diesbezüglich besteht ein Bedarf an einer vorteilhaften Alternative zu Beton.
  • Ferner ist die oben genannte Entwicklung hin zu höheren Energien naturgemäß mit einer wesentlichen Vergrößerung der Anlagen verbunden. So besitzt z.B. HERA einen Umfang von 6,3 km, so dass Kosteneinsparungen von besonderem Interesse sind.
  • Die EP 0 585 184 A1 betrifft ein Baumaterial zur Abschirmung elektromagnetischer Strahlung, welches zum Beispiel Portland Zement oder Gips enthält. Der Gips dient jedoch lediglich als Baumaterial und hat keine strahlungsabschirmende Funktion. Ferner ist die hergestellte Platte als Abschirmung gegen Elektrosmog vorgesehen und nicht für hochenergetische Gamma-Strahlung und/oder schnelle Neutronen geeignet.
  • Die JP 11202090 beschreibt einen Neutronenabschirmungskörper mit Verbrennungsasche. Der Gips wird lediglich als Bindemittel und nicht als Abschirmungsmaterial verwendet.
  • Das US Patent 3,705,101 beschreibt einen Neutronenabsorber mit Gips als Wasserstofflieferant zum Moderieren von Neutronen. Das Material ist für einen Behälter zum Transportieren von Nuklearbrennstoff bestimmt und scheint zur Abschirmung von Teilchenbeschleunigern nicht geeignet.
  • Die RU 19950119981 beschreibt eine Strahlungsabschirmung bei welcher Gipsabfälle verwendet werden. Es wird eine Platte von nur 150 mm Dicke zur Abschirmung von Beta- und Gamma-Strahlung beschrieben. Diese erscheint nicht geeignet zur Abschirmung von Neutronen aus Beschleunigeranlagen.
  • Die DE 36 07 190 A1 betrifft eine Gipsstrahlenschutzplatte. Diese basiert jedoch auf einer herkömmlichen Trockenbauplatte von nur 12,5 mm Dicke, wobei dem Gips Barium als Absorber für Röntgenstrahlen beigemischt wird.
  • Daher ist die Platte weder zur Abschirmung von Gamma-Strahlung noch von Neutronen geeignet, insbesondere nicht für Teilchenbeschleuniger und die dabei auftretenden Energien. Ferner eignet sich die Platte auch nicht zur Absorption oder Moderation von hochenergetischen Neutronen.
  • Die GB 1 200 926 betrifft eine Strahlungsabschirmung für Gammastrahlen und Neutronen für welche Dysprosium und Kohlenstoff als Moderatoren und Gadolinium als Absorber nach der Thermalisierung der Neutronen eingesetzt wird. Dieses Material ist lediglich zur Abschirmung von Raumfahrzeugen und Raketen ausgelegt. Weder ist Gips als Wasserstofflieferant zum Moderieren von schnellen Neutronen noch eine Eignung zur Abschirmung von Hochenergiebeschleunigern erwähnt.
  • Die WO 96/36972 betrifft ein Verfahren zur Herstellung von Abschirmelementen. Die Abschirmelemente sind offenbar zum Eintauchen in ein Abklingbecken vorgesehen. Hierzu wird eine elektrolytische Beschichtung mit Kadmium einer Dicke von lediglich bis 300 µ vorgeschlagen. Damit sind auch diese Abschirmelemente zur Abschirmung von Teilchenbeschleunigern weder vorgesehen noch geeignet.
  • Das US Patent 3,995,163 beschreibt eine Vorrichtung zur Neutronentherapie, bei welcher Neutronen mit der charakteristischen Energie bis zu 14 MeV beim Tritiumzerfall erzeugt werden. Somit sind hier die Neutronenenergien um Größenordnungen niedriger als bei Hochenergiebeschleunigern. Ferner wird kein Gips, sondern es werden Metalle wie Eisen, Nickel oder Kupfer zum Abbremsen der Neutronen verwendet. Auch dies scheint für Hochenergieteilchenbeschleuniger oder -speicherringe nicht geeignet zu sein.
  • Daher ist es eine Aufgabe der vorliegenden Erfindung, eine Strahlungsabschirmungsanordnung zur Abschirmung von Neutronenstrahlung und Gammastrahlung von Teilchenbeschleunigern oder -speicherringen bereit zu stellen, welche sowohl Gammastrahlung als auch schnelle Neutronen wirksam abschirmt und kostengünstig in großem Maßstab herstellbar ist.
  • Noch eine Aufgabe der Erfindung ist es, eine Strahlungsabschirmungsanordnung zur Abschirmung von Neutronenstrahlung und Gammastrahlung von Teilchenbeschleunigern oder -speicherringen bereit zu stellen, welche auch bei hohen Gamma- und Neutronenenergien eine geringe Aktivierung aufweist.
  • Eine weitere Aufgabe ist es, eine Strahlungsabschirmungsanordnung zur Abschirmung von Neutronenstrahlung und Gammastrahlung von Teilchenbeschleunigern oder -speicherringen bereit zu stellen, welche die Nachteile des Standes der Technik meidet oder zumindest mindert.
  • Die Aufgabe der Erfindung wird in überraschend einfacher Weise bereits durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.
  • Vorteilhafter Weise enthält die erfindungsgemäße Strahlungsabschirmungsanordnung ein Abschirmungselement aus wasserhaltigem Material, z.B. mit chemisch gebundenem Wasser, insbesondere Kristallwasser. Vorzugsweise beträgt der Wasseranteil des Materials zumindest 5, 10 oder 20 Gewichtsprozent. Die darin enthaltenen Wasserstoffkerne, respektive Protonen moderieren Neutronen aufgrund der fast identischen Masse und des damit verbundenen maximalen Impulsübertrags nahezu ideal.
  • Bevorzugt besteht das Abschirmungselement zumindest zu 75 Gewichtsprozent, zumindest zu 90 Gewichtsprozent oder im wesentlichen vollständig aus Gips. Die Verwendung von Gips, insbesondere einer Gipswand im wesentlichen bestehend aus abgebundenem oder ausgehärteten Gips, chemisch CaSO4*2H2O, hat sich als besonders geeignet erwiesen, da das Calcium aufgrund seiner Kernladung von 20 relativ wirksam Gammastrahlung absorbiert. Das gebundene Kristallwasser mit einem Gewichtsanteil von etwa 20 bezüglich des Gesamtgewichts des Gipses stellt wiederum die Protonen zur Verfügung.
  • Im Gegensatz zu Normalbeton, der neben kleineren Mengen Calcium, Aluminium, Eisen oder erheblich teurerem Barium bei Schwerbeton, als Hauptbestandteil Silicium mit der Ordnungszahl 14 enthält, schirmt Calcium mit der Ordnungszahl 20 Gammastrahlung sogar besser ab. Dies gleicht den Dichte-Unterschied zwischen Gips (2,1 g/cm3) und Normalbeton (2 bis 2,8 g/cm3) zumindest wieder aus. Damit ist Gips bei gleicher Abschirmwirkung für Gammastrahlung vorteilhafter Weise leichter als Beton.
  • Die Dicke des Abschirmungselements ist insbesondere an die Strahlungsspektren eines Hochenergieteilchenbeschleunigers und/oder Hochenergieteilchenspeicherrings für Elektronen, Positronen oder Ionen, z.B. eines Synchrotrons, insbesondere bei Teilchenenergien von größer als 10 GeV oder größer als 30 GeV angepasst.
  • In Bezug auf die Abschirmung von Neutronen ist es weiter vorteilhaft, eine Neutronenabsorberschicht aus einem Material vorzusehen, welches die moderierten Neutronen absorbiert. Hierzu haben sich insbesondere Bor, Bor-Parafin, Cadmium und/oder Gadolinium bewährt.
  • Eine mehrschichtige Anordnung, insbesondere das Anbringen einer separaten Neutronenabsorberschicht auf der Gipswand ist diesbezüglich besonders vorteilhaft, da die Stabilität des Gipses erhalten bleibt. Vorzugsweise muss also bei dieser Ausführungsform kein Bor oder anderes neutronenabsorbierendes Material in den Gips eingemischt werden.
  • Alternativ oder ergänzend kann die Anordnung modular, z.B. blockweise ausgebildet sein.
  • Dennoch kann es weiter vorteilhaft sein, ein- oder zweiseitig Tragschichten oder Verschalungen, z.B. aus Beton vorzusehen, welche einen Doppelnutzen, nämlich eine Stabilisierung und eine zusätzliche Abschirmung gegen Gammastrahlung bewirken. Je nach gewünschter Höhe können die Verschalungen aus Beton die nötige Stabilität erbringen, so dass Strahlungsabschirmungsanordnungen verwendet werden können, deren Gipswand alleine nicht selbsttragend wäre, jedoch in Verbindung mit der Verschalung dann selbsttragend sind, d.h. die Strahlungsabschirmungsanordnung aufgrund der Tragschicht oder Tragschichten selbstragende Stabilitätseigenschaften aufweist. Die Dicke der Tragschicht wird insbesondere danach bemessen sein.
  • Bevorzugt ist noch eine Neutronenabsorberschicht, welche ein neutronenabsorbierendes Material enthält, vorgesehen. Diese ist auf der beschleunigerabgewandten Seite, insbesondere unmittelbar an dem Abschirmungselement angebracht. Die Neutronenabsorberschicht, enthält z.B. Bor, Bor-haltiges Glas oder Bor-Parafin.
  • Ferner ist die Neutronenabsorberschicht bevorzugt innerhalb der Verschalung und/oder zwischen der Verschalung und der Wand aus Gips angeordnet.
  • Gemäß einer besonders bevorzugten Weiterbildung der Erfindung enthält die Verschalung, insbesondere die Betonverschalung, selbst ein neutronenabsorbierendes Material, z.B. ein Bor-haltiges Material. Es kann z.B. Borsäure oder Borkarbid dem Verschalungsmaterial, z.B. dem Beton beigemischt werden. Als noch vorteilhafter hat sich jedoch erwiesen, wenn die Verschalung Bor-haltiges Glas aufweist. Dieses ist deutlich kostengünstiger als Borkarbid und erhält, auch wenn es eingemischt wird, die Stabilität des Betons besser als Borsäure. Bor-haltiges Glas kann insbesondere anstatt von oder zusätzlich zu üblicherweise verwendeten Zusätzen wie z.B. Kies zugesetzt werden. Alternativ oder ergänzend kann auch das Material des Abschirmungselementes, insbesondere der Gips, Bor-haltiges Glas enthalten.
  • Besonders bevorzugt ist die Verwendung von Gips aus Rauchgas-Entschwefelungsanlagen (sogenannter REA-Gips). Dieser wird zu Millionen Tonnen teuer auf Halden deponiert. Jährlich fallen in Deutschland über 3 Millionen Tonnen REA-Gips an. Daher sind die Stromanbieter unter Umständen sogar dankbar, wenn sie das Material abgeben können.
  • Der Vorteil der Verwendung von REA-Gips ist erstaunlicher Weise sogar vielschichtig.
  • Erstens wird ein Material verwendet, dessen physikalische Abschirmungswirkung besser ist als von Beton.
  • Zweitens ist der REA-Gips chemisch sehr rein, wodurch vermindert langlebige strahlende Aktivitäten aus Elementen mit hoher Ordnungszahl erzeugt werden. Daher ist REA-Gips auch unter dem Gesichtspunkt der Aktivierung geeigneter als Beton.
  • Drittens müssen die Stromerzeuger den Gips, der als Abfall bei Rauchgas-Entschwefelung anfällt, nicht mehr teuer deponieren. Selbst der Transport ist zur Zeit noch subventioniert, da auch die Deutsche Bahn Gips entsorgt.
  • Die Erfinder haben ferner heraus gefunden, dass zur Abschirmung kommender Generationen von Hochenergieteilchenbeschleunigern und/oder Hochenergieteilchenspeicherringen, welche Teilchenenergien in der Größenordnung von 100 GeV bis 1 TeV oder darüber liegen können, Abschirmungselemente oder Gipswände von etwa 1 m bis 10 m, bevorzugt 2 m bis 8 m, besonders bevorzugt 4 m bis 7 m Dicke erforderlich sein werden. Die Gipsmenge dürfte je nach Beschleuniger also mindestens 100 000 Tonnen oder sogar ein Vielfaches davon betragen.
  • Die erfindungsgemäße Strahlungsabschirmungsanordnung ist also insbesondere bezüglich der Abschirmwirkung bzw. der Dicke des Abschirmungselements hergerichtet zur Abschirmung von Neutronenstrahlung und Gammastrahlung von Hochenergieteilchenbeschleunigern, -speicherringen, Target-, Experimentier- und/oder Analyseeinrichtungen, insbesondere bei Teilchenenergien größer als 1 GeV oder sogar größer als 10 GeV.
  • Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und unter Bezugnahme auf die Zeichnungen näher erläutert.
  • Kurzbeschreibung der Figuren
  • Es zeigen
  • Figur 1:
    Ergebnisse einer Monte-Carlo-Simulationsrechnung und
    Figur 2:
    einen schematischen Querschnitt durch eine beispielhafte Ausführungsform einer erfindungsgemäßen Strahlungsabschirmungsanordnung.
    Detaillierte Beschreibung der Erfindung
  • Es wurde eine Simulationsrechnung bezüglich der Strahlung durchgeführt, welche entsteht, wenn 30 GeV Protonen auf ein 10 cm dickes Eisen-Target geschossen werden. Dies entspricht etwa den Bedingungen, die bei den Hochenergiebeschleunigern herrschen, für welche die Erfindung eingesetzt werden soll. Hierbei entsteht ein maßgeblicher Anteil an schnellen Neutronen mit Energien im Bereich bis zu einigen GeV.
  • Figur 1 zeigt die Simulationsergebnisse der durchdringenden Dosis oder Reststrahlungsdosis durch ein Abschirmungselement oder eine Abschirmungswand in Pico-Sievert (pSv) je Proton als Funktion der Abschirm- oder Wanddicke in Zentimetern (cm).
  • Die Ergebnisse sind aufgeschlüsselt nach Neutronendosis und Dosis der elektromagnetischen Strahlung (Gammadosis) sowie der Gesamtdosis jeweils für Gips und Beton.
  • Hierbei repräsentieren:
    • Die Kurve 1 die Gesamtdosis für Beton,
    • die Kurve 2 die Gesamtdosis für Gips,
    • die Kurve 3 die Gammadosis für Beton,
    • die Kurve 4 die Gammadosis für Gips,
    • die Kurve 5 die Neutronendosis für Beton und
    • die Kurve 6 die Neutronendosis für Gips.
  • Es ist zu sehen, dass insbesondere die Neutronendosis im Maximum für Gips um mehr als einen Faktor 2 geringer, d.h. die Abschirmwirkung um mehr als einen Faktor zwei höher ist als für Beton und die Abschirmung bezüglich der Gesamtdosis ist bei Gips dort etwa 20 % bis 25 % besser als bei Beton.
  • Das Maximum der Kurven repräsentiert das Sekundärstrahlungsgleichgewicht, ab welchem ein Abschwächungseffekt eintritt. Die Sekundärstrahlungsgleichgewichtsdicke liegt etwa zwischen 60 cm und 70 cm.
  • Diese erheblich höhere Abschirmwirkung der Neutronendosis von Gips in Vergleich zu Beton bei den durch solche Hochenergieteilchenbeschleuniger erzeugten hohen Neutronenenergien war auch für Fachleute auf dem Gebiet der Beschleunigertechnik durchaus überraschend.
  • Aus den Berechnungen ergibt sich, dass bei einer Gesamtanzahl von 1012 Protonen und bereits einer Wanddicke von 4 m eine Gesamtdosis von lediglich noch etwa 25 Micro-Sievert (µSv) die Wand durchdringt.
  • Im folgenden werden die Vorteile hinsichtlich der Aktivierung von Gips gegenüber Beton aufgezeigt.
  • Tabelle 1 zeigt Werte für die Erzeugung von Radioaktivität bei einem 30-jährigen Strahlbetrieb und einer darauffolgenden Abklingzeit von 5 Jahren für Beton und Gips.
  • Es werden hauptsächlich die in der Tabelle 1 genannten Radionuklide erzeugt, nämlich H-3, Na-22, Mn-54 und Fe-55.
  • Die Werte für die Aktivität sind auf die Gesamtaktivität von Gips normiert.
  • Hierbei sind:
  • C_i:
    die spezifische Aktivität in Becquerel pro Gramm [Bq/g] und
    C_i/R_i:
    das Verhältnis aus der freizugebenden spezifischen Aktivität und dem jeweiligen Freigabewert nach dem zum Anmeldezeitpunkt in Deutschland geltenden Strahlenschutzrecht.
    Tabelle 1:
    C_i C_i/R_i
    Nuklid Beton Gips Beton Gips
    H-3 1,01E+00 9,74E-01 6,05E-02 5,86E-02
    Na-22 1,20E-01 2,61E-02 4,34E+00 9,41E-01
    Mn-54 1,03E-03 0,00E+00 1,24E-02 0,00E+00
    Fe-55 7,63E-02 0,00E+00 1,38E-03 0,00E+00
    Summe 1,20E+00 1,00E+00 4,41E+00 1,00E+00
  • Es ist ersichtlich, dass in Gips eine um einen Faktor von etwa 1,2 geringere Radioaktivität erzeugt wird. Ferner ist die Art der erzeugten Radioaktivität, d.h. die Verteilung der erzeugten Radionuklide bei Gips vorteilhafter als bei Beton, wenn man die Freigabewerte nach dem derzeitigen Strahlenschutzrecht als Maßstab nimmt (Faktor 4,41). Hieraus ergibt sich, dass die Kosten für eine spätere Entsorgung nach Beendigung der Nutzung der erfindungsgemäßen Strahlungsabschirmungsanordnung geringer sein werden als bei herkömmlichen Abschirmungen.
  • Figur 2 zeigt eine mehrschichtige Strahlungsabschirmungsanordnung 10 mit einer, der Strahlungsquelle bzw. dem Teilchenstrahl 20 zugewandten ersten Schicht oder Spallationsschicht 11 bestehend aus oder enthaltend ein Metall, insbesondere mit einer Kernmasse > 50 atomare Masseneinheiten (amu), z.B. Eisen. Unmittelbar anschließend an die Spallationsschicht 11 ist ein erstes Abschirmungselement, eine Wand oder eine erste Abschirmungsschicht 12 bestehend aus oder enthaltend ein Material zur Abbremsung von Neutronen, z.B. Gips und/oder Beton angeordnet. Unmittelbar anschließend an das erste Abschirmungselement 12 ist eine Neutronenabsorberschicht 13 bestehend aus oder enthaltend ein Material, welches zur Absorption von thermalisierten Neutronen geeignet ist, z.B. Bor, Cadmium oder Gadolinium. Wiederum unmittelbar anschließend an die Neutronenabsorberschicht 13 ist eine zweite Abschirmungsschicht 14, welche von geringerer Dicke als die Wand 12 ist, bestehend aus oder enthaltend ein Material zur Abbremsung von Neutronen, z.B. Gips und/oder Beton angeordnet.
  • Das Eisen bewirkt, induziert durch die schnellen bzw. hochenergetischen Neutronen 21, unter anderem Spallationsreaktionen, welche wiederum Neutronen 22 mit geringerer Energie freisetzen. Dadurch wird eine indirekte erste Moderation erzielt.
  • Danach werden die Spallationsneutronen 22 weiter in der Wand 12 abgebremst, um dann schließlich von den Atomkernen der Neutronenabsorberschicht 13 eingefangen und absorbiert zu werden.
  • Das Material für die Spallationsschicht 11 kann auch aus der Entsorgung von Materialien aus kerntechnischen Anlagen kommen, wo schwach aktivierte Metalle in größeren Mengen anfallen.
  • Es ist dem Fachmann ersichtlich, dass die Erfindung nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt ist und dass die Erfindung in vielfältiger Weise variiert werden kann.

Claims (17)

  1. Strahlungsabschirmungsanordnung zur Abschirmung von Neutronenstrahlung und/oder Gammastrahlung von Teilchenbeschleunigern,
    - speicherringen, Target-, Experimentier- oder Analyseeinrichtungen, umfassend
    eine Spallationsschicht (11), in welcher in Spallationsreaktionen Neutronen (22) freigesetzt werden und
    zumindest ein Abschirmungselement aus einem ersten Material, welches Gips enthält, um die Spallationsneutronen (22) abzubremsen.
  2. Strahlungsabschirmungsanordnung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das erste Material den Gips in abgebundenem Zustand in der chemischen Zusammensetzung CaSO4*2H2O enthält.
  3. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Abschirmungselement eine Wand aus Gips umfasst.
  4. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Wand aus Gips eine Dicke aufweist, welche an die Strahlungsspektren eines Hochenergieteilchenbeschleunigers und/oder Hochenergieteilchenspeicherrings für Elektronen, Positronen oder Ionen angepasst ist.
  5. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Wand eine Dicke, welche größer oder gleich der Sekundärstrahlungsgleichgewichtsdicke ist, insbesondere eine Dicke von zumindest 2 m, zumindest 5 m oder zumindest 7 m aufweist.
  6. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, gekennzeichnet durch einen mehrschichtigen Aufbau.
  7. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, gekennzeichnet durch einen modularen Aufbau.
  8. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Tragschicht, welche an einer ersten Seite des Abschirmungselements angeordnet ist und die Tragschicht wenigstens eine Mindestdicke aufweist, welche derart bemessen ist, dass die Strahlungsabschirmungsanordnung, insbesondere die Anordnung aus Abschirmungselement und Tragschicht selbsttragend ist.
  9. Strahlungsabschirmungsanordnung nach Anspruch 8, dadurch gekennzeichnet, dass die Tragschicht eine Verschalung aus Beton umfasst.
  10. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Abschirmungselement mit einer beidseitigen Verschalung, insbesondere aus Beton versehen ist.
  11. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Neutronenabsorberschicht, welche ein neutronenabsorbierendes Material enthält.
  12. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Neutronenabsorberschicht, welche Bor, Cadmium und/oder Gadolinium enthält.
  13. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Neutronenabsorberschicht, welche Bor-Parafin enthält.
  14. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Neutronenabsorberschicht innerhalb der Verschalung und/oder zwischen der Verschalung und der Wand aus Gips angeordnet ist.
  15. Strahlungsabschirmungsanordnung nach Anspruch 8, dadurch gekennzeichnet, dass
    die Tragschicht ein neutronenabsorbierendes Material umfasst.
  16. Strahlungsabschirmungsanordnung nach einem der vorstehenden Ansprüche,
    wobei die Spallationsschicht ein Metall enthält.
  17. Verwendung von REA-Gips aus Rauchgasentschwefelungsanlagen zur Herstellung einer Strahlungsabschirmungsanordnung, wobei der REA-Gips als Abschirmmaterial zur Abschirmung von Neutronenstrahlung und/oder Gammastrahlung von Hochenergieteilchenbeschleunigern, -speicherringen, Target-, Experimentier- oder Analyseeinrichtungen verwendet wird,
    wobei der REA-Gips in Form einer Wand (12) aus abgebundenem REA-Gips verwendet wird,
    wobei das in dem REA-Gips gebundene Kristallwasser die Wasserstoffkerne zum Moderieren der Neutronen zur Verfügung stellt und
    wobei die REA-Gipswand (12) eine Dicke aufweist, welche größer oder gleich der Sekundärstrahlungsgleichgewichtsdicke ist.
EP04006054A 2003-03-19 2004-03-15 Strahlungsabschirmungsanordnung Expired - Lifetime EP1460641B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10312271A DE10312271A1 (de) 2003-03-19 2003-03-19 Strahlungsabschirmungsanordnung
DE10312271 2003-03-19

Publications (2)

Publication Number Publication Date
EP1460641A1 EP1460641A1 (de) 2004-09-22
EP1460641B1 true EP1460641B1 (de) 2009-12-30

Family

ID=32797978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04006054A Expired - Lifetime EP1460641B1 (de) 2003-03-19 2004-03-15 Strahlungsabschirmungsanordnung

Country Status (4)

Country Link
US (1) US6927407B2 (de)
EP (1) EP1460641B1 (de)
AT (1) ATE453915T1 (de)
DE (2) DE10312271A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139705B2 (en) * 2002-08-01 2012-03-20 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Screened chamber for ion therapy
DE10327466B4 (de) * 2003-01-13 2008-08-07 Jan Forster Baukörper für Strahlenschutzbauwerke
DE10312271A1 (de) * 2003-03-19 2004-10-07 Gesellschaft für Schwerionenforschung mbH Strahlungsabschirmungsanordnung
DE102004052158A1 (de) * 2004-09-24 2006-04-06 Gesellschaft für Schwerionenforschung mbH Mehrschichtiger Strahlenschutzbaukörper
DE102004063185A1 (de) * 2004-10-18 2006-04-20 Jan Forster Baukörper aus Gipsbausteinen und Verfahren zur Herstellung eines Gipsbausteins
DE102004063732B4 (de) 2004-12-29 2013-03-28 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Strahlenschutzkammer mit insbesondere einer mehrschichtigen Strahlenschutzwand
US7312466B2 (en) * 2005-05-26 2007-12-25 Tdy Industries, Inc. High efficiency shield array
DE102005035141A1 (de) 2005-07-22 2007-02-01 GSI Gesellschaft für Schwerionenforschung mbH Bestrahlungseinrichtung
JP2007128681A (ja) * 2005-11-01 2007-05-24 Japan Atomic Energy Agency 中性子偏極装置
US8657354B2 (en) * 2006-05-19 2014-02-25 Breya, Llc. Mobile radiation therapy
US20080203331A1 (en) * 2007-02-12 2008-08-28 Murphy Brent D Mobile radiation treatment facility
US20110198516A1 (en) * 2007-10-01 2011-08-18 Fox Chase Cancer Center Shielding for compact radiation sources
WO2011146573A1 (en) * 2010-05-18 2011-11-24 Veritas Medical Solutions Llc Compact modular particle facility having layered barriers
DE202011102838U1 (de) * 2011-07-02 2011-12-27 Ewald von Hagen Strahlenschutz-Versatz zur Verhinderung & Austritt radioaktiver Strahlung im Bergbau
JP6322359B2 (ja) * 2012-10-30 2018-05-09 株式会社竹中工務店 放射線遮蔽壁、放射線遮蔽壁の施工方法及び放射線遮蔽壁の修復方法
JP6080562B2 (ja) * 2013-01-18 2017-02-15 国立大学法人山口大学 放射線遮蔽積層材
DE102016105720B4 (de) 2016-03-29 2018-01-18 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Abschirmung für Beschleunigeranlage
CN106211727A (zh) * 2016-07-01 2016-12-07 中国工程物理研究院流体物理研究所 屏蔽体及屏蔽装置
CN108053906B (zh) * 2017-12-14 2019-08-06 东莞理工学院 一种用于中子科学研究的防辐射块及其制备方法
CN108010596A (zh) * 2018-01-19 2018-05-08 中国科学院合肥物质科学研究院 一种适用于强核辐照环境的抗辐射屏蔽装置
CN113454734B (zh) 2018-12-14 2023-01-06 拉德技术医疗系统有限责任公司 屏蔽设施及其制造方法
CN110372286A (zh) * 2019-06-21 2019-10-25 东南大学 一种核泄漏防护复合墙体及其应用
CN110379530B (zh) * 2019-08-09 2024-07-16 中国人民大学 一种生物屏蔽墙的有效夹层、生物屏蔽墙及单元
CN111128426B (zh) * 2020-01-02 2024-05-31 中国原子能科学研究院 一种用于控制电子束辐照剂量的屏蔽装置和方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB585184A (en) 1944-09-22 1947-01-31 Smith & Nephew Improvements in and relating to surgical bandages, dressings and the like
US3453160A (en) * 1963-11-12 1969-07-01 Kaiser Gypsum Co Process for making structural gypsum board for neutron shielding
GB1200926A (en) * 1966-09-30 1970-08-05 Chemtree Corp Radiation shielding
FR1534032A (fr) * 1967-06-14 1968-07-26 Commissariat Energie Atomique Matériau absorbant les neutrons et son procédé de fabrication
US4123392A (en) * 1972-04-13 1978-10-31 Chemtree Corporation Non-combustible nuclear radiation shields with high hydrogen content
NL7402505A (nl) * 1974-02-25 1975-08-27 Philips Nv Neutronentherapieapparaat.
DE3607190A1 (de) * 1986-03-05 1987-09-10 Norgips Bv Verfahren zur herstellung von gipsplatten und gipsstrahlenschutzplatte
JPH0786137B2 (ja) * 1986-04-15 1995-09-20 ダイセル化学工業株式会社 ポリε―カプロラクトン樹脂
US4879463A (en) * 1987-12-14 1989-11-07 Schlumberger Technology Corporation Method and apparatus for subsurface formation evaluation
JPH05315128A (ja) * 1992-05-14 1993-11-26 Hitachi Ltd 超電導装置
JPH0669682A (ja) * 1992-08-18 1994-03-11 Sekisui Chem Co Ltd 電磁遮蔽建材
WO1996036972A1 (de) * 1995-05-16 1996-11-21 Metallveredlung Gmbh & Co. Kg Verfahren zur herstellung von abschirmelementen zur absorption der bei der kernreaktion radioaktiver materialien entstehenden neutronen
RU2083007C1 (ru) * 1995-11-27 1997-06-27 Рима Габдулловна Кочеткова Радиационно-защитные конструкции и способ их изготовления
JPH11202090A (ja) * 1998-01-08 1999-07-30 Taiheiyo Cement Corp 中性子遮蔽体およびその製造方法
US7152002B2 (en) * 2002-06-03 2006-12-19 Sabia, Inc. Method and apparatus for analysis of elements in bulk substance
DE10312271A1 (de) * 2003-03-19 2004-10-07 Gesellschaft für Schwerionenforschung mbH Strahlungsabschirmungsanordnung
US20050025797A1 (en) * 2003-04-08 2005-02-03 Xingwu Wang Medical device with low magnetic susceptibility
US20040254419A1 (en) * 2003-04-08 2004-12-16 Xingwu Wang Therapeutic assembly

Also Published As

Publication number Publication date
US20040217307A1 (en) 2004-11-04
DE502004010569D1 (de) 2010-02-11
DE10312271A1 (de) 2004-10-07
US6927407B2 (en) 2005-08-09
EP1460641A1 (de) 2004-09-22
ATE453915T1 (de) 2010-01-15

Similar Documents

Publication Publication Date Title
EP1460641B1 (de) Strahlungsabschirmungsanordnung
EP2204820B1 (de) Strahlenschutzkammer
WO2006034779A1 (de) Mehrschichtiger strahlenschutzbaukörper
WO2000010935A2 (de) Strahlenschutzbeton und strahlenschutzmantel
DE2805111C2 (de) Neutronen-Strahlentherapiegerät
CN112037956A (zh) 用于屏蔽放射性射线的屏蔽材料及其制备方法
DE2533348A1 (de) Aus einzelnen schichten aufgebautes target zur bremsstrahlungserzeugung
DE212022000080U1 (de) Eine Strahlformungsvorrichtung für thermische Neutronen
EP1525590B1 (de) Abgeschirmter raum für die ionentherapie mit abschirmwirkung für neutronen bis in den energiebereich gev
DE102005057428B3 (de) Strahlenresistentes und -abschirmendes Beschichtungssystem und Verfahren seiner Auftragung auf Bauteile und Bauwerke
Wu et al. Comparative investigation of physical and photon attenuation performances for Ta-doped LLZTO ceramics
US20230154637A1 (en) Radiation shield unit, method of manufacturing radiation shield unit, and radiation shield structure
DE102009044963B4 (de) Blöcke aus Graphit-Matrix mit anorganischem Bindemittel geeignet zur Lagerung von radioaktiven Abfällen und Verfahren zur Herstellung derselben
DE2926841A1 (de) Elektronenbeschleuniger
DE2311533A1 (de) Neutronenstrahlkollimator
Tabbakh et al. Carbohydrate based materials for gamma radiation shielding
DE1564409A1 (de) Radioisotopenerzeuger
EP0829088A1 (de) Absorptionsstruktur zur absorption von neutronen sowie verfahren zur herstellung einer absorptionsstruktur
Sato et al. Microstructure of high-level radioactive waste glass heavily irradiated in a high-voltage electron microscope
Krishnasamy State-of-the-art review on the neutron and ionizing radiation shielding
EP3266754A1 (de) Zusammensetzungen mit geringer aktivierung von beton und verwendung davon
AT355145B (de) Brandsicherer werkstoff zur abschirmung von neutronen
DE102016105720B4 (de) Abschirmung für Beschleunigeranlage
KR100314998B1 (ko) 방사선차폐용조성물
WO2024019679A1 (en) A neutron absorber material with boron minerals and bismutoxide additive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041201

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060929

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG GMB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502004010569

Country of ref document: DE

Date of ref document: 20100211

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100330

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

BERE Be: lapsed

Owner name: GSI HELMHOLTZZENTRUM FUR SCHWERIONENFORSCHUNG G.M.

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100701

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004010569

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160330

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160728

Year of fee payment: 13

Ref country code: IT

Payment date: 20160823

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160729

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 453915

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170315

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180322

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010569

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001