EP1441775A1 - Selbstklebendes wirkstoffhaltiges matrixpflaster auf basis von polyurethangelen - Google Patents

Selbstklebendes wirkstoffhaltiges matrixpflaster auf basis von polyurethangelen

Info

Publication number
EP1441775A1
EP1441775A1 EP02754658A EP02754658A EP1441775A1 EP 1441775 A1 EP1441775 A1 EP 1441775A1 EP 02754658 A EP02754658 A EP 02754658A EP 02754658 A EP02754658 A EP 02754658A EP 1441775 A1 EP1441775 A1 EP 1441775A1
Authority
EP
European Patent Office
Prior art keywords
matrix
adhesive
self
active ingredient
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02754658A
Other languages
English (en)
French (fr)
Inventor
Holger Kartheus
Michael Schink
Jürgen-Christian Quandt
Peter Philipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beiersdorf AG
Original Assignee
Beiersdorf AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beiersdorf AG filed Critical Beiersdorf AG
Publication of EP1441775A1 publication Critical patent/EP1441775A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7038Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
    • A61K9/7046Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds
    • A61K9/7069Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. polysiloxane, polyesters, polyurethane, polyethylene oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7084Transdermal patches having a drug layer or reservoir, and one or more separate drug-free skin-adhesive layers, e.g. between drug reservoir and skin, or surrounding the drug reservoir; Liquid-filled reservoir patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/425Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/58Adhesives

Definitions

  • the invention relates to self-adhesive, active substance-containing matrix plasters based on polyurethane gels, in particular with active substances which promote blood circulation.
  • the transdermal patch systems can be differentiated according to their structure, for example.
  • an inherent drug reservoir is built up by a homogeneous distribution of the drug in a polymer matrix or a gel matrix.
  • the polymer or gel matrix has self-adhesive properties, so that the matrix does not have to be fixed on the skin by additionally applying an adhesive layer.
  • the active substance-containing matrix is located between a cover layer firmly anchored with it and a removable separating layer.
  • the active ingredient is usually homogeneously mixed into the polymer or gel matrix by dissolving, dispersing, suspending, extruding, kneading, mixing or similar processes, in some cases at elevated temperature.
  • the use of polyurethanes for the controlled release of active substance has only been described in a few cases (Lamba, Woodhouse, Cooper, "Polyurethanes in Biomedical Applications", CRC Press, 1998, p. 240).
  • EP 0 057 839 A1 describes polyurethane gels into which various active substances can also be incorporated and their use as active substance carriers with a depot effect.
  • hydrophilic, self-adhesive polyurethane gel compositions described in WO 97/43328 A1 are preferably used as active substance-free wound dressings for the treatment of chronic wounds. They are characterized, for example, by good skin friendliness, good adhesion, also over a long period of use and painless removability after use.
  • EP 0 016 652 A1 describes an active substance-containing composition which is produced by reacting a polyethylene oxide with polyfunctional isocyanates and which is a crystalline hydrogel in the dry form.
  • a composition with controlled release is obtained by swelling a polymeric carrier produced in this way in a solution of an active substance and subsequent drying.
  • WO 96/31551 A1 is concerned with polyurethane microgels which contain active substances, for example proteins, swell in water and can thereby release the active ingredient.
  • WO 91/02763 A1 and WO 94/22934 A1 also deal with compositions for the controlled release of active substances from hydrogels based on polyurethane-ureas.
  • the known active ingredient-containing polyurethanes are also products that have no self-adhesive properties.
  • Circulation-enhancing active substance plasters are used to treat rheumatic complaints, muscle tension and pain in the area of the musculoskeletal system.
  • Known heat-effective plaster systems contain an adhesive based Rubber, hydrocolloid or hydrogel, in which one or more active ingredients with blood circulation-promoting properties, such as benzyl nicotinate, capsaicin and nonivamide, are incorporated.
  • active substance-containing patch systems also have certain requirements for the adhesive matrix, such as, for example, skin friendliness, good adhesion over a long period of use and painless removability.
  • Self-adhesive, hydrophilic polyurethane gels which are used in the field of chronic wound healing, meet the latter requirements particularly well.
  • active ingredient carriers they only release the active ingredient to a small extent, for example, when active ingredients that promote circulation such as nonivamide, benzyl nicotinate and capsaicin are used.
  • active ingredients that promote circulation such as nonivamide, benzyl nicotinate and capsaicin are used.
  • One reason for this is that the property profile of known, in particular hydrophilic, polyurethane gel products is tailored for moist wound healing, for example the ability to absorb liquid from the wound and not to release active substances into the intact skin.
  • the object of the invention is to provide an active substance-containing matrix plaster for the controlled delivery of active substances to the skin and / or in the wound, which is self-adhesive and which can be produced economically.
  • the present invention relates to self-adhesive, active substance-containing matrix plasters for the controlled delivery of active substances to the skin or into the wound with an absorbent, self-adhesive matrix based on polyurethane gels, the active substance being present in the matrix and penetration enhancers being added to the matrix.
  • the penetration enhancers include, for example, lipophilic solubilizers / enhancers lipophilic solubilizers / enhancers such as oleic acid decyl ester, isopropyl myristate and palmitate (IPM and IPP), 2-octyldodecanol and / or other fatty acid esters.
  • lipophilic solubilizers / enhancers lipophilic solubilizers / enhancers such as oleic acid decyl ester, isopropyl myristate and palmitate (IPM and IPP), 2-octyldodecanol and / or other fatty acid esters.
  • Fatty acid esters C 8 -C 18 with short-chain alcohols or fatty alcohols are more preferably used as enhancers.
  • Fatty alcohols are a collective name for the linear, saturated or unsaturated primary alcohols (1-alkanols) with 6 to 22 carbon atoms that can be obtained by reducing the triglycerides, fatty acids or fatty acid methyl esters.
  • Fatty alcohols are neutral, colorless, high-boiling, oily liquids or soft, colorless masses that are sparingly to insoluble in water, but easily soluble in alcohol and ether.
  • the following table shows physicochemical data of the fatty alcohols.
  • Further preferred penetration enhancers are diesters and diethers of polyethylene glycol 6 to 12 with C 8 -C 18 fatty alcohols or C 8 -C 18 fatty acids.
  • Polyethylene glycols of the general formula belong to the class of polyethers under polyethylene glycols:
  • Polyethylene glycols are produced industrially by a basic, catalyzed polyaddition of ethylene oxide (oxirane) in mostly small water-containing systems with ethylene glycol as the starting molecule. They have molar masses in the range from approx. 200 to 5,000,000 g / mol, corresponding to degrees of polymerization n of approx. 5 to> 100,000.
  • Propylene glycol di-esters with C 8 -C 18 fatty alcohols are more preferably used as enhancers.
  • Gylcerin di- and triesters with C 8 -C 8 fatty alcohols are further preferably used as enhancers.
  • Suitable as a matrix are absorbent, self-adhesive polyurethanes, in foamed or non-foamed form, which can additionally contain fillers or auxiliaries, such as absorbent materials.
  • Suitable polyurethanes are the subject of DE 196 18 825 A1, in which hydrophilic, self-adhesive polyurethane gels are disclosed, which consist of a) 2 to 6 hydroxyl group-containing polyether polyols with OH numbers from 20 to 112 and an ethylene oxide (EO) content of > 10% by weight, b) antioxidants, c) bismuth (III) carboxylates based on carboxylic acids with 2 to 18 C atoms as catalysts and d) hexamethylene diisocyanate, soluble in the polyols, with a product of the functionalities of the polyurethane-forming components a) and d) of at least 5.2, the amount of catalyst c) being 0.005 to 0.25% by weight, based on the polyol a), the amount of antioxidants b) is in the range from 0.1 to 1.0% by weight, based on polyol a) and a ratio of free NCO groups of component d) to the free OH
  • 3 to 4 very particularly preferably 4-hydroxyl group-containing polyether polyols having an OH number in the range from 20 to 112, preferably 30 to 56.
  • the ethylene oxide content in the polyether polyols used according to the invention is preferably> 20% by weight.
  • the polyether polyols are known per se and are obtained, for example, by polymerizing epoxides, such as ethylene oxide, propylene oxide, butylene oxide or tetrahydrofuran, by themselves or by addition of these epoxides, preferably ethylene oxide and propylene oxide - optionally in a mixture with one another or separately in succession
  • epoxides such as ethylene oxide, propylene oxide, butylene oxide or tetrahydrofuran
  • starter components with at least two reactive hydrogen atoms such as water, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, sorbitol or succrose.
  • the isocyanate component is monomeric or trimerized hexamethylene diisocyanate or by biuret, uretdione, allophanate groups or by prepolymerization with polyether polyols or mixtures of polyether polyols based on the known starter components with 2 or> 2 reactive H atoms and epoxides such as ethylene oxide or propylene oxide with an OH number from ⁇ 850, preferably 100 to 600, modified hexamethylene diisocyanate.
  • the use of modified hexamethylene diisocyanate is preferred, in particular by means of prepolymers with polyether diols with an OH number of 200 to 600 modified hexamethylene diisocyanate.
  • hexamethylene diisocyanate with polyether diols with an OH number of 200-600, the residual content of monomeric hexamethylene diisocyanate below 0.5% by weight, are very particularly preferred.
  • Possible catalysts for the polyurethane gels according to the invention in the anhydrous polyether polyols a) are bismuth (III) carboxylates based on linear, branched, saturated or unsaturated carboxylic acids having 2 to 18, preferably 6 to 18, carbon atoms.
  • the catalysts are preferably used in amounts of 0.03 to 0.1% by weight, based on the polyol a).
  • antioxidants used for the polyurethane gels according to the invention are, in particular, sterically hindered phenolic stabilizers, such as BHT (2,6-di-tert-butyl-4-methylphenol), Vulkanox BKF (2.2 min -methylene-bis- (6-tert.
  • Irganox 1010 penentaerythrityl tetrakis [3- (3,5-ditert.-butyl-4-hydroxyphenyl) propionate]
  • Irganox 1076 octadecyl-3- ( 3,5-ditert.-butyl-4-hydroxyphenyl) propionate)
  • Ciba-Geigy or tocopherol (vitamin E), preferably those of the ⁇ -tocopherol type.
  • the antioxidants are preferably used in amounts of 0.15 to 0.5% by weight, based on the polyol a).
  • the isocyanate index (ratio of the free NCO groups used in the reaction to the free OH groups) of the polyurethane gel compositions according to the invention is in the range from 0.30 to 0.70, preferably in the range, depending on the functionality of the isocyanate and polyol components used from 0.45 to 0.60.
  • the isocyanate index required for gel formation can be easily estimated using the following formula:
  • the polyurethane gel compositions according to the invention are produced by customary processes, as described, for example, in Becker / Braun, Kunststoff-Handbuch, Vol. 7, Polyurethane, p. 121 ff, Carl-Hauser, 1983.
  • Polyurethanes such as those disclosed in EP 0 665 856 B1 are more preferably used.
  • hydrophilic polyurethane gel foams are therefore available from
  • (A) 25-62% by weight, preferably 30-60% by weight, particularly preferably 40-57% by weight, based on the sum of (A) and (B), of a covalently cross-linked polyurethane as a high-molecular matrix and
  • (C) 0 to 100% by weight, based on the sum of (A) and (B), of fillers and / or additives,
  • the polyurethane gels can be prepared from the starting compounds known per se from polyurethane chemistry by processes known per se, as are described, for example, in DE 31 03 499 A1, DE 31 03 500 A1 and EP 0 147 588 A1. It is essential, however, that the conditions defined above are observed when selecting the gel-forming components, since otherwise tack-free, elastic gels are obtained instead of self-adhesive gels.
  • Preferred polyhydroxyl compounds are polyether polyols, as are mentioned in detail in the above-mentioned laid-open publications. Both (cyclo) aliphatic and aromatic isocyanates are suitable as polyisocyanate components. Preferred (cyclo) aliphatic polyisocyanates are 1,6-hexamethylene diisocyanate and its biurets and trimehsates or hydrogenated diphenylmethane diisocyanate ("MDI”) types.
  • Preferred aromatic polyisocyanates are those obtained by distillation, such as MDI mixtures of 4,4'- and 2,4'-isomers or 4,4'-MDI, and tolylene diisocyanate (“TDI”) types.
  • the diisocyanates can in particular be selected, for example, from the group of unmodified aromatic or aliphatic diisocyanates or from modified products formed by prepolymerization with amines, polyols or polyether polyols.
  • the polyurethane composition can be used without foaming, foaming, unfilling or with additional fillers such as superabsorbents, titanium dioxide, zinc oxide, plasticizers, dyes, etc. Hydrogels in semi-solid to solid form with active components for the central zone can also be used.
  • the polyurethane gels can optionally contain additives known per se from polyurethane chemistry, such as, for example, fillers and short fibers on an inorganic or organic basis, metal pigments, surface-active substances or liquid extenders such as substances with a boiling point above 150 ° C.
  • additives known per se from polyurethane chemistry such as, for example, fillers and short fibers on an inorganic or organic basis, metal pigments, surface-active substances or liquid extenders such as substances with a boiling point above 150 ° C.
  • organic fillers are heavy spar, chalk, gypsum, kieserite, soda, titanium dioxide, cerium oxide, quartz sand, kaolin, carbon black and hollow microspheres.
  • organic fillers for example, powders based on polystyrene, polyvinyl chloride, urea formaldehyde and polyhydrazodicarbonamide can be used.
  • the short fibers are, for example, glass fibers of 0.1 to 1 mm in length or fibers of organic origin, such as polyester or polyamide fibers.
  • Metal powders such as iron or copper powder, can also be used in the gel formation.
  • the dyes or colored pigments known per se in the coloring of polyurethanes on an organic or inorganic basis such as, for example, iron oxide or chromium oxide pigments, pigments based on phthalocyanine or monoazo, can be used.
  • Surface-active substances may be mentioned, for example, cellulose powder, activated carbon and silica preparations.
  • polymeric vinyl compounds, polyacrylates and other copolymers or adhesives based on natural materials up to a content of 10% by weight, based on the weight of the gel mass, which are customary in adhesive technology, can optionally be added.
  • Preferred water-absorbent materials are water-absorbent salts of polyacrylates and their copolymers known as superabsorbers, in particular the sodium or potassium salts. They can be uncrosslinked or networked and are also available as commercial products. Products such as those disclosed in DE 37 13 601 A1 are particularly suitable, and also superabsorbents of the new generation with only small proportions of dry water and high swelling capacity under pressure. Preferred products are weakly crosslinked polymers based on acrylic acid / sodium acrylate. Such sodium polyacrylates are available as Favor T (Chemische Fabrik Stockhausen GmbH, Germany).
  • absorbers for example carboxymethyl cellulose and karaya, are also suitable.
  • the degree of foaming can be varied within wide limits by the amounts of foaming agent incorporated.
  • the matrix has a thickness of 10 to 1000 ⁇ m, very particularly 30 to 300 ⁇ m.
  • a large number of substance groups which are free from hydroxyl, carboxyl or amine functionalities which are reactive toward the polyurethane crosslinking reaction are used as active substances, for example essential oils, skin-care cosmetic additives, pharmaceutically active substances or antiseptics.
  • Transdermal therapeutic systems which are doped with essential oils and their components (e.g. eucalyptus oil, peppermint oil, camphor, menthol) have a long-term therapeutic effect for colds,
  • Hydroxyl functionality in the menthol does not affect the polyurethane crosslinking reaction, which can be explained by the lower reactivity of the secondary OH group in the menthol molecule.
  • Essential oils are concentrates obtained from plants, which are used as natural raw materials mainly in the perfume and food industry and which consist more or less of volatile compounds, such as real essential oils, citrus oils, absolute, resinoids.
  • essential oils are mixtures of volatile components that are produced from vegetable raw materials by steam distillation.
  • Real essential oils consist exclusively of volatile components, the boiling point of which is predominantly between 150 and 300 ° C. Unlike, for example, fatty oils, they do not leave a permanent, transparent grease stain when dabbed on filter paper.
  • Essential oils mainly contain hydrocarbons or monofunctional compounds such as aldehydes, esters, ethers and ketones.
  • Parent compounds are mono- and sesquiterpenes, phenylpropane derivatives and longer-chain aliphatic compounds.
  • Some essential oils are dominated by one ingredient (e.g. eugenol in clove oil with more than 85%), others are extremely complex.
  • the organoleptic properties are often shaped not by the main components, but by minor or trace components, such as the 1,3,5-undecatrienes and pyrazines in Galbanum oil.
  • Many of the commercially important essential oils have hundreds of identified components.
  • a large number of ingredients are chiral, with an enantiomer predominating or being present very often, such as (-) - menthol in peppermint oil or (-) - linalyl acetate in lavender oil.
  • the matrix contains 0.1 to 20% by weight, in particular 1 to 10% by weight, of essential oils, in particular from the group consisting of eucalyptus oil, peppermint oil, chamomile oil, camphor, menthol, citrus oil, cinnamon oil, thyme oil, Lavender oil, clove oil, tea tree oil, cajeput oil, niaouli oil, kanuka oil, manuka oil, mountain pine oil are selected.
  • Citrus oils are essential oils that come from the peels of citrus fruits (bergamot,
  • Citrus oils largely consist of monoterpene hydrocarbons, mainly limonene (exception: bergamot oil, which only contains approx. 40%).
  • Camphor is understood to mean 2-bornanon, 1,7,7-trimethylbicyclo [2.2.1] heptan-2-one, see figure below.
  • Peppermint oils are essential oils obtained by steam distillation from leaves and inflorescences of various types of peppermint, occasionally also those from Mentha arvensis.
  • Menthol has three asymmetric carbon atoms and therefore occurs in four diastereomeric pairs of enantiomers (see the formula images, the other four enantiomers are the corresponding mirror images).
  • the diastereomers that can be separated by distillation are called neoisomenthol, isomenthol, neonnenthol [(+) - form: component of Japanese peppermint oil] and menthol.
  • the most important isomer is (-) - menthol (levomenthol), shiny, strongly peppermint-smelling prisms.
  • menthol When rubbed on the skin (especially on the forehead and temples), menthol creates a pleasant feeling of cold due to surface anesthesia and irritation of the cold-sensitive nerves during migraines and the like; in fact, the areas in question show normal or elevated temperature.
  • the other isomers of menthol do not have these effects.
  • cosmetic additives that care for the skin can advantageously be added to the matrix, in particular from 0.2 to 10% by weight, very particularly from 0.5 to 5% by weight.
  • the skin care cosmetic additives can be selected very advantageously from the group of lipophilic additives, in particular from the following group:
  • additives from the group of refatting substances, for example Purcellin oil, Eucerit® and Neocerit.
  • the additives or additives are also particularly advantageously selected from the group of NO synthase inhibitors, in particular if the preparations according to the invention are used for treatment and prophylaxis of the symptoms of intrinsic and / or extrinsic skin aging and for the treatment and prophylaxis of the harmful effects of ultraviolet radiation on the skin.
  • the preferred NO synthase inhibitor is nitroarginine.
  • ubiquinones are classified as Q-1, Q-2, Q-3 etc. or according to the number of C atoms as U-5, U-10 U-15 and so on. They preferably occur with certain chain lengths, for example in some microorganisms and the like.
  • Yeast with n 6. Q10 predominates in most mammals, including humans.
  • Coenzyme Q10 which is characterized by the following structural formula, is particularly advantageous:
  • Creatine and / or creatine derivatives are also preferred additives for the purposes of the present invention. Creatine is characterized by the following structure:
  • Preferred derivatives are creatine phosphate and creatine sulfate, creatine acetate, creatine ascorbate and the derivatives esterified on the carboxyl group with mono- or polyfunctional alcohols.
  • additives or combinations of additives mentioned which can be used in the preparations according to the invention is of course not intended to be limiting, apart from the criterion of the hydroxyl or carboxyl group reactive towards isocyanate.
  • the additives can be used individually or in any combination with one another.
  • pharmaceutically active substances can be added to the matrix of the active substance-containing matrix patch, preferably up to 40% by weight, particularly 0.01 to 25% by weight, very particularly 0.1 to 10% by weight.
  • Typical active ingredients are - without claiming to be complete in the context of the present invention:
  • Antifungals naftifine (E) -N-cinnamyl-N-methyl-l-naphthalene methanamine)
  • Clotrimazole (1 - [(2-chlorophenyl) diphenylmethyl] -1 H-imidazole)
  • Nonsteroidal anti-inflammatory drugs methyl salicylate etofenamate
  • Keratolytics urea Other active ingredients that are beneficial for wound healing, such as silver sulfadiazine, can also be used.
  • Hyperaemic active ingredients such as natural active ingredients of cayenne pepper or synthetic active ingredients such as nonivamide, nicotinic acid derivatives, preferably bencyl nicotinate or propyl nicotinate, or anti-inflammatory drugs and / or analgesics can also be mentioned particularly advantageously and within the meaning of the invention.
  • Capsaicin is an example
  • Disinfectants are substances that are used for disinfection, i.e. h., are suitable for combating pathogenic microorganisms (e.g. bacteria, viruses, spores, small and mold fungi), generally by applying them to the surface of skin, clothing, equipment, rooms, but also drinking water, food, seeds ( Pickling) and as a floor disinfectant.
  • pathogenic microorganisms e.g. bacteria, viruses, spores, small and mold fungi
  • Disinfectants to be used particularly locally, for example for wound disinfection, are also referred to as antiseptics.
  • the lactic acid derivatives such as esters and oligo- and polylactic acid, are to be used as antiseptics.
  • Lactic acid esters include the esters of the general formula which are often referred to as lactates of the respective alcohol component
  • Lactic acid isopropyl ester (isopropyl lactate), C6H12O3, M R 132.15, D. 0.9980, boiling point 167 ° C
  • Polylactic acid is a polyester based on lactic acid, from whose lactide it can be produced by ring-opening polymerization.
  • the matrix contains, in particular, a hydrophilic filler based on cellulose and its derivatives, the average grain size of which is in the range from 20 to 60 ⁇ m, because it was surprisingly found in the selection of the fillers that fillers in particular were found on the Based on silicon dioxide or cellulose, the latter having an isotropic shape and do not tend to swell when in contact with water. Fillers with a particle size of less than or equal to 100 ⁇ m are particularly suitable.
  • hydrophilic fillers in a non-polar matrix is known in the literature. They are described explicitly for use in transdermal therapeutic systems in EP 0 186 019 A1. Here, however, only up to a concentration of 3 to 30% by weight, without mentioning details of these fillers. Experience shows that systems with a filler content of more than 30% by weight clearly lose stickiness and become hard and brittle. As a result, they lose the basic requirement of a transdermal therapeutic system. Fillers based on microcrystalline or amorphous cellulose are preferably used in substantially higher concentrations without adversely affecting the adhesive properties, in particular if they have an isotropic shape with a particle size of no greater than 100 ⁇ m. Higher levels of fillers are desirable in order to improve the wearing properties, particularly after long and repeated use.
  • the matrix on the side facing away from the skin or the wound can be covered with a carrier material, for example consisting of foils (for example made of PUR, polyester, PE or PP), nonwovens, fabrics, foams, metallized foils, composites, cotton etc.
  • a carrier material for example consisting of foils (for example made of PUR, polyester, PE or PP), nonwovens, fabrics, foams, metallized foils, composites, cotton etc.
  • the occlusive foils are preferred from the group of suitable carrier materials.
  • a metallocene polyethylene nonwoven is also suitable.
  • the metallocene polyethylene nonwoven preferably has the following properties:
  • nonwovens which are mechanically consolidated, can be used as carrier materials, namely by sewing over with separate threads or by
  • Nonwoven which can be cross-paneled, for example, and is sewn on using separate threads in fringed or tricot layers.
  • This nonwoven knitted fabric is known under the name “Malivlies”, also from the Malimo company.
  • carrier materials that can be used in such a way that they fulfill the properties of a functional dressing are preferred.
  • Textiles such as woven fabrics, knitted fabrics, scrims, nonwovens, laminates, nets, foils, foams and papers are listed as examples. These materials can also be pretreated or post-treated. Common pretreatments are corona and hydrophobizing; Common post-treatments are calendering, tempering, laminating, punching and mounting.
  • the matrix is applied to a carrier material, preferably in such a way that the periphery of the carrier material is at least partially not covered by the matrix.
  • an adhesive can be coated between the matrix and the carrier material, specifically based on PUR, acrylates or rubber.
  • the matrix and / or the carrier material coated with the adhesive can be covered with the customary release paper.
  • the matrix plaster according to the invention can have any shape, a regular shape such as rectangular, square, circular or oval being preferred. Preferred embodiments of the subject matter of the invention and several figures are described below by way of example without wishing to restrict the invention unnecessarily.
  • NVA nonivamide
  • IPP isopropyl palmitate
  • the Levagel (polyether polyol from Bayer, Leverkusen) and Desmodur (polyisocyanate based on hexamethylene diisocyanate from Bayer, Leverkusen) are weighed into a vessel and homogeneously mixed with the nonivamide / isopropyl palmitate mixture for a few minutes with stirring ,
  • samples are prepared on pig skin and the release is determined quantitatively after 24 hours.
  • FIG. 1 illustrates a preferred geometric shape of the matrix plaster.
  • the plaster has a circular shape (diameter 100 mm) and consists of a polyurethane matrix 2 that is chamfered towards the edge.
  • the polyurethane matrix 2 is initially beveled evenly and ends in a 20 mm wide ring, in which the thickness is kept constant.
  • the polyurethane matrix 2 is essentially semi-convex in the middle and is accordingly comparable to a semi-convex lens.
  • the thickness of the polyurethane matrix 2 is 2.3 mm in the middle and 0.7 mm at the edge.
  • the polyurethane matrix 2 is covered with a siliconized paper 1 in order to avoid contamination or contamination of the matrix 2.
  • FIG. 2 illustrates another preferred geometric shape of the matrix patch.
  • the plaster has an ellipsoidal shape (length of the axes 42 mm or 68 mm) and consists of a polyurethane matrix 2 which is beveled towards the edge.
  • the polyurethane matrix 2 is initially beveled evenly and ends in an approximately 11 mm wide ring in which the thickness is kept constant.
  • the polyurethane matrix 2 is essentially semi-convex in the middle and is accordingly comparable to a semi-convex lens.
  • the PU matrix 2 is covered on the side facing away from the skin with a PE film 3.
  • the thickness of the polyurethane matrix 2 including PE film 3 is 1.6 mm in the middle and
  • the polyurethane matrix 2 is covered with a siliconized paper 1 in order to avoid contamination or contamination of the matrix 2.
  • FIG. 3 illustrates a further preferred geometric shape of the matrix patch.
  • the patch has an ellipsoidal shape (length of the axes 110 mm or 65 mm) and consists of a polyurethane matrix 2 that is beveled towards the edge.
  • the polyurethane matrix 2 is essentially semi-convex, and is accordingly comparable to a semi-convex lens with an axis length of 72 mm or 34 mm.
  • the PU matrix 2 is covered on the side facing away from the skin with a PE film 3, which is coated over the entire surface with the adhesive layer 4 based on polyurethane, which contains IPP.
  • the entire periphery of the adhesive layer 4 is not covered with the polyurethane matrix 2. In this way, two concentric zones of chemically different adhesive compositions 2, 4 result, which differ in terms of adhesion, absorption capacity and cushioning properties.
  • the thickness of the polyurethane matrix 2 together with PU film 3 and adhesive layer 4 is 1.3 mm in the middle and 0.15 mm at the edge.
  • the polyurethane matrix 2 is covered with a siliconized paper 1 in order to avoid contamination or contamination of the matrix 2.
  • FIG. 4 illustrates a further preferred geometric shape of the matrix patch.
  • the plaster has a circular shape (diameter 100 mm), consists of a foamed polyurethane matrix 2, which is beveled towards the edge.
  • the polyurethane matrix 2 is essentially semi-convex, and is accordingly comparable to a semi-convex lens with a diameter of 60 mm.
  • the PU matrix 2 is covered on the side facing away from the skin with a PU film 3 which is coated over the entire surface with the adhesive layer 6 based on acrylate. In the embodiment of the plaster shown here, the entire periphery of the adhesive layer 6 is not covered with the polyurethane matrix 2. In this way, two concentric zones of chemically different adhesive compositions 2, 6 result, which differ in terms of adhesion, absorption capacity and cushioning properties.
  • the thickness of the polyurethane matrix 2 together with PU film 3 and adhesive layer 6 is 1.5 mm in the middle and 0.1 mm at the edge.
  • the polyurethane matrix 2 is covered with a siliconized paper 1 in order to avoid contamination or contamination of the matrix 2.
  • FIG. 5 illustrates a further preferred geometric shape of the wound dressing.
  • the plaster has a square shape, the corners of the square are rounded (diameter of the square 50 mm), consists of a water-vapor-permeable foamed polyurethane matrix 2, which is beveled towards the edge.
  • the polyurethane matrix 2 is essentially semi-convex and circular, and is accordingly comparable to a semi-convex lens with a diameter of 33 mm.
  • the PU matrix 2 is covered on the side facing away from the skin with a PU film 3 which is coated over the entire surface with the adhesive layer 6 based on rubber.
  • the entire periphery of the adhesive layer 6 is not covered with the polyurethane matrix 2. In this way, two concentric zones of chemically different adhesive compositions 2, 6 result, which differ in terms of adhesion, absorption capacity and cushioning properties.
  • the thickness of the polyurethane matrix 2 together with PU film 3 and adhesive layer 6 is 1.5 mm in the middle and 0.1 mm at the edge.
  • FIG. 6 shows three further embodiments of a matrix plaster according to the invention, namely in cross section.
  • the matrix patch consists of three individual layers.
  • the doped wound dressing made of polyurethane 2, the matrix 2 is completely covered on the side facing away from the wound or the skin with a carrier material 8.
  • the carrier material 8 is, for example, polymer films, nonwovens, fabrics and their combinations, and films or textile materials made from polymers such as polyethylene, polypropylene and polyurethane or natural fibers.
  • the self-adhesive matrix 2 On the side facing the wound or skin, the self-adhesive matrix 2 is completely covered with a release paper 1.
  • the matrix 2 has a relatively high layer thickness in the center of the plaster, while they are thin in the edge region of the plaster.
  • the matrix 2 between the matrix 2 and the carrier material 8 there is an additional adhesive coating 9 applied over the entire surface of the carrier material 8.
  • the matrix 2 does not extend over the entire surface of the carrier material 8 No matrix 2 is applied in the edge region of the carrier material 8.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

Selbstklebendes, wirkstoffhaltiges Matrixpflaster zur kontrollierten Abgabe von Wirkstoffen an die Haut auf Basis von Polyurethangelen, wobei der Wirkstoff in der Matrix vorhanden ist und wobei der Matrix Penetrationsenhancer zugesetzt sind.

Description

Beschreibung
Selbstklebendes, wirkstoffhaltiges Matrixpflaster auf Basis von Polyurethangelen
Die Erfindung ' betrifft selbstklebende, wirkstoffhaltige Matrixpflaster auf Basis von Polyurethangelen, insbesondere mit durchblutungsfördemden Wirkstoffen.
Wirkstoffhaltige Pflaster für die transdermale Applikation sind vielfach in der Literatur und in Patenten beschrieben.
Die transdermalen Pflastersysteme können beispielsweise nach ihrem Aufbau unterschieden werden.
Bei den membrankontrollierten transdermalen therapeutischen Systemen befindet sich ein separates Wirkstoffreservoir zwischen einer äußeren undurchlässigen Deckschicht und einer semipermeablen Steuermembran, die die Freisetzung des Wirkstoffes in die Haut kontrolliert und mit einer zusätzlichen klebenden Schicht zur Hautfixierung verbunden ist.
Da die einzelnen Komponenten dieser kompliziert aufgebauten Systeme sorgfältig aufeinander abgestimmt werden müssen, ist die Herstellung aufwendig.
Bei den matrixgesteuerten Systemen wird ein inhärentes Wirkstoffreservoir durch eine homogene Verteilung des Wirkstoffs in einer Polymermatrix oder einer Gelmatrix aufgebaut. Idealerweise besitzt dabei die Polymer- oder Gelmatrix selbstklebende Eigenschaften, so daß die Matrix nicht durch zusätzliches Aufbringen einer Adhäsionsschicht auf der Haut fixiert werden muß. Im einfachsten Fall befindet sich die wirkstoffhaltige Matrix zwischen einer mit ihr fest verankerten Abdeckschicht und einer abziehbaren Trennschicht. Üblicherweise wird der Wirkstoff durch Lösen, Dispergieren, Suspendieren, Extrudieren, Kneten, Mischen oder ähnliche Verfahren, teilweise bei erhöhter Temperatur, in die Polymeroder Gelmatrix homogen eingemischt. Die Verwendung von Polyurethanen zur kontrollierten Wirkstoffabgabe ist in nur wenigen Fällen beschrieben (Lamba, Woodhouse, Cooper, „Polyurethanes in Biomedical Applications", CRC Press, 1998, S. 240).
EP 0 057 839 A1 beschreibt Polyurethangele, in die auch verschiedene Wirkstoffe eingearbeitet werden können und deren Verwendung als Wirkstoffträger mit Depotwirkung.
Die in WO 97/43328 A1 beschriebenen hydrophilen, selbstklebenden Polyurethan- Gelmassen werden bevorzugt als wirkstofffreie Wundauflagen zur Behandlung chronischer Wunden verwendet. Sie zeichnen sich beispielsweise durch eine gute Hautfreundlichkeit, gutes Haftvermögen, auch über eine lange Anwendungsdauer und eine schmerzfreie Entfernbarkeit nach der Anwendung aus.
EP 0 016 652 A1 beschreibt eine wirkstoffhaltige Zusammensetzung, die durch Umsetzung eines Polyethylenoxids mit mehrfunktionalen Isocyanaten hergestellt wird und ein kristallines Hydrogel in der trockenen Form darstellt. Durch Quellung eines auf diese Weise hergestellten polymeren Trägers in einer Lösung einer Wirksubstanz und anschließende Trocknung wird eine Zusammensetzung mit gesteuerter Freigabe erhalten.
WO 96/31551 A1 beschäftigt sich mit Polyurethan-Microgelen, die aktive Substanzen, beispielsweise Proteine enthalten, in Wasser quellen und dabei den Wirkstoff freisetzen können.
Auch WO 91/02763 A1 und WO 94/22934 A1 beschäftigen sich mit Zusammensetzungen zur kontrollierten Abgabe von aktiven Substanzen aus Hydrogelen auf der Basis von Polyurethan-Harnstoffen.
Die bekannten wirkstoffhaltigen Polyurethane sind zudem Produkte, die keine selbsthaftenden Eigenschaften aufweisen.
Durchblutungsfördernde Wirkstoffpflaster werden zur Behandlung von rheumatischen Beschwerden, Muskelverspannungen und Schmerzen im Bereich des Bewegungsapparates eingesetzt. Bekannte wärmewirksame Pflastersysteme enthalten eine Klebmasse auf Basis Kautschuk, Hydrokolloid oder Hydrogel, in die ein oder mehrere Wirkstoffe mit durchblutungsfördemden Eigenschaften, wie Benzylnikotinat, Capsaicin und Nonivamid, eingearbeitet sind.
An wirkstoffhaltige Pflastersysteme werden neben einer kontrollierten Wirkstofffreisetzung auch bestimmte Anforderungen an die Klebmatrix, wie beispielsweise Hautfreundlichkeit, gutes Haftvermögen über eine lange Anwendungsdauer und eine schmerzfreie Entfernbarkeit gestellt. Selbstklebende, hydrophile Polyurethangele, die im Bereich der chronischen Wundheilung eingesetzt werden, erfüllen die letztgenannten Anforderungen besonders gut. Diese Systeme sind zwar auch als Wirkstoffträger beschrieben, weisen aber beispielsweise bei Verwendung von durchblutungsfördemden Wirkstoffen wie Nonivamid, Benzylnicotinat und Capsaicin eine nur geringe Freisetzung des Wirkstoffs auf. Ein Grund dafür ist, daß das Eigenschaftsprofil bekannter insbesondere hydrophiler Polyurethangelprodukte für die feuchte Wundheilung zugeschnitten ist, beispielsweise die Fähigkeit, Flüssigkeit aus der Wunde aufzunehmen und nicht zur Abgabe von Wirkstoffen in die intakte Haut.
Aufgabe der Erfindung ist es, ein wirkstoffhaltiges Matrixpflaster zur kontrollierten Abgabe von Wirkstoffen an die Haut und/oder in die Wunde zur Verfügung zu stellen, welches selbstklebend ist und welches wirtschaftlich herstellbar ist.
Gelöst wird die Aufgabe durch ein Matrixpflaster, wie es im Anspruch 1 dargelegt ist. Die Untersprüche umfassen vorteilhafte Varianten des Erfindungsgegenstands.
Gegenstand der vorliegenden Erfindung sind selbstklebende, wirkstoffhaltige Matrixpflaster zur kontrollierten Abgabe von Wirkstoffen an die Haut oder in die Wunde mit einer absorbierenden, selbstklebenden Matrix auf Basis von Polyurethangelen, wobei der Wirkstoff in der Matrix vorhanden ist und wobei der Matrix Penetrationsenhancer zugesetzt sind.
Vorteilhaft werden der Matrix Penetrationsenhancer bis zu 30 Gew.-% zugesetzt, insbesondere 5 bis 15 Gew.-%. Zu den Penetrationsenhancer zählen beispielsweise lipophile Lösungsvermittler/ Enhancer lipophile Lösungsvermittler/Enhancer wie Ölsäuredecylester, Isopropylmyristat und -palmitat (IPM und IPP), 2-Octyldodecanol und/oder andere Fettsäureester.
Weiter bevorzugt werden als Enhancer Fettsäure-Ester C8 - C18 mit kurzkettigen Alkoholen oder Fettalkoholen eingesetzt.
Bei Fettalkoholen handelt es sich um eine Sammelbezeichnung für die durch Reduktion der Triglyceride, Fettsäuren beziehungsweise Fettsäuremethylester erhältlichen linearen, gesättigten oder ungesättigten primären Alkohole (1-Alkanole) mit 6 bis 22 Kohlenstoff- Atomen.
Fettalkohole stellen neutrale, farblose, hochsiedende, ölige Flüssigkeiten oder weiche farblose Massen dar, die in Wasser schwer- bis unlöslich, in Alkohol und Ether hingegen leicht löslich sind.
In der anschließenden Tabelle sind physikalisch-chemische Daten der Fettalkohole angegeben.
Tabelle: Physikalisch-chemische Daten der Fettalkohole.
Alkohol Formel MR Schmp. Sdp.
°C °C/kPa
1-Hexanol C6H140 102,18 -51 ,6 157,2
(Capronalkohol)
1-Heptanol C7H160 116,20 -30,0 177
(Önanthalkohol)
1-Octanol C8H180 130,23 -16,3 194,5
(Caprylalkohol)
1-Nonanol C9H20O 144,26 212
(Pelargonalkohol)
1-Decanol CιoH220 158,28 -7,0 229
(Caprinalkohol)
1-Undecanol CUHMO 172,31 16,3 131/2,0 10-Undecen-1-ol CnH220 170,30 -2 133/2,1
1-Dodecanol Cι2H26θ 186,34 23,8 150/2,7
(Laurylalkohol)
1-Tridecanol Ci3H280 200,36 155/2,0
1-Tetradecanol Cι4H3oO 214,39 38,0 167/2,0
(Myristylalkohol)
1-Pentadecanol C-ιsH320 228,42 44,0
1-Hexadecanol C16H3-4O 242,45 49,3 190/2,0
(Cetylalkohol)
1-Heptadecanol Cl H36θ 256,47 54,0 308
1-Octadecanol . Cι8H380 270,50 59,0 210/2,0
(Stearylalkohol)
9-c/s-Octadecen-1-ol CisHsßO 268,48 -7,5 209/2,0
(Oleylalkohol)
9-rrans-Octadecen-1 -ol Cl8H36θ 268,48 36,5 216/2,4
(Erucylalkohol)
9-c/s-0ctadecen-1 , 12-diol Cl8H36θ2 284,48 182/0,07
(Ricinolalkohol) all-cis-9, 12-Octadecadien-1 -ol Cι8H340 266,47 -5 153/0,4
(Linoleylalkohol) a//-c/s-9,12,15-Octadecatrien-1-ol Cι8H320 264,45 133/0,3
(Linolenylalkohol)
1-Nonadecanol C-ιgH4oO 284,53 62 167/0,04
1-Eicosanol C2oH42O 298,55 65,5 220/0,4
(Arachidylalkohol)
9-c s-Eicosen-1-ol C2oH oO 296,54 209/2,0
(Gadoleylalkohol)
5,8,11 , 14-Eicosatetraen-1 -ol C2oH340 290,49
1-Heneicosanol C ι H440 312,58 69,5
1-Docosanol C22H46θ 326,61 73,5 180/0,03
(Behenylalkohol)
1-3-c/s-Docosen-1-ol C H440 324,59 34,5 241/1,3
(Erucylalkohol)
1 -3-frans-Docosen-1 -ol C22H44O 324,59 53,5 241/1,1
(Brassidylalkohol) Weiter bevorzugt werden als Penetrationsenhancer Diester und Diether von Polyethylenglykol 6 bis 12 mit C8 - C18 Fettalkoholen beziehungsweise C8 - C18 Fettsäuren verwendet.
Unter Polyethylenglykole werden zur Klasse der Polyether gehörende Polyalkylenglykole der allgemeinen Formel:
H- O-Chfe— Chfej-OH
verstanden.
Polyethylenglykole werden technisch hergestellt durch eine basische katalysierte Polyaddition von Ethylenoxid (Oxiran) in meist geringe Mengen Wasser enthaltenden Systemen mit Ethylenglykol als Startmolekül. Sie haben Molmassen im Bereich von ca. 200 bis 5 000 000 g/mol, entsprechend Polymerisationsgraden n von ca. 5 bis >100 000.
Weiter bevorzugt werden als Enhancer Propylenglycol-di-ester mit C8 - C18 Fettalkoholen eingesetzt.
Weiter bevorzugt werden als Enhancer Gylcerin, -di- und -triester mit C8 - Cι8 Fettalkoholen eingesetzt.
Als Matrix eignen sich absorbierende, selbstklebende Polyurethane, in geschäumter oder ungeschäumter Form, die zusätzlich Füll- oder Hilfsstoffe, wie absorbierende Materialien, enthalten können.
Geeignete Polyurethane sind Gegenstand der DE 196 18 825 A1, in der hydrophile, selbstklebende Polyurethan-Gele offenbart werden, die bestehen aus a) 2 bis 6 Hydroxylgruppen aufweisenden Polyetherpolyolen mit OH-Zahlen von 20 bis 112 und einem Ethylenoxid (EO)-Gehalt von > 10 Gew.-%, b) Antioxidantien, c) in den Polyolen a) löslichen Wismut-(lll) -Carboxylaten auf Basis von Carbonsäuren mit 2 bis 18 C-Atomen als Katalysatoren sowie d) Hexamethylendiisocyanat, mit einem Produkt der Funktionalitäten der Polyurethan-bildenden Komponenten a) und d) von mindestens 5,2, wobei die Katalysatormenge c) 0,005 bis 0,25 Gew.-%, bezogen auf das Polyol a) beträgt, die Menge an Antioxidantien b) im Bereich von 0,1 bis 1 ,0 Gew.-%, bezogen auf Polyol a) liegt und ein Verhältnis von freien NCO-Gruppen der Komponente d) zu den freien OH-Gruppen der Komponente a) (Isocyanatkennzahl) im Bereich von 0,30 bis 0,70 gewählt wird.
Es werden bevorzugt 3 bis 4, ganz besonders bevorzugt 4-Hydroxylgruppen aufweisende Polyetherpolyole eingesetzt mit einer OH-Zahl im Bereich von 20 bis 112, bevorzugt 30 bis 56. Der Ethylenoxidgehalt liegt bei den erfindungsgemäß eingesetzten Polyetherpolyolen bei vorzugsweise > 20 Gew.-%.
Die Polyetherpolyole sind als solche an sich bekannt und werden zum Beispiel durch Polymerisation von Epoxiden, wie Ethylenoxid, Propylenoxid, Butylenoxid oder Tetrahydrofuran, mit sich selbst oder durch Anlagerung dieser Epoxide, vorzugsweise von Ethylenoxid und Propylenoxid - gegebenenfalls im Gemisch untereinander oder separat nacheinander - an Starterkomponenten mit mindestens zwei reaktionsfähigen Wasserstoffatomen, wie Wasser, Ethylenglykol, Propylenglykol, Diethylenglykol, Dipropylenglykol, Glyzerin, Trimethylolpropan, Pentaerythrit, Sorbit oder Succrose, hergestellt. Vertreter der genannten, zu verwendenden höhermolekularen Polyhydroxylverbindungen sind zum Beispiel in High Polymers, Vol. XVI, „Polyurethanes, Chemistry and Technology" (Saunders-Frisch, Interscience Publishers, New York, Bd 1 , 1962, S. 32-42) aufgeführt.
Als Isocyanatkomponente wird monomeres oder trimerisiertes Hexamethylendiisocyanat oder durch Biuret-, Uretdion-, Allophanatgruppen oder durch Prepolymeriierung mit Polyetherpolyolen oder Mischungen von Polyetherpolyolen auf Basis der bekannten Starterkomponenten mit 2 oder > 2 reaktionsfähigen H-Atomen und Epoxiden, wie Ethylenoxid oder Propylenoxid einer OH-Zahl von < 850, bevorzugt 100 bis 600, modifiziertes Hexamethylendiisocyanat eingesetzt. Bevorzugt ist der Einsatz von modifiziertem Hexamethylendiisocyanat, insbesondere durch Prepolymeri mit Polyetherdiolen der OH-Zahl 200 bis 600 modifiziertes Hexamethylendiisocyanat. Ganz besonders bevorzugt sind Modifizierungen des Hexamethylendiisocyanats mit Polyetherdiolen der OH-Zahl 200-600, deren Restgehalt an monomeren Hexamethylendiisocyanat unter 0,5 Gew.-% liegt. Als Katalysatoren kommen für die erfindungsgemäßen Polyurethangele in den wasserfreien Polyetherpolyolen a) lösliche Wismut(lll)-Carboxylate auf Basis linearer, verzweigter, gesättigter oder ungesättigter Carbonsäuren mit 2 bis 18, vorzugsweise 6 bis 18 C-Atomen in Frage. Bevorzugt sind Bi(lll)Salze verzweigter gesättigter Carbonsäuren mit tertiären Carboxylgruppen, wie der 2,2-Dimethyl- Octansäure (zum Beispiel Versatic-Säuren, Shell). Gut geeignet sind Zubereitungen dieser Bi (III) Salze in überschüssigen Anteilen dieser Carbonsäuren. Hervorragend bewährt hat sich eine Lösung von 1 mol des Bi(lll)Salzes der Versatic 10-Säure (2,2-Dimethyloctansäure) in einem Überschuß von 3 mol dieser Säure mit einem Bi-Gehalt von ca. 17%.
Es werden die Katalysatoren bevorzugt in Mengen von 0,03 bis 0,1 Gew.-%, bezogen auf das Polyol a), eingesetzt.
Als Antioxidantien kommen für die erfindungsgemäßen Polyurethan-Gele insbesondere sterisch gehinderte phenolische Stabilisatoren, wie BHT (2,6-Di-tert.butyl-4-methylphenol), Vulkanox BKF (2,2 min -Methylen-bis-(6-tert.-butyl-4-methyl phenol) (Bayer AG), Irganox 1010 (Pentaerythrityl-tetrakis-[3-(3,5-ditert.-butyl-4- hydroxyphenyl)-propionat]), Irganox 1076 (Octadecyl-3-(3,5-ditert.-butyl-4- hydroxyphenyl)-propionat) (Ciba-Geigy) oder Tocopherol (Vitamin E) in Betracht. Bevorzugt werden solche vom Typ des α-Tocopherol eingesetzt.
Die Antioxidantien werden bevorzugt in Mengen von 0,15 bis 0,5 Gew.-%, bezogen auf das Polyol a), eingesetzt.
Die isocyanatkennzahl (Verhältnis der bei der Reaktion eingesetzten freien NCO-Gruppen zu den freien OH-Gruppen) der erfindungsgemäßen Polyurethan-Gelmassen liegt je nach der Funktionalität der eingesetzten Isocyanat- und Polyolkomponenten im Bereich von 0,30 bis 0,70, bevorzugt im Bereich von 0,45 bis 0,60. Die für eine Gelbildung erforderliche Isocyanatkennzahl kann sehr einfach nach der folgenden Formel abgeschätzt werden:
f (Poiyoi) * (f ( ocyanat) ~ ) * Kennzahl * 2
Kennzahl ■
J (Polyol) * J (Isocyanat) Funktionalität der Isocyanat- oder Polyolkomponente
Je nach angestrebter Klebrigkeit oder Elastizität des Gels kann die tatsächlich zu verwendende Isocyanatkennzahl um bis zu + 20% von dem berechneten Wert abweichen. Die erfindungsgemäßen Polyurethan-Gelmassen werden hergestellt nach üblichen Verfahren, wie sie beispielsweise beschrieben sind in Becker/Braun, Kunststoff- Handbuch, Bd. 7, Polyurethane, S. 121 ff, Carl-Hauser, 1983.
Weiter vorzugsweise kommen Polyurethane zum Einsatz, wie sie in der EP 0 665 856 B1 offenbart sind.
Die hydrophilen Polyurethangelschäume sind demnach erhältlich aus
1. einem Polyurethangel, welches
(A) 25-62 Gew.-%, vorzugsweise 30-60 Gew.-%, besonders bevorzugt 40-57 Gew.-%, bezogen auf die Summe aus (A) und (B), eines kovalent vernetzten Polyurethans als hochmolekulare Matrix und
(B) 75-38 Gew.-%, vorzugsweise 70-40 Gew.-%, besonders bevorzugt 60-43 Gew.-%, bezogen auf die Summe aus (A) und (B) einer oder mehrerer in der Matrix durch Nebenvalenzkräfte fest gebundenen Polyhydroxylverbindungen mit einem mittleren Molekulargewicht zwischen 1000 und 12000, vorzugsweise zwischen 1500 und 8000, besonders bevorzugt zwischen 2000 und 6000, und einer mittleren OH-Zahl zwischen 20 und 112, vorzugsweise zwischen 25 und 84, besonders bevorzugt zwischen 28 und 56, als flüssigem Dispersionsmittel, wobei das Dispersionsmittel im wesentlichen frei ist an Hydroxylverbindungen mit einem Molekulargewicht unter 800, vorzugsweise unter 1000, besonders bevorzugt unter 1500, sowie gegebenenfalls
(C) 0 bis 100 Gew.-%, bezogen auf die Summe aus (A) und (B), an Füll- und/oder Zusatzstoffen enthält,
und welches erhältlich ist durch Umsetzung einer Mischung von a) einem oder mehreren Polyisocyanaten, b) einer oder mehreren Polyhydroxylverbindungen mit einem mittleren Molekulargewicht zwischen 1000 und 12000, und einer mittleren OH-Zahl zwischen 20 und 112,
c) gegebenenfalls Katalysatoren oder Beschleunigern für die Reaktion zwischen Isocyanat- und Hydroxylgruppen sowie gegebenenfalls
d) aus der Polyurethanchemie an sich bekannten Füll- und Zusatzstoffen,
wobei diese Mischung im wesentlichen frei ist von Hydroxylverbindungen mit einem Molekulargewicht unter 800, die mittlere Funktionalität der Polyisocyanate (F|) zwischen 2 und 4 liegt, die mittlere Funktionalität der Polyhydroxylverbindung (Fp) zwischen 3 und 6 beträgt und die Isocyanatkennzahl (K) der Formel
κ = - 300 ±X
+ 7 ( , . Fp) - l
gehorcht, in welcher X < 120, vorzugsweise X < 100, besonders bevorzugt X < 90 ist und die Kennzahl K bei Werten zwischen 15 und 70 liegt, wobei die angegebenen Mittelwerte von Molekulargewicht und OH-Zahl als Zahlenmittel zu verstehen sind,
2. einem Wasser absorbierenden Material und
3. einem nichtwäßrigen Schäumungsmittel.
Die Polyurethangele können aus den an sich aus der Polyurethanchemie bekannten Ausgangsverbindungen nach an sich bekannten Verfahren hergestellt werden, wie sie zum Beispiel in DE 31 03 499 A1, DE 31 03 500 A1 und EP 0 147 588 A1 beschrieben werden. Wesentlich ist jedoch, daß bei der Auswahl der gelbildenden Komponenten die oben definierten Bedingungen eingehalten werden, da sonst anstelle von selbsthaftenden Gelen klebfreie, elastische Gele erhalten werden.
Bevorzugte Polyhydroxylverbindungen sind Polyetherpolyole, wie sie in den oben genannten Offenlegungsschriften ausführlich genannt sind. Als Polyisocyanatkomponenten sind sowohl (cyclo)aliphatische als auch aromatische Isocyanate geeignet. Bevorzugte (cyclo)aliphatische Polyisocyanate sind 1 ,6-Hexamethylen- diisocyanat sowie dessen Biurete und Trimehsate bzw. hydrierte Diphenylmethandiisocyanat ("MDI")-Typen. Bevorzugte aromatischen Polyisocyanate sind solche, die durch Destillation erhalten werden, wie MDI-Gemische aus 4,4'- und 2,4'-lsomeren oder 4,4'-MDI, sowie Toluylendiisocyanat ("TDI")-Typen.
Die Diisocyanate können insbesondere zum Beispiel aus der Gruppe der unmodifizierten aromatischen oder aliphatischen Diisocyanate oder aber aus durch Prepolymerisierung mit Aminen, Polyolen oder Polyetherpolyolen gebildeten modifizierten Produkten gewählt werden.
Die Polyurethanmasse kann ungeschäumt, geschäumt, ungefüllt oder mit zusätzlichen Füllstoffen, wie beispielsweise Superabsorbern, Titandioxid, Zinkoxid, Weichmachern, Farbstoffen etc. eingesetzt werden. Weiterhin können auch Hydrogele in halbfester bis fester Form mit aktiven Bestandteilen für die zentrale Zone verwendet werden.
Die Polyurethan-Gele können gegebenenfalls aus der Polyurethan-Chemie an sich bekannte Zusatzstoffe enthalten, wie zum Beispiel Füllstoffe und Kurzfasern auf anorganischer oder organischer Basis, Metallpigmente, oberflächenaktive Substanzen oder flüssige Streckmittel wie Substanzen mit einem Siedepunkt von über 150 °C.
Als organische Füllstoffe seien beispielsweise Schwerspat, Kreide, Gips, Kieserit, Soda, Titandioxid, Ceroxid, Quarzsand, Kaolin, Russ und Mikrohohlkugeln genannt.
An organischen Füllstoffen können zum Beispiel Pulver auf Basis von Polystyrol, Polyvinylchlorid, Harnstoff-Formaldehyd und Polyhydrazodicarbonamid eingesetzt werden. Als Kurzfasern kommen zum Beispiel Glasfasern von 0,1 bis 1 mm Länge oder Fasern organischer Herkunft, wie zum Beispiel Polyester- oder Polyamidfasern, in Frage. Metallpulver, wie zum Beispiel Eisen oder Kupferpulver, können ebenfalls bei der Gelbildung mitverwendet werden. Um den Gelen die gewünschte Färbung zu verleihen, können die bei der Einfärbung von Polyurethanen an sich bekannten Farbstoffe oder Farbpigmente auf organischer oder anorganischer Basis verwendet werden, wie zum Beispiel Eisenoxid- oder Chromoxidpigmente, Pigmente auf Phthalocyanin- oder Monoazo-Basis. Als oberflächenaktive Substanzen seien zum Beispiel Cellulosepulver, Aktivkohle und Kieselsäurepräparate genannt.
Zur Modifizierung der Hafteigenschaften der Gele können gegebenenfalls Zusätze von polymeren Vinylverbindungen, Polyacrylaten und sonstigen in der Klebstoff-Technik üblichen Copolymeren bzw. auch Klebemittel auf Naturstoffbasis bis zu einem Gehalt von 10 Gew.-%, bezogen auf das Gewicht der Gelmasse, zugegeben werden.
Bevorzugte Wasser absorbierende Materialien sind als Superabsorber bekannte Wasser absorbierende Salze von Polyacrylaten und deren Copolymeren, insbesondere die Natriumoder Kaliumsalze. Sie können unvemetzt oder vernetzt sein und sind auch als Handelsprodukte erhältlich. Insbesondere sind solche Produkte geeignet, wie sie in der DE 37 13 601 A1 offenbart werden, und auch Superabsorber der neuen Generation mit nur noch geringen Anteilen an austrockenbarem Wasser und hohem Quellvermögen unter Druck. Bevorzugte Produkte sind schwach vernetzte Polymerisate auf der Basis Acrylsäure/Natriumacrylat. Solche Natrium-polyacrylate sind als Favor T (Chemische Fabrik Stockhausen GmbH, Deutschland) erhältlich.
Weitere Absorber, zum Beispiel Carboxymethylcellulose und Karaya, sind ebenfalls geeignet.
Der Schäumungsgrad läßt sich durch die eingearbeiteten Mengen an Schäumungsmittel in weiten Grenzen variieren.
Weiter vorzugsweise weist die Matrix eine Dicke auf von 10 bis 1000 μm, ganz besonders 30 bis 300 μm.
Als Wirkstoffe finden eine Vielzahl von Stoffgruppen, die frei sind von gegenüber der Polyurethanvernetzungsreaktion reaktiven Hydroxyl-, Carboxyl- oder Aminfunktionalitäten, Verwendung, so beispielsweise ätherische Öle, hautpflegende kosmetische Zusatzstoffe, pharmazeutisch wirksame Substanzen oder Antiseptika.
Transdermale Therapeutische Systeme, welche mit ätherischen Ölen und deren Bestandteilen (zum Beispiel Eucalyptusöl, Pfefferminzöl, Campher, Menthol) dotiert sind, besitzen einen langfristigen, therapeutischen Effekt bei Erkältungskrankheiten,
Kopfschmerzen und weiteren Indikationen. Überraschenderweise stört die
Hydroxylfunktionalität im Menthol die Polyurethanvernetzungsreaktion nicht, was durch die geringere Reaktivität der sekundären OH-Gruppe im Mentholmolekül erklärt werden kann.
Unter ätherischen Ölen sind aus Pflanzen gewonnene Konzentrate bekannt, die als natürliche Rohstoffe hauptsächlich in der Parfüm- und Lebensmittelindustrie eingesetzt werden und die mehr oder weniger aus flüchtigen Verbindungen bestehen, wie zum Beispiel echte ätherische Öle, Citrusöle, Absolues, Resinoide.
Oft wird der Begriff auch für die noch in den Pflanzen enthaltenen flüchtigen Inhaltsstoffe verwendet. Im eigentlichen Sinn versteht man aber unter ätherischen Ölen Gemische aus flüchtigen Komponenten, die durch Wasserdampfdestillation aus pflanzlichen Rohstoffen hergestellt werden.
Echte ätherische Öle bestehen ausschließlich aus flüchtigen Komponenten, deren Siedepunkt überwiegend zwischen 150 und 300 °C liegen. Anders als zum Beispiel fette Öle hinterlassen sie deshalb beim Auftupfen auf Filterpapier keinen bleibenden durchsichtigen Fettfleck. Ätherische Öle enthalten überwiegend Kohlenwasserstoffe oder monofunktionelle Verbindungen wie Aldehyde, Ester, Ether und Ketone.
Stammverbindungen sind Mono- und Sesquiterpene, Phenylpropan-Derivate und längerkettige aliphatische Verbindungen.
Bei manchen ätherischen Öle dominiert ein Inhaltsstoff (zum Beispiel Eugenol in Nelkenöl mit mehr als 85%), andere sind wieder äußerst komplex zusammengesetzt. Oft werden die organoleptische Eigenschaften nicht von den Hauptkomponenten, sondern von Neben- oder Spurenbestandteilen geprägt, wie zum Beispiel von den 1 ,3,5-Undecatrienen und Pyrazinen im Galbanum-Öl. Bei vielen der kommerziell bedeutenden ätherischen Öle geht die Zahl der identifizierten Komponenten in die Hunderte. Sehr viele Inhaltsstoffe sind chiral, wobei sehr oft ein Enantiomer überwiegt oder ausschließlich vorhanden ist, wie zum Beispiel (-)- Menthol im Pfefferminzöl oder (-)-Linalylacetat im Lavendelöl.
In einer vorteilhaften Ausführungsform enthält die Matrix 0,1 bis 20 Gew.-%, besonders 1 bis 10 Gew.-%, ätherische Öle, die insbesondere aus der Gruppe Eucalyptusöl, Pfefferminzöl, Kamillenöl, Campher, Menthol, Citrusöl, Zimtöl, Thymianöl, Lavendelöl, Nelkenöl, Teebaumöl, Cajeputöl, Niaouliöl, Kanukaöl, Manukaöl, Latschenkieferöl gewählt sind. Citrusöle sind ätherische Öle, die aus den Schalen von Citrusfrüchten (Bergamotte,
Grapefruit, Limette, Mandarine, Orange, Zitrone) gewonnen werden, oft auch Agrumenöle genannt.
Citrusöle bestehen zu einem großen Teil aus Monoterpen-Kohlenwasserstoffen, hauptsächlich Limonen (Ausnahme: Bergamottöl, das nur ca. 40% enthält).
Unter Campher versteht man 2-Bornanon, 1,7,7-Trimethylbicyclo[2.2.1]heptan-2-on, siehe untere Abbildung.
(+)-Campher
Pfefferminzöle sind durch Wasserdampfdestillation aus Blättern und Blütenständen verschiedener Pfefferminze-Sorten gewonnene ätherische Öle, gelegentlich auch solche aus Mentha arvensis.
Menthol hat drei asymmetrische C-Atome und kommt demzufolge in vier diastereomeren Enantiomerenpaaren vor (vgl. die Formelbilder, die anderen vier Enantiomeren sind die entsprechenden Spiegelbilder).
(-)-Menthol (+)-Neomenthol (+)-lsomenthol (+)-Neoisomenthol (1) (2) (3) (4)
Die Diastereomeren, die destillativ getrennt werden können, werden als Neoisomenthol, Isomenthol, Neonnenthol [(+)-Form: Bestandteil des japanischen Pfefferminzöls] und Menthol bezeichnet. Wichtigstes Isomer ist (-)-Menthol (Levomenthol), glänzende, stark pfefferminzartig riechende Prismen.
Menthol erzeugt beim Einreiben auf der Haut (besonders an Stirn und Schläfen) infolge Oberflächenanästhesierung und Reizung der kälteempfindlichen Nerven bei Migräne und dergleichen ein angenehmes Kältegefühl; tatsächlich zeigen die betreffenden Stellen normale oder erhöhte Temperatur. Diese Wirkungen besitzen die anderen Isomeren von Menthol nicht.
Des weiteren können der Matrix vorteilhaft hautpflegende, kosmetische Zusatzstoffe zugesetzt sein, besonders zu 0,2 bis 10 Gew.-%, ganz besonders zu 0,5 bis 5 Gew.-%.
Erfindungsgemäß können die hautpflegenden, kosmetischen Zusatzstoffe (eine oder mehrere Verbindungen) sehr vorteilhaft gewählt werden aus der Gruppe der lipophilen Zusatzstoffe, insbesondere aus folgender Gruppe:
Azulen, Vitamine, Vitamin A-Palmitat, Coffein.
Vorteilhaft ist es auch, die Zusatzstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl, Eucerit® und Neocerit .
Besonders vorteilhaft werden der oder die Zusatzstoffe ferner gewählt aus der Gruppe der NO-Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zubereitungen zur Be- handlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut dienen sollen.
Bevorzugter NO-Synthasehemmer ist das Nitroarginin.
Vorteilhaft ist es auch, dem oder die Zusatzstoffe aus der Gruppe der Ubichinone und Plastochinone zu wählen.
Ubichinone zeichnen sich durch die Strukturformel
aus und stellen die am weitesten verbreiteten u. damit am besten untersuchten Biochinone dar. Ubichinone werden je nach Zahl der in der Seitenkette verknüpften Isopren-Einheiten als Q-1, Q-2, Q-3 usw. oder nach Anzahl der C-Atome als U-5, U-10, U-15 usw. bezeichnet. Sie treten bevorzugt mit bestimmten Kettenlängen auf, zum Beispiel in einigen Mikroorganismen u. Hefen mit n=6. Bei den meisten Säugetieren einschließlich des Menschen überwiegt Q10.
Besonders vorteilhaft ist Coenzym Q10, welches durch folgende Strukturformel gekennzeichnet ist:
Plastochinone weisen die allgemeine Strukturformel
auf. Plastoschinone unterscheiden sich in der Anzahl n der Isopren-Reste und werden endsprechend bezeichnet, zum Beispiel PQ-9 (n=9). Ferner existieren andere Plastochinone mit unterschiedlichen Substituenten am Chinon-Ring.
Auch Kreatin und/oder Kreatinderivate sind bevorzugte Zusatzstoffe im Sinne der vorliegenden Erfindung. Kreatin zeichnet sich durch folgende Struktur aus:
Bevorzugte Derivate sind Kreatinphosphat sowie Kreatinsulfat, Kreatinacetat, Kreatinascorbat und die an der Carboxylgruppe mit mono- oder polyfunktionalen Alkoholen veresterten Derivate.
Die Liste der genannten Zusatzstoffe beziehungsweise Zusatzstoffkombinationen, die in den erfindungsgemäßen Zubereitungen verwendet werden können, soll selbstverständlich nicht limitierend sein, bis auf das Kriterium der gegenüber Isocyanat reaktiven Hydroxyl- oder Carboxylgruppe. Die Zusatzstoffe können einzelnen oder in beliebigen Kombinationen miteinander verwendet werden.
Sodann können der Matrix des wirkstoffhaltigen Matrixpflasters pharmazeutisch wirksame Substanzen zugesetzt sein, vorzugsweise bis zu 40 Gew.-%, besonders zu 0,01 bis 25 Gew.-%, ganz besonders zu 0,1 bis 10 Gew.-%. Typische Wirkstoffe sind - ohne den Anspruch der Vollständigkeit im Rahmen der vorliegenden Erfindung zu erheben:
Indikation: Wirkstoff
Antimykotika Naftifin ((E)-N-Cinnamyl-N-methyl-l-naphthalinmethanamin)
Amorolfin
((±)-cis-2,6-Dimethyl-4-[2-methyl-3-(4-tert- pentylphenyl)- propyl]morpholin)
Tolnaftat , (0-(2-Naphthyl)-N-methyl-N-m-tolyl-thiocarbamat)
Clotrimazol (1-[(2-Chlorphenyl)-diphenylmethyl]-1 H-imidazol)
Antiseptika Triclosan
Ethacridin
Chlorhexidin
Hexetidin
Dodicin lod
Nichtsteroidale Antirheumatika Methylsalicylat Etofenamat
Indomethacin
([1-(4-Chlorbenzoyl)-5-methoxy-2-methyl-1 H- indol- 3- yl]essigsäure)
Antipuriginosa Crotamiton
Lokalanästhetika Benzocain
Antipsoriatika
Keratolytika Harnstoff Weitere, für die Wundheilung förderliche Wirkstoffe, wie Silbersulfadiazin, können ebenfalls eingesetzt werden.
Besonders vorteilhaft und im Sinne der Erfindung können auch hyperämisierende Wirkstoffe wie natürliche Wirkstoffe des Cayenne-Pfeffers oder synthetische Wirkstoffe wie Nonivamid, Nicotinsäurederivate, bevorzugt Bencylnicotinat oder Propylnicotinat, genannt werden beziehungsweise Antiphlogistika und/oder Analgetika.
Beispielhaft seien Capsaicin
[8-Methyl-trans-6-nonensäure-(4-hydroxy-3- methoxybenzylamid)]
Nonivamid
Nicotinsäurebenzylester
Benzylnicotinat
genannt.
Von besonderer Bedeutung unter den Wirkstoffen sind die Desinfektionsmittel beziehungsweise Antiseptika hervorzuheben, so daß deren Verwendung in der Matrix nochmals betont werden soll.
Als Desinfektionsmittel werden Stoffe bezeichnet, die zur Desinfektion, d. h., zur Bekämpfung pathogener Mikroorganismen (zum Beispiel Bakterien, Viren, Sporen, Klein- und Schimmelpilze) geeignet sind und zwar im allgemeinen durch Anwendung an der Oberfläche von Haut, Kleidung, Geräten, Räumen, aber auch von Trinkwasser, Nahrungsmitteln, Saatgut (Beizen) und als Bodendesinfektionsmittel.
Besonders lokal anzuwendende Desinfektionsmittel, zum Beispiel zur Wunddesinfektion, werden auch als Antiseptika bezeichnet.
Insbesondere sind als Antiseptikum die Milchsäure-Abkömmlinge, wie Ester sowie Oligo- und Polymilchsäure, einzusetzen.
Unter Milchsäureester sind die häufig als Lactate der jeweiligen Alkohol-Komponente benannten Ester der allgemeinen Formel
OH R = CH3 : a
R = C2H5 : b
H3C-CH-COOR
R = CH(CH3)2 : c R = (CH2)3CH3 : d bekannt, die in der Mehrzahl bei 20 °C flüssige oder tiefschmelzende Produkte sind und die in Wasser, mit Ausnahme der niederen Alkylester, wenig, in Alkohol und Ether gut löslich sind.
Man unterscheidet
(a) Milchsäuremethylester (Methyllactat), C4H803, MR 104,10, Siedepunkt 145 °C
(b) Milchsäureethylester (Ethyllactat), C5H10O3, MR 118,13, D. 1 ,03, Siedepunkt 154 °C
(c) Milchsäure-isopropylester (Isopropyllactat), C6H12O3, MR 132,15, D. 0,9980, Siedepunkt 167 °C
(d) Milchsäurebutylester (Butyllactat), C7H1403, MR 146,18, D. 0,9803, Siedepunkt 187 °C
Polymilchsäure (Polylactid) ist ein Polyester auf Basis von Milchsäure, aus deren Lactid sie durch Ringöffnungspolymerisation hergestellt werden kann.
Sodann enthält die Matrix in einer weiteren vorteilhaften Ausführungsform einen insbesondere hydrophilen Füllstoff auf der Basis von Cellulose sowie seinen Derivaten, deren mittlere Korngröße im Bereich von 20 bis 60 μm liegt, denn bei der Auswahl der Füllstoffe wurde überraschenderweise gefunden, daß sich insbesondere Füllstoffe auf der Basis Siliziumdioxid oder von Cellulose eignen, wobei letztere eine isotrope Gestalt besitzen und bei Kontakt mit Wasser nicht zum Quellen neigen. Dabei sind besonders Füllstoffe mit einer Partikelgröße von kleiner gleich 100 μm geeignet.
Der Einsatz hydrophiler Füllstoffe in einer unpolaren Matrix ist in der Literatur bekannt. Explizit für den Einsatz in transdermal therapeutischen Systemen werden Sie in EP 0 186 019 A1 beschrieben. Hier allerdings lediglich bis zu einer Konzentration von 3 bis 30 Gew. %, ohne daß Details zu diesen Füllstoffen erwähnt werden. Die Erfahrung zeigt, daß Systeme mit einem Füllstoffgehalt von über 30 Gew.-% deutlich an Klebrigkeit verlieren und hart und spröde werden. Dadurch verlieren sie die grundlegende Anforderung an ein transdermal therapeutisches System. Bevorzugt werden Füllstoffe auf der Basis von mikrokristalliner oder amorpher Cellulose in wesentlich höheren Konzentrationen eingesetzt, ohne daß eine negative Beeinflussung der klebtechnischen Eigenschaften eintritt, insbesondere wenn sie eine isotrope Gestalt mit einer Partikelgröße von nicht größer als 100 μm besitzen. Höhere Gehalte an Füllstoffen sind zur Verbesserung der Trageeigenschaften insbesondere bei lange andauernder und wiederholter Anwendung wünschenswert.
Weiterhin kann die Matrix auf der haut- beziehungsweise wundabgewandten Seite mit einem Trägermaterial eingedeckt sein, beispielsweise bestehend aus Folien (zum Beispiel aus PUR, Polyester, PE oder PP), Vliesen, Geweben, Schäumen, metallisierte Folien, Verbundstoffe, Baumwolle etc.
Bevorzugt aus der Gruppe der geeigneten Trägermaterialien sind dabei die okklusiven Folien.
Beispielsweise ist auch ein metallocen-Polyethylen-Vliesstoff geeignet.
Der metallocen-Polyethylen-Vliesstoff weist vorzugsweise folgende Eigenschaften auf:
• ein Flächengewicht von 40 bis 200 g/m2, insbesondere von 60 bis 120 g/m2, und/oder
• eine Dicke von 0,1 bis 0,6 mm, insbesondere von 0,2 bis 0,5, und/oder
• eine Höchstzugkraft-Dehnung längs von 400 bis 700% und/oder
• eine Höchstzugkraft-Dehnung quer von 250 bis 550%.
Sodann können als Trägermaterialien bekannte Vliese eingesetzt werden, die mechanisch verfestigt sind, und zwar durch das Übernähen mit separaten Fäden oder durch das
Vermaschen.
Im ersten Falle ergeben sich die Vlies-Faden-Nähgewirke. Zur Herstellung dieser wird ein
Faservlies vorgelegt, das beispielsweise quergetäfelt sein kann und mittels separater Fäden in Fransen- oder Trikotlegung übernäht wird.
Diese Vliese sind unter dem Namen „Maliwatt" (von der Firma Malimo) oder Arachne bekannt. Bei der zweiten Art der Verfestigung wird ebenfalls vorzugsweise ein quergetäfeltes
Vlies vorgelegt. Während des Verfestigungsvorganges ziehen Nadeln aus dem Vlies selbst
Fasern heraus und formen sie zu Maschen, wobei in Fransenlegung Nähte entstehen.
Dieses Vlies-Nähgewirke ist unter dem Namen „Malivlies", ebenfalls von der Firma Malimo, verbreitet.
Eine Übersicht über die verschiedenen Arten der mechanisch verfestigten Faservliesstoffe ist dem Artikel „Kaschierung von Autopolsterstoffen mit Faservliesen" von G. Schmidt, Melliand
Textilberichte 6/1992, Seiten 479 bis 486, zu entnehmen.
Zusammenfassend kann festgehalten werden, daß als Trägermaterialien sich alle starren und elastischen Flächengebilde aus synthetischen und natürlichen Rohstoffen eignen. Bevorzugt sind Trägermaterialien, die so eingesetzt werden können, daß sie Eigenschaften eines funktionsgerechten Verbandes erfüllen. Beispielhaft sind Textilien wie Gewebe, Gewirke, Gelege, Vliese, Laminate, Netze, Folien, Schäume und Papiere aufgeführt. Weiter können diese Materialien vor- beziehungsweise nachbehandelt werden. Gängige Vorbehandlungen sind Corona und Hydrophobieren; geläufige Nachbehandlungen sind Kalandern, Tempern, Kaschieren, Stanzen und Eindecken.
Die Matrix ist in einer bevorzugten Ausführungsform auf einem Trägermaterial aufgetragen, vorzugsweise derart, daß die Peripherie des Trägermaterials zumindest teilweise nicht von der Matrix bedeckt ist.
Des weiteren kann zwischen der Matrix und dem Trägermaterial eine Klebemasse beschichtet sein, und zwar auf Basis von PUR, Acrylaten oder Kautschuk.
Schließlich kann die Matrix und/oder das mit der Klebemasse beschichtete Trägermaterial, wenn die Matrix nicht vollflächig auf dem Trägermaterial vorhanden ist, mit dem üblichen Trennpapier eingedeckt sein.
Das erfindungsgemäße Matrixpflaster kann jede beliebige Form aufweisen, wobei eine regelmäßige Form wie rechteckig, quadratisch, kreisrund oder oval bevorzugt wird. Im folgenden seien beispielhaft bevorzugte Ausführungsformen des Erfindungsgegenstands sowie mehrere Figuren beschrieben, ohne damit die Erfindung unnötig einschränken zu wollen.
Beispiele 1 bis 7
Herstellung der wirkstoffhaltigen Polyurethane
Der Wirkstoff Nonivamid (NVA, Fa. Boehringer Ingelheim) wird in einem Wärmeschrank aufgeschmolzen und mit Isopropylpalmitat (IPP, Fa. Pronova Oleochemicals) unter Rühren homogen vermischt.
Das Levagel (Polyetherpolyol der Fa. Bayer, Leverkusen) und das Desmodur (Polyisocyanat auf Hexamethylendiisocyanat-Basis der Fa. Bayer, Leverkusen) werden in ein Gefäß eingewogen und mit dem Nonivamid/Isopropylpalmitat-Gemisch für die Dauer von einigen Minuten unter Rühren homogen vermischt.
Nach Zugabe von Coscat 83 (Bismut-Salz der Fa. C.H.Erbslöh) wird die Mischung eine Minute homogen verrührt und anschließend die noch flüssige Masse mittels eines Streichbalkens mit definierter Spaltbreite zwischen einer Trägerfolie (Polyurethanfolie, Fa. Beiersdorf, Hamburg oder Polyethylenfolie, Fa. BP-Chemicals) und einem Silikonpapier (oder Silikonfolie) ausgestrichen.
Mengenangaben der Rezepturen für die Beispiele 1 bis 7 :
Beispiele 1 bis 7
Wirkstofffreisetzung
Zur Untersuchung des Freisetzungsverhaltens werden Muster auf Schweinehaut präpariert und die Freisetzung nach 24 Stunden quantitativ bestimmt.
Beispiel 2
Freisetzung von NVA auf Schweinehaut in Abhängigkeit von der Zeit
Figur 7 stellt die Ergebnisse der obigen Tabelle graphisch dar.
Die Figur 1 verdeutlicht eine bevorzugte geometrische Form des Matrixpflasters., Das Pflaster weist eine kreisrunde Form (Durchmesser 100 mm) auf, besteht aus einer Polyurethan-Matrix 2, die sich zum Rand hin abschrägt. Die Polyurethan-Matrix 2 schrägt sich zunächst gleichmäßig ab und läuft in einem 20 mm breiten Ring aus, bei dem die Dicke konstant beibehalten wird. Die Polyurethan-Matrix 2 ist mittig im wesentlichen halbkonvex ausgeformt, ist demgemäß einer halbkonvexen Linse vergleichbar.
Die Dicke der Polyurethan-Matrix 2 beträgt in der Mitte 2,3 mm und am Rande 0,7 mm.
Schließlich ist die Polyurethan-Matrix 2 mit einem silikonisierten Papier 1 eingedeckt, um eine Verschmutzung oder Kontamination der Matrix 2 zu vermeiden.
Die Figur 2 verdeutlicht eine weitere bevorzugte geometrische Form des Matrixpflasters.
Das Pflaster weist eine ellipsoide Form (Länge der Achsen 42 mm beziehungsweise 68 mm) auf, besteht aus einer Polyurethan-Matrix 2, die sich zum Rand hin abschrägt. Die Polyurethan-Matrix 2 schrägt sich zunächst gleichmäßig ab und läuft in einem ungefähr 11 mm breiten Ring aus, bei dem die Dicke konstant beibehalten wird. Die Polyurethan-Matrix 2 ist mittig im wesentlichen halbkonvex ausgeformt, ist demgemäß einer halbkonvexen Linse vergleichbar.
Die PU-Matrix 2 ist auf der hautabgewandten Seite mit einer PE-Foiie 3 eingedeckt.
Die Dicke der Polyurethan-Matrix 2 samt PE-Folie 3 beträgt in der Mitte 1 ,6 mm und am
Rande 0,3 mm. Schließlich ist die Polyurethan-Matrix 2 mit einem silikonisierten Papier 1 eingedeckt, um eine Verschmutzung oder Kontamination der Matrix 2 zu vermeiden.
Die Figur 3 verdeutlicht eine weitere bevorzugte geometrische Form des Matrixpflasters.
Das Pflaster weist eine ellipsoide Form auf (Länge der Achsen 110 mm beziehungsweise 65 mm), besteht aus einer Polyurethan-Matrix 2, die sich zum Rand hin abschrägt. Die Polyurethan-Matrix 2 ist im wesentlichen halbkonvex ausgeformt, ist demgemäß einer halbkonvexen Linse mit einer Länge der Achsen von 72 mm beziehungsweise 34 mm vergleichbar.
Die PU-Matrix 2 ist auf der hautabgewandten Seite mit einer PE-Folie 3 eingedeckt, die mit der Klebeschicht 4 auf Polyurethan-Basis, die IPP enthält, vollflächig beschichtet ist. In der hier gezeigten Ausführungsform des Pflasters ist die gesamte Peripherie der Klebeschicht 4 nicht mit der Polyurethan-Matrix 2 bedeckt. Es ergeben sich auf diese Weise zwei konzentrische Zonen chemisch unterschiedlicher Klebemassen 2, 4, welche sich hinsichtlich Haftvermögen, Absorptionsvermögen und Polstereigenschaft unterscheiden.
Die Dicke der Polyurethan-Matrix 2 samt PU-Folie 3 und Klebeschicht 4 beträgt in der Mitte 1 ,3 mm und am Rande 0,15 mm.
Schließlich ist die Polyurethan-Matrix 2 mit einem silikonisierten Papier 1 eingedeckt, um eine Verschmutzung oder Kontamination der Matrix 2 zu vermeiden.
Die Figur 4 verdeutlicht eine weitere bevorzugte geometrische Form des Matrixpflasters.
Das Pflaster weist eine kreisrunde Form auf (Durchmesser 100 mm), besteht aus einer geschäumten Polyurethan-Matrix 2, die sich zum Rand hin abschrägt. Die Polyurethan- Matrix 2 ist im wesentlichen halbkonvex ausgeformt, ist demgemäß einer halbkonvexen Linse mit einem Durchmesser von 60 mm vergleichbar. Die PU-Matrix 2 ist auf der hautabgewandten Seite mit einer PU-Folie 3 eingedeckt, die mit der Klebeschicht 6 auf Acrylat-Basis vollflächig beschichtet ist. In der hier gezeigten Ausführungsform des Pflasters ist die gesamte Peripherie der Klebeschicht 6 nicht mit der Polyurethan-Matrix 2 bedeckt. Es ergeben sich auf diese Weise zwei konzentrische Zonen chemisch unterschiedlicher Klebemassen 2, 6, welche sich hinsichtlich Haftvermögen, Absorptionsvermögen und Polstereigenschaft unterscheiden.
Die Dicke der Polyurethan-Matrix 2 samt PU-Folie 3 und Klebeschicht 6 beträgt in der Mitte 1 ,5 mm und am Rande 0,1 mm.
Schließlich ist die Polyurethan-Matrix 2 mit einem silikonisierten Papier 1 eingedeckt, um eine Verschmutzung oder Kontamination der Matrix 2 zu vermeiden.
Die Figur 5 verdeutlicht eine weitere bevorzugte geometrische Form des Wundverbands.
Das Pflaster weist eine quadratische Form auf, wobei die Ecken des Quadrats abgerundet sind (Durchmesser des Quadrats 50 mm), besteht aus einer wasserdampfdurchlässigen geschäumten Polyurethan-Matrix 2, die sich zum Rand hin abschrägt. Die Polyurethan- Matrix 2 ist im wesentlichen halbkonvex ausgeformt und kreisrund, ist demgemäß einer halbkonvexen Linse mit einem Durchmesser von 33 mm vergleichbar.
Die PU-Matrix 2 ist auf der hautabgewandten Seite mit einer PU-Folie 3 eingedeckt, die mit der Klebeschicht 6 auf Kautschuk-Basis vollflächig beschichtet ist. In der hier gezeigten Ausführungsform des Pflasters ist die gesamte Peripherie der Klebeschicht 6 nicht mit der Polyurethan-Matrix 2 bedeckt. Es ergeben sich auf diese Weise zwei konzentrische Zonen chemisch unterschiedlicher Klebemassen 2, 6, welche sich hinsichtlich Haftvermögen, Absorptionsvermögen und Polstereigenschaft unterscheiden.
Die Dicke der Polyurethan-Matrix 2 samt PU-Folie 3 und Klebeschicht 6 beträgt in der Mitte 1 ,5 mm und am Rande 0,1 mm.
Schließlich ist die Polyurethan-Matrix 2 mit einem silikonisierten Papier eingedeckt, um eine Verschmutzung oder Kontamination der Matrix 2 zu vermeiden. In der Figur 6 sind drei weitere Ausführungsformen eines erfindungsgemäßen Matrixpflasters gezeigt, und zwar im Querschnitt.
In der ersten Ausführungsform der drei besteht das Matrixpflaster aus drei einzelnen Schichten. Die dotierte Wundauflage aus Polyurethan 2, die Matrix 2, ist auf der wund- beziehungsweise hautabgewandten Seite mit einem Trägermaterial 8 vollflächig eingedeckt. Als Trägermaterial 8 finden beispielsweise Polymerfolien, Vliese, Gewebe sowie deren Kombinationen Verwendung sowie Folien oder textile Materialien aus Polymeren wie Polyethylen, Polypropylen und Polyurethan oder auch Naturfasern.
Auf der wund- beziehungsweise hautzugewandten Seite ist die selbstklebende Matrix 2 mit einem Trennpapier 1 vollflächig eingedeckt.
In der zweiten Ausführungsform des Matrixpflasters weist die Matrix 2 im Zentrum des Pflasters eine relativ hohe Schichtdicke auf, während sie im Randbereich des Pflasters dünn ausgeformt sind.
In der dritten Ausführungsform befindet sich zwischen der Matrix 2 und dem Trägermaterial 8 eine zusätzliche, vollflächig auf das Trägermaterial 8 aufgetragene Klebebeschichtung 9. Anders als bei den Matrixpflastern gemäß erster und zweiter Ausführungsform erstreckt sich hier die Matrix 2 nicht über die gesamte Fläche des Trägermaterials 8. Im Randbereich des Trägermaterials 8 ist keine Matrix 2 aufgetragen.
In der Figur 7 ist die Freisetzung von NVA auf Schweinehaut dokumentiert. Zur Untersuchung des Freisetzungsverhaltens werden Muster auf Schweinehaut präpariert und die Freisetzung nach 2, 4, 6, 8 und 24 Stunden quantitativ bestimmt. Die Graphik zeigt die freigesetzte NVA-Menge als Summe in Epidermis und Dermis. Erkennbar ist ein gleichmäßiger, linearer Anstieg über die Zeit von 24 Stunden. Daraus wird deutlich, dass der Wirkstoff in kontrollierter Weise und nachhaltig in die Haut abgegeben wird, um dort seine Wirksamkeit zu entfalten.

Claims

Patentansprüche
1. Selbstklebendes, wirkstoffhaltiges Matrixpflaster zur kontrollierten Abgabe von Wirkstoffen an die Haut auf Basis von Polyurethangelen, wobei der Wirkstoff in der Matrix vorhanden ist und wobei der Matrix Penetrationsenhancer zugesetzt sind.
2. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach Anspruch 1 , dadurch gekennzeichnet, daß der Matrix Penetrationsenhancer bis zu 30 Gew.-% zugesetzt sind, insbesondere 5 bis 15 Gew.-%.
3. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß als Penetrationsenhancer lipophile Lösungsvermittler/Enhancer wie Ölsäuredecylester, Isopropylmyristat und -palmitat (IPM und IPP), 2-Octyldodecanol und/oder andere Fettsäureester eingesetzt werden.
4. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Matrix aus Polyurethan in geschäumter oder ungeschäumter Form besteht.
5. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß als Wirkstoffe Verwendung finden ätherische Öle, hautpflegende kosmetische Zusatzstoffe, pharmazeutisch wirksame Substanzen und/oder Antiseptika, insbesondere hyperämisierende Wirkstoffe.
6. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Matrix 0,1 bis 20 Gew.-%, bevorzugt 2 bis 10 Gew.-%, eines Wirkstoffes enthält.
7. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Matrix eine Dicke aufweist von 10 bis 2000 μm, ganz besonders 100 bis 1500 μm.
8. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Matrix auf einem Trägermaterial aufgetragen ist, vorzugsweise derart, daß die Peripherie des Trägermaterials zumindest teilweise nicht von der Matrix bedeckt ist.
9. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach Anspruch 8, dadurch gekennzeichnet, daß zwischen Matrix und Trägermaterial eine Klebeschicht vorhanden ist.
10. Selbstklebendes, wirkstoffhaltiges Matrixpflaster nach Ansprüchen 8 und 9, dadurch gekennzeichnet, daß als Trägermaterial okklusive Folien, bevorzugt aus Polyethylen, Polypropylen und/oder Polyester verwendet werden.
EP02754658A 2001-06-13 2002-06-12 Selbstklebendes wirkstoffhaltiges matrixpflaster auf basis von polyurethangelen Withdrawn EP1441775A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2001128685 DE10128685A1 (de) 2001-06-13 2001-06-13 Selbstklebendes, wirkstoffhaltiges Matrixpflaster auf Basis von Polyurethangelen
DE10128685 2001-06-13
PCT/EP2002/006429 WO2002100450A1 (de) 2001-06-13 2002-06-12 Selbstklebendes wirkstoffhaltiges matrixpflaster auf basis von polyurethangelen

Publications (1)

Publication Number Publication Date
EP1441775A1 true EP1441775A1 (de) 2004-08-04

Family

ID=7688151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754658A Withdrawn EP1441775A1 (de) 2001-06-13 2002-06-12 Selbstklebendes wirkstoffhaltiges matrixpflaster auf basis von polyurethangelen

Country Status (3)

Country Link
EP (1) EP1441775A1 (de)
DE (1) DE10128685A1 (de)
WO (1) WO2002100450A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220114A1 (de) * 2002-05-06 2003-11-20 Beiersdorf Ag Ätherische Öle enthaltendes Matrixpflaster auf Polyurethanbasis
EP1635782A1 (de) 2003-05-24 2006-03-22 JUVENA (International) AG Gewebekulturmedien als bestandteil von kosmetika
DE10330971B4 (de) * 2003-07-08 2007-03-29 Beiersdorf Ag Verfahren zur Herstellung von Haut- oder Wundauflagen mit verkapselten, wundheilungsfördernden und/oder hautpflegenden Substanzen
DE10341933A1 (de) * 2003-09-11 2005-04-14 Lts Lohmann Therapie-Systeme Ag Medizinische Hautpflaster mit einem Gehalt an ätherischen Ölen zur Behandlung von Erkältungskrankheiten, sowie Verfahren für deren Herstellung
DE102004061406A1 (de) * 2004-12-21 2006-07-06 Bayer Innovation Gmbh Infektionsresistente Polyurethanschäume, Verfahren zu ihrer Herstellung und Verwendung in antiseptisch ausgestatteten Wundauflagen
DE102005050431A1 (de) * 2005-10-21 2007-04-26 Lts Lohmann Therapie-Systeme Ag Transdermales therapeutisches System zur Verabreicherung lipophiler und/oder wenig hautpermeabler Wirkstoffe
US20090207790A1 (en) * 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
US20100158987A1 (en) * 2006-10-17 2010-06-24 Labtec Gesellschaft Fur Technologische Forschung Und Entwicklung Mbh Adhesive Label With Bittering Agent and Fluidifying Agents for Natural Airway Secretions
EP2072063A1 (de) 2007-12-22 2009-06-24 Bayer Innovation GmbH Infektionsresistente, auf zellulärem hydrophilem Vorpolymer basierte Polyurethanschaumstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung in antiseptischen Wundverbänden
DE102008059054A1 (de) * 2008-11-26 2010-05-27 Otto Bock Pur Life Science Gmbh Polyurethanpflaster für die transdermale Applikation von Wirkstoffen und Verfahren zu dessen Herstellung
WO2010086754A2 (en) 2009-01-30 2010-08-05 Beiersdorf Ag Cosmetic or dermatological preparation comprising collagen, chitosan, glycosylaminoglycan and cell growth promoting peptide and/or cellular complex
DE202011102109U1 (de) 2011-04-28 2012-04-30 Maria Clementine Martin Klosterfrau Vertriebsgesellschaft Mbh Therapiepflaster
EP3585351A4 (de) * 2017-02-23 2020-12-30 Alira Health Boston LLC Umweltfreundliche biofilmzerreissende antimikrobielle formulierungen, deren entwicklung und deren verwendungen
CN115054652B (zh) * 2022-06-10 2023-11-28 山东远大康恒生物科技有限公司 一种具有抗汗匀控功能的三伏贴及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650471A1 (de) * 1996-12-05 1998-06-10 Beiersdorf Ag Wirkstoffhaltige Pflaster

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU558611B2 (en) * 1981-02-03 1987-02-05 Bayer Aktiengesellschaft Polyurethane gel
WO1988001878A1 (en) * 1986-09-20 1988-03-24 Smith And Nephew Associated Companies Plc Adhesive dressing
DE4233289A1 (de) * 1992-10-02 1994-04-07 Beiersdorf Ag Hydrophile Polyurethanschaumgele und Verfahren zu deren Herstellung
DK0907359T3 (da) * 1995-09-14 2002-03-25 Ortho Mcneil Pharm Inc Lægemiddelreservoirer af polyurethanhydrogel til anvendelse i transdermale lægemiddelindgivelsessystemer
WO1997009971A2 (en) * 1995-09-14 1997-03-20 Cygnus, Inc. High capacity, superabsorbent drug reservoirs for use in transdermal drug delivery systems
DE19638570A1 (de) * 1996-09-20 1998-03-26 Bayer Ag Wirkstoffhaltige thermoplastische Polyurethane
DE19712359A1 (de) * 1997-03-25 1998-10-01 Labtec Gmbh System zur Arzneistoffinhalation
DE19826592A1 (de) * 1998-06-15 1999-12-16 Lohmann Therapie Syst Lts Verfahren zur Herstellung eines aus einzelnen Schichten bestehenden Laminats
US6277401B1 (en) * 1999-05-07 2001-08-21 U.S. Dermatologics, Inc. Drug delivery device
DE10047884A1 (de) * 2000-09-22 2002-04-11 Beiersdorf Ag Selbsthaftende Wundverbände mit haftfähigem Wundversorgungsbereich

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650471A1 (de) * 1996-12-05 1998-06-10 Beiersdorf Ag Wirkstoffhaltige Pflaster

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO02100450A1 *

Also Published As

Publication number Publication date
WO2002100450A1 (de) 2002-12-19
DE10128685A1 (de) 2002-12-19

Similar Documents

Publication Publication Date Title
EP0665856B1 (de) Hydrophile polyurethangelschäume, insbesondere zur behandlung von tiefen wunden, wundverbände auf basis hydrophiler polyurethangelschäume und verfahren zur herstellung
DE69930297T2 (de) Beschichtung auf wundverbänden und bandagen als träger für einen wirkstoff
EP1441775A1 (de) Selbstklebendes wirkstoffhaltiges matrixpflaster auf basis von polyurethangelen
DE3131610C2 (de)
DE10330971B4 (de) Verfahren zur Herstellung von Haut- oder Wundauflagen mit verkapselten, wundheilungsfördernden und/oder hautpflegenden Substanzen
DE19958458A1 (de) Antimikrobiell ausgerüstete Wundauflagen
DE4233289A1 (de) Hydrophile Polyurethanschaumgele und Verfahren zu deren Herstellung
EP1190723B1 (de) Selbsthaftende Wundverbände mit haftfähigem Wundversorgungsbereich
EP1654013B1 (de) Antimikrobiell ausgerüstete materialien
EP2744474B1 (de) Medizinische hautschutz-zusammensetzung mit einer die hautbarriere verbessernden wirkstoffkombination
WO2002102358A1 (de) Oberflächendotierte wirkstoffhaltige pflaster
DE69925332T2 (de) Verfahren zur Hinzufügung pharmazeutisch wirksamer Verbindungen zu Substraten
US20050100588A1 (en) Self-adhesive matrix plaster containing an active ingredient and based on polyurethane gels
DE4308347A1 (de) Hydrophile Polyurethanschaumgele, insbesondere zur Behandlung von tiefen Wunden und Verfahren zu deren Herstellung
DE102004038285A1 (de) Aromatherapie
WO2004064879A1 (de) Pflaster mit bedruckter wundauflage und transparenter fixierfolie
EP0715526B1 (de) Wundversorgungsartikel mit selektivem absorptionsvermögen
EP3892180A1 (de) Packung mit tuchprodukten
DE202018006232U1 (de) Ölige Pflanzenextrakte enthaltende Elemente und Pflaster, die derartige wirkstoffhaltige Elemente enthalten
DE19834496A1 (de) Verbesserte Freisetzung von Ibuprofen aus Heißschmelzklebemassen durch Zusatz von pharmazeutischen Hilfsstoffen
WO2002087534A2 (de) Kosmetische oder dermatologische formulierungen mit einem gehalt an sericosid
EP3068447B1 (de) Fluid zur wundbehandlung und wund- oder hautauflage
DE10220114A1 (de) Ätherische Öle enthaltendes Matrixpflaster auf Polyurethanbasis
AU2004200141A2 (en) Self-adhesive matrix plaster containing an active ingredient and based on polyurethane gels
EP0772433A1 (de) Gegen fussgeruch wirksame zubereitungen mit einem gehalt an oligoglycerinestern von fettsäuren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PHILIPP, PETER

Inventor name: QUANDT, JUERGEN-CHRISTIAN

Inventor name: SCHINK, MICHAEL

Inventor name: KARTHEUS, HOLGER

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PHILIPP, PETER

Inventor name: QUANDT, JUERGEN-CHRISTIAN

Inventor name: SCHINK, MICHAEL

Inventor name: KARTHEUS, HOLGER

17Q First examination report despatched

Effective date: 20100429

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101110