EP1454115A1 - Equipement electronique d'appareil de champ comportant une unite capteur pour les mesures capacitives de niveau d'un conteneur - Google Patents

Equipement electronique d'appareil de champ comportant une unite capteur pour les mesures capacitives de niveau d'un conteneur

Info

Publication number
EP1454115A1
EP1454115A1 EP02804576A EP02804576A EP1454115A1 EP 1454115 A1 EP1454115 A1 EP 1454115A1 EP 02804576 A EP02804576 A EP 02804576A EP 02804576 A EP02804576 A EP 02804576A EP 1454115 A1 EP1454115 A1 EP 1454115A1
Authority
EP
European Patent Office
Prior art keywords
field device
device electronics
microprocessor
current
electronics according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02804576A
Other languages
German (de)
English (en)
Inventor
Hans-Jörg Florenz
Clemens Heilig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP1454115A1 publication Critical patent/EP1454115A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor

Definitions

  • the invention relates to field device electronics with a sensor unit for capacitive fill level measurements in a container according to the preamble of claim 1.
  • a conventional rectifier circuit measures the amount of alternating current that flows at a certain frequency and voltage through the capacitor formed by the probe, medium and container wall.
  • the apparent current is not only dependent on the capacity but also on the conductivity of the medium to be measured, which in practice leads to inaccuracies in the measurement, since the conductivity of bulk materials in particular depends on various factors such as e.g. Temperature and humidity depends.
  • Another method is not to measure the apparent current, but the reactive current at a phase shift angle of 90 ° between current and voltage, which corresponds to a pure capacitance measurement. This can be achieved with the help of a synchronous rectifier circuit.
  • this method has the disadvantage that, for example, in media with a low dielectric constant and high conductivity, in those with a Apparent current measurement Measurements are possible without problems, due to the practically disappearing reactive current difficulties arise.
  • experience has shown that such conventional synchronous rectifier circuits are sensitive to electromagnetic interference.
  • the invention has for its object to propose a field device electronics with a sensor unit for capacitive level measurements in a container, which can be easily adapted to the existing field conditions and uses the most suitable measurement method depending on the specific application.
  • the main idea of the invention is to use a microprocessor for generating the voltage signal, for evaluating the measurement current, for compensating for disturbance variables and for determining the variables to be determined for the sensor-container arrangement, the associated programs being stored in a memory unit.
  • the analog measurement current is digitized using an analog / digital converter.
  • the use of the microprocessor makes it possible to generate different output signals which are dependent on the further use of the output signal or on the transmission protocol used. For example, a 4-20 mA signal, a 0-10V signal, a PFM signal (pulse frequency modulation signal), a binary switching signal ... etc. can be generated. But it is also conceivable that several output signals (4-20 mA, 0- 10V, PFM signal, binary switching signal ... etc.) are generated and output for different transmission protocols or purposes.
  • the microprocessor performs a generator function to generate the voltage signal, the measurement frequency of the voltage signal being set by the microprocessor.
  • the microprocessor performs a frequency switching function for generating voltage signals with different frequencies.
  • the generator function can be implemented, for example, by frequency division of the clock signal of the microprocessor, the frequency divider being controlled by the frequency switching function depending on the desired measuring frequency of the voltage signal.
  • the voltage signal can be generated practically at any measurement frequency below the processor clock.
  • the frequency changeover can thus be easily implemented using the program.
  • this has the advantage that the electronics can be adapted for different applications and, in addition, simple parallel compensation can be achieved by alternately measuring at two different measuring frequencies.
  • a low-pass filter is provided to generate a sinusoidal voltage, which converts the voltage signal into a sinusoidal voltage.
  • a sinusoidal voltage which converts the voltage signal into a sinusoidal voltage.
  • any other waveform with a defined harmonic content for the measurement.
  • the low-pass filter has adjustable cut-off frequencies for generating sinusoidal voltages with different frequencies, the current cut-off frequency of the low-pass filter being set by the frequency switching function depending on the set measurement frequency of the generator for generating the voltage signal.
  • the measurement current is converted by a current / voltage converter into a measurement voltage proportional to the measurement current before the evaluation.
  • the measuring voltage is rectified with a rectifier and fed to the microprocessor for evaluation via the analog / digital converter.
  • the rectifier comprises a charging capacitor and can be designed, for example, as a peak value rectifier or as a synchronous rectifier.
  • the microprocessor determines the value of the measurement current at a specific phase shift angle in relation to the voltage signal, the phase shift angle being adjustable by the microprocessor.
  • the microprocessor alternately generates two voltage signals with different frequencies and determines the sizes of the sensor-container arrangement to be determined from the associated measurement currents.
  • the microprocessor generates the required phase shift angle between the voltage signal and the measurement current by means of a phase shift generated by it between a synchronization signal and the voltage signal, the synchronization signal driving the synchronous rectifier.
  • phase shift angle at which the current through the probe is measured can be freely selected by software within wide limits, it is possible to switch between pure reactive current measurement (capacitance measurement), apparent current measurement (impedance measurement) and pure active current measurement (conductance measurement).
  • the microprocessor adjusts the measurement frequency of the voltage signal and / or the phase shift angle for evaluating the measurement current depending on the variables to be determined and / or field conditions.
  • the sizes of the sensor container arrangement to be determined can be, for example, an impedance and / or a capacitance and / or a conductance.
  • the field conditions include, for example, the sensor / container geometry and / or the type of medium in the container and / or disturbance variables.
  • the microprocessor also takes on additional functions such as linearization and scaling of the measured signal and generates the sensor output signal.
  • measurements are not carried out continuously, but individual sine bursts with, for example, 1000 vibrations are generated and evaluated during a measurement cycle. There are pauses between the individual sine bursts, the length of the pauses being variable and being determined, for example, by a random generator. This enables increased insensitivity to electromagnetic interference, since there is no constant interference between the measurement signal and the interference signal.
  • the field device electronics are switched into an energy-saving mode by the microprocessor during the pauses between the individual measuring cycles. No current flows through the probe during these pause times. As a result, the power consumption can be reduced to a fraction of the usual power consumption for capacitive sensors. This is particularly interesting for NAMUR applications.
  • Fig. 1 Basic circuit diagram of a field device electronics for a first
  • FIG. 2 Basic circuit diagram of a field device electronics for a second
  • Fig. 4 time-dependent course of the voltages with mixed capacitive-ohmic load.
  • the field device electronics comprise a microprocessor 1, a sensor 2 for determining the fill level of a medium 3.1 in a container 3, a filter 4, a current / voltage converter 5, a storage unit 7 and a rectifier 6, the rectifier 6 comprising a charging capacitor 6.1.
  • the microprocessor 1 comprises the function blocks generator function 1.1, disturbance variable compensation 1.2, calculation function 1.3, scaling / linearization 1.4, generation of output signal 1.5 for carrying out a first measurement method.
  • the function block "Definition of the measuring cycles" 1.7 which determines the measuring cycle duration and the pause time between the measuring cycles. This makes it possible to reduce the power consumption by means of an energy-saving mode.
  • the microprocessor 1 In addition, changing the pause times can increase immunity to electromagnetic interference by means of the generator function 1.1, the microprocessor 1 generates a voltage signal sigi with the measurement frequency f, which is output via PORT 1 and converted into a sinusoidal voltage Ui by a subsequent low-pass filtering by the filter 4
  • the generator function 1.1 is implemented as a frequency divider or by means of a timer integrated in the microprocessor, so that the voltage signal is generated from the clock signal of the microprocessor.
  • the microprocessor 1 executes the function block “generation of synchronization signal” 1.8 and generates a synchronization signal sig 2 , which has an adjustable phase shift angle in relation to the voltage signal sigi.
  • the synchronization signal sig 2 is used to control the Rectifier 6 used and output via PORT 2.
  • a pure reactive current measurement ie a phase shift angle of 0 ° is set, or a pure active current measurement, ie a phase shift angle of 90 ° is set.
  • existing disturbance variables such as ohmic resistances with a capacitive measuring probe or capacitances with a conductive measuring probe can be eliminated.
  • the current / voltage converter 5 converts a current caused by the voltage signal Ui through the sensor unit 2 into a proportional voltage signal U 2 .
  • the rectifier 6 is designed as a synchronous rectifier for the first measurement method and, in addition to the charging capacitor 6.1, includes a controllable switch 6.2, which is designed, for example, as a MOSFET.
  • the switch 6.1 is controlled by the synchronization signal sig 2 .
  • the charging capacitor 6.1 is charged to the respective instantaneous value of the voltage U 2 via the switch 6.2.
  • the output voltage Uc of the rectifier 6 corresponds to the reactive current component of the current flowing through the sensor unit 2.
  • the output voltage U c is fed to the microprocessor 1 via an analog / digital converter 8, the analog / digital converter 8 being integrated in the microprocessor 1 in the exemplary embodiment shown.
  • the microprocessor 1 calculates from the rectified voltage Uc measured at the charging capacitor 6.1 the quantities of the sensor-container arrangement to be determined, for example the capacitance C 1 and / or the parallel resistance R 1 of the sensor-container arrangement.
  • the microprocessor 1 carries out scaling and linearization 1.4 of the calculated values.
  • the microprocessor 1 When generating the output signal 1.5, the microprocessor 1 generates the desired output signal, which depends on the further use of the Output signal or depends on the transmission protocol used. For example, a 4-20 mA signal, a 0-10V signal, a PFM signal (pulse frequency modulation signal), a binary switching signal ... etc. can be generated. But it is also conceivable that several output signals (4-20 mA, 0- 10V, PFM signal, binary switching signal ... etc.) are generated and output for different transmission protocols or purposes. To generate certain standardized output signals, a digital / analog converter 9 can be integrated in the microprocessor 1.
  • Fig. 4 also shows the signals Ui, U 2 and sig 2 as a function of time.
  • a parallel resistance Rides medium 3.1 is now taken into account.
  • the amount of current through the sensor unit 2 increases and thus the amount of the voltage U 2 representing the current.
  • the phase shift angle between Ui and U 2 is less than 90 °.
  • the value of the voltage U 2 changes only insignificantly in the time window defined by sig 2 compared to the case shown in FIG. 3, and the charging capacitor 6.1 is thus charged to the same voltage U c as with a purely capacitive load.
  • the set phase shift angle between the voltage signal sigi and the synchronization signal sig 2 is also 0 ° and a pure reactive current measurement is carried out.
  • the microprocessor 1 also includes the function blocks generator function 1.1, disturbance variable compensation 1.2, calculation function 1.3, scaling / linearization 1.4, generation of output signal 1.5 for carrying out a second measurement method.
  • the function block "Definition of the measuring cycles" 1.7 which determines the measuring cycle duration and the pause time between the measuring cycles. This makes it possible to reduce the power consumption by means of an energy-saving mode.
  • changing the pause times can increase immunity to electromagnetic interference, since there is no constant interference between the measurement signal and the interference signal.
  • the disturbance variable compensation 1.2 includes a frequency switch 1.6, which determines the measurement frequency f of the voltage signal sigi generated by the generator function 1.1.
  • the voltage signal sigi is alternated with the frequencies
  • Subsequent low-pass filtering converts the voltage signal sigi to a sinusoidal measuring voltage Ui (i / f 2), the cut-off frequency of the filter 4 being set appropriately for the frequencies fi and f 2 in accordance with the time intervals specified by the signal generation.
  • the limit frequencies of the filter 4 are set by a control signal generated by the frequency switch 1.6, which is output via PORT 3. As a result, an optimal rectangle / sine waveform is achieved for the frequencies ⁇ and f2.
  • the current / voltage converter 5 converts a current caused by the voltage signal Ui (fi / f2) through the sensor unit 2 into a proportional voltage signal U 2 .
  • the rectifier 6 comprises a charging capacitor 6.1 and generates a direct voltage Uc proportional to U 2 and can be more conventional Peak value rectifier or also as a synchronous rectifier, as described under FIG. 1.
  • the output voltages Uc ( f i ) and Uc (t 2 ) of the charging capacitor 6.1 are fed to the microprocessor 1 via an analog / digital converter, the analog / digital converter being integrated in the microprocessor 1 in the exemplary embodiment shown.
  • the microprocessor 1 calculates from the voltages Uc (ti) and Uc ( f2 ) measured and rectified on the charging capacitor 6.1 the quantities of the sensor-container arrangement to be determined, for example the capacitance Ci and / or the parallel resistance Ri.
  • the calculation of the values from Ci and Ri from the voltages Uc ( f i) and Uc ( f2 ) - happens in the following way:
  • the total apparent current flowing through the sensor unit 2 results from:
  • the disturbance variable compensation 1.2 thus takes place by generating voltage signals with different frequencies and eliminating the respective disturbance variable in the calculation.
  • Scaling and linearization 1.4 of the measured or calculated values and the generation and output of the desired output signal 1.5 is carried out analogously to the explanations for FIG. 1.
  • a particularly advantageous field device electronics combines the two measurement methods, in which both the function blocks for the first measurement method and the function blocks for the second measurement method are implemented in the microprocessor 1.
  • the user selects the measurement method to be carried out and enters the necessary parameters (frequency, phase shift), depending on the sensor / container arrangement and the medium 3.1 to be measured, and can be carried out using a corresponding input dialog using input means (not shown).
  • the selection can also be made by a control center via appropriate communication connections.
  • the required parameters (frequency, phase shift) and settings can be changed using exchangeable memory units.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Technology Law (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

L'invention concerne l'équipement électronique d'un appareil de champ, comprenant une unité capteur (2) pour les mesures capacitives de niveau d'un conteneur (3). Cet équipement électronique d'appareil de champ, qui est connecté à l'unité capteur (2) par des chemins de signaux correspondants, génère un signal de tension pour exciter l'unité capteur (2), dont il reçoit et analyse un courant de mesure. L'invention est caractérisée en ce qu'un convertisseur analogique/numérique (8) numérise le courant de mesure analogique, l'appareil comprenant un microprocesseur (1) et une unité mémoire (7). Le microprocesseur (1) génère un signal de tension, analyse le courant de mesure, compense les perturbations et détermine les grandeurs à calculer pour l'ensemble conteneur-capteur selon des déroulements de programmes définis, les programmes correspondants étant mémorisés dans l'unité mémoire (7).
EP02804576A 2001-12-12 2002-11-30 Equipement electronique d'appareil de champ comportant une unite capteur pour les mesures capacitives de niveau d'un conteneur Withdrawn EP1454115A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10161069 2001-12-12
DE10161069A DE10161069A1 (de) 2001-12-12 2001-12-12 Feldgeräteelektronik mit einer Sensoreinheit für kapazitive Füllstandsmessungen in einem Behälter
PCT/EP2002/013537 WO2003050480A1 (fr) 2001-12-12 2002-11-30 Equipement electronique d'appareil de champ comportant une unite capteur pour les mesures capacitives de niveau d'un conteneur

Publications (1)

Publication Number Publication Date
EP1454115A1 true EP1454115A1 (fr) 2004-09-08

Family

ID=7708955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02804576A Withdrawn EP1454115A1 (fr) 2001-12-12 2002-11-30 Equipement electronique d'appareil de champ comportant une unite capteur pour les mesures capacitives de niveau d'un conteneur

Country Status (8)

Country Link
US (1) US7415366B2 (fr)
EP (1) EP1454115A1 (fr)
JP (1) JP2005512078A (fr)
CN (1) CN1293365C (fr)
AU (1) AU2002366541A1 (fr)
DE (1) DE10161069A1 (fr)
RU (1) RU2297597C2 (fr)
WO (1) WO2003050480A1 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134330B2 (en) 2003-05-16 2006-11-14 Endress + Hauser Gmbh + Co. Kg Capacitive fill level meter
DE10322279A1 (de) * 2003-05-16 2004-12-02 Endress + Hauser Gmbh + Co. Kg Kapazitive Füllstandmessung
DE102004008125A1 (de) * 2004-02-18 2005-09-01 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur kapazitiven Füllstandsbestimmung
DE102004010096A1 (de) * 2004-02-27 2005-09-15 Endress + Hauser Gmbh + Co. Kg Verfahren zum Betreiben eines Feldgerätes der Automatisierungstechnik
US8538560B2 (en) * 2004-04-29 2013-09-17 Rosemount Inc. Wireless power and communication unit for process field devices
US8145180B2 (en) * 2004-05-21 2012-03-27 Rosemount Inc. Power generation for process devices
US8160535B2 (en) * 2004-06-28 2012-04-17 Rosemount Inc. RF adapter for field device
DE102004047413A1 (de) * 2004-09-28 2006-03-30 Endress + Hauser Gmbh + Co. Kg Fertigungsseitiges Abgleichen eines Messgeräts zur kapazitiven Füllstandsmessung und entsprechendes Messgerät
DE102005051794A1 (de) * 2005-10-27 2007-05-03 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur kapazitiven Bestimmung und/oder Überwachung des Füllstands eines Mediums
WO2007122214A1 (fr) * 2006-04-24 2007-11-01 Wika Alexander Wiegand Gmbh & Co. Kg Instrument de mesure à technique des deux fils
DE102006020342A1 (de) * 2006-04-28 2007-10-31 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgrösse
DE102006028006A1 (de) * 2006-06-14 2007-12-20 Siemens Ag Feldgerät und Verfahren zum Verarbeiten mindestens einer Messgröße in einem Feldgerät
DE102006043809A1 (de) 2006-09-13 2008-03-27 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
DE602006010567D1 (de) 2006-10-20 2009-12-31 Rancilio Macchine Caffe Gerät zur Regulierung des Flüssigkeitsniveaus eines Kochgefässes einer Kaffeemaschine
DE102007061573A1 (de) 2007-12-18 2009-06-25 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Ermittlung und/oder Überwachung zumindest eines Füllstands von zumindest einem Medium in einem Behälter gemäß einer Laufzeitmessmethode und/oder einer kapazitiven Messmethode
DE102008022370A1 (de) 2008-05-06 2009-11-12 Endress + Hauser Gmbh + Co. Kg Verfahren zur Ermittlung von Referenzwerten für Messwerte einer mit einem kapazitiven Messgerät zu messende Kapazität
JP5554328B2 (ja) * 2008-06-17 2014-07-23 ローズマウント インコーポレイテッド 本質安全の低電圧クランプ回路を備えるフィールド装置用rfアダプタ
CN102067048B (zh) * 2008-06-17 2017-03-08 罗斯蒙特公司 用于具有可变压降的现场设备的rf适配器
US8694060B2 (en) * 2008-06-17 2014-04-08 Rosemount Inc. Form factor and electromagnetic interference protection for process device wireless adapters
CN102084626B (zh) * 2008-06-17 2013-09-18 罗斯蒙德公司 用于具有环路电流旁路的现场设备的rf适配器
US8929948B2 (en) * 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
DE102008049623A1 (de) 2008-09-30 2010-04-01 Endress + Hauser Gmbh + Co. Kg Verfahren zur Fertigung einer kapazitiven Messvorrichtung
EP2219013B1 (fr) * 2009-02-13 2019-04-10 VEGA Grieshaber KG Dispositif de production de courant destiné à la production et la surveillance simultanée d'un courant de mesure
US8281655B2 (en) * 2009-04-03 2012-10-09 Eaton Corporation Fuel gauging system utilizing a digital fuel gauging probe
US20100318007A1 (en) * 2009-06-10 2010-12-16 O'brien Donald J Electromechanical tactile stimulation devices and methods
US8626087B2 (en) * 2009-06-16 2014-01-07 Rosemount Inc. Wire harness for field devices used in a hazardous locations
US9674976B2 (en) 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
DE102010038732B4 (de) 2010-07-30 2023-07-27 Endress+Hauser SE+Co. KG Vorrichtung und Verfahren zur Sicherung der Befestigung eines koaxial um eine Messsonde angeordneten Rohres einer Messsondeneinheit eines Füllstandsmessgerätes an einem Prozessanschlusselement
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
DE102011004807A1 (de) 2011-02-28 2012-08-30 Endress + Hauser Gmbh + Co. Kg Sondeneinheit
US8869612B2 (en) 2011-03-08 2014-10-28 Baxter International Inc. Non-invasive radio frequency liquid level and volume detection system using phase shift
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device
DE102013104781A1 (de) * 2013-05-08 2014-11-13 Endress + Hauser Gmbh + Co. Kg Verfahren zur Überwachung zumindest einer medienspezifischen Eigenschaft eines Mediums
DE102013107904A1 (de) * 2013-07-24 2015-01-29 Endress + Hauser Flowtec Ag Messgerät mit einer umschaltbaren Mess- und Betriebselektronik zur Übermittlung eines Messsignals
DE102014107927A1 (de) * 2014-06-05 2015-12-17 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur Überwachung des Füllstandes eines Mediums in einem Behälter
CN108204845B (zh) * 2016-12-19 2019-11-29 桓达科技股份有限公司 感测装置及物质感测方法
US10422684B2 (en) * 2017-05-30 2019-09-24 Rosemount Tank Radar Ab Field device with second auxiliary interface
DE102017127145B4 (de) * 2017-11-17 2021-03-04 BEDIA Motorentechnik GmbH & Co. KG Vorrichtung und Verfahren zur kapazitiven Messung eines Füllstands eines Füllmediums
CN108548585B (zh) * 2018-05-11 2020-01-31 广东美的厨房电器制造有限公司 用于水盒的水位测量设备及其方法、蒸汽炉
DE102019126381A1 (de) 2019-09-30 2021-04-01 Endress+Hauser SE+Co. KG Hygienegerechter Adapter für Feldgerät
DE102021123443A1 (de) 2021-09-10 2023-03-16 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zum Ermitteln eines Leitfähigkeitswerts

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786349A (en) * 1973-05-03 1974-01-15 Northern Electric Co Electrical reactance and loss measurement apparatus and method
US4451894A (en) * 1980-05-14 1984-05-29 Honeywell Inc. Liquid gaging system multiplexing
DE3643389A1 (de) 1986-12-19 1988-07-07 Duerrwaechter E Dr Doduco Verfahren zum erzeugen eines elektrischen sinussignals mit veraenderlicher frequenz
DE3812687A1 (de) 1988-04-16 1989-10-26 Duerrwaechter E Dr Doduco Kapazitiver sensor zum bestimmen des niveaus einer fluessigkeit in einem behaelter
CA2032384C (fr) * 1989-12-18 2000-06-20 Drexelbrook Controls, Inc. Systeme de teletest d'instrumentation
US5477473A (en) * 1992-04-02 1995-12-19 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor-drive and signal-processing method
US5406843A (en) * 1993-10-27 1995-04-18 Kdi Corporation, Inc. Digital liquid level sensing apparatus
CN1088679A (zh) * 1993-11-03 1994-06-29 唐山钢铁(集团)公司 等离子体加热盛钢容器液面检测方法
DE19757190A1 (de) * 1997-12-22 1999-06-24 Abb Research Ltd Kapazitiver Füllstandssensor mit integrierter Schmutzfilmdetektion
EP1091199B1 (fr) * 1999-10-07 2008-11-26 Endress + Hauser GmbH + Co. KG Procédé et dispositif pour le test fonctionnel d'un interrupteur de limite
DE59907873D1 (de) * 1999-10-15 2004-01-08 Flowtec Ag Programmierbares Feldmessgerät
US6854055B1 (en) * 1999-10-18 2005-02-08 Endress + Hauser Flowtec Ag Method and system for switching active configuration memory during on-line operation of programmable field mounted device
EP1108984B1 (fr) 1999-10-18 2019-08-14 Endress + Hauser Flowtec AG Appareil mobile programmable
DE19954186A1 (de) * 1999-11-11 2001-05-17 Endress Hauser Gmbh Co Vorrichtung und Verfahren zum Übermitteln von Daten zwischen einem Sensor und einer Auswerteeinheit
DE10007188A1 (de) * 2000-02-17 2001-08-23 Endress Hauser Gmbh Co Vorrichtung zur Bestimmung des Füllstandes eines Mediums in einem Behälter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03050480A1 *

Also Published As

Publication number Publication date
DE10161069A1 (de) 2003-06-18
WO2003050480A1 (fr) 2003-06-19
AU2002366541A1 (en) 2003-06-23
CN1602409A (zh) 2005-03-30
CN1293365C (zh) 2007-01-03
JP2005512078A (ja) 2005-04-28
US20070055463A1 (en) 2007-03-08
RU2004121172A (ru) 2005-05-27
RU2297597C2 (ru) 2007-04-20
US7415366B2 (en) 2008-08-19

Similar Documents

Publication Publication Date Title
EP1454115A1 (fr) Equipement electronique d'appareil de champ comportant une unite capteur pour les mesures capacitives de niveau d'un conteneur
EP3335012B1 (fr) Unité de commande electronique
DE68907628T2 (de) Elektromagnetischer durchflussmesser zur gleichzeitigen messung des durchflusses und der leitfaehigkeit einer fluessigkeit.
DE60316827T2 (de) Messanordnung und verfahren
DE102004010707A1 (de) Energiezähleranordnung und Verfahren zum Kalibrieren
DE4131128C1 (fr)
EP0587844B1 (fr) Procede d'excitation d'un capteur et de traitement de signaux
DE102012107021B4 (de) Vorrichtung und Verfahren zur Messung eines Wechselstroms
DE102007007551A1 (de) Induktiver Näherungssensor
EP2641066B1 (fr) Procédé d'évaluation et dispositif de mesure du volume
DE10161072A1 (de) Feldgeräteelektronik mit einer Sensoreinheit für die Prozessmesstechnik
DE2758812A1 (de) Elektronischer zweiweg-kilowattstundenzaehler
EP0271856A2 (fr) Méthode et dispositif pour mésurer un paramètre
DE19817722C2 (de) Verfahren und Anordnung zur Auswertung der Admittanz einer variablen Messkapazität
EP1625365B1 (fr) Mesure de niveau capacitivé
DE102013107567A1 (de) Vorrichtung und Verfahren zur Messung eines Wechselstroms
DE102004014674A1 (de) Nulldurchgangsdetektion eines Ultraschallsignals mit variablem Schwellenwert
DE102011077926A1 (de) Sensormesssystem, das impulsstromsignale verwendet
DE102009032095B4 (de) Anordnung und Verfahren zur Bestimmung einer Winkelstellung
DE4137422C2 (de) Verfahren und Vorrichtung zur Leitwertmessung, insbesondere zur konduktiven Füllstandsmessung
WO2016041726A1 (fr) Dispositif et procédé permettant de surveiller une grandeur de processus d'un milieu
WO2017220293A1 (fr) Détecteur de niveau capacitif
DE102011003306B3 (de) Schaltungsanordnung zur Erfassung und Digitalisierung eines analogen Eingangssignals sowie Feldgerät zur Prozessinstrumentierung
DE3410798A1 (de) Elektromagnetischer stroemungsmesser
DE102005008207B4 (de) Feldgerät zur Bestimmung und/oder Überwachung einer Prozessgröße

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEILIG, CLEMENS

Inventor name: FLORENZ, HANS-JOERG

17Q First examination report despatched

Effective date: 20061129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150602