EP1448325B1 - Umformwerkzeug aus kunststoff - Google Patents

Umformwerkzeug aus kunststoff Download PDF

Info

Publication number
EP1448325B1
EP1448325B1 EP02783074A EP02783074A EP1448325B1 EP 1448325 B1 EP1448325 B1 EP 1448325B1 EP 02783074 A EP02783074 A EP 02783074A EP 02783074 A EP02783074 A EP 02783074A EP 1448325 B1 EP1448325 B1 EP 1448325B1
Authority
EP
European Patent Office
Prior art keywords
tool
plastic
tool according
weight
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02783074A
Other languages
English (en)
French (fr)
Other versions
EP1448325A1 (de
Inventor
Mohamed Mekkaoui Alaoui
Jürgen VOSSBERG
Peter Hochwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntsman Advanced Materials Switzerland GmbH
Original Assignee
Huntsman Advanced Materials Switzerland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huntsman Advanced Materials Switzerland GmbH filed Critical Huntsman Advanced Materials Switzerland GmbH
Publication of EP1448325A1 publication Critical patent/EP1448325A1/de
Application granted granted Critical
Publication of EP1448325B1 publication Critical patent/EP1448325B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/20Making tools by operations not covered by a single other subclass

Definitions

  • the present invention relates to a tool consisting of a plastic mass, which consists of plastic and a material embedded in the plastic material with sliding properties, wherein the tool is a forming tool.
  • Tools in the context of the present invention are, for example, deep-drawing tools for the forming of metal components, for example automobile components.
  • DE-A-19 10 705 describes tools for producing parts of plastic foams which partly have a porous structure. It is possible to use master models made of foam for the production of the foaming tools, with substantially granular to pulverized aluminum and copper alloys and graphite being considered suitable as base materials for the required substance mixtures.
  • the binders used are organic or inorganic binders. The materials mentioned are suitable for foaming tools, but are not suitable for the high loads acting on the tools during forming processes.
  • the object of the invention is to provide a plastic existing tool, which on the one hand has good sliding properties and on the other hand also improved wear characteristics and high pressure resistance.
  • the solution to this problem provides an inventive tool with the features of the main claim.
  • the plastic mass contains a proportion of embedded aluminum to achieve increased compressive strength and wear resistance, and further a stored material with sliding properties, so that the tool has a quasi self-lubricating effect.
  • the use of an additional lubricant in the region between the forming tool and the workpiece to be deformed is generally unnecessary.
  • the life of the tool can be significantly improved by the inventions of the invention.
  • As a material with sliding properties such as graphite or molybdenum sulfide into consideration. Particularly preferred is the use of graphite powder.
  • the aluminum may be contained in the plastic tool as a filler, for example in the form of aluminum powder or aluminum particles of larger grain size. Tools of this type can preferably be produced from a correspondingly composed casting resin or from a block material.
  • the tool contains a weight fraction of more than 50% of aluminum filler.
  • the proportion by weight of aluminum filler of the plastic mass for the production of the tool can be a multiple of the plastic content.
  • this weight fraction is at least 60%, preferably about 70% aluminum filler, preferably aluminum powder, based on the total weight of the plastic mass.
  • the proportion by weight of the material embedded in the plastic material with sliding properties is generally less than the plastic content and / or the aluminum content of the plastic mass.
  • the tool contains a weight fraction of 20% to 50% of graphite powder based on the weight fraction of the plastic contained in the tool, d. h., Not based on the total weight of the plastic mass, but based on the pure plastic content.
  • the proportion by weight of the graphite relative to the total weight of the material constituting the tool is preferably from 3% to 15% of graphite.
  • the weight ratio between the graphite content and the aluminum content is preferably between 1:15 and 1: 6.
  • deep-drawing tools made of the plastics material of the type mentioned.
  • these can be stamps or blank holders for the deep-drawing of metal parts.
  • the material with sliding properties is prevented during deep drawing z.
  • particles, in particular filler particles are torn out of the plastic matrix and thereby cracks in the tool.
  • graphite in the form of graphite powder can be incorporated as a material with sliding properties into the plastic.
  • the use of graphite powder in a particle size of between 50 ⁇ m and 250 ⁇ m has proved to be particularly advantageous.
  • the tools according to the invention can consist essentially completely of a plastic with the aforementioned inclusions, d. h., That they consist of a homogeneous plastic material throughout and thus differ from the tools according to the aforementioned DE 93 18 272.4 U1, where only one designated as a guide part front layer of the tool consists of a plastic with certain sliding properties.
  • FIG. 1 shows a highly schematically simplified perspective view of an arrangement of tools for the deep drawing of a sheet metal part 10. It is a tool upper part 11 for forming the sheet metal part 10 by deep drawing method and a lower tool part 12 in the form of a die upper 11 female die.
  • the tool upper part 11 consists of a Plastic of the type according to the invention, which contains embedded aluminum particles 13, as well as embedded graphite powder 14 to achieve a self-lubricating effect during the forming of the sheet metal part 10th
  • the tool upper part 11 was produced from a casting resin consisting of plastic, aluminum powder as filler and graphite powder.
  • plastic aluminum powder as filler and graphite powder.
  • 1 kg of plastic, 3 kg of aluminum powder and 200 g of graphite powder were used for a total mass of 4.2 kg of this material.
  • the grain size of the graphite powder varied between 50 and 250 ⁇ m.
  • the plastic tool had very good lubricating properties and a 40% higher compressive strength.
  • the formation of cracks in tools made of other plastics with conventional fillers such as sand and iron in the front layer of the tool which results from the fact that filling particles are torn out of the basic matrix of the plastic material during the deep-drawing process, did not occur when using tools made of the plastic according to the invention.
  • the deep-drawing tools produced from the above-mentioned plastic material are suitable for forming workpieces in high numbers, for example up to 100,000.00 or more.
  • FIG. 2 illustrates the forces acting on the tool during the deep-drawing with materials without a sufficient lubricating effect. It is shown in a highly schematically simplified sectional view of a tool upper part 11, which was inventively made of solid cast material consisting of a plastic according to the invention with aluminum and graphite powder as fillers.
  • the lower tool part 15 was cast from the plastic material according to the invention.
  • the forming sheet metal part 10 is located before the onset of the deep drawing process in the gap 16 between the upper tool part 11 and lower tool part 15.
  • the sheet metal part 10 to be formed is deformed, forces occurring in the direction of the arrow 17 perpendicular to the direction of movement.
  • the front surfaces 18, 19 of the two tools 11, 15 are subjected to shear.
  • the incorporated in the plastic of the tools 11, 15 graphite powder provides a lubricating effect and good sliding properties in the boundary region between the front surfaces 18, 19, the tools 11, 15 and the drawn sheet metal part 10th
  • Figure 3 illustrates the percentage change in the modulus of elasticity of tools made of different plastics, which was determined by means of compression tests in the context of the invention. It was in the diagram in the column 20 far left the Modulus of elasticity of a plastic filled only with aluminum and assumed as a relative reference value for the other plastics with the value 100. In the second column from the right, designated by 22, the relative value of the modulus of elasticity for an aluminum-filled PTFE is shown which, as can be seen, reaches only about 60% of the plastic shown in column 20 in FIG. For comparison, in contrast, the elastic moduli for two plastics produced according to the invention are reproduced in FIG. The column 23 on the far right in the illustration shows the value for a plastic filled with aluminum and MoS 2 as a sliding material.
  • the modulus of elasticity is more than 20% higher than that of the column 20 aluminum-filled plastic only.
  • column 21 (second from the left in the illustration), the relative value of modulus of elasticity for one with graphite and Aluminum filled plastic reproduced. As can be seen from the illustration, this value is 40% higher than the modulus of elasticity for a plastic filled only with aluminum according to column 20 on the far left in the illustration.
  • the value given in column 21 in FIG. 3 was achieved by adding 20% graphite powder to an aluminum-filled plastic for which the value in column 20 is reproduced.
  • FIG. 4 shows the deep-drawing die for valve cover 30 made of a plastic according to the invention from the underside. Thermoforming tests were carried out with this tool 30. Based on these tests, it was found that both the dimensional accuracy, the service life and the self-lubricating effect compared to tools made of other plastics greatly improved. Tools made from conventional plastics were worn out after a short time. By embedding only about 20% of graphite powder in a filled with aluminum powder plastic significantly improved friction and wear ratios were achieved with the tool 30 shown in Figure 4.
  • the deep-drawing die has two characteristic shaping elements 31, 32 for producing the recesses or raised areas typical of the shape of the valve cover.
  • FIG. 6 shows exemplary valve caps with various materials made by means of the deep drawing tool 30 shown in FIG.
  • the valve covers 40, 41, 42 shown in FIG. 6 were produced by forming titanium sheet, aluminum sheet and galvanized sheet steel, each with a material thickness of 1 mm. It can be seen in the illustration of Figure 6 readily the characteristic forming areas, namely the flat cylindrical recess 43 (or increase, if you look from the bottom of the thermoformed valve cover 41 of Figure 6).
  • This Forming region 43 can be assigned to the deformation element 32 of the deep-drawing tool 30 according to FIG.
  • the deformation region 44 can be assigned to the deformation element 31 of the deep-drawing tool 30 according to FIG.
  • the valve cover shown in Figure 6 with the tool 30 according to the invention could be in all three materials titanium sheet, aluminum sheet, galvanized steel sheet, achieve very good results.
  • FIG. 5 shows the die 50 associated with the deep-drawing die 30 according to FIG. 4 for producing valve covers 40, 41, 42, as shown in FIG.
  • the punch 30 is lowered.
  • the approximately rectangular shape of the die 50 which is rounded off at the corners, can be seen in FIG. 5.
  • the forming region 51 assigned to the approximately cylindrical forming element 32 can be seen as a sink in the deep-drawing tool serving as a die 50.
  • the die 50 according to FIG. 5 was also produced from the plastic according to the invention containing aluminum and graphite powder.
  • the advantages of the plastic tools from the materials according to the invention over conventional steel tools are, for example, up to about 70% lower material costs.
  • the plastics used for the production of the tools can be processed better and thus the machine use is lower in the manufacture of the tools.
  • the energy and power requirements in the machine work for the production of tools can be z. B. reduce by 65%.
  • the training period is also up to, for example, 60% shorter than with steel tools.
  • the use of plastics according to the invention for the production of the tools leads to a considerable weight reduction of, for example, up to 60% and thereby to a lower load on the cranes.
  • the tools can be changed more flexibly and cost-effectively, with high cost, time and energy savings.
  • the tools are also recyclable because they can be fully reused as fillers to make new plastic tools, eliminating disposal costs.
  • the elastic behavior of the plastics leads to an increase in the quality of the formed workpieces.
  • Embedding graphite in the plastic of the tools creates a self-lubricating effect on the contact layers of the tool. If it is even necessary to use additional liquid lubricants during forming, then the amount of lubricant required can be substantially reduced, for example by about 3 g / m 2 .
  • the friction conditions during Deep drawing is improved by the introduction of graphite powder in the plastic. By eliminating or reducing liquid lubricants during deep drawing, the pollution in the work area is significantly reduced and thus relieved the environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Lubricants (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Werkzeug bestehend aus einer Kunststoffmasse, welche aus Kunststoff und einem in dem Kunststoff eingelagerten Material mit Gleiteigenschaften besteht, wobei das Werkzeug ein Umformwerkzeug ist. Werkzeuge im Sinne der vorliegenden Erfindung sind beispielsweise Tiefziehwerkzeuge für das Umformen von Bauteilen aus Metall, beispielsweise Automobilbauteilen.
  • Herkömmlicherweise werden beim Tiefziehen Werkzeuge aus Stahl oder Grauguss verwendet. Seit einiger Zeit verwendet man zum Umformen auch bereits Kunststoffe als Werkzeugwerkstoffe, z. B. Kunststoffe, die metallische Füllstoffe enthalten. Diese Kunststoffe haben den Vorteil, dass sie kostengünstigere Werkstoffe darstellen. Allerdings konnte festgestellt werden, dass solche Werkzeuge auf Kunststoffbasis in bestimmten Anwendungsfällen für Umformwerkzeuge nicht oder nur bedingt einsetzbar sind. Dies gilt insbesondere bei Anwendungen im Tiefziehbereich, bei denen Werkstücke in hohen Stückzahlen umgeformt werden müssen, so dass das Werkzeug einem hohen Verschleiß unterliegt. Werkzeuge aus Kunststoffen weisen zudem in diesen Anwendungsfällen eine zu geringe Druckfestigkeit auf.
  • Die DE 93 18 272.4 U1 beschreibt ein Werkzeug für die spanlose Verformung von Werkstücken der eingangs genannten Gattung, wobei das Werkzeug an sich aus einem metallischen Werkstoff, insbesondere Grauguss besteht, aber ein Führungsteil des Werkzeugs, welches eine Gleitfläche aufweist, aus einem Duroplast mit Faser- oder Gewebeeinlage und mit Einlagerungen aus Lamellengraphit hergestellt ist. Dadurch sollen die Gleiteigenschaften verbessert und der Verschleiß gemindert werden.
  • Die DE-A-19 10 705 beschreibt Werkzeuge zur Herstellung von Teilen aus Kunststoffschäumen, die teilweise eine poröse Struktur haben. Es können Urmodelle aus Schaumstoff zur Herstellung der Schäumwerkzeuge benutzt werden, wobei als Grundstoffe für die benötigten Stoffmischungen im Wesentlichen kömige bis pulverisierte Aluminium- und Kupferlegierungen sowie Graphit als geeignet angesehen werden. Als Bindemittel werden organische oder anorganische Binder verwendet. Die genannten Werkstoffe eignen sich für Schäumwerkzeuge, sind jedoch nicht für die bei Umformverfahren auf die Werkzeuge einwirkenden hohen Belastungen geeignet.
  • Die Aufgabe der Erfindung besteht darin, ein aus Kunststoff bestehendes Werkzeug zu schaffen, welches einerseits gute Gleiteigenschaften und andererseits auch verbesserte Verschleißeigenschaften und eine hohe Druckfestigkeit aufweist.
  • Die Lösung dieser Aufgabe liefert ein erfindungsgemäßes Werkzeug mit den Merkmalen des Hauptanspruchs. Erfindungsgemäß enthält die Kunststoffmasse einen Anteil an eingelagertem Aluminium zur Erzielung einer erhöhten Druckfestigkeit und Verschleißbeständigkeit sowie weiterhin ein eingelagertes Material mit Gleiteigenschaften, so dass das Werkzeug quasi einen Selbstschmiereffekt besitzt. Dadurch erübrigt sich in der Regel die Verwendung eines zusätzlichen Schmiermittels im Bereich zwischen dem Umformwerkzeug und dem zu verformenden Werkstück. Anhand von Versuchen konnte gezeigt werden, dass sich die Standzeit des Werkzeugs durch die erfindungsgemäßen Einlagerungen wesentlich verbessern lässt. Als Material mit Gleiteigenschaften kommen beispielsweise Graphit oder Molybdänsulfid in Betracht. Besonders bevorzugt ist die Verwendung von Graphitpulver. Das Aluminium kann als Füllstoff beispielsweise in Form von Aluminiumpulver oder Aluminiumpartikeln mit größerer Körnung in dem Kunststoffwerkzeug enthalten sein. Werkzeuge dieser Art lassen sich vorzugsweise aus einem entsprechend zusammengesetzten Gießharz oder aus einem Blockmaterial herstellen.
  • Gemäß einer bevorzugten Weiterbildung der Erfindung enthält das Werkzeug einen Gewichtsanteil von mehr als 50 % an Aluminiumfüllstoff. Der Gewichtsanteil an Aluminiumfüllstoff der Kunststoffmasse zur Herstellung des Werkzeugs kann ein Mehrfaches des Kunststoffanteils betragen. Vorzugsweise liegt dieser Gewichtsanteil bei wenigstens 60 % vorzugsweise etwa 70 % an Aluminiumfüllstoff, vorzugsweise an Aluminiumpulver, bezogen auf das Gesamtgewicht der Kunststoffmasse.
  • Der Gewichtsanteil des in den Kunststoff eingelagerten Materials mit Gleiteigenschaften ist in der Regel geringer als der Kunststoffanteil und/oder der Aluminiumanteil der Kunststoffmasse. Vorzugsweise enthält das Werkzeug einen Gewichtsanteil von 20 % bis 50 % an Graphitpulver bezogen auf den Gewichtsanteil des in dem Werkzeug enthaltenen Kunststoffs, d. h., nicht bezogen auf das Gesamtgewicht der Kunststoffmasse, sondern bezogen auf den reinen Kunststoffanteil. Der Gewichtsanteil des Graphits bezogen auf das Gesamtgewicht des Werkstoffs, aus dem das Werkzeug besteht, beträgt vorzugsweise 3 % bis 15 % an Graphit. Das Gewichtsverhältnis zwischen dem Graphitanteil und dem Aluminiumanteil liegt vorzugsweise bei zwischen 1 : 15 und 1 : 6.
  • Bevorzugt ist im Rahmen der vorliegenden Erfindung die Herstellung von Tiefziehwerkzeugen aus der Kunststoffmasse der genannten Art. Beispielsweise können dies Stempel oder Blechhalter für das Tiefziehen von Metallteilen sein. Durch die Einlagerung des Materials mit Gleiteigenschaften wird verhindert, dass beim Tiefziehvorgang z. B. eines Metallblechs, welches dabei in einer Zugrichtung senkrecht zur Bewegungsrichtung des Tiefziehwerkzeugs beansprucht wird, Partikel, insbesondere Füllstoffpartikel aus der Kunststoffmatrix herausgerissen werden und dadurch Risse im Werkzeug entstehen. Es wurde bereits erwähnt, dass Graphit in Form von Graphitpulver als Material mit Gleiteigenschaften in den Kunststoff eingelagert werden kann. Es hat sich die Verwendung von Graphitpulver in einer Korngröße von zwischen 50 µm und 250 µm als besonders vorteilhaft erwiesen.
  • Die erfindungsgemäßen Werkzeuge können im wesentlichen vollständig aus einem Kunststoff mit den genannten Einlagerungen bestehen, d. h., dass sie durchgehend aus einem homogenen Kunststoffwerkstoff bestehen und sich damit von den Werkzeugen gemäß der eingangs erwähnten DE 93 18 272.4 U1 unterscheiden, wo lediglich eine als Führungsteil bezeichnete Frontschicht des Werkzeugs aus einem Kunststoff mit gewissen Gleiteigenschaften besteht.
  • Die in den Unteransprüchen genannten Merkmale betreffen bevorzugte Weiterbildungen der erfindungsgemäßen Aufgabenlösung. Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Detailbeschreibung.
  • Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher beschrieben. Dabei zeigen
  • Fig. 1
    eine stark schematisch vereinfachte perspektivische Darstellung zur Erläuterung eines Tiefziehvorgangs mittels eines erfindungsgemäßen Werkzeugs;
    Fig. 2
    eine zweite schematisch vereinfachte Ansicht im Schnitt zur Erläuterung des Tiefziehvorgangs;
    Fig. 3
    ein Diagramm, welches die Veränderung des E-Moduls bei Verwendung von Kunststoffen mit unterschiedlichen Füllstoffen zeigt;
    Fig. 4
    einen Stempel für das Tiefziehen von Ventildeckein für Motoren in perspektivischer Darstellung;
    Fig. 5
    die zugehörige Matrize für das Tiefziehen von Ventildeckein mit einem Stempel gemäß Figur 4;
    Fig. 6
    mittels Stempel und Matrize gemäß den Figuren 4 und 5 tiefgezogene Ventildeckel.
  • Zunächst wird auf Figur 1 Bezug genommen. Die Zeichnung zeigt in stark schematisch vereinfachter perspektivischer Darstellung eine Anordnung von Werkzeugen für das Tiefziehen eines Blechteils 10. Es ist ein Werkzeugoberteil 11 zur Umformung des Blechteils 10 im Tiefziehverfahren vorgesehen sowie ein Werkzeugunterteil 12 in Form einer das Werkzeugoberteil 11 aufnehmenden Matrize. Das Werkzeugoberteil 11 besteht aus einem Kunststoff der erfindungsgemäßen Art, welcher eingelagerte Aluminiumpartikel 13 enthält, sowie eingelagertes Graphit-Pulver 14 zur Erzielung eines Selbstschmiereffekts bei der Umformung des Blechteils 10.
  • Das Werkzeugoberteil 11 wurde hergestellt aus einem Gießharz bestehend aus Kunststoff, Aluminiumpulver als Füllstoff und Graphit-Pulver. Dabei wurden für eine Masse von insgesamt 4,2 kg dieses Werkstoffs 1 kg Kunststoff, 3 kg Aluminiumpulver und 200 g Graphitpulver verwendet. Die Komgröße des Graphitpulvers variierte zwischen 50 und 250 µm. Das Kunststoffwerkzeug hatte sehr gute Schmiereigenschaften und eine um 40 % höhere Druckfestigkeit. Die bei Werkzeugen aus anderen Kunststoffen mit konventionellen Füllstoffen wie beispielsweise Sand und Eisen in der Frontschicht des Werkzeugs auftretende Rissbildung, die dadurch entsteht, dass beim Tiefziehvorgang Füllpartikel aus der Grundmatrix des Kunststoffmaterials herausgerissen werden, trat bei Verwendung von Werkzeugen aus dem erfindungsgemäßen Kunststoff nicht auf.
  • Es wurde festgestellt, dass sich die aus der genannten Kunststoffmasse hergestellten Tiefziehwerkzeuge für eine Umformung von Werkstücken in hohen Stückzahlen, von beispielsweise bis zu 100.000,00 oder darüber hinaus eignen.
  • Figur 2 verdeutlicht die zu der genannten Rissbildung beim Tiefziehen mit Materialien ohne ausreichenden Schmiereffekt auf das Werkzeug einwirkenden Kräfte. Es ist in stark schematisch vereinfachter Schnittdarstellung ein Werkzeugoberteil 11 dargestellt, welches erfindungsgemäß aus Vollgussmaterial bestehend aus einem erfindungsgemäßen Kunststoff mit Aluminium- und Graphitpulver als Füllstoffen hergestellt wurde. Auch das Werkzeugunterteil 15 wurde aus dem erfindungsgemäßen Kunststoffmaterial gegossen. Das umzuformende Blechteil 10 befindet sich vor dem Einsetzen des Tiefziehvorgangs in dem Spalt 16 zwischen Werkzeugoberteil 11 und Werkzeugunterteil 15. Beim Tiefziehen wird das umzuformende Blechteil 10 verformt, wobei Kräfte in Richtung des Pfeils 17 senkrecht zur Bewegungsrichtung auftreten. Dadurch werden die Frontflächen 18, 19 der beiden Werkzeuge 11, 15 auf Scherung beansprucht. Das in dem Kunststoff der Werkzeuge 11, 15 eingelagerte Graphitpulver sorgt für einen Schmiereffekt und gute Gleiteigenschaften im Grenzbereich zwischen den Frontflächen 18, 19, der Werkzeuge 11, 15 und dem gezogenen Blechteil 10.
  • Figur 3 verdeutlicht die prozentuale Veränderung des Elastizitätsmoduls von Werkzeugen aus verschiedenen Kunststoffen, die anhand von Druckversuchen im Rahmen der Erfindung ermittelt wurde. Dabei wurde in dem Diagramm in der Säule 20 ganz links das Elastizitätsmodul eines lediglich mit Aluminium gefüllten Kunststoffs dargestellt und als relative Bezugsgröße für die anderen Kunststoffe mit dem Wert 100 angenommen. In der mit 22 bezeichneten zweiten Säule von rechts ist der relative Wert des Elastizitätsmoduls für ein mit Aluminium gefülltes PTFE wiedergegeben, das, wie man sieht, nur gut 60 % des in Figur 3 in Säule 20 dargestellten Kunststoffs erreicht. Zum Vergleich sind dagegen in Figur 3 die Elastizitätsmodule für zwei erfindungsgemäß hergestellte Kunststoffe wiedergegeben. Die Säule 23 ganz rechts in der Darstellung gibt den Wert für einen mit Aluminium und MoS2 als Gleitmaterial gefüllten Kunststoff wieder. Man erkennt, dass das E-Modul über 20 % höher liegt als bei dem nur mit Aluminium gefüllten Kunststoff gemäß Säule 20. In der Säule 21 (zweite von links in der Darstellung) ist der relative Wert des E-Moduls für einen mit Graphit und Aluminium gefüllten Kunststoff wiedergegeben. Wie man aus der Darstellung erkennt, liegt dieser Wert um 40 % höher als das E-Modul für einen nur mit Aluminium gefüllten Kunststoff gemäß der Säule 20 ganz links in der Darstellung. Der in Säule 21 in Figur 3 wiedergegebene Wert wurde erreicht durch einen Zusatz von 20 % Graphitpulver zu einem aluminiumgefüllten Kunststoff für den der Wert in Säule 20 wiedergegeben ist.
  • Es wurde für Tiefziehversuche ein in Figur 4 perspektivisch dargestelltes Tiefziehwerkzeug 30 zur Herstellung von Ventildeckeln für einen Dreizylindermotor konzipiert, ausgelegt und gefertigt. Figur 4 zeigt den Tiefziehstempel für Ventildeckel 30 aus einem erfindungsgemäßen Kunststoff von der Unterseite. Mit diesem Werkzeug 30 wurden Tiefziehversuche durchgeführt. Anhand dieser Versuche konnte festgestellt werden, dass sich sowohl die Maßgenauigkeit, die Standzeit als auch der Selbstschmiereffekt gegenüber Werkzeugen aus anderen Kunststoffen stark verbesserten. Aus herkömmlichen Kunststoffen hergestellte Werkzeuge waren nach kurzer Zeit verschlissen. Durch das Einbetten von lediglich etwa 20 % an Graphitpulver in einen mit Aluminiumpulver gefüllten Kunststoff wurden mit dem in Figur 4 dargestellten Werkzeug 30 erheblich bessere Reib- und Verschleißverhältnisse erreicht. Wie man in Figur 4 erkennt, weist der Tiefziehstempel zwei charakteristische Umformelemente 31, 32 zur Herstellung der für die Form des Ventildeckels typischen Vertiefungen bzw. erhabenen Bereiche auf.
  • Figur 6 zeigt beispielhafte Ventildeckel mit verschiedenen Materialien, die mittels des in Figur 4 dargestellten Tiefziehwerkzeugs 30 hergestellt wurden. Die in Figur 6 gezeigten Ventildeckel 40, 41, 42 wurden hergestellt durch Umformung von Titanblech, Aluminiumblech und verzinktem Stahlblech jeweils in einer Materialstärke von 1 mm. Man erkennt in der Darstellung gemäß Figur 6 ohne weiteres die charakteristischen Umformbereiche, nämlich die flache zylindrische Vertiefung 43 (bzw. Erhöhung, wenn man von der Unterseite auf den tiefgezogenen Ventildeckel 41 gemäß Figur 6 schaut). Dieser Umformbereich 43 lässt sich dem Umformelement 32 des Tiefziehwerkzeugs 30 gemäß Figur 4 zuordnen. Entsprechend lässt sich der Umformbereich 44 dem Umformelement 31 des Tiefziehwerkzeugs 30 gemäß Figur 4 zuordnen. Beim Tiefziehen der in Figur 6 dargestellten Ventildeckel mit dem erfindungsgemäßen Werkzeug 30 ließen sich bei allen drei Materialien Titanblech, Aluminiumblech, verzinktes Stahlblech, sehr gute Ergebnisse erzielen.
  • Figur 5 zeigt die für den Tiefziehstempel 30 gemäß Figur 4 zugehörige Matrize 50 zur Herstellung von Ventildeckeln 40, 41, 42, wie sie in Figur 6 dargestellt sind. In die in Figur 5 dargestellte Tiefziehmatrize 50 wird der Stempel 30 abgesenkt. Man erkennt in Figur 5 die dem Stempel 30 entsprechende etwa rechteckige an den Eckbereichen abgerundete Form der Matrize 50. Außerdem ist der dem etwa zylindrischen Umformelement 32 zugeordnete Umformbereich 51 als Senke in dem als Matrize 50 dienenden Tiefziehwerkzeug erkennbar. Auch die Matrize 50 gemäß Figur 5 wurde aus dem erfindungsgemäßen Kunststoff enthaltend Aluminium und Graphitpulver hergestellt.
  • Die Vorteile der Kunststoffwerkzeuge aus den erfindungsgemäßen Materialien gegenüber herkömmlichen Stahlwerkzeugen liegen in den beispielsweise bis zu etwa 70 % niedrigeren Materialkosten. Die für die Herstellung der Werkzeuge verwendeten Kunststoffe lassen sich besser verarbeiten und dadurch ist bei der Herstellung der Werkzeuge der maschinelle Einsatz geringer. Der Energie- und Leistungsbedarf bei der Maschinenarbeit zur Herstellung der Werkzeuge lässt sich z. B. um 65 % reduzieren. Die Einarbeitungszeit ist ebenfalls bis zu beispielsweise 60 % kürzer als bei Stahlwerkzeugen. Die Verwendung von erfindungsgemäßen Kunststoffen zur Herstellung der Werkzeuge führt zu einer erheblichen Gewichtsreduzierung von beispielsweise bis zu 60 % und dadurch zu einer geringeren Belastung der Krananlagen. Die Werkzeuge lassen sich flexibler und kostengünstiger ändern, wobei wiederum eine hohe Kosten-, Zeit-, und Energieerspamis erzielt wird. Die Werkzeuge sind außerdem recyclinggeeignet, da sie sich als Füllstoffe zur Herstellung neuer Kunststoffwerkzeuge vollständig wiederverwenden lassen, wodurch die Entsorgungskosten entfallen.
  • Das elastische Verhalten der Kunststoffe führt zu einer Qualitätserhöhung bei den umgeformten Werkstücken. Durch das Einbetten von Graphit in den Kunststoff der Werkzeuge wird ein Selbstschmiereffekt an den Kontaktschichten des Werkzeugs erzeugt. Wenn es bei der Umformung überhaupt noch notwendig ist, zusätzlich flüssige Schmiermittel einzusetzen, dann lässt sich in jedem Fall die Menge der notwendigen Schmiermittel wesentlich verringern, beispielsweise um ca. 3 g/m2. Die Reibungsverhältnisse beim Tiefziehen werden durch das Einbringen von Graphitpulver in den Kunststoff verbessert. Durch das Entfallen bzw. die Verringerung von flüssigen Schmiermitteln beim Tiefziehen wird die Verschmutzung im Arbeitsbereich wesentlich verringert und damit die Umwelt entlastet.
  • Bezugszeichentiste
  • 10
    Blechteil
    11
    Werkzeugoberteil
    12
    Werkzeugunterteil
    13
    Aluminiumpartikel
    14
    Graphit-Pulver
    15
    Werkzeugunterteil
    16
    Spalt
    17
    Pfeil
    18
    Frontfläche
    19
    Frontfläche
    20
    Säule
    21
    Säule
    22
    Säule
    23
    Säule
    30
    Tiefziehwerkzeug
    31
    Umformelement
    32
    Umformelement
    40
    Ventildeckel
    41
    Ventildeckel
    42
    Ventildeckel
    43
    Vertiefung
    44
    Umformbereich
    50
    Tiefziehmatrize
    51
    Umformbereich

Claims (14)

  1. Werkzeug bestehend aus einer Kunststoffmasse, welche aus Kunststoff und einem in dem Kunststoff eingelagerten Material mit Gleiteigenschaften besteht, wobei das Werkzeug ein Umformwerkzeug ist, dadurch gekennzeichnet, dass die Kunststoffmasse weiterhin einen Anteil an eingelagertem Aluminium enthält.
  2. Werkzeug nach Anspruch 1, dadurch gekennzeichnet, dass die Kunststoffmasse Aluminiumpulver oder Aluminiumpartikel als Füllstoff enthält..
  3. Werkzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kunststoffmasse als Material mit Gleiteigenschaften Graphit oder Molybdänsulfid enthält.
  4. Werkzeug nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kunststoffmasse Graphitpulver enthält.
  5. Werkzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Werkzeug aus einem Blockmaterial oder einem Gießharz hergestellt ist.
  6. Werkzeug nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass dieses einen Gewichtsanteil von mehr als 50 % an Aluminiumfüllstoff enthält.
  7. Werkzeug nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kunststoffmasse einen Gewichtsanteil von wenigstens 60 %, vorzugsweise etwa 70 % an Aluminiumfüllstoff, vorzugsweise Aluminiumpulver, bezogen auf ihr Gesamtgewicht enthält.
  8. Werkzeug nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass dieses einen Gewichtsanteil von 20 % bis 50 % an Graphitpulver bezogen auf den Gewichtsanteil des in dem Werkzeug enthaltenen Kunststoffs enthält.
  9. Werkzeug nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass dieses einen Gewichtsanteil von 3 % bis 15 % an Graphit, vorzugsweise Graphitpulver, bezogen auf das Gesamtgewicht des Werkstoffs, aus dem das Werkzeug besteht, enthält.
  10. Werkzeug nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass dieses Graphit, vorzugsweise Graphitpulver, und Aluminium, vorzugsweise Aluminiumpulver, in einem Gewichtsverhältnis von zwischen 1 : 15 und 1 : 6 enthält.
  11. Werkzeug nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass dieses ein Tiefziehwerkzeug ist.
  12. Werkzeug nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass dieses ein Stempel, Blechhalter oder eine Matrize für das Tiefziehen von Metallteilen ist.
  13. Werkzeug nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass dieses Graphitpulver in einer Komgröße von zwischen 50 und 250 µm enthält.
  14. Werkzeug nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass dieses im Wesentlichen vollständig aus der Kunststoffmasse besteht.
EP02783074A 2001-11-09 2002-11-06 Umformwerkzeug aus kunststoff Expired - Fee Related EP1448325B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10155233A DE10155233A1 (de) 2001-11-09 2001-11-09 Werkzeug aus Kunststoff
DE10155233 2001-11-09
PCT/EP2002/012388 WO2003039779A1 (de) 2001-11-09 2002-11-06 Werkzeug aus kunststoff

Publications (2)

Publication Number Publication Date
EP1448325A1 EP1448325A1 (de) 2004-08-25
EP1448325B1 true EP1448325B1 (de) 2006-03-08

Family

ID=7705292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02783074A Expired - Fee Related EP1448325B1 (de) 2001-11-09 2002-11-06 Umformwerkzeug aus kunststoff

Country Status (5)

Country Link
US (1) US20050044925A1 (de)
EP (1) EP1448325B1 (de)
JP (1) JP2005507781A (de)
DE (2) DE10155233A1 (de)
WO (1) WO2003039779A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072205A1 (de) 2007-12-17 2009-06-24 Rovalma SA Verfahren zum Herstellen von Teilen mit hoher mechanischer Belastung und insbesondere Werkzeuge aus kostengünstigen Keramiken oder Polymeren
JP6145537B1 (ja) * 2015-06-19 2017-06-14 中辻金型工業株式会社 金属製のプレス成形体の製造方法
DE102016213375B4 (de) * 2016-07-21 2022-10-13 Audi Ag Verfahren zum Herstellen eines Metallbearbeitungswerkzeugs und Metallbearbeitungswerkzeug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE945745C (de) * 1950-09-19 1956-07-19 British Insulated Callenders Ziehmatrize fuer das fortlaufende Ziehen von Halbzeug, z.B. in Form von Streifen oder Rohren, aus Aluminium oder stark aluminiumhaltigem Metall
US3088174A (en) * 1959-01-28 1963-05-07 Gen Motors Corp Method of producing a reinforced plastic die
US3631745A (en) * 1967-07-06 1972-01-04 Lockheed Aircraft Corp Method of fabricating metal dies
US3803279A (en) * 1968-05-13 1974-04-09 J Bailey Method of making high temperature plastic-ceramic castable
DE1910705A1 (de) * 1969-03-03 1970-09-17 Wittmoser Dr Ing Adalbert Werkzeuge zur Herstellung von Teilen aus Kunststoffschaeumen
US3876389A (en) * 1970-06-30 1975-04-08 Ibm Composite material, inclusions thereof, and method therefor
DE4022785A1 (de) * 1990-07-18 1992-01-23 Philips Patentverwaltung Verfahren zur herstellung von reibungsarmen, kohlenstoff enthaltenden schichten
US5143747A (en) * 1991-02-12 1992-09-01 Hughes Aircraft Company Die improved tooling for metal working
DE9318272U1 (de) * 1993-11-30 1994-02-17 Schuler Kunststofftechnik GmbH, 74385 Pleidelsheim Werkzeug für die spanlose Verformung von Werkstücken
US5743185A (en) * 1995-01-17 1998-04-28 Mattel, Inc. Flexible thermally conductive stamp and material
DE19807404A1 (de) * 1998-02-21 1999-08-26 Hortig Tief- und Streckziehwerkzeug mit durch konturgetreu geformte Masken abgedeckten Funktionsflächen und Verfahren zu seiner Herstellung
DE19825223C2 (de) * 1998-06-05 2000-11-30 Fraunhofer Ges Forschung Formwerkzeug und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
WO2003039779A1 (de) 2003-05-15
JP2005507781A (ja) 2005-03-24
DE10155233A1 (de) 2003-05-22
EP1448325A1 (de) 2004-08-25
US20050044925A1 (en) 2005-03-03
DE50206046D1 (de) 2006-05-04

Similar Documents

Publication Publication Date Title
EP0418779B1 (de) Verfahren zum Herstellen von Werkstücken durch Schneiden, insbesondere in einem Konterschneidwerkzeug
EP2607579B1 (de) Einstückiger Schlosshalter
DE3206981A1 (de) Verfahren zum formpressen von pulver und aus pulver druckverformter gegenstand
WO2017148684A1 (de) Stanznietmatrize
DE102019213531A1 (de) Werkzeugteil für ein Blechumformwerkzeug mit additiv erzeugtem Wirkflächenbereich und Verfahren zur Herstellung
EP1448325B1 (de) Umformwerkzeug aus kunststoff
DE10239452B4 (de) Prägestanzen von harten Kunststoffen
DE102004013094B4 (de) Verfahren und Vorrichtung zur Festigkeitssteigerung von Teilen eines metallischen Werkstoffs durch Kaltverfestigung
EP1446246B1 (de) Werkzeug aus kunststoff
EP1741497B1 (de) Verfahren und Werkzeug zur spanlosen Herstellung von Werkstücken mit einer Kerbe und Werkstück mit einer Kerbe
DE4307560C2 (de) Verfahren zur pulvermetallurgischen Herstellung eines bereichsweise unterschiedlichen Belastungsarten ausgesetzten Maschinenteils
EP1731246B1 (de) Vorrichtung zum Herstellen einer Vielfalt von Formteilen aus Pulver.
DE102008053839A1 (de) Verfahren zur Herstellung eines Gehäusebauteils
DE102014008169A1 (de) Verfahren und Presse zur Herstellung eines Grünlingsverbundes mit einer Sollbruchstelle
EP1283755A1 (de) Zylinderkurbelgehäuse für eine brennkraftmaschine
EP3855039B1 (de) Aus gusseisen bestehender bremssattel
AT526261B1 (de) Verfahren zur Herstellung eines Bauteils aus einem Sinterpulver
AT525599B1 (de) Verfahren zur Herstellung eines Bauteils aus einem Metallpulver und/oder Keramikpulver
AT520595B1 (de) Zug- oder Druckstange oder Verriegelungsmutter für eine Formgebungsmaschine
DE3241527A1 (de) Stempelplatte
DE102019008807A1 (de) Verfahren zur Herstellung eines Schneidwerkzeugs für eine Stanz- und Umformvorrichtung
DE19943250B4 (de) Werkzeug zum Ziehen von napfförmigen Werkstücken mit kleinem Kantenradius, insbesondere von Sitzkissenrahmen für Fahrzeugsitze
DE102006035937A1 (de) Umformwerkzeug und Verfahren zu seiner Herstellung
AT520593B1 (de) Zug- oder Druckstange oder Verriegelungsmutter für eine Formgebungsmaschine
DE102006013374A1 (de) Vorrichtung und Verfahren zur Herstellung von Bremsbelägen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEKKAOUI ALAOUI, MOHAMED

Inventor name: HOCHWALD, PETER

Inventor name: VOSSBERG, JUERGEN

17Q First examination report despatched

Effective date: 20041119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: FORMING TOOL MADE OF PLASTIC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060308

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50206046

Country of ref document: DE

Date of ref document: 20060504

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060615

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101109

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101119

Year of fee payment: 9

Ref country code: GB

Payment date: 20101022

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50206046

Country of ref document: DE

Owner name: VOLKSWAGEN AG, DE

Free format text: FORMER OWNER: HUNTSMAN ADVANCED MATERIALS (SWITZERLAND) GMBH, BASEL, CH

Effective date: 20110321

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111106

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141130

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206046

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601