EP1456831B1 - Bildanzeigetafel in form einer matrix von elektrolumineszenten zellen mit überbrückung und durch ein lichtempfindliches element erhaltenem speichereffekt - Google Patents

Bildanzeigetafel in form einer matrix von elektrolumineszenten zellen mit überbrückung und durch ein lichtempfindliches element erhaltenem speichereffekt Download PDF

Info

Publication number
EP1456831B1
EP1456831B1 EP02805375A EP02805375A EP1456831B1 EP 1456831 B1 EP1456831 B1 EP 1456831B1 EP 02805375 A EP02805375 A EP 02805375A EP 02805375 A EP02805375 A EP 02805375A EP 1456831 B1 EP1456831 B1 EP 1456831B1
Authority
EP
European Patent Office
Prior art keywords
cell
panel
electroluminescent
layer
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02805375A
Other languages
English (en)
French (fr)
Other versions
EP1456831A2 (de
Inventor
Jean-Paul Dagois
Christophe Fery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1456831A2 publication Critical patent/EP1456831A2/de
Application granted granted Critical
Publication of EP1456831B1 publication Critical patent/EP1456831B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3216Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using a passive matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/141Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element
    • G09G2360/142Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element the light being detected by light detection means within each pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • the panels of this type also comprise a substrate 10, at the rear (as in the figure) or at the front of the panel, to support all the previously described layers; it is usually a glass plate or polymer material.
  • the photoconductive layer 12 is intended to provide the cells of the panel a memory effect which will be described later.
  • the electrodes of the front layer 18, the rear layer 11 and the intermediate layer 14 are adapted in a manner known per se to be able to control and maintain the emission of the cells of the panel, independently of each other; for this purpose, the electrodes of the front layer 18 are for example arranged in Y lines and the electrodes of the rear layer 11 are then arranged in X columns, generally orthogonal to the lines; the electrodes may also have the opposite configuration: front layer electrodes in columns and inline back layer electrodes; the cells of the panel are located at the intersections of the Y-line electrodes and the X column electrodes, and are therefore arranged in a matrix.
  • the electrodes of the different layers are fed so as to circulate an electric current through the cells of the panel corresponding to the light spots of said image; the electric current flowing between an electrode X and a Y electrode for supplying a cell positioned at the intersection of these electrodes, passes through the electroluminescent layer 16 situated at this intersection; the cell thus excited by this current then emits light 19 towards the front face of the panel; the emission of all the excited cells of the panel forms the image to be displayed.
  • the electroluminescent layer 16 when organic, generally breaks down into three sub-layers: a central electroluminescent sub-layer 160 interposed between a sub-layer 162 for transporting holes and an underlayer 161 for transporting electrons .
  • ITO mixed tin and indium oxide
  • PDOT polyethylenedioxythiophene
  • the intermediate electrode layer 14 must be sufficiently transparent to allow adequate optical coupling between the electroluminescent layer 16 and the photoconductive layer 12, because this optical coupling is necessary for the operation of the panel and, in particular, for obtaining the effect memory described below.
  • the electrode front layer 18 may itself comprise several sub-layers, including an interface sub-layer with the organic electroluminescent layer 16 intended to improve the injection of holes (anode case) or electrons (cathode case).
  • the photoconductive layer 16 may for example be of amorphous silicon, or of cadmium sulphide.
  • the memory effect obtained is based on a loop operation, as shown in FIG. figure 2 : as long as an electroluminescent element E EL of a cell emits light 19, a part 19 'of which, by optical coupling, reaches the photoconductive element E PC of this same cell, the switch formed by this element E PC is closed, and as long as this switch is closed, the electroluminescent element E EL is supplied with current between a terminal A in contact with an electrode of the front layer 18 and a terminal B in contact with an electrode of the rear layer 11; the electroluminescent element E EL therefore emits light 19, a portion 19 'excites the photoconductive element E PC .
  • This loop operation therefore relies on an adequate optical coupling between the electroluminescent layer 16 and the photoconductive layer 12; if the display panel has a specific optical coupling layer, it may be for example an opaque insulating layer pierced transparent apertures adapted and positioned in front of each electroluminescent element E EL , that is to say of each pixel or sub-pixel of the panel; in the absence of a specific coupling layer, it is also possible to use, as coupling means, transparent openings made in the intermediate layer of electrodes 14; other optical coupling means are possible, which are known to those skilled in the art and will not be described here in detail.
  • This supposed memory effect is intended to facilitate the control of the pixels and sub-pixels of the panel to display images and, in particular, to be able to use a method in which, successively for each line of the panel, one goes through an addressing phase intended to turn on the cells to be lit in this line, then by a holding phase intended to keep the cells of this line in the state where the previous phase of addressing put them or left.
  • each line of the panel is successively scanned to put each cell of the scanned line in the desired state, on or off; after scanning a given line, all the cells of this line are maintained or fed in the same way so that only the cells put in the lit state of this line emit light while sweeping or that we address other lines; thus, preferably, during the phases of maintaining a line, the addressing phases of other lines take place.
  • the duration of the holding phases makes it possible to modulate the luminance of the cells of the panel and, in particular, to generate the gray levels necessary for the visualization of an image.
  • the addressing phase is therefore a selective phase; on the contrary, the holding phase is not selective, which makes it possible to apply the same voltage to all the cells and considerably simplifies control of the panel.
  • the photoconductive erasing element in parallel with the electroluminescent element has a resistance varying between a low R-ON value when it is excited by an erase illumination and a low R-OFF value when it is not enlightened; according to this document, this erasure photoconductor element is used to turn off the corresponding cells that would be switched on and in the holding phase; the control method of the panel thus comprises cell erasure phases, during which these cells are illuminated by erasure illumination.
  • an erasure phase which usually ends a holding phase, it is obviously necessary for each cell that is lit in the ON state to be erased, and whose erasure photoconductive element is excited, the resistance R-ON is lower than the resistance R ON-EL that the electroluminescent element E EL has in the lit state, so that it can be considered that the intensity of the electric current passing through this cell still in the ON state essentially passes through the erasure photoconductive element, and not by the electroluminescent element E EL , since it is precisely a question of extinguishing it.
  • the erasure photoconductive elements have a resistance R-OFF and the elements E electroluminescent EL panel are either in the off state and exhibit resistance R OFF-EL, either the on state and exhibit a resistance R ON-EL; nothing is said in this document about the value of R-OFF compared to the value of R OFF-EL , so that the person skilled in the art can not learn anything about the effective and efficient shunt function that would have or not the photoconductive erasure elements in the non-excited state with respect to the electroluminescent elements in the off state.
  • the display panel forms a set of cells C n, p capable of emitting light and fed by lines of electrodes Y n , Y n + 1 of the front layer 18 connected to points A corresponding to a terminal electroluminescent element E EL and the electrode columns X p , X p + 1 of the rear layer 11 connected to points B corresponding to a photoconductive element terminal E PC .
  • the three chronograms Y n , Y n + 1 , X p indicate the voltages applied to the row electrodes Y n , Y n + 1 and the column electrode X p to obtain these sequences.
  • the bottom of the figure 3 indicates the potential values at terminals A, B ( figure 2 ) cells C n, p , C n + 1, p and the state turned on ("ON") or off ("OFF") of these cells.
  • the value of the voltage V off that can be applied to the column electrodes such as X p must be chosen so that the voltage Va-Voff applied across a cell is not sufficient. to turn it on, so that Va-Voff ⁇ V T and that the voltage Vs-Voff does not affect the on or off state of the cell, so that V s.EL ⁇ Vs-Voff.
  • the object of the invention is to overcome the absence or insufficiency of memory effect.
  • shunt element Since the resistance of the shunt elements does not depend on the illumination, the use as shunts of erasing photoconductive elements as described in the document "IBM Technical Disclosure Bulletin,” Vol.24, No. 5, pp.2307-2310 previously cited is completely excluded; here is meant here by shunt element a conventional resistance made with a non-photoconductive material and having a resistance that does not vary substantially depending on the illumination.
  • the electroluminescent layer (s) of the panel are organic.
  • panels of the same type as those described in the document US 4035774 IBM previously cited which comprise a rear electroluminescent layer for emitting light adapted to the activation or excitation of the photoconductive cells and a front electroluminescent layer for emitting the light necessary for the visualization of the images; the photoconductive layer is interposed between the two electroluminescent layers and is optically coupled only or mainly with the rear electroluminescent layer; each cell here comprises two electroluminescent elements, one rear, the other front, and a photoconductor element inserted; the extreme terminals of the series formed by these three elements are connected to a rear electrode, the other to a front electrode.
  • the equivalent electrical diagram of any cell of the panel is shown in FIG. figure 9 ;
  • the references E PC , E EL refer to the photoconductive element and to the electroluminescent element of this cell, respectively, as in FIG. figure 2 previously described;
  • this cell comprises in in addition to a shunt element E S.EL , of constant resistance independent of illumination R S.EL , connected in parallel to the electroluminescent element E EL .
  • the resistance R S.EL must be greater than the resistance R ON-EL exhibited by the electroluminescent element E EL in the on state, so that it can be considered that, when the cell is in the ON state, the intensity of the electric current flowing through it essentially passes through the electroluminescent element E EL ; R is therefore preferably R SEL > R ON-EL ; the ohmic losses in the shunt element are thus limited when the cells are switched on; to further limit losses, it is preferable that R S.EL > 2 x R ON-EL .
  • this characteristic further distinguishes the shunt element according to the invention from the erasure photoconductive element of the panel described in the document "IBM Technical Disclosure Bulletin,” Vol.24, No. 5, pp.2307-2310 previously cited; indeed, since the resistance R S.EL of this shunt element is greater than the internal resistance R ON-EL that the electroluminescent element E EL has in the lit state, it is in no way susceptible to shunt effectively the corresponding electroluminescent element E EL when lit; it should be noted that, in the opposite case, the shunt element according to the invention would extinguish or erase the corresponding electroluminescent element, which would be absolutely contrary to the aim pursued by the invention.
  • the resistance R S.EL should be lower, preferably much lower, than the internal resistance R OFF-EL that the electroluminescent element E EL has in the off state, so that the it can be considered that, when the cell is in OFF OFF state, the intensity of the electric current flowing through it essentially passes through the shunt element E S.EL ; we therefore R SEL ⁇ R OFF-EL , preferably R SEL ⁇ 1 ⁇ 2 R OFF-EL ; in other words, the shunt element according to the invention is "on” when the electroluminescent element E EL is in the off state, while the erasure photoconductive element described in the document "IBM - Technical Disclosure Bulletin” previously cited is adapted to be capable of becoming “on” when the electroluminescent element E EL is in the on state.
  • R OFF-EL > R ON-EL , which allows to advantageously combine the two conditions stated above: R S.EL > R ON-EL and R S.EL ⁇ R OFF-EL .
  • the resistance R S.EL of the shunt element E S.EL of the electroluminescent element E EL of this cell is less than or equal to the resistance R OFF -PC of the corresponding photoconductive element E PC when it is not in the excited state and is lower than the resistance R OFF-EL of the corresponding electroluminescent element E EL when it is off, which generally supposes than R OFF-EL > R OFF-PC .
  • the resistance R S.EL of the shunt element E S.EL of the electroluminescent element E EL of this cell is strictly less than the resistance R OFF-PC of the corresponding photoconductive element E PC when is not in the excited state, or even less than or equal to half of this resistance.
  • the shunt element E S.EL of the electroluminescent element according to the invention, it can be seen, as is illustrated in more detail in the example below, that the panel is now equipped with a memory effect. actually exploitable by a conventional control method as previously described, and that the evolution of the intensity I of the current in each cell of the panel shows a hysteresis and a holding zone (see figure 4 and 10 ) of voltage values in which, the cell having been previously lit, it remains on.
  • the panel according to the invention also comprises, for each cell, a shunt element disposed in parallel with the photoconductive element of said cell.
  • this additional shunt facilitates the de-excitation of the elements photoconductors and advantageously makes it possible to reduce the switching times of the cells of the panel.
  • FIG. figure 15 The equivalent electrical diagram of any cell of the panel according to this other advantageous embodiment of the invention is shown in FIG. figure 15 ;
  • the references E PC , E EL refer respectively to the photoconductive element and to the electroluminescent element of this cell; this cell comprises here not only a shunt element E S.EL , resistance R S.EL , connected in parallel to the electroluminescent element E EL , but also a shunt element E S.PC , resistance R S.PC , connected in parallel to the photoconductive element E PC.
  • R OFF-PC be the resistance of the photoconductive element E PC to the non-excited state OFF; the resistance R S.PC must be chosen much lower than the internal resistance R OFF-PC that the photoconductive element E PC has in the off state, so that it can be considered that, when the cell is at when the state is OFF, the intensity of the electric current flowing through it essentially passes through the shunt element E S.PC ; therefore, we have R SPSP ⁇ R OFF-PC , preferably R SPS ⁇ R OFF-PC .
  • the resistance R S.PC of the shunt element E S.PC of the photoconductive element E PC of this cell is greater than or equal to the resistance R S Of the shunt element E S.EL of the electroluminescent element E EL of this same cell.
  • R.sub.PCS / R.sup.SEL ⁇ 2 there is R.sub.PCS / R.sup.SEL ⁇ 2, and even more preferably R.S.PC / R.sup.SEL ⁇ 3.
  • the panel according to the invention comprises, at each cell, a conductive element at each interface between the at least one electroluminescent layer and the photoconductive layer for electrically connecting in series the corresponding electroluminescent and photoconductive elements and the conductive elements.
  • different cells are electrically isolated from each other.
  • the conductive elements between the same electroluminescent layer and the same photoconductive layer form a single conducting layer which is of course discontinuous so that the conductive elements of the different cells are electrically isolated from each other; in the case of a panel of the type described in the document US 4035774 already cited comprising two electroluminescent layers, so there are two interface conductive layers.
  • each shunt element of the electroluminescent element is connected to the same electrode of the front network and to the same conductive element of the intermediate layer as the electroluminescent element E EL qu he shunts; where appropriate, each shunt element of the photoconductive element is connected to the same electrode of the back network and to the same conductive element of the intermediate layer as the photoconductive element E PC that it shunts; shunt element means any shunting means: several examples will be given later.
  • the panel according to the invention comprises means for controlling the cells for displaying images, suitable for implementing a method in which, successively for each line of cells of the panel, a selective addressing phase is used. intended to turn on the cells to be lit in this line, then by a non-selective holding phase intended to keep the cells of this line in the state where the previous phase of addressing put them or left.
  • this shunt layer 21 is not photoconductive so that the resistance of the corresponding shunt elements does not depend on the illumination.
  • the shunt layer has discontinuities on the periphery of the barriers of a cell, so that, for example, only the barriers on one side of each cell are covered with this layer. shunt; on the other hand, it is obviously essential that this shunt layer 21 electrically contacts the photoconductive layer 12 and the transparent electrode of the layer 18.
  • this electrical contact can be provided indirectly via the electrodes of the intermediate layer 14.
  • V T (1+ R OFF-PC / R S.EL ) V S.EL.
  • a homogeneous aluminum layer is deposited by cathodic sputtering or by vacuum evaporation ("PVD"), then the layer obtained is etched so as to form a parallel electrode array. or column electrodes X p , X p + 1 : the opaque back layer of electrodes 11 is thus obtained.
  • a homogeneous layer of photoconductive material 12 is then deposited: for example amorphous silicon by plasma-enhanced chemical vapor deposition ("PECVD” or Plasma Enhanced Chemical Vapor Deposition). , or one organic photoconductive material by chemical vapor deposition (“CVD”) or spin coating ("spin-coating" in English).
  • PECVD plasma-enhanced chemical vapor deposition
  • CVD chemical vapor deposition
  • spin-coating spin-coating
  • the optical coupling layer 13 is then applied, comprising, for each future electroluminescent cell C n, p , a coupling element 25 formed of an opaque aluminum layer portion pierced at its center with an opening 26 intended to leave passing light to the photoconductive layer 12 is carried out by depositing a homogeneous layer of aluminum 25 and then etching optical coupling openings 26, positioned in the center of the future cells of the panel and etching areas defining the future barriers 20 intended to partition the panel into cells.
  • a thin and conductive layer 14 of mixed tin-indium oxide (“ITO") is used, intended to form intermediate connection electrodes between the photoconductive elements of the photoconductive layer. and the electroluminescent elements of each cell. This layer is then etched, always to define the areas on which the barriers 20 will be placed.
  • ITO mixed tin-indium oxide
  • the two-dimensional network of barriers 20 for partitioning the panel into electroluminescent cells C n, p and electrically isolating the shunt elements E S.EL of each cell is formed: for this purpose, a homogeneous layer of organic spin-coating resin, then this layer is etched to form the two-dimensional barrier network 20.
  • the material for "shunt” according to the invention is deposited in a homogeneous solid layer over the entire active surface of the panel; this layer matches the reliefs that the surface of the panel presents at this stage of the process; the shunt elements E S.EL according to the invention are then obtained by full-plate anisotropic etching so as to leave a shunt layer of thickness equal to the initial thickness of the deposit only on the walls of the barriers 20; by locating in the figure, the etching therefore operates only in the vertical direction and removes only the horizontal parts of the shunt layer; the shunt layer 21 and the shunt elements E S.EL according to the invention are then obtained for each cell; for example the material of "Shunting” may be titanium nitride (TiN) obtained by chemical vapor deposition ("CVD"); the anisotropic etching can be done in a "high density” plasma etching chamber using a suitable chemistry known in itself.
  • TiN titanium nitride
  • CVD chemical vapor deposition
  • the organic layers 161, 160, 162 intended to form the electroluminescent elements E EL of the electroluminescent layer 16 are then deposited; these organic layers 161, 160, 162 are known per se and are not described here in detail; other variants may be envisaged without departing from the invention, in particular the use of inorganic electroluminescent materials.
  • the transparent conductive layer 18 is then deposited so as to form electrode lines Y n , Y n + 1 : preferably this layer includes the cathode and a layer of ITO. It is necessary that the deposition conditions are such that the slice of the shunt elements E S.EL of each cell is covered by this transparent layer 18. An image display panel according to the invention is thus obtained.
  • the shunt function according to the invention is provided by a doping of the electroluminescent organic multilayer 16 adapted to create parallel channels of non-recombinant transport of charges through this layer.
  • the present invention is applicable to any type of electroluminescent matrix panels, whether using organic electroluminescent materials or inorganic electroluminescent materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Claims (12)

  1. Bildanzeigetafel mit einer Matrix von elektrolumineszenten Zellen mit Speichereffekt (1), die Licht zum vorderen Bereich der Bildanzeigetafel hin ausstrahlen können, mit
    - einem vorderen Elektrodengitter (18) und einem hinteren Elektrodengitter (11), wobei die Elektroden des vorderen Gitters die Elektroden des hinteren Gitters an den jeweiligen Zellen (1) kreuzen,
    - mindestens einer elektrolumineszenten Schicht (16), welche für jede Zelle (1) mindestens ein elektrolumineszentes Element (EEL) bildet,
    - einer fotoleitenden Schicht (12) zur Erzielung des Speichereffektes, welche für jede Zelle (1) ein fotoleitendes Element EPC bildet,
    wobei das mindestens eine elektrolumineszente Element (EEL) und das fotoleitende Element (EPC) jeder Zelle elektrisch in Serie verbunden sind und die beiden Endanschlüsse der Serie mit einer Elektrode des vorderen Gitters (18) beziehungsweise mit einer Elektrode des hinteren Gitters (11) verbunden sind,
    - Mitteln zur optischen Kopplung an jeder Zelle zwischen der mindestens einen elektrolumineszenten Schicht (16) der Bildanzeigetafel und der fotoleitenden Schicht (12), wobei die Bildanzeigetafel für jede Zelle (1) ein Shuntelement (ES.EL) (21) aufweist, das parallel zu dem mindestens einen elektrolumineszenten Element (EEL) der Zelle angeordnet ist, dadurch gekennzeichnet, dass der Widerstand des Shuntelements nicht von der Belichtung abhängt.
  2. Bildanzeigetafel nach Anspruch 1, dadurch gekennzeichnet, dass für jede Zelle der Widerstand (RS.EL) des Shuntelements (ES.EL) des mindestens einen elektrolumineszenten Elements (EEL) dieser Zelle größer ist als der Widerstand (RON-EL) des elektrolumineszenten Elements (EEL) in angeschaltetem Zustand.
  3. Bildanzeigetafel nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die mindestens eine elektrolumineszente Schicht (16) organisch ist.
  4. Bildanzeigetafel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass, für jede Zelle, der Widerstand (RS.EL) des Shuntelements (ES.EL) des mindestens einen elektrolumineszenten Elements (EEL) dieser Zelle kleiner als oder gleich dem Widerstand (ROFF-PC) des entsprechenden fotoleitenden Elements (EPC) ist, wenn dieses fotoleitende Element (EPC) nicht in erregtem Zustand ist, und kleiner als der Widerstand (ROFF-EL) des mindestens einen entsprechenden elektrolumineszenten Elements (EEL) ist, wenn dieses elektrolumineszente Element (EEL) abgeschaltet ist.
  5. Bildanzeigetafel nach Anspruch 4, dadurch gekennzeichnet, dass der Widerstand (RS.EL) des Shuntelements (ES.EL) des mindestens einen elektrolumineszenten Elements (EEL) dieser Zelle strikt kleiner als der Widerstand (ROFF-PC) des entsprechenden fotoleitenden Elements (EPC) ist, wenn dieses fotoleitende Element (EPC) nicht in erregtem Zustand ist.
  6. Bildanzeigetafel nach Anspruch 5, dadurch gekennzeichnet, dass der Widerstand (RS.EL) des Shuntelements (ES.EL) des mindestens einen elektrolumineszenten Elements (EEL) dieser Zelle kleiner als oder gleich der Hälfte des Widerstands (ROFF-PC) des entsprechenden fotoleitenden Elements (EPC) ist, wenn dieses fotoleitende Element (EPC)nicht in erregtem Zustand ist.
  7. Bildanzeigetafel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie für jede Zelle (1) ein Shuntelement (ES.PC) (22) aufweist, der parallel zu dem fotoleitenden Element (EPC) der Zelle ist.
  8. Bildanzeigetafel nach Anspruch 7, dadurch gekennzeichnet, dass für jede Zelle der Widerstand (RS.PC) des Shuntelements (ES.PC) des fotoleitenden Elements (EPC) dieser Zelle
    - kleiner als oder gleich dem Widerstand (ROFF-PC) dieses fotoleitenden Elements (EPC) ist, wenn dieses fotoleitende Element (EPC) nicht in erregtem Zustand ist, und
    - größer als oder gleich dem Widerstand (RS.EL) des Shuntelements (ES.EL) des mindestens einen elektrolumineszenten Elements (EEL) derselben Zelle ist.
  9. Bildanzeigetafel nach Anspruch 8, dadurch gekennzeichnet, dass für jede Zelle RS.PC/RS.EL ≥ 2, wobei RS.PC der Widerstand des Shuntelements des fotoleitenden Elements dieser Zelle und RS.EL der Widerstand des Shuntelements des mindestens einen elektrolumineszenten Elements derselben Zelle sind.
  10. Bildanzeigetafel nach Anspruch 9, dadurch gekennzeichnet, dass für jede Zelle RS.PC/RS.EL ≥ 3.
  11. Bildanzeigetafel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie an jeder Zelle ein leitendes Element an jeder Schnittstelle zwischen der mindestens einen elektrolumineszenten Schicht und der fotoleitenden Schicht umfasst, um das elektrolumineszente und das entsprechende fotoleitende Element elektrisch in Serie zu verbinden, und dass die leitenden Elemente unterschiedlicher Zellen (1, 1') elektrisch gegenüber einander isoliert sind.
  12. Bildanzeigetafel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie Mittel zur Steuerung der Zellen für die Anzeige von Bildern umfasst, welche Mittel geeignet sind, um ein Verfahren umzusetzen, bei dem sukzessive für jede Zeile von Zellen der Bildanzeigetafel eine selektive Adressierphase, die dazu bestimmt ist, die in dieser Zeile anzuschaltenden Zellen anzuschalten, und anschließend eine nicht selektive Aufrechterhaltungsphase, die dazu bestimmt ist, die Zellen dieser Zeile in dem Zustand aufrechtzuerhalten, in den die vorherige Adressierungsphase sie versetzt oder in dem sie sie belassen hat, durchlaufen werden.
EP02805375A 2001-12-18 2002-12-12 Bildanzeigetafel in form einer matrix von elektrolumineszenten zellen mit überbrückung und durch ein lichtempfindliches element erhaltenem speichereffekt Expired - Lifetime EP1456831B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116843 2001-12-18
FR0116843A FR2833741A1 (fr) 2001-12-18 2001-12-18 Panneau de visualisation d'images forme d'une matrice de cellules electroluminescentes a effet memoire shuntees
PCT/FR2002/004314 WO2003054843A2 (fr) 2001-12-18 2002-12-12 Panneau de visualisation d'images forme d'une matrice de cellules electroluminescentes a effet memoire shuntees

Publications (2)

Publication Number Publication Date
EP1456831A2 EP1456831A2 (de) 2004-09-15
EP1456831B1 true EP1456831B1 (de) 2010-05-19

Family

ID=8870970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805375A Expired - Lifetime EP1456831B1 (de) 2001-12-18 2002-12-12 Bildanzeigetafel in form einer matrix von elektrolumineszenten zellen mit überbrückung und durch ein lichtempfindliches element erhaltenem speichereffekt

Country Status (9)

Country Link
US (1) US7439673B2 (de)
EP (1) EP1456831B1 (de)
JP (1) JP4456868B2 (de)
KR (1) KR100911275B1 (de)
CN (1) CN100351885C (de)
AU (1) AU2002364644A1 (de)
DE (1) DE60236455D1 (de)
FR (1) FR2833741A1 (de)
WO (1) WO2003054843A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1599855A2 (de) * 2003-02-13 2005-11-30 Koninklijke Philips Electronics N.V. Optisch adressierbare matrixanzeige
JP2005017959A (ja) * 2003-06-27 2005-01-20 Fuji Electric Holdings Co Ltd 表示装置の駆動方法
FR2869143A1 (fr) * 2004-04-16 2005-10-21 Thomson Licensing Sa Panneau electroluminescent bistable a trois reseaux d'electrodes
JP4884701B2 (ja) * 2004-05-21 2012-02-29 株式会社半導体エネルギー研究所 表示装置
US8760374B2 (en) 2004-05-21 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Display device having a light emitting element
KR100759685B1 (ko) * 2005-09-08 2007-09-17 삼성에스디아이 주식회사 레이저 전사용 전사부재 및 이를 이용한 발광소자 및발광소자의 제조방법
WO2008078979A1 (en) * 2006-12-22 2008-07-03 Otb Group B.V. Oled display, and method for operating and method for manufacturing such oled display
JP5431704B2 (ja) * 2008-09-26 2014-03-05 エルジー ディスプレイ カンパニー リミテッド 画像表示装置
CN108648690B (zh) * 2018-04-26 2020-04-17 上海天马有机发光显示技术有限公司 一种显示面板及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2874308A (en) * 1956-07-02 1959-02-17 Sylvania Electric Prod Electroluminescent device
GB889277A (en) * 1957-10-24 1962-02-14 Nat Res Dev Improvements relating to switching devices
US3070701A (en) * 1959-07-14 1962-12-25 Sylvania Electric Prod Electroluminescent device
US3786307A (en) * 1972-06-23 1974-01-15 Atronics Corp Solid state electroluminescent x-y display panels
US4035774A (en) * 1975-12-19 1977-07-12 International Business Machines Corporation Bistable electroluminescent memory and display device
FR2643180B1 (fr) * 1989-02-10 1991-05-10 France Etat Dispositif d'affichage monochrome a memoire du type photoconducteur-electroluminescent
GB2312326B (en) * 1995-04-18 1999-07-28 Cambridge Display Tech Ltd Electroluminescent device
TW441136B (en) * 1997-01-28 2001-06-16 Casio Computer Co Ltd An electroluminescent display device and a driving method thereof
FR2827991A1 (fr) * 2001-07-27 2003-01-31 Thomson Licensing Sa Panneau de visualisation d'images forme d'une matrice de cellules electroluminescentes a effet memoire

Also Published As

Publication number Publication date
FR2833741A1 (fr) 2003-06-20
DE60236455D1 (de) 2010-07-01
EP1456831A2 (de) 2004-09-15
US7439673B2 (en) 2008-10-21
AU2002364644A1 (en) 2003-07-09
KR20040075006A (ko) 2004-08-26
JP4456868B2 (ja) 2010-04-28
WO2003054843A3 (fr) 2004-04-15
CN1605091A (zh) 2005-04-06
US20050116618A1 (en) 2005-06-02
JP2005513553A (ja) 2005-05-12
CN100351885C (zh) 2007-11-28
WO2003054843A2 (fr) 2003-07-03
KR100911275B1 (ko) 2009-08-11

Similar Documents

Publication Publication Date Title
EP1766703A1 (de) Organische leuchtdiode (oled) mit verbesserter lichtextraktion und entsprechende display-einheit
WO2007000542A2 (fr) Electrode de dispositifs electrochimiques/electrocommandables
FR2868210A1 (fr) Dispositif electroluminescent organique et procede de fabrication de celui-ci
EP1456831B1 (de) Bildanzeigetafel in form einer matrix von elektrolumineszenten zellen mit überbrückung und durch ein lichtempfindliches element erhaltenem speichereffekt
EP0704877A1 (de) Elektrischer Schutz von einer Anode eines flachen Bildschirms
EP0258130A1 (de) Elektrolumineszierender flacher Bildschirm
EP0209535B1 (de) Selbstspeichernde anzeigeeinrichtung mit dünnfilmelektrolumineszenz- und fotoleiterschichten
EP0485285B1 (de) Elektrooptische bistabile Vorrichtung, eine solche Vorrichtung enthaltender Bildschirm und Steuerungsverfahren dazu
EP1419541B1 (de) Bildanzeigevorrichtungspaneel hergestellt aus einer matrix von elektrolumineszenten zellen mit speichereffekt
EP0392918B1 (de) Elektrolumineszenzanzeigebildschirm mit Speicher und mit besonderer Elektrodenkonfiguration
EP0259213B1 (de) Elektrolumineszenz-fotoinduktive Anzeige mit schwachem Ausfüllungsgrad
FR2758431A1 (fr) Dispositif d'affichage electroluminescent en couche mince et a excitation alternative et son procede de realisation
FR2471643A1 (fr) Procede d'effacement pour dispositif d'affichage electroluminescent a memoire
WO2002048993A1 (fr) Dispositif d'ecran video numerique
FR2846794A1 (fr) Panneau organique electroluminescent bi-stable ou chaque cellule comprend une diode de shockley
EP2885674B1 (de) Elektrolumineszente und elektrochrome anzeigevorrichtung und zugehöriges herstellungsverfahren
EP3213146A1 (de) Reflektierende zelle mit modularer reflektivität
WO2017186941A1 (fr) Dispositif optoelectronique organique matriciel
FR2938700A1 (fr) Diode organique electroluminescente avec nervures electriquement conductrices au niveau de l'electrode inferieure, procede de realisation et panneau d'eclairage.
FR2859811A1 (fr) Panneau electroluminescent d'eclairage ou de visualisation d'images dote d'electrodes superieures transparentes renforcees par des grilles
FR2671218A1 (fr) Dispositif d'affichage electroluminescent a memoire et a plusieurs teintes.
FR2971345A1 (fr) Afficheur sequentiel couleur a eclairage par diodes electroluminescentes organiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040706

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60236455

Country of ref document: DE

Date of ref document: 20100701

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60236455

Country of ref document: DE

Effective date: 20110221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60236455

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181218

Year of fee payment: 17

Ref country code: FR

Payment date: 20181231

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181211

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60236455

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191212

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231