EP1454049B1 - Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne - Google Patents
Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne Download PDFInfo
- Publication number
- EP1454049B1 EP1454049B1 EP02762224A EP02762224A EP1454049B1 EP 1454049 B1 EP1454049 B1 EP 1454049B1 EP 02762224 A EP02762224 A EP 02762224A EP 02762224 A EP02762224 A EP 02762224A EP 1454049 B1 EP1454049 B1 EP 1454049B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- intake air
- combustion chamber
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 136
- 238000000034 method Methods 0.000 title claims description 26
- 238000004590 computer program Methods 0.000 title claims description 7
- 230000001105 regulatory effect Effects 0.000 title claims description 6
- 230000006870 function Effects 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 7
- 230000001419 dependent effect Effects 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 24
- 238000004364 calculation method Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005293 physical law Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/025—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0402—Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
Definitions
- the invention relates firstly to a method for operating an internal combustion engine depending on operating characteristics, such as rotational speed of a crankshaft, temperature of the internal combustion engine and / or temperature of the intake air, in which from a detected or modeled temperature of the intake air in a region remote from the combustion chamber at least approximately a temperature of sucked air is obtained in a combustion chamber near area or in the combustion chamber itself.
- a temperature state model for an internal combustion engine is known.
- a network of temperature nodes and heat transfer branches is used to estimate the temperature conditions.
- a temperature change function is determined over a distance x as a function of a mass flow and a wall temperature and a length and a diameter of the heat conduction.
- sensors with which the temperature of the intake air can be measured are not mounted in the immediate vicinity of the combustion chambers of the internal combustion engine, but, for. in the air filter housing, in an air mass meter, in a throttle body or in combination with a sensor for measuring the air pressure in the intake manifold.
- the DE 197 39 901 A1 therefore suggests a correction of the measured temperature of the intake air.
- a weighting factor is used, which is calculated by means of characteristic curves or characteristic maps as a function of the intake air temperature, the engine temperature and an operating point of the internal combustion engine.
- the present invention has the object, a method of the type mentioned in such a way that it can be programmed easily and provides more accurate results.
- the method according to the invention is based on several assumptions:
- the heating of the intake fresh air is brought about by the contact with a typical component located upstream of the combustion chamber or at least one component of the internal combustion engine located upstream of the combustion chamber.
- This component or this component represents all lying in the flow path of the intake air warm components and components of the internal combustion engine.
- the contact time typical of an internal combustion engine type can in turn be determined empirically in a simple manner. With the method according to the invention, it is thus possible to calculate the heating of the fresh air taken in by an internal combustion engine on the basis of the usual thermal equations without having to program complicated characteristic curves or characteristic diagrams.
- the contact time typical for a particular type of internal combustion engine be obtained with the aid of test runs of the internal combustion engine type under different operating conditions, in particular cold and warm internal combustion engines. Even test runs with cold and heated intake air are possible. This is a procedure that has shown very good results in practice.
- the typical contact time is inversely proportional to the speed of the crankshaft. Through the said test runs, the corresponding proportionality constant can be determined in a simple manner.
- the typical contact time should be in the range of the duration of an intake stroke, since with flowing fluid, the heat transfer is much stronger than at dormant fluid.
- the determination of the temperature of the intake air in the combustion chamber near the area or in the combustion chamber itself under the assumption that the between the intake air and the typical Component of the internal combustion engine, with which the intake air comes into thermal contact the amount of heat exchanged depends on a difference between the measured and modeled in a combustion chamber remote area temperature of the intake air and the temperature of the typical component of the internal combustion engine, with the sucked air in thermal contact occurs.
- the dependence of the exchanged heat quantity on the temperature difference between the flowing fresh air and the at least one component is taken into account in addition to the dependence of the exchanged heat quantity on the contact time.
- the precision in determining the heating of the intake fresh air is thereby significantly improved again.
- the temperature of the component of the internal combustion engine the temperature of at least one inlet valve is used. This is based on the consideration that the intake fresh air is heated on its way into the combustion chamber, especially by the very hot inlet valve or its components. This assumption allows a very simple calculation and yet allows a high reliability of the detected temperature of the intake air.
- the temperature of the inlet valve is obtained from a measured temperature of a cylinder head.
- the coolant temperature and the Zytinderkopftemperatur be determined in conventional internal combustion engines anyway by means of sensors.
- the temperature of the inlet valve can be determined with great accuracy. in the In the simplest case, the temperature of the inlet valve can also be set equal to the measured temperature, without this significantly distorting the calculation result.
- the typical contact time is a time constant at which the incoming gas heats up to a certain degree of the differential temperature between the gas and the component.
- the decisive variable in the exponent of the e-function only the rotational speed of the crankshaft of the internal combustion engine remains.
- the corrected intake air temperature can be determined with high precision. Only the conditions for which the typical contact time applies must be determined, for example, by a test.
- the above equation is also referred to as the "adiabatic charge-exchange model" equation.
- the equation takes into account all the effects of the charge cycle.
- the influence of the heat transfer from components of the internal combustion engine to the fresh air is taken into account solely with the aid of the quantity Taevk.
- the suction pressure usually detected by a pressure sensor in the intake pipe, the fresh air charge can thus be determined with high precision, without an air mass sensor being required.
- the invention also relates to a computer program which is suitable for carrying out the method according to one of the preceding claims when it is executed on a computer. It is preferred if the Computer program is stored on a memory, in particular on a flash memory.
- the subject matter of the present invention is also a control and / or regulating device for operating an internal combustion engine.
- it is preferred if it comprises a memory on which a computer program of the above type is stored.
- an internal combustion engine carries the overall reference numeral 10. It comprises a plurality of cylinders, of which in Fig. 1 only that with the reference numeral 12 is visible. In it, a piston 14 is slidably guided, which limits a combustion chamber 16. About a connecting rod (without reference numeral), the piston 14 is connected to a crankshaft 18 shown only symbolically.
- Fresh air is supplied to the combustion chamber 16 via an intake pipe 20 and an intake valve 22.
- an injection nozzle 24 is present, which is connected to a fuel system 26.
- a throttle valve 28 is arranged in the intake pipe 20, which can be moved by a servomotor 30 in a desired position. Again upstream of the throttle valve 28, the temperature of the supplied fresh air from a sensor 32 and the pressure of the supplied fresh air are tapped by a sensor 34.
- the hot combustion exhaust gases are discharged from the combustion chamber 16 via an outlet valve 36 and an exhaust pipe 38.
- a catalyst 40 cleans the exhaust gases. Between the exhaust valve 36 and the catalyst 40, the temperature of the exhaust gas from a temperature sensor 42 and the pressure of the exhaust gas from a pressure sensor 44 is tapped.
- the internal combustion engine 10 has a double continuous camshaft control. This means that the closing or opening times of the intake valve 22 and the exhaust valve 36 can be adjusted continuously.
- the intake valve 22 is actuated by an intake camshaft 46 and the exhaust valve 36 by an exhaust camshaft 48.
- Upper actuators 50 and 52, the camshafts 46 and 48 are adjusted in operation so that the desired closing or opening times are present.
- the present in the combustion chamber 16 of the internal combustion engine 10 fuel-air mixture is ignited by a spark plug 54, which in turn is driven by an ignition system 56.
- the operation of the internal combustion engine 10 is controlled by a control and regulating device 58.
- the control and regulating device 58 is connected on the input side to the temperature sensor 32 and the pressure sensor 34 in the intake pipe 20. It also receives signals from the temperature sensor 42 and the pressure sensor 44 in the exhaust pipe 38.
- An encoder 60 also provides signals from which the speed of the crankshaft 18 and its angular position can be obtained.
- sensors 62 and 64 are provided which detect the angular position of the intake camshaft 46 and the exhaust camshaft 48, respectively.
- the control and regulating unit 58 is connected to the injection nozzle 24, the servomotor 30 of the throttle valve 28, the actuators 50 and 52 of the intake camshaft 46 and the exhaust camshaft 48 and to the ignition system 56.
- a temperature sensor 66 detects the temperature of a cylinder head (not shown) of the internal combustion engine 10.
- a pressure sensor 34 is present in the intake pipe instead of the pressure sensor. In this case, the pressure in the intake pipe would have to be determined from the detected signals to determine the air charge of the combustion chamber.
- the signal of the temperature sensor 66 is fed into a processing block 68.
- the temperature Tev of the inlet valve 22 and determined by a numerical model from the temperature Tmot of the cylinder head. With such a model, a temperature of the intake pipe 20 which is typical for the present calculation could also be determined as a whole.
- the Eihlassventil 22 is a component so far typical, as it represents the typical for the present type of internal combustion engine 10 for the warming of the intake air warm components of the internal combustion engine 10. From a temperature Tans of the intake air detected by the sensor 3.2, a temperature Taev is determined in a processing block (not shown) on the basis of a numerical model.
- the value nmot of the rotational speed of the crankshaft 18 provided by the sensor 60 is compared with the value 1 in FIG. 72, and the higher value is outputted.
- the output of block 72 is divisor in a division block. 74 used. The comparison in 72 prevents the divisor from assuming the value zero.
- NMOTW is a typical engine speed at which the intake air heats up by the amount 1 / e (Tev-Taev) as it flows into the combustion chamber 16. It corresponds to a normalized and for a certain type of engine and a specific operating condition typical contact time, which will be discussed in more detail below. It is determined empirically. At higher speeds, the temperature equalization is lower.
- the output of the characteristic EXPSLP in block 76 is fed to a multiplier 78, in which also the difference formed between the temperature Tev of Inlet valve 22 and the temperature Taev the intake air is fed.
- the output of the block 78 is added in 80 to the temperature Taev of the intake air, and the result is output as the corrected intake air Taevk.
- This corrected temperature Taevk is in a very good approximation to the temperature of the fresh air trapped at the end of an intake stroke in the combustion chamber 16 of the internal combustion engine 10 (that is to say in the region next to the combustion chamber which is even possible).
- This formula takes into account that the determination of the fresh air present in the combustion chamber takes place after the end of the intake stroke using a so-called "typical contact time". This is determined for a certain type of internal combustion engine and a specific operating state by tests, for example, test runs of the internal combustion engine in the cold and in the warm state. Often, it corresponds approximately to that period during which the sucked fresh air has passed the hot inlet valve 22 before it has entered the combustion chamber 16 itself. In the present embodiment, it is approximately equal to the duration of an intake stroke. From the typical contact time is determined by a normalization with the speed for which the typical contact time was determined, the typical speed NMOTWK.
- Fresh air also takes into account the difference between the temperature of the intake air measured by the temperature sensor 32 and the temperature Tev of the injection valve 22 modeled from the temperature Tmot of the cylinder head of the internal combustion engine 10.
- the temperature Taevk determined in the above-described manner of the fresh air trapped in the combustion chamber 16 at the end of the intake stroke is used for determining a relative filling of the combustion chamber 16 with fresh air.
- the formula given in FIG. 4 also takes into account optionally residual gas present at the end of the intake stroke in the combustion chamber 16. Such a residual gas is then present in the combustion chamber 16 when the internal combustion engine 10 has an internal or external exhaust gas recirculation.
- Trgk is the mean temperature of the total residual gas, assuming that it is expanded to the pressure ps prevailing in the intake pipe 20 - undiluted with fresh air.
- the FUPSRLROH factor is an operating point dependent variable independent of the pressure ps in the intake manifold 20 and the temperature Taev of the intake fresh air.
- FUPSRLROH describes the slope of a characteristic curve which links the relative filling of the combustion chamber 16 with fresh air with the pressure ps in the intake manifold 20.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Claims (10)
- Procédé de gestion d'un moteur à combustion interne (10) en fonction de paramètres de fonctionnement tel que par exemple le régime (nmot) vitesse de rotation) d'un vilebrequin (18), la température (Tmot) du moteur à combustion interne (10) et/ou la température de l'air aspiré (Taev),
selon lequel
à partir d'une température saisie ou modélisée (Taev) de l'air aspiré, dans une zone (20) éloignée de la chambre de combustion, on détermine au moins approximativement une température (Taevk) de l'air aspiré dans une zone proche de la chambre de combustion ou directement dans la chambre de combustion (16),
la détermination de la température (Taevk) de l'air aspiré dans la zone proche de la chambre de combustion ou dans la chambre de combustion (16) même, se faisant en supposant que l'air aspiré est à une température initiale modélisée ou saisie (Taevk),
l'air aspiré venant au contact thermique avec un composant caractéristique (22) pendant une durée de contact caractéristique (tkontakt) du type de moteur à combustion interne (10) et de l'état de fonctionnement du moteur à combustion interne (10), et le composant caractéristique à une température modélisée ou une température saisie (Tev),
caractérisé en ce que
le composant caractéristique du moteur à combustion interne (10) est une soupape d'admission (22) dont la température est définie en fonction de la température de la culasse. - Procédé selon la revendication 1,
caractérisé en ce que
la durée de contact (tkontakt) caractéristique d'un moteur à combustion interne s'obtient à l'aide d'essais du type de moteur à combustion interne dans des conditions de fonctionnement différentes notamment dans le cas d'un moteur froid et d'un moteur chaud. - Procédé selon l'une des revendications 1 ou 2,
caractérisé en ce que
la température (Taevk) a de l'air aspiré dans la zone proche de la zone de combustion ou directement dans la chambre de combustion (16) dépend de la différence entre la température (Taev) mesurée ou modélisée de l'air aspiré, dans la zone (20) éloignée de la chambre de combustion et de la température (Tev) du composant caractéristique (22) du moteur à combustion interne (10) en contact thermique avec l'air aspiré. - Procédé selon l'une des revendications précédentes,
caractérisé en ce que
dans le cas d'un moteur à combustion interne (10) à quatre temps, la température (Taevk) de l'air aspiré dans la zone proche de la chambre de combustion ou directement dans la chambre de combustion (16) se définit par la formule suivante :
et dans cette formule
Taevk = température corrigée de l'air aspiré.
Taev = température saisie ou modélisée de l'air aspiré dans une zone éloignée de la chambre de combustion,
Tev = température modélisée du composant caractéristique du moteur à combustion interne
nmot = la vitesse de rotation saisie, du vilebrequin du moteur à combustion interne,
tkontakt = durée de contact caractéristique pendant laquelle l'air aspiré s'échauffe (1-1/e)*(Tev - Taev). - Procédé selon l'une des revendications précédentes 1 à 4,
caractérisé en ce que
dans le cadre d'un moteur à combustion interne (10) à quatre temps, la détermination de la température (Taevk) de l'air aspiré dans la zone proche de la chambre de combustion ou directement dans la chambre de combustion (16) est définie selon la formule suivante :
dans laquelle
Taevk = température corrigée de l'air aspiré
Taev = température saisie ou modélisée de l'air aspiré dans une zone éloignée de la chambre de combustion,
Tev = température modélisée du composant caractéristique du moteur à combustion interne
nmot = vitesse de rotation saisie du vilebrequin du moteur à combustion interne
NMOTWK = vitesse de rotation caractéristique du vilebrequin du moteur à combustion interne à laquelle s'échauffe l'air aspiré
(1-1 / e) * (Tev - Taev). - Procédé selon les revendications précédentes
caractérisé en ce que
la température (Taevk) de l'air aspiré dans la zone proche de combustion ou directement dans la chambre de combustion (16) est utilisée pour déterminer la charge (rffg) de la chambre de combustion (16) à la fin du temps d'aspiration. - Procédé selon la revendication 6,
caractérisé en ce que
la charge (rffg) de la chambre de combustion (16) se détermine à l'aide de l'équation suivante :
dans laquelle
rffg = charge d'air frais aspiré
FUPSRLROH = grandeur dépendant du point de fonctionnement
Rfrg = charge de gaz résiduelle normée, rapportée à la cylindrée
Taevk = température corrigée de l'air aspiré
ps = pression dans la conduite d'admission
Trgk = température du gaz résiduel supposé non mélangé, expansé à la pression de la conduite d'admission mais idéalisé (en K). - Programme d'ordinateur,
caractérisé en ce qu'
il est prévu pour la mise en oeuvre du procédé selon l'une des revendications précédentes lorsque le programme est exécuté dans un ordinateur. - Programme d'ordinateur selon la revendication 8,
caractérisé en ce qu'
il est enregistré dans une mémoire notamment une mémoire flash. - Appareil de commande et/ou de régulation (58) pour la gestion d'un moteur à combustion interne (10),
caractérisé en ce qu'
il comporte une mémoire dans laquelle est enregistré un programme d'ordinateur selon l'une des revendications 8 ou 9.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10159389 | 2001-12-04 | ||
DE10159389 | 2001-12-04 | ||
DE10223677 | 2002-05-28 | ||
DE10223677A DE10223677A1 (de) | 2001-12-04 | 2002-05-28 | Verfahren, Computerprogramm, sowie Steuer-und/oder Regelgerät zum Betreiben einer Brennkraftmaschine |
PCT/DE2002/002724 WO2003048550A1 (fr) | 2001-12-04 | 2002-07-24 | Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1454049A1 EP1454049A1 (fr) | 2004-09-08 |
EP1454049B1 true EP1454049B1 (fr) | 2008-01-30 |
Family
ID=26010707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02762224A Expired - Lifetime EP1454049B1 (fr) | 2001-12-04 | 2002-07-24 | Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne |
Country Status (5)
Country | Link |
---|---|
US (1) | US6983737B2 (fr) |
EP (1) | EP1454049B1 (fr) |
JP (1) | JP2005511950A (fr) |
DE (1) | DE50211638D1 (fr) |
WO (1) | WO2003048550A1 (fr) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070163243A1 (en) * | 2006-01-17 | 2007-07-19 | Arvin Technologies, Inc. | Exhaust system with cam-operated valve assembly and associated method |
FR2907509A1 (fr) * | 2006-10-19 | 2008-04-25 | Peugeot Citroen Automobiles Sa | Procede d'estimation de parametres caracteristiques d'un moteur thermique et de controle des flux thermiques appliques a des composants de ce moteur |
US8352158B2 (en) | 2011-11-21 | 2013-01-08 | Ford Global Technologies, Llc | Method and system for compensating engine thermal conditions |
US9534550B2 (en) | 2012-09-10 | 2017-01-03 | GM Global Technology Operations LLC | Air per cylinder determination systems and methods |
US10227939B2 (en) | 2012-08-24 | 2019-03-12 | GM Global Technology Operations LLC | Cylinder deactivation pattern matching |
US9726139B2 (en) | 2012-09-10 | 2017-08-08 | GM Global Technology Operations LLC | System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated |
US9382853B2 (en) | 2013-01-22 | 2016-07-05 | GM Global Technology Operations LLC | Cylinder control systems and methods for discouraging resonant frequency operation |
US9458778B2 (en) | 2012-08-24 | 2016-10-04 | GM Global Technology Operations LLC | Cylinder activation and deactivation control systems and methods |
US9650978B2 (en) | 2013-01-07 | 2017-05-16 | GM Global Technology Operations LLC | System and method for randomly adjusting a firing frequency of an engine to reduce vibration when cylinders of the engine are deactivated |
US9638121B2 (en) * | 2012-08-24 | 2017-05-02 | GM Global Technology Operations LLC | System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass |
US9416743B2 (en) | 2012-10-03 | 2016-08-16 | GM Global Technology Operations LLC | Cylinder activation/deactivation sequence control systems and methods |
US9376973B2 (en) | 2012-09-10 | 2016-06-28 | GM Global Technology Operations LLC | Volumetric efficiency determination systems and methods |
US9458779B2 (en) * | 2013-01-07 | 2016-10-04 | GM Global Technology Operations LLC | Intake runner temperature determination systems and methods |
US9719439B2 (en) | 2012-08-24 | 2017-08-01 | GM Global Technology Operations LLC | System and method for controlling spark timing when cylinders of an engine are deactivated to reduce noise and vibration |
US9458780B2 (en) | 2012-09-10 | 2016-10-04 | GM Global Technology Operations LLC | Systems and methods for controlling cylinder deactivation periods and patterns |
US9494092B2 (en) | 2013-03-13 | 2016-11-15 | GM Global Technology Operations LLC | System and method for predicting parameters associated with airflow through an engine |
US9441550B2 (en) | 2014-06-10 | 2016-09-13 | GM Global Technology Operations LLC | Cylinder firing fraction determination and control systems and methods |
US9341128B2 (en) | 2014-06-12 | 2016-05-17 | GM Global Technology Operations LLC | Fuel consumption based cylinder activation and deactivation control systems and methods |
US9556811B2 (en) | 2014-06-20 | 2017-01-31 | GM Global Technology Operations LLC | Firing pattern management for improved transient vibration in variable cylinder deactivation mode |
US9599047B2 (en) | 2014-11-20 | 2017-03-21 | GM Global Technology Operations LLC | Combination cylinder state and transmission gear control systems and methods |
WO2016118917A1 (fr) * | 2015-01-23 | 2016-07-28 | Pinnacle Engines, Inc. | Modélisation prédictive de la température de la paroi pour le contrôle de distribution de carburant et de l'allumage dans des moteurs à combustion interne |
US10337441B2 (en) | 2015-06-09 | 2019-07-02 | GM Global Technology Operations LLC | Air per cylinder determination systems and methods |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02112739A (ja) * | 1988-10-21 | 1990-04-25 | Toyota Motor Corp | 内燃機関の吸入空気温度推定装置 |
US5931140A (en) * | 1997-05-22 | 1999-08-03 | General Motors Corporation | Internal combustion engine thermal state model |
DE19739901B4 (de) | 1997-09-11 | 2008-04-17 | Robert Bosch Gmbh | Verfahren und Einrichtung zur Steuerung einer Brennkraftmaschine abhängig von Betriebskenngrößen |
SE522112C2 (sv) * | 1997-09-22 | 2004-01-13 | Volvo Car Corp | Förfarande och anordning för bestämning av temperaturvärden hos materialet i åtminstone en temperaturkritisk komponent |
-
2002
- 2002-07-24 EP EP02762224A patent/EP1454049B1/fr not_active Expired - Lifetime
- 2002-07-24 US US10/497,723 patent/US6983737B2/en not_active Expired - Fee Related
- 2002-07-24 DE DE50211638T patent/DE50211638D1/de not_active Expired - Lifetime
- 2002-07-24 WO PCT/DE2002/002724 patent/WO2003048550A1/fr active IP Right Grant
- 2002-07-24 JP JP2003549713A patent/JP2005511950A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
US20040260450A1 (en) | 2004-12-23 |
WO2003048550A1 (fr) | 2003-06-12 |
EP1454049A1 (fr) | 2004-09-08 |
US6983737B2 (en) | 2006-01-10 |
DE50211638D1 (de) | 2008-03-20 |
JP2005511950A (ja) | 2005-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1454049B1 (fr) | Procede, programme informatique et appareil de commande et / ou de regulation permettant de faire fonctionner un moteur a combustion interne | |
DE602005000052T2 (de) | Vorrichtung zur Bestimmung der Quantität der Einlassluft in einem Zylinder | |
DE112006003205B4 (de) | Vorrichtung zum Steuern einer Brennkraftmaschine | |
EP1725757B1 (fr) | Procede et dispositif pour commander le flux d'air des moteurs a combustion interne | |
DE102013204684B4 (de) | Schätzvorrichtung für die Einlassluftmenge und interne Agr-Rate in einem Innenverbrennungsmotor | |
WO2006069853A1 (fr) | Procede de fonctionnement d'un moteur a combustion interne | |
DE10362028B4 (de) | Verfahren zur Bestimmung einer Frischgasmenge | |
EP3308007B1 (fr) | Détermination du remplissage d'air, dispositif de commande de moteur et moteur à combustion interne | |
DE102014205992B4 (de) | Verbrennungsmotor-Steuervorrichtung | |
DE69000898T2 (de) | Methode und geraet, um die luftmenge in einem zweitaktmotor mit kurbelgehaeusespuelung festzustellen. | |
DE102007000821A1 (de) | Einlassmengenabtastvorrichtung einer Brennkraftmaschine | |
DE69915005T2 (de) | Verfahren zur Steuerung der Einspritzung in den Brennkammer einer Brennkraftmaschine | |
DE10213138B4 (de) | Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine | |
DE19952836C1 (de) | Verfahren zur Überwachung eines Sekundärluftsystems in Verbindung mit dem Abgassystem eines Kraftfahrzeugs | |
DE102004026006B4 (de) | Steuergerät und Steuerverfahren für eine Brennkraftmaschine | |
DE19727866C2 (de) | Einrichtung zum Steuern einer Brennkraftmaschine | |
DE102005032623A1 (de) | Verfahren zur Bestimmung der zylinderselektiven Ruß- und NOx-Emissionen einer Dieselbrennkraftmaschine und seine Verwendung | |
DE19900729A1 (de) | System zum Betreiben einer Brennkraftmaschine insbesondere für ein Kraftfahrzeug | |
EP2458185B1 (fr) | Procédé destiné au fonctionnement d'un moteur à combustion interne, élément de commande, moteur à combustion interne | |
DE102007057142A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine | |
EP3430252B1 (fr) | Procédé et dispositif de commande pour la détermination d'une quantité d'un composant de remplissage dans un cylindre d'un moteur à combustion interne | |
DE10300794B4 (de) | Verfahren zum Betreiben eines Verbrennungsmotors | |
DE102005055952A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine | |
AT6293U1 (de) | Verfahren zur regelung bzw. steuerung einer in einem kreisprozess arbeitenden brennkraftmaschine | |
DE10314677A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040705 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GROSS, JOCHEN Inventor name: MALLEBREIN, GEORG Inventor name: DRUNG, MICHAEL Inventor name: MARTIN, LIONEL Inventor name: KLEIN, EBERHARD Inventor name: REUSCHENBACH, LUTZ |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GROSS, JOCHEN Inventor name: MARTIN, LIONEL Inventor name: DRUNG, MICHAEL Inventor name: KLEIN, EBERHARD Inventor name: MALLEBREIN, GEORG Inventor name: REUSCHENBACH, LUTZ |
|
17Q | First examination report despatched |
Effective date: 20070613 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50211638 Country of ref document: DE Date of ref document: 20080320 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20080430 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110729 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110721 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110728 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120724 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120724 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190924 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50211638 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210202 |