EP1456588B1 - Beschneiungsvorrichtung und verfahren zum betrieb einer beschneiungsvorrichtung - Google Patents

Beschneiungsvorrichtung und verfahren zum betrieb einer beschneiungsvorrichtung Download PDF

Info

Publication number
EP1456588B1
EP1456588B1 EP02792959A EP02792959A EP1456588B1 EP 1456588 B1 EP1456588 B1 EP 1456588B1 EP 02792959 A EP02792959 A EP 02792959A EP 02792959 A EP02792959 A EP 02792959A EP 1456588 B1 EP1456588 B1 EP 1456588B1
Authority
EP
European Patent Office
Prior art keywords
water
air
nozzle
making apparatus
snow making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02792959A
Other languages
English (en)
French (fr)
Other versions
EP1456588A1 (de
Inventor
Wilhelm Stofner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivis - Srl GmbH
Nivis GmbH Srl
Original Assignee
Nivis - Srl GmbH
Nivis GmbH Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivis - Srl GmbH, Nivis GmbH Srl filed Critical Nivis - Srl GmbH
Priority to EP02792959A priority Critical patent/EP1456588B1/de
Publication of EP1456588A1 publication Critical patent/EP1456588A1/de
Application granted granted Critical
Publication of EP1456588B1 publication Critical patent/EP1456588B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/04Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for sledging or ski trails; Producing artificial snow
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H5/00Removing snow or ice from roads or like surfaces; Grading or roughening snow or ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/046Snow making by using low pressure air ventilators, e.g. fan type snow canons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/048Snow making by using means for spraying water
    • F25C2303/0481Snow making by using means for spraying water with the use of compressed air

Definitions

  • the invention relates to a snowmaking device according to the preamble of claim 1 and a method for operating a snowmaking device.
  • snowmaking devices In winter sports areas snowmaking devices (so-called “snow cannons”) are used in various configurations.
  • DE 196 27 586 A1 gives an overview of known types of snowmaking devices.
  • near-ground high-pressure guns, high-pressure guns in lance design (mast design) and low-pressure guns with propellers should be mentioned.
  • Ground-level high-pressure guns generate a water-air mist using compressed air, which is ejected at high speed to achieve the desired throw and active cooling by rapid air expansion. Considerable amounts of compressed air are needed.
  • a central compressor for multiple guns is provided, which has a power of, for example, 15-20 kW per gun.
  • the water-air nozzles are located at a height of 8 - 12 m above the runway. Because of the longer fall path can be worked with lower ejection speeds. Accordingly, the air compressor need only have a relatively low power for high-pressure guns, for example, 5 kW per lance.
  • a cannon of this type is shown in DE 196 27 586 A1.
  • Low-pressure cannons use a propeller to generate a main air flow into which freezing nuclei are sprayed by means of nucleator nozzles and small water droplets are sprayed by means of water nozzles.
  • the nucleator nozzles are designed as water-air nozzles. They are operated with compressed air and pressurized water and atomize a water-air mixture. The compressed air expands upon exiting the nucleator nozzles and thereby cools water droplets of the water-air mixture to well below freezing point, so that small ice crystals form. At these freezing germs, the droplets emitted by the water jets deposit and thus form the snow crystal.
  • Cannons of this type require compressed air only for the nucleator nozzles, which typically, as with the other types mentioned, must have a pressure of approximately 4 to 10 bar. Typically, a compressed air capacity of about 4 - 5.5 kW is required.
  • DE 41 31 857 A1 shows such a snow gun with a flanged to the main engine screw compressor.
  • the snow-making device requires compressed air which must be provided by a local or central compressor. This causes an additional, considerable energy expenditure.
  • the compressor increases manufacturing costs, requires maintenance and causes noise. Moreover, the functionality is not always guaranteed, especially at low temperatures.
  • a compressor attached to the snow gun increases its weight by about 120 kg, while a central compressor requires the installation of compressed air lines.
  • U.S. Patent 5,180,105 discloses an apparatus for producing snow.
  • a water jet adjustable via a needle valve atomises water.
  • the water droplets emerging from the water nozzle are entrained by an air flow which has a considerably higher velocity than the water droplets.
  • the water droplets entrained by the air flow pass from a mixing chamber into a mixing tube of constant cross-section.
  • the mixing tube the water droplets are cooled by the cold air flow, so that snow crystals form.
  • the snow crystals are ejected.
  • DE 39 31 398 A1 discloses a two-stage snow making apparatus.
  • water is atomized and sprayed into a stream of compressed air, so that the water droplets are entrained by the compressed air flow.
  • the water-air mixture is passed through a cylindrical mixing tube of constant cross-section to a mixing chamber belonging to the second stage of the device.
  • ambient air or low-pressure air is sucked in.
  • the resulting water-air mixture is expelled through another cylindrical mixing tube of constant cross section.
  • a snowmaking device is to be provided by the invention, which does not require an air compressor or only an air compressor with relatively low power.
  • the snow-making device is intended to make particularly good use of energy, which is unused in heat in snow-making systems according to the prior art. Further, it is desirable to provide a snowmaking apparatus that is inexpensive to manufacture, lightweight, and requires low maintenance with high reliability.
  • this object is achieved in whole or in part by a snowmaking device having the features of claim 1 and by a method for operating a snowmaking device having the features of claim 11.
  • the dependent claims define preferred embodiments of the invention.
  • the invention is based on the basic idea to use at least one jet pump (liquid jet gas compressor) for generating the ejected from at least one water-air nozzle water-air mixture.
  • the jet pump works without moving parts and is cheap, light and reliable.
  • air can be supplied.
  • the air compressor usually required in the prior art completely eliminated; in the second case, the compressor can be dimensioned correspondingly smaller and more economical.
  • the energy required to operate the jet pump is provided to the snow-making device according to the invention via the operating pressure of the supplied water.
  • a surprising synergy effect of the solution according to the invention is that in typical applications, namely in the snowmaking of ski slopes, energy can be used on most snowmaking devices that would be lost in prior art systems.
  • the water supply of arranged on a mountainside snowmaking devices is usually done by a pumping system located in the valley.
  • the pumping system feeds a pressure line leading to the mountain, to which the snowmaking devices are connected.
  • the line pressure required for the snow-making device must still be available, e.g. 15-20 bar.
  • the line pressure in the lower and middle slope area is significantly higher and is e.g. 40 - 80 bar or more.
  • the connection points of the pressure line to so-called hydrants, which limit the operating pressure for the connected snowmaking devices as a throttle valve.
  • the Hydrants convert considerable amounts of energy into heat. For example, at a line pressure of 40 bar, an operating pressure of the snowmaker of 10 bar and a water consumption of 20 m 3 / h, the throttling power is approximately 16 kW. This energy, which remains unused in prior art systems, can be utilized by the invention.
  • each jet pump can be supplied with ambient air or already precompressed air.
  • at least one multi-stage jet pump is used to obtain a particularly high air compression.
  • the jet pump (or at least one stage of the multi-stage jet pump) preferably has a jet nozzle for the water, a suction nozzle for the air, a mixing chamber for mixing the water leaving the jet nozzle with the air flowing through the suction nozzle and a diffuser for densifying the water Air mixture.
  • a swirl body is provided in the suction nozzle.
  • Particularly preferred embodiments are those in which more than 50% or more than 75% or more than 90% or substantially all of the water throughput of the snowmaking device passes through the jet pump or jet pumps and as a water-air mixture through the water-air nozzle or The water-air nozzles is ejected.
  • the energy provided by the water is used particularly well.
  • more than 50%, or more than 75% or more than 90%, or substantially all of the nozzles of the snowmaking device are configured as water-air nozzles (as opposed to pure water nozzles as in prior art low pressure guns). It is then produced a particularly large amount of freezing germs.
  • the effective working pressure of each jet pump is preferably at least 10 bar or at least 20 bar or at least 30 bar.
  • the snowmaking device is in preferred embodiments preferably for unthrottled or direct connection to a Water pressure line with a line pressure of more than 20 bar or more than 30 bar or more than 40 bar provided.
  • the at least one jet pump has a nozzle needle, through which the water flow rate and / or the mixing ratio of the ejected water-air mixture (and thus the nature of the generated snow) can be changed.
  • the setting of the nozzle needle can be motorized or manually, in particular environmental parameters such as temperature, humidity, etc. can be evaluated.
  • the nozzle needle is axially drilled to increase the air flow rate of the jet pump.
  • the invention can be provided to supply different water-air nozzles or groups of water-air nozzles simultaneously with water-air mixtures of different mixing ratios during operation of the snowmaking device.
  • the water-air mixtures may be generated by differently constructed or adjusted jet pumps, or may be derived from a single jet pump (e.g., at different locations of the mixing space or the diffuser).
  • a plurality of individually switchable water-air nozzles and / or a plurality of individually switchable groups of water-air nozzles are provided. These nozzles or nozzle groups can be connected via a distributor to a single jet pump or a jet pump group. Preferably, however, at least one separate jet pump is provided for each switchable nozzle or nozzle group.
  • the snowmaking device can be configured in all known types.
  • embodiments are provided in Lanzbauweise and as a propeller machine.
  • the snow-making device preferably has a motor-driven propeller for generating a main air flow, and the water-air nozzles are in one or more nozzle rings arranged so that they emit the water-air mixture in the main air flow.
  • a vertically or obliquely standing lance rod is provided in preferred embodiments, whose bottom distal end has a nozzle head with one or more water-air nozzles.
  • the at least one jet pump can be arranged at the nozzle head or at the bottom-near end of the lance rod.
  • the lance rod is preferably formed as a tube through which the water supplied in the former case and in the second-mentioned case, the water-air mixture is transported.
  • a snowmaking device which has a jet pump 10 and a plurality of water-air nozzles 12.
  • the jet pump 10 is formed in a manner known per se with a motive nozzle 14 and a pump tube 16, the pump tube 16 having suction nozzles 18, a mixing chamber 20 and a diffuser 22.
  • the motive nozzle 14 has a circular nozzle opening with a diameter of, for example, 4 mm or 5 mm.
  • the suction nozzles 18 are configured in the present example as holes with a diameter of 12 mm in the pump tube 16, and the mixing chamber 20 is here a mixing tube with a constant Cross-section.
  • a swirl body (not shown) is disposed in the motive nozzle 14.
  • the jet pump 10 is supplied with water W at a pressure of about 25-40 bar or higher via a pressure line (not shown).
  • the water W serves as a propellant medium; the course of the water flow is indicated in Fig. 1 with a solid arrow.
  • the water W emerges from the motive nozzle 14 as a jet at high speed and entrains air A, which enters the pump tube 16 through the suction nozzles 18 (the inflow direction of the air A is illustrated by dotted arrows in FIG. 1).
  • the velocities of the water W and the air A are equal, and the two media mix intensively.
  • the high speed of the resulting water-air mixture M is partially converted back into the diffuser 22 in pressure.
  • the water-air mixture M now passes to the water-air nozzles 12, through which it is ejected (the flow path of the mixture M is indicated in Fig. 1 by dash-dotted arrows).
  • the air relaxes abruptly and cools the finest water droplets to well below freezing. At suitably low ambient temperatures, further droplets of the water-air mixture M deposit on these freezing nuclei and form snow crystals.
  • the snow-making apparatus shown in FIG. 2 has a main pipe 24, in which an electric motor 26 with a propeller 28 flanged to it is arranged.
  • the propeller 28 driven by the electric motor 26 with a power of approximately 5 to 15 kW generates a main flow S whose direction is indicated by a dashed arrow in FIG.
  • the main tube 24 tapers in the flow direction to a diameter of about 56 cm.
  • a nozzle assembly 30 connected to the main pipe 24 on the outlet side includes a plurality of water-air nozzles 12 (Figure 1) arranged in a plurality of nozzle rings 32A, 32B, 32C, 32D.
  • a distributor 34 is connected on the one hand to the nozzle assembly 30 and on the other hand to a plurality of jet pumps 10, of in which only one is visible in Fig. 2.
  • the snowmaking device exclusively water-air nozzles 12, which are fed with the water-air mixture M generated by the jet pumps 10. There are no pure water nozzles provided.
  • each of the nozzle rings 32A, 32B, 32C, 32D is configured as an octagon with 64 or 72 water-air nozzles 12.
  • a circumferential channel of each nozzle ring 32A, 32B, 32C, 32D is connected to the manifold 34
  • the enlarged view of the pump assembly of FIG. 4 shows the manifold 34 and three jet pumps 10, which are connected via a connecting piece 36 with the pressurized water supply.
  • Each jet pump 10 supplies via an associated connecting channel 38A, 38B, 38C one of the nozzle rings 32A, 32B, 32C with the water-air mixture M.
  • the nozzle ring 32D is connected via two further connecting channels 38D, 38E to a further jet pump 10 (in FIG 4 not shown).
  • valves are provided in alternative embodiments, which can be arranged on the inlet side in the connecting piece 36 or on the outlet side in the distributor 34.
  • the nozzle rings 32A, 32B, 32C, 32D can be switched on and off individually, with one or more or all or all of the nozzle rings 32A, 32B, 32C, 32D being active. In this embodiment, a regulation of the water flow and thus the snowmaking performance is possible with little effort.
  • FIG. 5 shows, by way of example, a section through the nozzle assembly 30, which extends through a respective nozzle bore 40 of the four nozzle rings 32A, 32B, 32C, 32D.
  • the nozzle bores 40 are provided for receiving the water-air nozzles 12, for example in the form shown in Fig. 1. Suitable water-air nozzles 12 are commercially available as inserts for the nozzle bores 40 and as such are not the subject of the present invention.
  • the pump tube 16 is shown enlarged in FIG.
  • the suction nozzles 18 are arranged as four holes radially offset by 90 ° in the inlet-side section of the pump tube 16.
  • the snowmaking device is designed in lance design.
  • An anchoring 42 located in the ground fixes a holder 44 which has two support rods 46, 48 articulated to each other.
  • the snowmaking device in the narrower sense is attached to the upper support rod 48. It has, for example, a lance rod 50 which is 8-12 m long and designed as a tube, at the upper end of which a nozzle head 52 and at the lower end of which a pump element 54 are arranged.
  • the pump element 54 has a jet pump 10 'and a manifold 56 connected to the inlet side.
  • the pressurized water W required for operation is supplied to the jet pump 10 'via the connection manifold 56.
  • the jet pump 10 ' is similar to the jet pump 10 of Fig. 1 with a motive nozzle 14' and a pump tube 16 'with mixing chamber 20' and diffuser 22 'configured.
  • a connector 58 has holes to the inlet of the ambient air A, which act as suction nozzles 18 '.
  • the connector 58 connects the manifold 56, the motive nozzle 14 'and the pump tube 16' to an assembly.
  • the jet pump 10 ' is connected to the tubular lance rod 50 via a sleeve 64.
  • the jet pump 10 ' also has a pierced nozzle needle 60 which is mounted longitudinally displaceable in a guide 62.
  • the pumping properties of the jet pump 10 ' can be adapted to the requirements; In particular, it is possible to vary the water flow rate and / or the mixing ratio of water and air in the water-air mixture M.
  • the setting can be made manually (eg during installation or maintenance of the system) or automatically (eg depending on the desired amount of snow or the weather conditions).
  • the nozzle needle 60 is pierced along its longitudinal axis, so that more ambient air A can be introduced into the motive jet of the jet pump 10 'in order to increase the pumping power increase.
  • embodiments are also provided with a non-pierced nozzle needle 60, which still have the advantage of improved controllability.
  • the nozzle head 52 shown in detail in FIG. 9 is detachably connected to the upper end of the lance rod 50 (FIG. 7) by a connection and seal assembly 66.
  • the nozzle head 52 in the present example a total of six holes 68 for receiving a respective water-air nozzle 12 (Fig. 1) in the form of a known nozzle insert.
  • the water-air mixture M generated by the jet pump 10 ' is fed into the lance rod 50 and from there into the nozzle head 52.
  • the water-air mixture M emerges as a fine spray from the water-air nozzles 12 (FIG. 1). Again, freeze germs are formed by the expansion, from which snow crystals form during the relatively long fall path to the ground due to the accumulation of further water droplets.
  • the tubular lance rod 50 is used to transport the water-air mixture M from the jet pump 10 'to the nozzle head 52.
  • Other lines, whether for compressed air or for water, are not needed. It must be made only a connection between the manifold 56 and a laid in existing piste installations already next to the runway water-pressure line.
  • jet pumps 10 ' are also used in the propeller machine according to FIG. 2, as shown in FIG. 8, in order to maintain the adjustment possibilities provided by the nozzle needle 60 there as well.
  • jet pumps 10 can also be provided to equip the snow-making apparatus in lance form according to FIG. 7 with the simpler jet pumps 10 according to FIG. 1.
  • a nozzle head 52 ' which forms a compact assembly together with two jet pumps 10''
  • the assembly is intended to be mounted on the projecting end of a lance bar, at a height of, for example 10 m - to be attached
  • the present embodiment is a modification of the embodiment of Fig. 7 in that the nozzle head 52 of Fig. 7 has been replaced by the nozzle head 52 ', and that the pump element 54 in the form of the jet pumps 10 "was attached directly to the nozzle head 52' the jet pump 10 "with the nozzle head 52 'is a segregation of the water-air mixture M - as could possibly occur in the embodiment of Fig. 7 in the lance rod 50 - avoided.
  • the jet pumps 10 each have a motive nozzle 14" and a plurality of suction nozzles 18 "each.
  • the nozzle head 52 ' is provided with a total of ten screwed-in water-air nozzles 12'.
  • the four groups shown in Fig. 11 - Fig. 14 on the right constitute a first group and the six in the middle shown in Fig. 11 - Fig. 14.
  • the drive nozzles 14 "of the two jet pumps 10" are different
  • the jet pump 10 with the smaller blowing nozzle diameter supplies the first group of the four water-air nozzles 12 ', and the jet pump 10" with the larger blowing nozzle diameter supplies the second group of the six water-air nozzles.
  • a three-stage water control is achieved by either only the first group of the blowing nozzles 14 "or only the second group of the blowing nozzles 14" or bothmaschined seng 'groups are activated.
  • water-air nozzles 12 'flat nozzles are used in the present embodiment in order to achieve the fastest possible relaxation of the air and thereby cool the smallest drops of water, which then freeze and thus form the freezing germs for the remaining water.
  • FIGS. 11-16 Another advantage of the embodiment according to FIGS. 11-16 compared to that of FIG. 7 lies in the better utilization of energy. Since the jet pumps 10 "preferably operate at a pressure ratio of approximately 3: 1, in the embodiment of FIG. 7, the pressure drop of approximately 1 bar in the lance pipe 50 protruding approximately 10 m must be increased by approximately 3 barmaschinedüse 14 'of the jet pump 10' are compensated Embodiment of Fig. 11 - Fig. 16 only about 1 bar additional water pressure required to achieve the desired motive nozzle pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Nozzles (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Description

  • Die Erfindung betrifft eine Beschneiungsvorrichtung nach dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zum Betrieb einer Beschneiungsvorrichtung.
  • In Wintersportgebieten werden Beschneiungsvorrichtungen (sogenannte "Schneekanonen") in diversen Ausgestaltungen verwendet. DE 196 27 586 A1 gibt einen Überblick über bekannte Bauformen von Beschneiungsvorrichtungen. Insbesondere sind hierbei bodennahe Hochdruckkanonen, Hochdruckkanonen in Lanzenbauform (Mastbauform) und Niederdruckkanonen mit Propeller zu nennen.
  • Bodennahe Hochdruckkanonen erzeugen unter Verwendung von Druckluft einen Wasser-Luft-Nebel, der mit hoher Geschwindigkeit ausgestoßen wird, um die gewünschte Wurfweite und eine aktive Kühlung durch rasche Luftexpansion zu erzielen. Es werden beträchtliche Druckluftmengen benötigt. In der Regel ist ein zentraler Kompressor für mehrere Kanonen vorgesehen, der eine Leistung von beispielsweise 15 - 20 kW pro Kanone aufweist.
  • Bei Hochdruckkanonen in Lanzenform sind die Wasser-Luft-Düsen in einer Höhe von 8 - 12 m über der Piste angeordnet. Wegen des längeren Fallwegs kann mit geringeren Ausstoßgeschwindigkeiten gearbeitet werden. Demgemäß braucht der Luftkompressor nur eine für Hochdruckkanonen relativ geringe Leistung von beispielsweise 5 kW pro Lanze aufzuweisen. Eine Kanone dieser Bauart ist in DE 196 27 586 A1 gezeigt.
  • Bei Niederdruckkanonen wird durch einen Propeller ein Hauptluftstrom erzeugt, in den mittels Nukleatordüsen Gefrierkeime und mittels Wasserdüsen kleine Wassertröpfchen eingesprüht werden. Die Nukleatordüsen sind als Wasser-Luft-Düsen ausgebildet. Sie werden mit Druckluft und unter Druck stehendem Wasser betrieben und zerstäuben ein Wasser-Luft-Gemisch. Die Druckluft entspannt sich beim Austritt aus den Nukleatordüsen und kühlt dadurch Wassertröpfchen des Wasser-Luft-Gemischs auf weit unter den Gefrierpunkt ab, so daß sich kleine Eiskristalle bilden. An diesen Gefrierkeimen lagern sich die von den Wasserdüsen abgegebenen Tröpfchen ab und bilden so den Schneekristall. Bei Kanonen dieser Bauart wird nur für die Nukleatordüsen Druckluft benötigt, die typischerweise, wie auch bei den anderen genannten Bauarten, einen Druck von ungefähr 4 - 10 bar aufweisen muß. Typischerweise ist eine Druckluftleistung von etwa 4 - 5,5 kW erforderlich. DE 41 31 857 A1 zeigt eine solche Schneekanone mit einem an den Hauptmotor angeflanschten Schraubenkompressor.
  • Bei allen bisher beschriebenen Bauarten benötigt die Beschneiungsvorrichtung Druckluft, die von einem lokalen oder zentralen Kompressor bereitgestellt werden muß. Dies verursacht einen zusätzlichen, erheblichen Energieaufwand. Der Kompressor erhöht die Herstellungskosten, benötigt Wartung und verursacht Lärm. Überdies ist die Funktionsfähigkeit insbesondere bei tiefen Temperaturen nicht immer gewährleistet. Ein an die Schneekanone angebauter Kompressor erhöht deren Gewicht um etwa 120 kg, während ein zentraler Kompressor die Verlegung von Druckluftleitungen erfordert.
  • Aus DE 44 23 124 A1 ist eine Schneekanone in Propellerbauform bekannt, die keine zusätzliche Druckluftquelle benötigt. Die Gefrierkeime werden hier von einer Hilfsdüse gebildet, die im Hauptluftstrom angeordnet ist. Bei dieser Vorrichtung, die die Propellerbauform zwingend voraussetzt, muß ein entsprechend stärker dimensionierter Propellerantrieb vorgesehen sein.
  • US-Patent 5,180,105 offenbart eine Vorrichtung zum Erzeugen von Schnee. Eine über ein Nadelventil einstellbare Wasserdüse zerstäubt Wasser. Die aus der Wasserdüse austretenden Wassertröpfchen werden von einem Luftstrom mitgerissen, der eine erheblich höhere Geschwindigkeit als die Wassertröpfchen hat. Die vom Luftstrom mitgerissenen Wassertröpfchen gelangen von einer Mischkammer in ein Mischrohr mit konstantem Querschnitt. In dem Mischrohr werden die Wassertröpfchen durch den kalten Luftstrom abgekühlt, so daß sich Schneekristalle bilden. Am Ende des Mischrohres werden die Schneekristalle ausgestoßen.
  • DE 39 31 398 A1 offenbart eine zweistufige Vorrichtung zur Herstellung von Schnee. In der ersten Stufe wird Wasser zerstäubt und in einen Druckluftstrom eingesprüht, so daß die Wassertröpfchen von dem Druckluftstrom mitgerissen werden. Das Wasser-Luft-Gemisch wird durch ein zylindrisches Mischrohr mit konstantem Querschnitt zu einem Mischraum geführt, der zur zweiten Stufe der Vorrichtung gehört. Hier wird Umgebungsluft oder Niederdruckluft angesaugt. Das sich ergebende Wasser-Luft-Gemisch wird über ein weiteres zylindrisches Mischrohr mit konstantem Querschnitt ausgestoßen.
  • Es ist Aufgabe der Erfindung, die Nachteile des Standes der Technik ganz oder zum Teil zu vermeiden. Vorzugsweise soll durch die Erfindung eine Beschneiungsvorrichtung geschaffen werden, die keinen Luftkompressor oder nur einen Luftkompressor mit relativ geringer Leistung benötigt. Die Beschneiungsvorrichtung soll insbesondere Energie, die bei Beschneiungsanlagen nach dem Stand der Technik ungenutzt in Wärme umgesetzt wird, besonders gut nutzen. Femer ist es wünschenswert, eine Beschneiungsvorrichtung bereitzustellen, die in der Herstellung kostengünstig ist, ein geringes Gewicht aufweist und bei hoher Zuverlässigkeit nur geringe Wartung benötigt.
  • Erfindungsgemäß wird diese Aufgabe ganz oder zum Teil durch eine Beschneiungsvorrichtung mit den Merkmalen des Anspruchs 1 und durch ein Verfahren zum Betrieb einer Beschneiungsvorrichtung mit den Merkmalen des Anspruchs 11 gelöst. Die abhängigen Ansprüche definieren bevorzugte Weiterbildungen der Erfindung.
  • Die Erfindung geht von der Grundidee aus, mindestens eine Strahlpumpe (Flüssigkeitsstrahl-Gasverdichter) zur Erzeugung des von mindestens einer Wasser-Luft-Düse ausgestoßenen Wasser-Luft-Gemischs einzusetzen. Die Strahlpumpe arbeitet ohne bewegliche Teile und ist billig, leicht und zuverlässig. Je nach dem wirksamen Arbeitsdruck des für die Strahlpumpe zur Verfügung stehenden Wassers kann der Strahlpumpe Umgebungsluft oder von einem Kompressor vorverdichtete Luft zugeführt werden. Im erstgenannten Fall entfällt der im Stand der Technik meist benötigte Luftkompressor ganz; im zweitgenannten Fall kann der Kompressor entsprechend kleiner und sparsamer dimensioniert werden.
  • Die zum Betrieb der Strahlpumpe benötigte Energie wird der erfindungsgemäßen Beschneiungsvorrichtung über den Betriebsdruck des zugeführten Wassers bereitgestellt. Ein überraschender Synergieeffekt der erfindungsgemäßen Lösung ist, daß in typischen Anwendungsfällen, nämlich bei der Beschneiung von Skipisten, an den meisten Beschneiungsvorrichtungen Energie genutzt werden kann, die bei Anlagen nach dem Stand der Technik verlorengehen würde. Die Wasserversorgung der an einem Berghang angeordneten Beschneiungsvorrichtungen erfolgt nämlich üblicherweise durch eine im Tal befindliche Pumpanlage. Die Pumpanlage speist eine auf den Berg führende Druckleitung, an die die Beschneiungsvorrichtungen angeschlossen sind. Hierbei muß selbst am höchsten Punkt der Druckleitung noch der für der Beschneiungsvorrichtung erforderliche Leitungsdruck bereitstehen, z.B. 15 - 20 bar. Je nach dem Höhenunterschied, den die Druckleitung überwindet, ist dann der Leitungsdruck im unteren und mittleren Pistenbereich deutlich höher und beträgt z.B. 40 - 80 bar oder mehr.
  • Bei Anlagen nach dem Stand der Technik weisen die Anschlußstellen der Druckleitung sogenannte Hydranten auf, die wie ein Drosselventil den Betriebsdruck für die angeschlossenen Beschneiungsvorrichtungen entsprechend begrenzen. Die Hydranten wandeln erhebliche Energiemengen in Wärme um. Beispielsweise beträgt bei einem Leitungsdruck von 40 bar, einem Betriebsdruck der Beschneiungsvorrichtung von 10 bar und einem Wasserverbrauch von 20 m3/h die Drosselleistung ungefähr 16 kW. Diese Energie, die bei Anlagen nach dem Stand der Technik ungenutzt bleibt, kann durch die Erfindung verwertet werden.
  • Wie bereits erwähnt, kann jeder Strahlpumpe Umgebungsluft oder bereits vorverdichtete Luft zugeführt werden. In manchen Ausgestaltungen der Erfindung wird auch mindestens eine mehrstufige Strahlpumpe eingesetzt, um eine besonders hohe Luftverdichtung zu erhalten. Die Strahlpumpe (bzw. mindestens eine Stufe der mehrstufigen Strahlpumpe) weist vorzugsweise eine Treibdüse für das Wasser, eine Saugdüse für die Luft, einen Mischraum zum Mischen des aus der Treibdüse austretenden Wassers mit der durch die Saugdüse strömenden Luft und einen Diffusor zur Verdichtung des Wasser-Luft-Gemischs auf. In manchen Ausgestaltungen ist in der Saugdüse ein Drallkörper vorgesehen.
  • Besonders bevorzugt sind Ausführungsformen, bei denen mehr als 50 % oder mehr als 75 % oder mehr als 90 % oder im wesentlichen der gesamte Wasserdurchsatz der Beschneiungsvorrichtung die Strahlpumpe bzw. Strahlpumpen durchläuft und als Wasser-Luft-Gemisch durch die Wasser-Luft-Düse bzw. die Wasser-Luft-Düsen ausgestoßen wird. In diesen Ausgestaltungen wird die durch das Wasser bereitgestellte Energie besonders gut genutzt. Vorzugsweise sind mehr als 50 % oder mehr als 75 % oder mehr als 90 % oder im wesentlichen alle Düsen der Beschneiungsvorrichtung als Wasser-Luft-Düsen (im Gegensatz zu reinen Wasser-Düsen wie bei Niederdruckkanonen nach dem Stand der Technik) ausgestaltet. Es wird dann eine besonders große Menge von Gefrierkeimen erzeugt.
  • Um eine besonders gute Verdichtung des Wasser-Luft-Gemischs zu erreichen, beträgt der wirksame Arbeitsdruck jeder Strahlpumpe (also die der Strahlpumpe zur Verfügung stehende Druckdifferenz, die oft auch als wirksamer Treibflüssigkeitsdruck bezeichnet wird) vorzugsweise mindestens 10 bar oder mindestens 20 bar oder mindestens 30 bar. Die Beschneiungsvorrichtung ist in bevorzugten Ausgestaltungen vorzugsweise zum ungedrosselten oder direkten Anschluß an eine Wasser-Druckleitung mit einem Leitungsdruck von mehr als 20 bar oder mehr als 30 bar oder mehr als 40 bar vorgesehen.
  • Die mindestens eine Strahlpumpe weist in bevorzugten Ausgestaltungen eine Düsennadel auf, durch die sich der Wasserdurchsatz und/oder das Mischungsverhältnis des ausgestoßenen Wasser-Luft-Gemischs (und damit die Beschaffenheit des erzeugten Schnees) verändern lassen. Die Einstellung der Düsennadel kann motorgetrieben oder manuell erfolgen, wobei insbesondere Umgebungsparameter wie Temperatur, Luftfeuchtigkeit etc. ausgewertet werden können. In manchen Weiterentwicklungen ist die Düsennadel axial durchbohrt, um den Luftdurchsatz der Strahlpumpe zu erhöhen.
  • In weiteren vorteilhaften Ausgestaltungen der Erfindung kann vorgesehen sein, während des Betriebs der Beschneiungsvorrichtung unterschiedliche Wasser-Luft-Düsen bzw. Gruppen von Wasser-Luft-Düsen gleichzeitig mit Wasser-Luft-Gemischen unterschiedlicher Mischungsverhältnisse zu versorgen. Durch diese Maßnahme können besonders gute Schneequalitäten erzielt werden. Die Wasser-LuftGemische können von unterschiedlich aufgebauten oder eingestellten Strahlpumpen erzeugt werden, oder sie können von einer einzigen Strahlpumpe (z.B. an unterschiedlichen Stellen des Mischraums oder des Diffusors) abgeleitet werden.
  • Um den Wasserdurchsatz stufenweise an die Beschneiungserfordernisse und Umgebungsbedingungen anpassen zu können, sind in bevorzugten Ausgestaltungen mehrere einzeln zuschaltbare Wasser-Luft-Düsen und/oder mehrere einzeln zuschaltbare Gruppen von Wasser-Luft-Düsen vorgesehen. Diese Düsen bzw. Düsengruppen können über einen Verteiler an eine einzige Strahlpumpe oder eine Strahlpumpengruppe anschließbar sein. Bevorzugt ist jedoch für jede zuschaltbare Düse bzw. Düsengruppe je mindestens eine eigene Strahlpumpe vorgesehen.
  • Die erfindungsgemäße Beschneiungsvorrichtung kann in allen bekannten Bauformen ausgestaltet sein. Insbesondere sind Ausführungsvarianten in Lanzenbauweise und als Propellermaschine vorgesehen. Bei der Propellerbauform weist die Beschneiungsvorrichtung vorzugsweise einen motorgetriebenen Propeller zur Erzeugung eines Hauptluftstroms auf, und die Wasser-Luft-Düsen sind in einem oder mehreren Düsenringen angeordnet, so daß sie das Wasser-Luft-Gemisch in den Hauptluftstrom abgeben. Bei der Lanzenbauform ist in bevorzugten Ausgestaltungen ein senkrecht oder schräg stehender Lanzenstab vorgesehen, dessen bodenfernes Ende einen Düsenkopf mit einer oder mehreren Wasser-Luft-Düsen aufweist. Die mindestens eine Strahlpumpe kann beim Düsenkopf oder am bodennahen Ende des Lanzenstabes angeordnet sein. Der Lanzenstab ist vorzugsweise als Rohr ausgebildet, durch das im erstgenannten Fall das zugeführte Wasser und im zweitgenannten Fall das Wasser-Luft-Gemisch transportiert wird.
  • In bevorzugten Ausgestaltungen des erfindungsgemäßen Verfahrens ist dieses mit Merkmalen weitergebildet, die den oben erwähnten und/oder den in den abhängigen Vorrichtungsansprüchen genannten entsprechen.
  • Weitere Merkmale, Vorteile und Aufgaben der Erfindung gehen aus der folgenden Beschreibung mehrerer Ausführungsbeispiele und Ausführungsalternativen hervor. Es wird auf die schematischen Zeichnungen verwiesen, in denen zeigen:
    • Fig. 1 eine Prinzipskizze einer erfindungsgemäßen Ausführungsform,
    • Fig. 2 eine Seitenansicht eines ersten Ausführungsbeispiels der Erfindung in Form einer Propellermaschine,
    • Fig. 3 eine Vorderansicht der Propellermaschine von Fig. 2 in Richtung des Pfeils III,
    • Fig. 4 eine vergrößerte Unteransicht der in Fig. 2 von der Seite gezeigten Pumpenbaugruppe in Richtung des Pfeils IV,
    • Fig. 5 eine vergrößerte Schnittansicht des Bereichs V von Fig. 2 entlang der Linie V - V in Fig. 4,
    • Fig. 6 eine nochmals vergrößerte Schnittansicht des in Fig. 5 gezeigten Pumpenrohrs,
    • Fig. 7 eine Seitenansicht eines zweiten Ausführungsbeispiels der Erfindung in Lanzenbauform,
    • Fig. 8 eine vergrößerte, entlang der Längsachse geschnittene Seitenansicht des Bereichs VIII von Fig. 7,
    • Fig. 9 eine vergrößerte, entlang der Längsachse geschnittene Seitenansicht des Bereichs XI von Fig. 7,
    • Fig. 10 einen Querschnitt durch den in Fig. 9 gezeigten Düsenkopf entlang der Linie X - X,
    • Fig. 11 eine perspektivische Ansicht schräg von oben auf einen Düsenkopf und Strahlpumpen nach einem weiteren Ausführungsbeispiel der Erfindung,
    • Fig. 12 eine Vorderansicht des Düsenkopfes nach Fig. 11,
    • Fig. 13 eine Ansicht von oben auf den Düsenkopf nach Fig. 11,
    • Fig. 14 eine längs geschnittene Ansicht entlang der Linie XIV - XIV in Fig. 12,
    • Fig. 15 eine quer geschnittene Ansicht entlang der Linie XV - XV in Fig. 13, und
    • Fig. 16 eine quer geschnittene Ansicht entlang der Linie XVI - XVI in Fig. 13.
  • In der Prinzipskizze von Fig. 1 sind wesentliche Elemente einer Beschneiungsvorrichtung gezeigt, die eine Strahlpumpe 10 und mehrere Wasser-Luft-Düsen 12 aufweist. Die Strahlpumpe 10 ist auf an sich bekannte Art mit einer Treibdüse 14 und einem Pumpenrohr 16 ausgebildet, wobei das Pumpenrohr 16 Saugdüsen 18, einen Mischraum 20 und einen Diffusor 22 aufweist. Die Treibdüse 14 weist im hier beschriebenen Ausführungsbeispiel eine kreisrunde Düsenöffnung mit einem Durchmesser von beispielsweise 4 mm oder 5 mm auf. Die Saugdüsen 18 sind im vorliegenden Beispiel als Bohrungen mit einem Druchmesser von 12 mm im Pumpenrohr 16 ausgestaltet, und der Mischraum 20 ist hier ein Mischrohr mit konstantem Querschnitt. In manchen Ausführungsformen der Strahlpumpe 10 ist in der Treibdüse 14 ein Drallkörper (nicht gezeigt) angeordnet.
  • Im Betrieb der Beschneiungsvorrichtung wird der Strahlpumpe 10 über eine Druckleitung (nicht gezeigt) Wasser W mit einem Druck von ungefähr 25 - 40 bar oder höher zugeführt. Das Wasser W dient hier als Treibmedium; der Verlauf des Wasser-Treibstroms ist in Fig. 1 mit einem durchgehenden Pfeil bezeichnet. Das Wasser W tritt aus der Treibdüse 14 als Strahl mit hoher Geschwindigkeit aus und reißt Luft A mit, die durch die Saugdüsen 18 in das Pumpenrohr 16 eintritt (die Einströmrichtung der Luft A ist in Fig. 1 durch gepunktete Pfeile veranschaulicht). Im Mischraum 20 gleichen sich die Geschwindigkeiten des Wassers W und der Luft A an, und die beiden Medien vermengen sich intensiv. Die hohe Geschwindigkeit des so entstandenen Wasser-Luft-Gemischs M wird im Diffusor 22 zum Teil wieder in Druck umgesetzt.
  • Das Wasser-Luft-Gemisch M gelangt nun zu den Wasser-Luft-Düsen 12, durch die es ausgestoßen wird (der Strömungsverlauf des Gemischs M ist in Fig. 1 durch strichpunktierte Pfeile angedeutet). Beim Verlassen der Wasser-Luft-Düsen 12 entspannt sich die Luft schlagartig und kühlt feinste Wassertröpfchen auf deutlich unter den Gefrierpunkt ab. Bei geeignet niedrigen Umgebungstemperaturen lagern sich weitere Tröpfchen des Wasser-Luft-Gemischs M an diesen Gefrierkeimen an und bilden Schneekristalle.
  • Die in Fig. 2 dargestellte Beschneiungsvorrichtung weist ein Hauptrohr 24 auf, in dem ein Elektromotor 26 mit angeflanschtem Propeller 28 angeordnet ist. Im Betrieb erzeugt der von dem Elektromotor 26 mit einer Leistung von ungefähr 5 - 15 kW angetriebene Propeller 28 eine Hauptströmung S, deren Richtung in Fig. 2 durch einen gestrichelten Pfeil angegeben ist. Das Hauptrohr 24 verjüngt sich in Strömungsrichtung bis auf einen Durchmesser von ungefähr 56 cm.
  • Eine auslaßseitig mit dem Hauptrohr 24 verbundene Düsenbaugruppe 30 enthält eine Vielzahl von Wasser-Luft-Düsen 12 (Fig. 1), die in mehreren Düsenringen 32A, 328, 32C, 32D angeordnet sind. Ein Verteiler 34 ist einerseits mit der Düsenbaugruppe 30 und andererseits mit mehreren Strahlpumpen 10 verbunden, von denen in Fig. 2 nur eine sichtbar ist. Im vorliegenden Ausführungsbeispiel weist die Beschneiungsvorrichtung ausschließlich Wasser-Luft-Düsen 12 auf, die mit dem von den Strahlpumpen 10 erzeugten Wasser-Luft-Gemisch M gespeist werden. Es sind keine reinen Wasser-Düsen vorgesehen.
  • Durch die Vorderansicht von Fig. 3 wird insbesondere die konzentrische Anordnung der vier Düsenringe 32A, 32B, 32C, 32D verdeutlicht. Im vorliegenden Beispiel ist jeder der Düsenringe 32A, 32B, 32C, 32D als Achteck mit 64 oder 72 Wasser-Luft-Düsen 12 ausgestaltet. Ein umlaufender Kanal jedes Düsenrings 32A, 32B, 32C, 32D ist an den Verteiler 34 angeschlossen
  • Die vergrößerte Darstellung der Pumpenbaugruppe gemäß Fig. 4 zeigt den Verteiler 34 sowie drei Strahlpumpen 10, die über ein Anschlußstück 36 mit der Druckwasserversorgung verbunden sind. Jede Strahlpumpe 10 versorgt über einen zugeordneten Verbindungskanal 38A, 38B, 38C je einen der Düsenringe 32A, 32B, 32C mit dem Wasser-Luft-Gemisch M. Der Düsenring 32D ist über zwei weitere Verbindungskanäle 38D, 38E an eine weitere Strahlpumpe 10 (in Fig. 4 nicht gezeigt) angeschlossen.
  • Während bei dem Ausführungsbeispiel von Fig. 4 stets alle Strahlpumpen 10 betrieben werden, sind in Ausführungsalternativen Ventile vorgesehen, die einlaßseitig im Anschlußstück 36 oder auslaßseitig im Verteiler 34 angeordnet sein können. Durch geeignete Ansteuerung dieser Ventile können die Düsenringe 32A, 32B, 32C, 32D einzeln zu- und abgeschaltet werden, wobei jeweils ein oder mehrere oder alle Düsenringe 32A, 32B, 32C, 32D aktiv sein können. In dieser Ausgestaltung ist mit geringem Aufwand eine Regulierung des Wasserdurchsatzes und damit der Beschneiungsleistung möglich.
  • In Fig. 5 ist beispielhaft ein Schnitt durch die Düsenbaugruppe 30 gezeigt, der durch je eine Düsenbohrung 40 der vier Düsenringe 32A, 32B, 32C, 32D verläuft. Die Düsenbohrungen 40 sind zur Aufnahme der Wasser-Luft-Düsen 12 beispielsweise in der in Fig. 1 gezeigten Bauform vorgesehen. Geeignete Wasser-Luft-Düsen 12 sind als Einsätze für die Düsenbohrungen 40 handelsüblich und als solche nicht Gegenstand der vorliegenden Erfindung.
  • Das Pumpenrohr 16 ist in Fig. 6 vergrößert gezeigt. Die Saugdüsen 18 sind als vier radial um je 90° versetzte Bohrungen im einlaßseitigen Abschnitt des Pumpenrohrs 16 angeordnet.
  • Im Ausführungbeispiel von Fig. 7 ist die Beschneiungsvorrichtung in Lanzenbauform ausgestaltet. Eine im Erdboden befindliche Verankerung 42 fixiert einen Halter 44, der zwei gelenkig miteinander verbundene Stützstäbe 46, 48 aufweist. Die Beschneiungsvorrichtung im engeren Sinne ist an dem oberen Stützstab 48 befestigt. Sie weist einen beispielsweise 8 - 12 m langen, als Rohr ausgebildeten Lanzenstab 50 auf, an dessen oberem Ende ein Düsenkopf 52 und an dessen unterem Ende ein Pumpenelement 54 angeordnet sind.
  • Wie in Fig. 8 gezeigt, weist das Pumpenelement 54 eine Strahlpumpe 10' und einen einlaßseitig damit verbundenen Anschlußkrümmer 56 auf. Das zum Betrieb benötigte Druckwasser W wird der Strahlpumpe 10' über den Anschlußkrümmer 56 zugeführt. Die Strahlpumpe 10' ist ähnlich wie die Strahlpumpe 10 von Fig. 1 mit einer Treibdüse 14' und einem Pumpenrohr 16' mit Mischraum 20' und Diffusor 22' ausgestaltet. Ein Verbindungsstück 58 weist Bohrungen zum Einlaß der Umgebungsluft A auf, die als Saugdüsen 18' wirken. Das Verbindungsstück 58 verbindet den Anschlußkrümmer 56, die Treibdüse 14' und das Pumpenrohr 16' zu einer Baugruppe. Auslaßseitig ist die Strahlpumpe 10' über eine Muffe 64 mit dem rohrförmigen Lanzenstab 50 verbunden.
  • Die Strahlpumpe 10' weist ferner eine durchbohrte Düsennadel 60 auf, die längsverschiebbar in einer Führung 62 gelagert ist. Durch eine geeignete Einstellung der Düsennadel 60 können die Pumpeigenschaften der Strahlpumpe 10' den Erfordernissen angepaßt werden; insbesondere ist es möglich, den Wasserdurchsatz und/oder das Mischungsverhältnis von Wasser und Luft im Wasser-Luft-Gemisch M zu variieren. Die Einstellung kann manuell (z.B. bei der Installation oder Wartung der Anlage) oder automatisch (z.B. je nach der gewünschten Schneemenge oder den Witterungsverhältnissen) erfolgen. Im vorliegenden Beispiel ist die Düsennadel 60 entlang ihrer Längsachse durchbohrt, so daß weitere Umgebungsluft A in den Treibstrahl der Strahlpumpe 10' eingebracht werden kann, um die Pumpleistung zu erhöhen. Es sind jedoch auch Ausführungsvarianten mit einer nicht-durchbohrten Düsennadel 60 vorgesehen, die immer noch den Vorteil einer verbesserten Regelbarkeit aufweisen.
  • Der in Fig. 9 im Detail gezeigte Düsenkopf 52 ist durch eine Verbindungs- und Dichtungsbaugruppe 66 lösbar mit dem oberen Ende des Lanzenstabs 50 (Fig. 7) verbunden. Wie aus Fig. 9 und dem Querschnitt von Fig. 10 hervorgeht, weist der Düsenkopf 52 im vorliegenden Beispiel insgesamt sechs Bohrungen 68 zur Aufnahme je einer Wasser-Luft-Düse 12 (Fig. 1) in Form eines an sich bekannten Düseneinsatzes auf.
  • Im Betrieb wird das durch die Strahlpumpe 10' erzeugte Wasser-Luft-Gemisch M in den Lanzenstab 50 und von dort in den Düsenkopf 52 eingespeist. Das Wasser-Luft-Gemisch M tritt als feiner Sprühnebel aus den Wasser-Luft-Düsen 12 (Fig. 1) aus. Wieder bilden sich durch die Expansion Gefrierkeime, aus denen während des relativ langen Fallwegs bis zum Erdboden durch Anlagerung weiterer Wassertröpfchen Schneekristalle entstehen. Bei der hier beschriebenen Ausgestaltung dient der rohrförmige Lanzenstab 50 zum Transport des Wasser-Luft-Gemischs M von der Strahlpumpe 10' zum Düsenkopf 52. Weitere Leitungen, sei es für Druckluft oder für Wasser, werden nicht benötigt. Es muß lediglich eine Verbindung zwischen dem Anschlußkrümmer 56 und einer bei bestehenden Pisteninstallationen bereits neben der Piste verlegten Wasser-Druckleitung hergestellt werden.
  • In weiteren Ausführungsalternativen werden Strahlpumpen 10' wie in Fig. 8 gezeigt auch bei der Propellermaschine nach Fig. 2 eingesetzt, um die durch die Düsennadel 60 bereitgestellten Einstellungsmöglichkeiten auch dort zu erhalten. Umgekehrt kann auch vorgesehen ein, die Beschneiungsvorrichtungen in Lanzenform gemäß Fig. 7 mit den einfacheren Strahlpumpen 10 gemäß Fig. 1 auszustatten.
  • In Fig. 11 - Fig. 16 ist als weiteres Ausführungsbeispiel der Erfindung ein Düsenkopf 52' gezeigt, der zusammen mit zwei Strahlpumpen 10" eine kompakte Baugruppe bildet. Die Baugruppe ist dazu vorgesehen, an dem hochragenden Ende eines Lanzenstabs - in einer Höhe von beispielsweise 10 m - angebracht zu werden. Mit anderen Worten stellt das vorliegende Ausführungsbeispiel eine Abwandlung des Ausführungsbeispiels von Fig. 7 dahingehend dar, daß der Düsenkopf 52 von Fig. 7 vorliegend durch den Düsenkopf 52' ersetzt wurde, und daß das Pumpenelement 54 in Form der Strahlpumpen 10" unmittelbar an den Düsenkopf 52' angebaut wurde. Durch die bauliche Kombination der Strahlpumpen 10" mit dem Düsenkopf 52' wird eine Entmischung des Wasser-Luft-Gemischs M - wie sie bei dem Ausführungsbeispiel von Fig. 7 möglicherweise im Lanzenstab 50 eintreten könnte - vermieden.
  • Wie aus Fig. 11 - Fig. 16 ersichtlich ist, weisen die Strahlpumpen 10" gemäß dem vorliegenden Ausführungsbeispiel je eine Treibdüse 14" und je mehrere Saugdüsen 18" auf. Der Düsenkopf 52' ist mit insgesamt zehn eingeschraubten Wasser-Luft-Düsen 12' versehen, von denen die vier in Fig. 11 - Fig. 14 rechts gezeigten eine erste Gruppe und die sechs in Fig. 11 - Fig. 14 in der Mitte gezeigten eine zweite Gruppe bilden. Die Treibdüsen 14" der beiden Strahlpumpen 10" weisen unterschiedliche Durchmesser - und damit unterschiedliche Wasserdurchflußmengen - auf. Die Strahlpumpe 10" mit dem kleineren Treibdüsendurchmesser versorgt die erste Gruppe der vier Wasser-Luft-Düsen 12', und die Strahlpumpe 10" mit dem größeren Treibdüsendurchmesser versorgt die zweite Gruppe der sechs Wasser-Luft-Düsen 12'. Insgesamt wird somit eine dreistufige Wasserregelung erreicht, indem entweder nur die erste Gruppe der Treibdüsen 14" oder nur die zweite Gruppe der Treibdüsen 14" oder beide Treibdüsengruppen aktiviert werden.
  • Als Wasser-Luft-Düsen 12' werden im vorliegenden Ausführungsbeispiel Flachdüsen verwendet, um eine möglichst schnelle Entspannung der Luft zu erreichen und um damit kleinste Wassertropfen abzukühlen, welche dann gefrieren und somit die Gefrierkeime für das restliche Wasser bilden.
  • Ein weiterer Vorteil der Ausgestaltung gemäß Fig. 11 - Fig. 16 gegenüber der von Fig. 7 liegt in der besseren Energieausnutzung. Da die Strahlpumpen 10" vorzugsweise mit einem Druckverhältnis von ungefähr 3 : 1 arbeiten, muß bei dem Ausführungsbeispiel von Fig. 7 der Druckabfall von ca. 1 bar in dem ungefähr 10 m nachoben ragenden Lanzenrohr 50 durch einen ca. 3 bar höheren Druck an der Treibdüse 14' der Strahlpumpe 10' ausgeglichen werden. Demgegenüber ist bei dem Ausführungsbeispiel von Fig. 11 - Fig. 16 nur ca. 1 bar zusätzlicher Wasserdruck erforderlich, um den gewünschten Treibdüsendruck zu erreichen.
  • Eine Vielzahl weiterer Abwandlungen, insbesondere hinsichtlich der Dimensionierung der einzelnen Bauteile und/oder der Anzahl oder Ausgestaltung der Strahlpumpen 10, 10', 10" oder der Wasser-Luft-Düsen 12, 12' ist für den Fachmann sofort ersichtlich.

Claims (11)

  1. Beschneiungsvorrichtung mit mindestens einer Wasser-Luft-Düse (12, 12'), die dazu eingerichtet ist, ein Wasser-Luft-Gemisch (M) auszustoßen,
    dadurch gekennzeichnet, daß die Beschneiungsvorrichtung mindestens eine Strahlpumpe (10, 10', 10") aufweist, die mit Wasser (W) als Treibmedium arbeitet und die Luft (A) mit dem Wasser (W) mischt und verdichtet, um das der mindestens einen Wasser-Luft-Düse (12, 12') zugeführte Wasser-Luft-Gemisch (M) zu bilden.
  2. Beschneiungsvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, daß die mindestens eine Strahlpumpe (10, 10', 10") je mindestens eine Treibdüse (14, 14', 14") für das Wasser (W), mindestens eine Saugdüse (18, 18', 18") für die Luft (A), einen Mischraum (20, 20') zum Mischen des aus der mindestens einen Treibdüse (14, 14', 14") austretenden Wassers (W) mit der durch die mindestens eine Saugdüse (18, 18', 18") strömenden Luft (A) und einen Diffusor (22, 22') zur Verdichtung des Wasser-Luft-Gemischs (M) aufweist.
  3. Beschneiungsvorrichtung nach Anspruch 1 oder Anspruch 2,
    dadurch gekennzeichnet, daß mehr als 50 % des gesamten Wasserdurchsatzes der Beschneiungsvorrichtung die mindestens eine Strahlpumpe (10, 10', 10") durchläuft und von der mindestens einen Wasser-Luft-Düse (12, 12') ausgestoßen wird.
  4. Beschneiungsvorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß die Beschneiungsvorrichtung zum ungedrosselten Anschluß an eine Wasserleitung mit einem Leitungsdruck von mehr als 20 bar vorgesehen ist, und daß der wirksame Arbeitsdruck der mindestens einen Strahlpumpe (10, 10', 10") mindestens 10 bar beträgt.
  5. Beschneiungsvorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß die mindestens eine Strahlpumpe (10') eine Düsennadel (60) zur Veränderung des Wasserdurchsatzes und/oder des Mischungsverhältnisses des Wasser-Luft-Gemischs (M) aufweist.
  6. Beschneiungsvorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, daß mehrere Wasser-Luft-Düsen (12, 12') und/oder Gruppen von Wasser-Luft-Düsen (12, 12') vorgesehen sind, und daß die Beschneiungsvorrichtung dazu eingerichtet ist, die mehreren Wasser-Luft-Düsen (12, 12') bzw. Gruppen von Wasser-Luft-Düsen (12, 12') gleichzeitig mit Wasser-LuftGemischen (M) unterschiedlicher Mischungsverhältnisse zu versorgen.
  7. Beschneiungsvorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß zur Einstellung des Wasserdurchsatzes mehrere einzeln zuschaltbare Wasser-Luft-Düsen (12, 12') und/oder mehrere einzeln zuschaltbare Gruppen von Wasser-Luft-Düsen (12, 12') vorgesehen sind, wobei vorzugsweise für jede zuschaltbare Wasser-Luft-Düse (12, 12') bzw. jede zuschaltbare Gruppe von Wasser-Luft-Düsen (12, 12') je mindestens eine eigene Strahlpumpe (10, 10', 10") vorgesehen ist.
  8. Beschneiungsvorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß die Beschneiungsvorrichtung einen motorgetriebenen Propeller (28) zur Erzeugung eines Hauptluftstroms (S) aufweist, und daß die Wasser-Luft-Düsen (12, 12') in einem oder mehreren Düsenringen (32A, 32B, 32C, 32D) angeordnet sind, um das Wasser-Luft-Gemisch (M) in den Hauptluftstrom (S) abzugeben.
  9. Beschneiungsvorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß die Beschneiungsvorrichtung einen Lanzenstab (50) aufweist, an dessen einem Ende die mindestens eine Strahlpumpe (10, 10', 10") und an dessen anderem Ende ein Düsenkopf (52, 52') mit der mindestens einen Wasser-Luft-Düse (12, 12') angeordnet sind.
  10. Beschneiungsvorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß die Beschneiungsvorrichtung einen Lanzenstab (50) aufweist, an dessen einem Ende eine Baugruppe mit der mindestens einen Strahlpumpe (10, 10', 10") und einem Düsenkopf (52, 52') mit der mindestens einen Wasser-Luft-Düse (12, 12') angeordnet ist.
  11. Verfahren zum Betrieb einer Beschneiungsvorrichtung, insbesondere einer Beschneiungsvorrichtung nach einem der Ansprüche 1 bis 10, mit den Schritten:
    - Erzeugen eines Wasser-Luft-Gemischs (M) durch mindestens eine Strahlpumpe (10, 10', 10"), die mit Wasser (W) als Treibflüssigkeit arbeitet und die Luft (A) komprimiert und mit dem Wasser (W) mischt, und
    - Ausstoßen des Wasser-Luft-Gemischs (M) durch mindestens eine Wasser-Luft-Düse (12, 12').
EP02792959A 2001-12-11 2002-12-10 Beschneiungsvorrichtung und verfahren zum betrieb einer beschneiungsvorrichtung Expired - Lifetime EP1456588B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02792959A EP1456588B1 (de) 2001-12-11 2002-12-10 Beschneiungsvorrichtung und verfahren zum betrieb einer beschneiungsvorrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01129558 2001-12-11
EP01129558 2001-12-11
PCT/EP2002/014013 WO2003054460A1 (de) 2001-12-11 2002-12-10 Beschneiungsvorrichtung und verfahren zum betrieb einer beschneiungsvorrichtung
EP02792959A EP1456588B1 (de) 2001-12-11 2002-12-10 Beschneiungsvorrichtung und verfahren zum betrieb einer beschneiungsvorrichtung

Publications (2)

Publication Number Publication Date
EP1456588A1 EP1456588A1 (de) 2004-09-15
EP1456588B1 true EP1456588B1 (de) 2006-03-01

Family

ID=8179509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02792959A Expired - Lifetime EP1456588B1 (de) 2001-12-11 2002-12-10 Beschneiungsvorrichtung und verfahren zum betrieb einer beschneiungsvorrichtung

Country Status (17)

Country Link
US (1) US7546960B2 (de)
EP (1) EP1456588B1 (de)
JP (1) JP4486360B2 (de)
KR (1) KR20040068230A (de)
CN (1) CN1276232C (de)
AT (1) ATE319060T1 (de)
AU (1) AU2002358664B2 (de)
CA (1) CA2468209C (de)
DE (1) DE50205970D1 (de)
ES (1) ES2259729T3 (de)
NO (1) NO335464B1 (de)
NZ (1) NZ532902A (de)
RO (1) RO122107B1 (de)
RS (1) RS50483B (de)
RU (1) RU2298138C2 (de)
SI (1) SI1456588T1 (de)
WO (1) WO2003054460A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3587966A1 (de) 2018-06-21 2020-01-01 NIVIS GmbH - Srl Beschneiungssystem und beschneiungsverfahren

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877076A1 (fr) * 2004-10-27 2006-04-28 Snowstar Dispositif de production de neige artificielle
EP1908526A1 (de) * 2006-10-04 2008-04-09 Siemens S.A.S. Düse für eine Zwei-Phasenmischung
EP2071258A1 (de) 2007-12-14 2009-06-17 Bächler Top Track AG Nukleatordüse, Verwendung einer Nukleatordüse, Schneekanone, Schneilanze und Verfahren zum Erzeugen von Eiskeimen und von künstlichem Schnee
US8393553B2 (en) * 2007-12-31 2013-03-12 Ric Enterprises Floating ice sheet based renewable thermal energy harvesting system
CN102164681B (zh) 2008-09-25 2016-09-07 斯诺泰克独家制造的销售的有限公司 包含固定或可变喷射角度的具有可调液滴尺寸的平面射流流体喷嘴
EP2249107A1 (de) 2009-05-05 2010-11-10 Bächler Top Track AG Beschneiungssystem und Verfahren zum Erzeugen von künstlichem Schnee
CN102019242A (zh) * 2010-11-01 2011-04-20 哈尔滨工程大学 一种造雪用双进口雾化喷头
US20130264032A1 (en) * 2011-02-26 2013-10-10 Naeem Ahmad Snow/ ice making & preserving methods
WO2012129310A2 (en) * 2011-03-21 2012-09-27 Ada Technologies, Inc. Water atomization and mist delivery system
US9170041B2 (en) 2011-03-22 2015-10-27 Mitchell Joe Dodson Single and multi-step snowmaking guns
AU2013308668A1 (en) 2012-08-29 2015-04-16 Mitchell Joe Dodson Modular dual vector fluid spray nozzles
WO2014146009A2 (en) 2013-03-15 2014-09-18 Snow Logic, Inc. Nucleator for generating ice crystals for seeding water droplets in snow-making systems
US10234187B2 (en) * 2014-06-26 2019-03-19 Technoalpin Holding S.P.A. Fluid-jet emitting device
SI24517A (sl) * 2014-12-09 2015-04-30 Robert Krajnc Naprava za izdelavo umetnega snega
KR101671478B1 (ko) * 2015-06-17 2016-11-01 동부대우전자 주식회사 설빙 생성이 가능한 냉장고 및 설빙 제조 방법
US10161534B2 (en) * 2016-02-19 2018-12-25 Charles N. Santry Multiple flow rate hydrant
US20190168175A1 (en) * 2017-12-06 2019-06-06 Larry Baxter Solids-Producing Siphoning Exchanger
WO2019175905A1 (en) * 2018-03-13 2019-09-19 Viglundsson Thorsteinn I Method and apparatus for making wet snow
CN109539651B (zh) * 2018-12-06 2020-07-28 天津商业大学 一种基于引射器的造雪机
KR102237612B1 (ko) * 2020-04-13 2021-04-07 김현일 동절기 블랙아이스 방지와 미끄럼방지를 위한 도로확산 초산칼슘의 액상 동결방지제 자동분사시스템
CN112281737A (zh) * 2020-10-27 2021-01-29 上海市政工程设计研究总院(集团)有限公司 一种坡道自动除雪装置
KR102296912B1 (ko) * 2021-07-23 2021-09-01 주식회사 오크 식물이나 동물들의 도로변 침입을 방지하는 장치

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3494559A (en) * 1967-10-31 1970-02-10 Charles M Skinner Snow making system
US3716190A (en) * 1970-10-27 1973-02-13 Minnesota Mining & Mfg Atomizing method
US3945567A (en) * 1975-07-17 1976-03-23 Gerry Rambach Snow making apparatus
US4145000A (en) * 1977-01-14 1979-03-20 Smith Fergus S Snow-making nozzle assembly
FR2454593A1 (fr) * 1979-04-20 1980-11-14 York Sa Froid Indl Appareil haute pression de production de neige artificielle avec reglage du melange air/eau en fonction de la temperature humide de l'air ambiant
US4383646A (en) * 1980-11-19 1983-05-17 Smith Fergus S Snow making nozzle
US4593854A (en) * 1984-04-25 1986-06-10 Albertsson Stig L Snow-making machine
FR2579732B1 (fr) * 1985-03-27 1987-09-25 Ene Ste Civile Dispositifs et procedes de fabrication de neige artificielle
US4916911A (en) * 1987-05-21 1990-04-17 Dendrite Associates, Inc. Snowmaking process and apparatus
US4793554A (en) * 1987-07-16 1988-12-27 Kraus Edmund J Device for making artificial snow
JPH03140775A (ja) 1989-10-26 1991-06-14 Dendrite Assoc Inc 雪を作る装置および方法
US5090619A (en) * 1990-08-29 1992-02-25 Pinnacle Innovations Snow gun having optimized mixing of compressed air and water flows
US5180105A (en) * 1991-02-26 1993-01-19 Dorwin Teague Snow making apparatus
DE4131857A1 (de) 1991-09-25 1993-04-08 Stella Maris Ag Schneekanone
JP3158656B2 (ja) 1992-06-16 2001-04-23 株式会社デンソー エジェクタ
FR2701759B1 (fr) * 1993-02-19 1995-05-19 York France Sa Perfectionnement aux canons à neige.
US5379937A (en) * 1994-01-18 1995-01-10 Rothe Welding And Fabrication, Inc. Nucleator assembly for snowmaking apparatus
DE4423124A1 (de) 1994-07-01 1996-01-04 Eberhard Gall Schneekanone
CA2237428C (en) 1995-11-13 2003-03-18 Snow Economics, Inc. Method and apparatus for making snow
DE19627586A1 (de) 1996-07-09 1998-07-23 Heinz Fischer & Soehne Schneea Vorrichtung zur Erzeugung von Schnee mit wechselbarer Sprüheinrichtung unter Berücksichtigung der Umweltschutzgesetze
WO1999040381A1 (fr) 1998-02-06 1999-08-12 York Neige Generateur de particules de glace, de neige, ou nucleateur, integre dans une tete de pulverisation d'eau
NO982507L (no) * 1998-06-02 1999-12-03 Arne Widar Luros Snökanon
IT1310250B1 (it) 1999-10-04 2002-02-11 Gottfried Rottensteiner Sistema di nucleazione ed ugello nucleatore per la produzione di neveartificiale

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3587966A1 (de) 2018-06-21 2020-01-01 NIVIS GmbH - Srl Beschneiungssystem und beschneiungsverfahren

Also Published As

Publication number Publication date
RU2004115397A (ru) 2005-11-10
AU2002358664A1 (en) 2003-07-09
ATE319060T1 (de) 2006-03-15
CN1276232C (zh) 2006-09-20
JP2005513400A (ja) 2005-05-12
US7546960B2 (en) 2009-06-16
EP1456588A1 (de) 2004-09-15
CA2468209C (en) 2012-03-27
RU2298138C2 (ru) 2007-04-27
CA2468209A1 (en) 2003-07-03
JP4486360B2 (ja) 2010-06-23
AU2002358664B2 (en) 2007-11-08
NO20042937L (no) 2004-07-09
DE50205970D1 (de) 2006-04-27
YU48204A (sh) 2005-09-19
US20050006493A1 (en) 2005-01-13
NO335464B1 (no) 2014-12-15
KR20040068230A (ko) 2004-07-30
CN1602404A (zh) 2005-03-30
RO122107B1 (ro) 2008-12-30
NZ532902A (en) 2006-03-31
SI1456588T1 (sl) 2006-08-31
ES2259729T3 (es) 2006-10-16
RS50483B (sr) 2010-03-02
WO2003054460A1 (de) 2003-07-03

Similar Documents

Publication Publication Date Title
EP1456588B1 (de) Beschneiungsvorrichtung und verfahren zum betrieb einer beschneiungsvorrichtung
DE69619805T2 (de) Schneekanone ohne gebläse
EP2232171B1 (de) Schneilanze und verfahren zum erzeugen von künstlichem schnee
AT399043B (de) Verfahren und vorrichtung zum erzeugen von schnee
DE2505483A1 (de) Vorrichtung zur schneeerzeugung sowie deren verwendung
DE2501670A1 (de) Verfahren und vorrichtung zur herstellung von kuenstlichem schnee
DE69809729T2 (de) Verfahren und gerät zum erzeugen von schnee
DE69014996T2 (de) Schaumapplikationsdüse.
DE2611098A1 (de) Verfahren und vorrichtung zum erzeugen von schnee
EP3042724B1 (de) Verfahren zum erzeugen eines sprühstrahls und zweistoffdüse
EP0375887A2 (de) Verfahren und Vorrichtung zum Schneiden und Reinigen von Gegenständen, sowie zum gezielten Materialabtrag mittels eines Wasser-Abrasivmittel-Gemisches
EP2249107A1 (de) Beschneiungssystem und Verfahren zum Erzeugen von künstlichem Schnee
DE3931398A1 (de) Verfahren und vorrichtung zur herstellung von schnee
DE102006015805A1 (de) Strahlmittelaustragsdüse
DE10354864B4 (de) Düsenträger
DE660049C (de) Luftschaumerzeuger, insbesondere fuer Feuerloeschzwecke
DE19838785A1 (de) Düsenkopf zur Erzeugung von Schneekristallen
AT393318B (de) Vorrichtung zum erzeugen von kuenstlichem schnee
DE19819982A1 (de) Düsenkopf zur Erzeugung von Schneekristallen
AT12197U1 (de) Schneegenerator für eine beschneiungsanlage
EP1512920B1 (de) Luftbefeuchtungsvorrichtung
DE69829395T2 (de) Verfahren und vorrichtung zum herstellen von schnee
WO2002075228A1 (de) Mit einer zerstäubungseinrichtung für flüssigkeiten versehene schneekanone
WO2000015303A1 (de) Löschdüsenkopf zum ausbringen von löschflüssigkeit
AT411228B (de) Verfahren zum einstellen einer temperatur an einer sprüh-mischdüse sowie sprüh-mischdüse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50205970

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060801

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2259729

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061204

BERE Be: lapsed

Owner name: NIVIS GMBH - SRL

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: NIVIS GMBH - SRL

Free format text: NIVIS GMBH - SRL#IGNAZ SEIDNER STRASSE 31#39042 BRIXEN (BZ) (IT) -TRANSFER TO- NIVIS GMBH - SRL#IGNAZ SEIDNER STRASSE 31#39042 BRIXEN (BZ) (IT)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20121203

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20181107

Year of fee payment: 17

Ref country code: CZ

Payment date: 20181129

Year of fee payment: 17

Ref country code: FI

Payment date: 20181213

Year of fee payment: 17

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 648

Country of ref document: SK

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20201015

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20201222

Year of fee payment: 19

Ref country code: AT

Payment date: 20201215

Year of fee payment: 19

Ref country code: FR

Payment date: 20201218

Year of fee payment: 19

Ref country code: SE

Payment date: 20201221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210122

Year of fee payment: 19

Ref country code: DE

Payment date: 20201229

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211230

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50205970

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 319060

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211211

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211211