EP1454049B1 - Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne - Google Patents

Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne Download PDF

Info

Publication number
EP1454049B1
EP1454049B1 EP02762224A EP02762224A EP1454049B1 EP 1454049 B1 EP1454049 B1 EP 1454049B1 EP 02762224 A EP02762224 A EP 02762224A EP 02762224 A EP02762224 A EP 02762224A EP 1454049 B1 EP1454049 B1 EP 1454049B1
Authority
EP
European Patent Office
Prior art keywords
temperature
intake air
combustion chamber
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02762224A
Other languages
German (de)
English (en)
Other versions
EP1454049A1 (fr
Inventor
Jochen Gross
Lutz Reuschenbach
Georg Mallebrein
Eberhard Klein
Michael Drung
Lionel Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10223677A external-priority patent/DE10223677A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1454049A1 publication Critical patent/EP1454049A1/fr
Application granted granted Critical
Publication of EP1454049B1 publication Critical patent/EP1454049B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the invention relates firstly to a method for operating an internal combustion engine depending on operating characteristics, such as rotational speed of a crankshaft, temperature of the internal combustion engine and / or temperature of the intake air, in which from a detected or modeled temperature of the intake air in a region remote from the combustion chamber at least approximately a temperature of sucked air is obtained in a combustion chamber near area or in the combustion chamber itself.
  • a temperature state model for an internal combustion engine is known.
  • a network of temperature nodes and heat transfer branches is used to estimate the temperature conditions.
  • a temperature change function is determined over a distance x as a function of a mass flow and a wall temperature and a length and a diameter of the heat conduction.
  • sensors with which the temperature of the intake air can be measured are not mounted in the immediate vicinity of the combustion chambers of the internal combustion engine, but, for. in the air filter housing, in an air mass meter, in a throttle body or in combination with a sensor for measuring the air pressure in the intake manifold.
  • the DE 197 39 901 A1 therefore suggests a correction of the measured temperature of the intake air.
  • a weighting factor is used, which is calculated by means of characteristic curves or characteristic maps as a function of the intake air temperature, the engine temperature and an operating point of the internal combustion engine.
  • the present invention has the object, a method of the type mentioned in such a way that it can be programmed easily and provides more accurate results.
  • the method according to the invention is based on several assumptions:
  • the heating of the intake fresh air is brought about by the contact with a typical component located upstream of the combustion chamber or at least one component of the internal combustion engine located upstream of the combustion chamber.
  • This component or this component represents all lying in the flow path of the intake air warm components and components of the internal combustion engine.
  • the contact time typical of an internal combustion engine type can in turn be determined empirically in a simple manner. With the method according to the invention, it is thus possible to calculate the heating of the fresh air taken in by an internal combustion engine on the basis of the usual thermal equations without having to program complicated characteristic curves or characteristic diagrams.
  • the contact time typical for a particular type of internal combustion engine be obtained with the aid of test runs of the internal combustion engine type under different operating conditions, in particular cold and warm internal combustion engines. Even test runs with cold and heated intake air are possible. This is a procedure that has shown very good results in practice.
  • the typical contact time is inversely proportional to the speed of the crankshaft. Through the said test runs, the corresponding proportionality constant can be determined in a simple manner.
  • the typical contact time should be in the range of the duration of an intake stroke, since with flowing fluid, the heat transfer is much stronger than at dormant fluid.
  • the determination of the temperature of the intake air in the combustion chamber near the area or in the combustion chamber itself under the assumption that the between the intake air and the typical Component of the internal combustion engine, with which the intake air comes into thermal contact the amount of heat exchanged depends on a difference between the measured and modeled in a combustion chamber remote area temperature of the intake air and the temperature of the typical component of the internal combustion engine, with the sucked air in thermal contact occurs.
  • the dependence of the exchanged heat quantity on the temperature difference between the flowing fresh air and the at least one component is taken into account in addition to the dependence of the exchanged heat quantity on the contact time.
  • the precision in determining the heating of the intake fresh air is thereby significantly improved again.
  • the temperature of the component of the internal combustion engine the temperature of at least one inlet valve is used. This is based on the consideration that the intake fresh air is heated on its way into the combustion chamber, especially by the very hot inlet valve or its components. This assumption allows a very simple calculation and yet allows a high reliability of the detected temperature of the intake air.
  • the temperature of the inlet valve is obtained from a measured temperature of a cylinder head.
  • the coolant temperature and the Zytinderkopftemperatur be determined in conventional internal combustion engines anyway by means of sensors.
  • the temperature of the inlet valve can be determined with great accuracy. in the In the simplest case, the temperature of the inlet valve can also be set equal to the measured temperature, without this significantly distorting the calculation result.
  • the typical contact time is a time constant at which the incoming gas heats up to a certain degree of the differential temperature between the gas and the component.
  • the decisive variable in the exponent of the e-function only the rotational speed of the crankshaft of the internal combustion engine remains.
  • the corrected intake air temperature can be determined with high precision. Only the conditions for which the typical contact time applies must be determined, for example, by a test.
  • the above equation is also referred to as the "adiabatic charge-exchange model" equation.
  • the equation takes into account all the effects of the charge cycle.
  • the influence of the heat transfer from components of the internal combustion engine to the fresh air is taken into account solely with the aid of the quantity Taevk.
  • the suction pressure usually detected by a pressure sensor in the intake pipe, the fresh air charge can thus be determined with high precision, without an air mass sensor being required.
  • the invention also relates to a computer program which is suitable for carrying out the method according to one of the preceding claims when it is executed on a computer. It is preferred if the Computer program is stored on a memory, in particular on a flash memory.
  • the subject matter of the present invention is also a control and / or regulating device for operating an internal combustion engine.
  • it is preferred if it comprises a memory on which a computer program of the above type is stored.
  • an internal combustion engine carries the overall reference numeral 10. It comprises a plurality of cylinders, of which in Fig. 1 only that with the reference numeral 12 is visible. In it, a piston 14 is slidably guided, which limits a combustion chamber 16. About a connecting rod (without reference numeral), the piston 14 is connected to a crankshaft 18 shown only symbolically.
  • Fresh air is supplied to the combustion chamber 16 via an intake pipe 20 and an intake valve 22.
  • an injection nozzle 24 is present, which is connected to a fuel system 26.
  • a throttle valve 28 is arranged in the intake pipe 20, which can be moved by a servomotor 30 in a desired position. Again upstream of the throttle valve 28, the temperature of the supplied fresh air from a sensor 32 and the pressure of the supplied fresh air are tapped by a sensor 34.
  • the hot combustion exhaust gases are discharged from the combustion chamber 16 via an outlet valve 36 and an exhaust pipe 38.
  • a catalyst 40 cleans the exhaust gases. Between the exhaust valve 36 and the catalyst 40, the temperature of the exhaust gas from a temperature sensor 42 and the pressure of the exhaust gas from a pressure sensor 44 is tapped.
  • the internal combustion engine 10 has a double continuous camshaft control. This means that the closing or opening times of the intake valve 22 and the exhaust valve 36 can be adjusted continuously.
  • the intake valve 22 is actuated by an intake camshaft 46 and the exhaust valve 36 by an exhaust camshaft 48.
  • Upper actuators 50 and 52, the camshafts 46 and 48 are adjusted in operation so that the desired closing or opening times are present.
  • the present in the combustion chamber 16 of the internal combustion engine 10 fuel-air mixture is ignited by a spark plug 54, which in turn is driven by an ignition system 56.
  • the operation of the internal combustion engine 10 is controlled by a control and regulating device 58.
  • the control and regulating device 58 is connected on the input side to the temperature sensor 32 and the pressure sensor 34 in the intake pipe 20. It also receives signals from the temperature sensor 42 and the pressure sensor 44 in the exhaust pipe 38.
  • An encoder 60 also provides signals from which the speed of the crankshaft 18 and its angular position can be obtained.
  • sensors 62 and 64 are provided which detect the angular position of the intake camshaft 46 and the exhaust camshaft 48, respectively.
  • the control and regulating unit 58 is connected to the injection nozzle 24, the servomotor 30 of the throttle valve 28, the actuators 50 and 52 of the intake camshaft 46 and the exhaust camshaft 48 and to the ignition system 56.
  • a temperature sensor 66 detects the temperature of a cylinder head (not shown) of the internal combustion engine 10.
  • a pressure sensor 34 is present in the intake pipe instead of the pressure sensor. In this case, the pressure in the intake pipe would have to be determined from the detected signals to determine the air charge of the combustion chamber.
  • the signal of the temperature sensor 66 is fed into a processing block 68.
  • the temperature Tev of the inlet valve 22 and determined by a numerical model from the temperature Tmot of the cylinder head. With such a model, a temperature of the intake pipe 20 which is typical for the present calculation could also be determined as a whole.
  • the Eihlassventil 22 is a component so far typical, as it represents the typical for the present type of internal combustion engine 10 for the warming of the intake air warm components of the internal combustion engine 10. From a temperature Tans of the intake air detected by the sensor 3.2, a temperature Taev is determined in a processing block (not shown) on the basis of a numerical model.
  • the value nmot of the rotational speed of the crankshaft 18 provided by the sensor 60 is compared with the value 1 in FIG. 72, and the higher value is outputted.
  • the output of block 72 is divisor in a division block. 74 used. The comparison in 72 prevents the divisor from assuming the value zero.
  • NMOTW is a typical engine speed at which the intake air heats up by the amount 1 / e (Tev-Taev) as it flows into the combustion chamber 16. It corresponds to a normalized and for a certain type of engine and a specific operating condition typical contact time, which will be discussed in more detail below. It is determined empirically. At higher speeds, the temperature equalization is lower.
  • the output of the characteristic EXPSLP in block 76 is fed to a multiplier 78, in which also the difference formed between the temperature Tev of Inlet valve 22 and the temperature Taev the intake air is fed.
  • the output of the block 78 is added in 80 to the temperature Taev of the intake air, and the result is output as the corrected intake air Taevk.
  • This corrected temperature Taevk is in a very good approximation to the temperature of the fresh air trapped at the end of an intake stroke in the combustion chamber 16 of the internal combustion engine 10 (that is to say in the region next to the combustion chamber which is even possible).
  • This formula takes into account that the determination of the fresh air present in the combustion chamber takes place after the end of the intake stroke using a so-called "typical contact time". This is determined for a certain type of internal combustion engine and a specific operating state by tests, for example, test runs of the internal combustion engine in the cold and in the warm state. Often, it corresponds approximately to that period during which the sucked fresh air has passed the hot inlet valve 22 before it has entered the combustion chamber 16 itself. In the present embodiment, it is approximately equal to the duration of an intake stroke. From the typical contact time is determined by a normalization with the speed for which the typical contact time was determined, the typical speed NMOTWK.
  • Fresh air also takes into account the difference between the temperature of the intake air measured by the temperature sensor 32 and the temperature Tev of the injection valve 22 modeled from the temperature Tmot of the cylinder head of the internal combustion engine 10.
  • the temperature Taevk determined in the above-described manner of the fresh air trapped in the combustion chamber 16 at the end of the intake stroke is used for determining a relative filling of the combustion chamber 16 with fresh air.
  • the formula given in FIG. 4 also takes into account optionally residual gas present at the end of the intake stroke in the combustion chamber 16. Such a residual gas is then present in the combustion chamber 16 when the internal combustion engine 10 has an internal or external exhaust gas recirculation.
  • Trgk is the mean temperature of the total residual gas, assuming that it is expanded to the pressure ps prevailing in the intake pipe 20 - undiluted with fresh air.
  • the FUPSRLROH factor is an operating point dependent variable independent of the pressure ps in the intake manifold 20 and the temperature Taev of the intake fresh air.
  • FUPSRLROH describes the slope of a characteristic curve which links the relative filling of the combustion chamber 16 with fresh air with the pressure ps in the intake manifold 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Un moteur à combustion interne fonctionne en fonction de paramètres caractéristiques de fonctionnement tels que par exemple la vitesse de rotation (nmot) d'un vilebrequin, la température (Tmot) du moteur à combustion interne et / ou la température (Taev) de l'air aspiré. Une température (Taevk) de l'air aspiré dans la chambre de combustion (16) est obtenue de manière au moins approximative à partir d'une température (Taev) détectée ou modélisée de l'air aspiré dans une zone située à distance de la chambre de combustion. Pour simplifier la programmation, la température (Taevk) de l'air aspiré dans la chambre de combustion (16) est déterminée à partir de l'hypothèse selon laquelle l'air aspiré possède une température de départ (Taev) modélisée ou détectée, l'air aspiré entre en contact thermique avec un composant typique (22) pendant une durée de contact typique (tkontakt) d'un type du moteur à combustion interne (10) et d'un état de fonctionnement du moteur à combustion interne (10), et le composant typique possède une température (Tev) modélisée ou détectée.

Claims (10)

  1. Procédé de gestion d'un moteur à combustion interne (10) en fonction de paramètres de fonctionnement tel que par exemple le régime (nmot) vitesse de rotation) d'un vilebrequin (18), la température (Tmot) du moteur à combustion interne (10) et/ou la température de l'air aspiré (Taev),
    selon lequel
    à partir d'une température saisie ou modélisée (Taev) de l'air aspiré, dans une zone (20) éloignée de la chambre de combustion, on détermine au moins approximativement une température (Taevk) de l'air aspiré dans une zone proche de la chambre de combustion ou directement dans la chambre de combustion (16),
    la détermination de la température (Taevk) de l'air aspiré dans la zone proche de la chambre de combustion ou dans la chambre de combustion (16) même, se faisant en supposant que l'air aspiré est à une température initiale modélisée ou saisie (Taevk),
    l'air aspiré venant au contact thermique avec un composant caractéristique (22) pendant une durée de contact caractéristique (tkontakt) du type de moteur à combustion interne (10) et de l'état de fonctionnement du moteur à combustion interne (10), et le composant caractéristique à une température modélisée ou une température saisie (Tev),
    caractérisé en ce que
    le composant caractéristique du moteur à combustion interne (10) est une soupape d'admission (22) dont la température est définie en fonction de la température de la culasse.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    la durée de contact (tkontakt) caractéristique d'un moteur à combustion interne s'obtient à l'aide d'essais du type de moteur à combustion interne dans des conditions de fonctionnement différentes notamment dans le cas d'un moteur froid et d'un moteur chaud.
  3. Procédé selon l'une des revendications 1 ou 2,
    caractérisé en ce que
    la température (Taevk) a de l'air aspiré dans la zone proche de la zone de combustion ou directement dans la chambre de combustion (16) dépend de la différence entre la température (Taev) mesurée ou modélisée de l'air aspiré, dans la zone (20) éloignée de la chambre de combustion et de la température (Tev) du composant caractéristique (22) du moteur à combustion interne (10) en contact thermique avec l'air aspiré.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    dans le cas d'un moteur à combustion interne (10) à quatre temps, la température (Taevk) de l'air aspiré dans la zone proche de la chambre de combustion ou directement dans la chambre de combustion (16) se définit par la formule suivante : Taevk = Taev + Tev - Taev * 1 - e - 15 sec / min nmot [ 1 / min ] * tkontakt sec
    Figure imgb0012

    et dans cette formule
    Taevk = température corrigée de l'air aspiré.
    Taev = température saisie ou modélisée de l'air aspiré dans une zone éloignée de la chambre de combustion,
    Tev = température modélisée du composant caractéristique du moteur à combustion interne
    nmot = la vitesse de rotation saisie, du vilebrequin du moteur à combustion interne,
    tkontakt = durée de contact caractéristique pendant laquelle l'air aspiré s'échauffe (1-1/e)*(Tev - Taev).
  5. Procédé selon l'une des revendications précédentes 1 à 4,
    caractérisé en ce que
    dans le cadre d'un moteur à combustion interne (10) à quatre temps, la détermination de la température (Taevk) de l'air aspiré dans la zone proche de la chambre de combustion ou directement dans la chambre de combustion (16) est définie selon la formule suivante : Taevk = Taev + Tev - Taev * 1 - e - NMOTWK 1 / min nmot 1 / min
    Figure imgb0013

    dans laquelle
    Taevk = température corrigée de l'air aspiré
    Taev = température saisie ou modélisée de l'air aspiré dans une zone éloignée de la chambre de combustion,
    Tev = température modélisée du composant caractéristique du moteur à combustion interne
    nmot = vitesse de rotation saisie du vilebrequin du moteur à combustion interne
    NMOTWK = vitesse de rotation caractéristique du vilebrequin du moteur à combustion interne à laquelle s'échauffe l'air aspiré
    (1-1 / e) * (Tev - Taev).
  6. Procédé selon les revendications précédentes
    caractérisé en ce que
    la température (Taevk) de l'air aspiré dans la zone proche de combustion ou directement dans la chambre de combustion (16) est utilisée pour déterminer la charge (rffg) de la chambre de combustion (16) à la fin du temps d'aspiration.
  7. Procédé selon la revendication 6,
    caractérisé en ce que
    la charge (rffg) de la chambre de combustion (16) se détermine à l'aide de l'équation suivante : rffg = FUPSRLROH * 273 K Taevk * ps - rfrg * Trgk FUPSRLROH * 273 K
    Figure imgb0014

    dans laquelle
    rffg = charge d'air frais aspiré
    FUPSRLROH = grandeur dépendant du point de fonctionnement
    Rfrg = charge de gaz résiduelle normée, rapportée à la cylindrée
    Taevk = température corrigée de l'air aspiré
    ps = pression dans la conduite d'admission
    Trgk = température du gaz résiduel supposé non mélangé, expansé à la pression de la conduite d'admission mais idéalisé (en K).
  8. Programme d'ordinateur,
    caractérisé en ce qu'
    il est prévu pour la mise en oeuvre du procédé selon l'une des revendications précédentes lorsque le programme est exécuté dans un ordinateur.
  9. Programme d'ordinateur selon la revendication 8,
    caractérisé en ce qu'
    il est enregistré dans une mémoire notamment une mémoire flash.
  10. Appareil de commande et/ou de régulation (58) pour la gestion d'un moteur à combustion interne (10),
    caractérisé en ce qu'
    il comporte une mémoire dans laquelle est enregistré un programme d'ordinateur selon l'une des revendications 8 ou 9.
EP02762224A 2001-12-04 2002-07-24 Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne Expired - Lifetime EP1454049B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10159389 2001-12-04
DE10159389 2001-12-04
DE10223677 2002-05-28
DE10223677A DE10223677A1 (de) 2001-12-04 2002-05-28 Verfahren, Computerprogramm, sowie Steuer-und/oder Regelgerät zum Betreiben einer Brennkraftmaschine
PCT/DE2002/002724 WO2003048550A1 (fr) 2001-12-04 2002-07-24 Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1454049A1 EP1454049A1 (fr) 2004-09-08
EP1454049B1 true EP1454049B1 (fr) 2008-01-30

Family

ID=26010707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02762224A Expired - Lifetime EP1454049B1 (fr) 2001-12-04 2002-07-24 Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne

Country Status (5)

Country Link
US (1) US6983737B2 (fr)
EP (1) EP1454049B1 (fr)
JP (1) JP2005511950A (fr)
DE (1) DE50211638D1 (fr)
WO (1) WO2003048550A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070163243A1 (en) * 2006-01-17 2007-07-19 Arvin Technologies, Inc. Exhaust system with cam-operated valve assembly and associated method
FR2907509A1 (fr) * 2006-10-19 2008-04-25 Peugeot Citroen Automobiles Sa Procede d'estimation de parametres caracteristiques d'un moteur thermique et de controle des flux thermiques appliques a des composants de ce moteur
US8352158B2 (en) 2011-11-21 2013-01-08 Ford Global Technologies, Llc Method and system for compensating engine thermal conditions
US9534550B2 (en) 2012-09-10 2017-01-03 GM Global Technology Operations LLC Air per cylinder determination systems and methods
US10227939B2 (en) 2012-08-24 2019-03-12 GM Global Technology Operations LLC Cylinder deactivation pattern matching
US9726139B2 (en) 2012-09-10 2017-08-08 GM Global Technology Operations LLC System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated
US9382853B2 (en) 2013-01-22 2016-07-05 GM Global Technology Operations LLC Cylinder control systems and methods for discouraging resonant frequency operation
US9458778B2 (en) 2012-08-24 2016-10-04 GM Global Technology Operations LLC Cylinder activation and deactivation control systems and methods
US9650978B2 (en) 2013-01-07 2017-05-16 GM Global Technology Operations LLC System and method for randomly adjusting a firing frequency of an engine to reduce vibration when cylinders of the engine are deactivated
US9638121B2 (en) * 2012-08-24 2017-05-02 GM Global Technology Operations LLC System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass
US9416743B2 (en) 2012-10-03 2016-08-16 GM Global Technology Operations LLC Cylinder activation/deactivation sequence control systems and methods
US9376973B2 (en) 2012-09-10 2016-06-28 GM Global Technology Operations LLC Volumetric efficiency determination systems and methods
US9458779B2 (en) * 2013-01-07 2016-10-04 GM Global Technology Operations LLC Intake runner temperature determination systems and methods
US9719439B2 (en) 2012-08-24 2017-08-01 GM Global Technology Operations LLC System and method for controlling spark timing when cylinders of an engine are deactivated to reduce noise and vibration
US9458780B2 (en) 2012-09-10 2016-10-04 GM Global Technology Operations LLC Systems and methods for controlling cylinder deactivation periods and patterns
US9494092B2 (en) 2013-03-13 2016-11-15 GM Global Technology Operations LLC System and method for predicting parameters associated with airflow through an engine
US9441550B2 (en) 2014-06-10 2016-09-13 GM Global Technology Operations LLC Cylinder firing fraction determination and control systems and methods
US9341128B2 (en) 2014-06-12 2016-05-17 GM Global Technology Operations LLC Fuel consumption based cylinder activation and deactivation control systems and methods
US9556811B2 (en) 2014-06-20 2017-01-31 GM Global Technology Operations LLC Firing pattern management for improved transient vibration in variable cylinder deactivation mode
US9599047B2 (en) 2014-11-20 2017-03-21 GM Global Technology Operations LLC Combination cylinder state and transmission gear control systems and methods
WO2016118917A1 (fr) * 2015-01-23 2016-07-28 Pinnacle Engines, Inc. Modélisation prédictive de la température de la paroi pour le contrôle de distribution de carburant et de l'allumage dans des moteurs à combustion interne
US10337441B2 (en) 2015-06-09 2019-07-02 GM Global Technology Operations LLC Air per cylinder determination systems and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112739A (ja) * 1988-10-21 1990-04-25 Toyota Motor Corp 内燃機関の吸入空気温度推定装置
US5931140A (en) * 1997-05-22 1999-08-03 General Motors Corporation Internal combustion engine thermal state model
DE19739901B4 (de) 1997-09-11 2008-04-17 Robert Bosch Gmbh Verfahren und Einrichtung zur Steuerung einer Brennkraftmaschine abhängig von Betriebskenngrößen
SE522112C2 (sv) * 1997-09-22 2004-01-13 Volvo Car Corp Förfarande och anordning för bestämning av temperaturvärden hos materialet i åtminstone en temperaturkritisk komponent

Also Published As

Publication number Publication date
US20040260450A1 (en) 2004-12-23
WO2003048550A1 (fr) 2003-06-12
EP1454049A1 (fr) 2004-09-08
US6983737B2 (en) 2006-01-10
DE50211638D1 (de) 2008-03-20
JP2005511950A (ja) 2005-04-28

Similar Documents

Publication Publication Date Title
EP1454049B1 (fr) Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne
DE602005000052T2 (de) Vorrichtung zur Bestimmung der Quantität der Einlassluft in einem Zylinder
DE112006003205B4 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
EP1725757B1 (fr) Procede et dispositif pour commander le flux d'air des moteurs a combustion interne
DE102013204684B4 (de) Schätzvorrichtung für die Einlassluftmenge und interne Agr-Rate in einem Innenverbrennungsmotor
WO2006069853A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE10362028B4 (de) Verfahren zur Bestimmung einer Frischgasmenge
EP3308007B1 (fr) Détermination du remplissage d'air, dispositif de commande de moteur et moteur à combustion interne
DE102014205992B4 (de) Verbrennungsmotor-Steuervorrichtung
DE69000898T2 (de) Methode und geraet, um die luftmenge in einem zweitaktmotor mit kurbelgehaeusespuelung festzustellen.
DE102007000821A1 (de) Einlassmengenabtastvorrichtung einer Brennkraftmaschine
DE69915005T2 (de) Verfahren zur Steuerung der Einspritzung in den Brennkammer einer Brennkraftmaschine
DE10213138B4 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine
DE19952836C1 (de) Verfahren zur Überwachung eines Sekundärluftsystems in Verbindung mit dem Abgassystem eines Kraftfahrzeugs
DE102004026006B4 (de) Steuergerät und Steuerverfahren für eine Brennkraftmaschine
DE19727866C2 (de) Einrichtung zum Steuern einer Brennkraftmaschine
DE102005032623A1 (de) Verfahren zur Bestimmung der zylinderselektiven Ruß- und NOx-Emissionen einer Dieselbrennkraftmaschine und seine Verwendung
DE19900729A1 (de) System zum Betreiben einer Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP2458185B1 (fr) Procédé destiné au fonctionnement d'un moteur à combustion interne, élément de commande, moteur à combustion interne
DE102007057142A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP3430252B1 (fr) Procédé et dispositif de commande pour la détermination d'une quantité d'un composant de remplissage dans un cylindre d'un moteur à combustion interne
DE10300794B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors
DE102005055952A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
AT6293U1 (de) Verfahren zur regelung bzw. steuerung einer in einem kreisprozess arbeitenden brennkraftmaschine
DE10314677A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GROSS, JOCHEN

Inventor name: MALLEBREIN, GEORG

Inventor name: DRUNG, MICHAEL

Inventor name: MARTIN, LIONEL

Inventor name: KLEIN, EBERHARD

Inventor name: REUSCHENBACH, LUTZ

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GROSS, JOCHEN

Inventor name: MARTIN, LIONEL

Inventor name: DRUNG, MICHAEL

Inventor name: KLEIN, EBERHARD

Inventor name: MALLEBREIN, GEORG

Inventor name: REUSCHENBACH, LUTZ

17Q First examination report despatched

Effective date: 20070613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50211638

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080430

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110729

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110721

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110728

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120724

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190924

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50211638

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202