EP1437178B1 - Installation et procédé de pompage de poudre et installation de revêtement par poudrage - Google Patents

Installation et procédé de pompage de poudre et installation de revêtement par poudrage Download PDF

Info

Publication number
EP1437178B1
EP1437178B1 EP03014661A EP03014661A EP1437178B1 EP 1437178 B1 EP1437178 B1 EP 1437178B1 EP 03014661 A EP03014661 A EP 03014661A EP 03014661 A EP03014661 A EP 03014661A EP 1437178 B1 EP1437178 B1 EP 1437178B1
Authority
EP
European Patent Office
Prior art keywords
powder
metering chamber
predetermined
stroke
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03014661A
Other languages
German (de)
English (en)
Other versions
EP1437178A2 (fr
EP1437178A3 (fr
Inventor
Marco Sanwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gema Switzerland GmbH
Original Assignee
Gema Switzerland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE10300280A priority Critical patent/DE10300280A1/de
Application filed by Gema Switzerland GmbH filed Critical Gema Switzerland GmbH
Priority to DE50309018T priority patent/DE50309018D1/de
Priority to EP03014661A priority patent/EP1437178B1/fr
Priority to CA002453866A priority patent/CA2453866A1/fr
Priority to CNA200310123292XA priority patent/CN1517548A/zh
Priority to JP2003435540A priority patent/JP2004210544A/ja
Priority to KR1020040000644A priority patent/KR100561219B1/ko
Priority to US10/752,099 priority patent/US7287964B2/en
Priority to TW093100311A priority patent/TWI275555B/zh
Publication of EP1437178A2 publication Critical patent/EP1437178A2/fr
Publication of EP1437178A3 publication Critical patent/EP1437178A3/fr
Application granted granted Critical
Publication of EP1437178B1 publication Critical patent/EP1437178B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1459Arrangements for supplying particulate material comprising a chamber, inlet and outlet valves upstream and downstream the chamber and means for alternately sucking particulate material into and removing particulate material from the chamber through the valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/073Pumps having fluid drive the actuating fluid being controlled by at least one valve
    • F04B43/0736Pumps having fluid drive the actuating fluid being controlled by at least one valve with two or more pumping chambers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1037Flap valves
    • F04B53/1047Flap valves the valve being formed by one or more flexible elements
    • F04B53/1057Flap valves the valve being formed by one or more flexible elements the valve being a tube, e.g. normally closed at one end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • F04B9/129Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers
    • F04B9/131Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers with two mechanically connected pumping members
    • F04B9/133Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers with two mechanically connected pumping members reciprocating movement of the pumping members being obtained by a double-acting elastic-fluid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • F04B9/129Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers
    • F04B9/137Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1372Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each pump piston in the two directions is obtained by a double-acting piston fluid motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/14Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0201Position of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/09Motor parameters of linear hydraulic motors
    • F04B2203/0903Position of the driving piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/04Settings
    • F04B2207/043Settings of time

Definitions

  • the invention relates to a pump device for powder, in particular for coating powder according to the preamble of claim 1, a method for this and a powder coating device having at least one such pump device.
  • the invention relates to a pump device for powder, in particular for coating powder, comprising at least one powder pump having a metering chamber which is delimited by a chamber housing and a displacer which is movable relative to the chamber housing during a pressure stroke before and during a suction stroke
  • the pumping chamber comprises a powder inlet channel to which a powder inlet valve is associated, a powder outlet channel associated with a powder outlet valve, and a pressurized gas inlet channel associated with a pressurized gas inlet valve, wherein for aspirating a metered quantity of powder into the dosing chamber the powder inlet valve is openable and the Pulverauslassventil and the compressed gas inlet valve are closable, so that in the suction stroke moving displacement body Powder can suck through the powder inlet channel into the metering chamber, and for conveying the metered amount of powder from the metering chamber, the powder inlet valve is closable and the powder outlet and the pressure gas inlet valve can be opened, so that compressed air flowing
  • a pump device of this kind is known from EP-A-0 124 933 known. Pumping devices are also known EP-A-1 106 547 . DE-A-39 00 718 . DE-A-1 087 520 . US 2 667 280 . US 3,391,963 , and US 4,405,289 ,
  • a pump device which has two pumps, each having a Pulveransaugkolben and a driving him pneumatic cylinder.
  • the two pumps are driven in opposite directions, so that one performs a suction stroke, while the other performs a pressure stroke.
  • the respective powder suction piston draws powder from a powder source into its metering chamber.
  • the amount of powder metered out of the metering chamber into a powder discharge line is compressed by means of compressed air introduced into the metering chamber. pushed out.
  • the piston goes back to its original position during a pressure stroke, in order then again to suck in powder from the powder source during a suction stroke.
  • the flow rate per unit of time depends on the frequency with which the pistons are moved back and forth.
  • a pump device of this kind is in the WO 03/024612 A1 only after the priority date of the present new patent application has been described.
  • injectors are known in which, according to the Venturi principle, a conveying air stream flows from an outlet nozzle into a catching nozzle and generates a negative pressure in the intermediate space therebetween through which coating powder is sucked from a powder source into the conveying air flow.
  • Such injectors have compared to the aforementioned piston pumps the Disadvantages that the powder particles have a abrasive effect on the catching nozzle and thus the efficiency of the powder delivery falls over time:
  • a pneumatic powder delivery of this type requires a large amount of compressed air per unit of time.
  • the aforementioned piston pumps do not have these disadvantages.
  • the piston pumps have the disadvantage that they promote the powder discontinuously stroke and both a more uniform powder delivery and to promote larger amounts of powder per unit time a fast piston movement frequency is required.
  • the height of the piston frequency is limited by the driving speed with which the valves in the flow paths of the pump can be controlled.
  • care must be taken that in the pumps and in their flow paths, powder particles are not squeezed, sintered or otherwise adhere and also that there are no gaps, depressions and the like in which powder can accumulate.
  • a pump device which has at least one volume displacement body, form such that a defined and, if desired, large flow powder per unit time is conveyed without the aforementioned disadvantages arise.
  • a high process reliability and high stability of the powder flow rate per unit time should be achieved over a long service life.
  • a powder spray coating device which has at least one such pump device.
  • the invention discloses methods for conveying powder, in particular coating powder.
  • FIG. 1 shows a pump device according to the invention for powders, in particular for coating powder, which has two powder pumps 2-1 and 2-2, which each contain a metering chamber 4-1 or 4-2, which is separated from a chamber housing 6. 1 and 6-2 and a displacement body in the form of a flexible membrane 8-1 or 8-2 is limited.
  • the two diaphragms 8-1 and 8-2 have a common drive 10 arranged between them.
  • the drive 10 can be a mechanical, hydraulic, electrical or, according to FIG. 1, a pneumatic drive.
  • the pneumatic drive shown in Fig. 1 includes a transversely to the diaphragms 8-1 and 8-2 sliding drive piston 12, from which extend in the direction of movement piston rods 14-1 and 14-2 away, whose remote from the drive piston 12 ends with the a membrane 8-1 and connected to the other membrane 8-2, so that the two membranes each move together with the drive piston 12.
  • the piston rods 14-1 and 14-2 engage in each case Center of the respective membrane 8-1 or 8-2, which moves in each case together with the drive piston 12 in Kolbenaxialraum.
  • the diaphragm peripheral edges 16-1 and 16-2 are respectively fixed to a part of the chamber case 6-1 and 6-2 and can not move with the diaphragm center together with the drive piston 12 across the diaphragm. If in the context of this description of lifting movements of the membrane is mentioned, then in each case the area of the membrane is meant, which is connected to the drive piston 12 for common movement, but not attached to the chamber housing membrane peripheral edges 16-1 and 16-2.
  • the chamber housings 6-1 and 6-2 of the two powder pumps 2-1 and 2-2 are preferably sections of a common housing part or housing, which is shown in Fig. 1 in section.
  • the diaphragms 8-1 and 8-2 (with the exception of their diaphragm peripheral edges 16-1 and 16-2) are movable backward during a pressure stroke before and during a suction stroke by means of the common drive 10.
  • FIG. 1 shows the diaphragm 8 shown on the left -1 in an end position "a", which is the end position of the pressure stroke and the initial position of the suction stroke.
  • the associated dosing 4-1 has its smallest volume.
  • the membrane 8-1 is preferably not completely attached to the chamber housing 6-1, but has a small distance therefrom, so that powder particles can not be squeezed between the membrane 8-1 and the chamber housing 6-1.
  • FIG. 1 shows the right diaphragm 8-2 in a left end position "c", which is its end position of the suction stroke and its initial position of the pressure stroke.
  • the two diaphragms 8-1 and 8-2 are in each case jointly moved to the left or to the right by the drive piston 12, so that the left diaphragm 8-1 performs its pressure stroke when the right diaphragm 8-2 performs its suction stroke, and vice versa.
  • the drive piston 12 is located in a cylinder 22 which near cylinder end walls 24 and 25 on both sides of the drive piston 12 each have a compressed air control port 26 and 28 which via a switching valve 30 alternately with a compressed air source 32 or with a vent 34 to the outside atmosphere Ventilation are connectable.
  • the compressed air control port 28 shown on the right is connected to the compressed air source 32, which is why their compressed air has forced the drive piston 12 in the left in Fig. 1 position shown, while the left shown compressed air control port 26 to the vent 34 of the changeover valve 30 is connected.
  • the changeover valve 30 is switchable, so that after switching the compressed air control port 28 shown on the right is connected to the vent 34 and the compressed air control port 26 shown on the left is connected to the compressed air source 32.
  • the compressed air drives the drive piston 12 together with the two diaphragms 8-1 and 8-2 from left to right.
  • "b" is moved by the left diaphragm 8-1 from its suction stroke start position (print stroke end position) "a” to its suction stroke end position (print stroke start position) "b".
  • the right diaphragm 8-2 is moved from its suction stroke end position (print stroke start position) "c” to its suction stroke start position (print stroke end position) "d”.
  • the two membranes 8-1 and 8-2 are shown schematically in their left end position by a solid line and in their right end position by a dashed line.
  • Each metering chamber 4-1 and 4-2 has a powder inlet passage 36-1 and 36-2, one each.
  • Powder inlet valve 38-1 or 38-2 is assigned; a Pulverauslasskanal 40-1 and 40-2, which is associated with a Pulverauslassventil each 42-1 and 42-2; and a compressed gas inlet channel 44-1 and 44-2, which is associated with a respective compressed gas inlet valve 46-1 and 46-2.
  • the left powder inlet valve 38-1 can be opened, and the left powder outlet valve 42-1 and the left compressed gas inlet valve 46-1 can be closed, so that they are in the suction stroke direction from the suction stroke start position "a" into the suction stroke end position "b" moving left diaphragm 8-1 can suck powder through the left powder inlet passage 36-1 into the left dosing chamber 4-1.
  • the left powder inlet valve 38-1 can be closed and the left powder outlet valve 42-1 and the left pressure gas inlet valve 46-1 can be opened, so that pressurized gas, e.g. B. compressed air, from a compressed gas source 45-1, z. B. a compressed air source, through the left Druckgaseinlasskanal 44-1 flow into the left metering chamber 4-1 and can push the metered amount of powder from the metering chamber 4-1 in the left Pulverauslasskanal 40-1.
  • pressurized gas e.g. B. compressed air
  • the left diaphragm 8-1 is moved back from the drive piston 12 back from the right suction stroke stop position "b" to the left suction stroke start position "a". what is referred to here as a pressure stroke, so that they can then perform a suction stroke again.
  • Corresponding functions also carry the diaphragm 8-2 driven by the drive 10, shown on the right in FIG. 1, and the associated valves 38-2, 42-2, 45-2 and 46-2 with respect to the associated right-hand metering chamber 4-2.
  • the right diaphragm 8-2 makes its pressure stroke when the left diaphragm 8-1 makes its suction stroke, and vice versa.
  • the two powder inlet valves 38-1 and 38-2 each have a valve body 38-3 and a valve seat 38-4 with a valve opening, which can be closed by the valve body 38-3.
  • the two powder outlet valves 42-1 and 42-2 each have one Valve body 42-3 and a valve seat 42-4 with a valve opening, which is closed by the valve body 42-3.
  • the two powder outlet channels 40-1 and 40-2 shown in FIG. 1 have a common powder discharge opening 48, to which a powder receiver 50 is connected via a powder discharge line 50, for example a powder spray device 52 for spraying the powder 54 onto an object to be coated or an intermediate powder container. from which the powder 54 is then fed to a powder spray device 52, or a powder collection container.
  • a powder discharge line 50 for example a powder spray device 52 for spraying the powder 54 onto an object to be coated or an intermediate powder container. from which the powder 54 is then fed to a powder spray device 52, or a powder collection container.
  • the two powder inlet channels 36-1 and 36-2 can be connected separately or together to a common or to different powder sources.
  • they are preferably connected to a color changer 60 via a common powder inlet opening 56 and via a powder suction line 58.
  • the color changer 60 is a sewer or powder switch, through which one of several powder containers 62, 63, 64, etc. optionally with the Pulveransaug effet 58 can be connected depending on the switch position.
  • the switching of the color changer 60 is preferably carried out by means of compressed gas, for. B. compressed air, a compressed gas source, for. B. a compressed air source 66 via a controlled valve assembly 67th
  • the color changer 60 is also switchable to a switching position in which none of the powder container 62, 63, 64, but instead the compressed gas source 66 is connected via a compressed gas line 69 to the Pulveransaug réelle 58 so that compressed gas, for. B. compressed air via the powder inlet channels 36-1, 36-2 and their powder inlet valves 38-1, 38-2 through the metering chambers 4-1 and 4-2 and then also on their powder outlet valves 42-1 and 42-2 and the Pulverauslasskanäle 40-1, 40-2 can flow to the powder discharge line 50 and from there through the powder injection device 52 into the outside atmosphere to clean the entire system of powder residues.
  • compressed gas for. B. compressed air via the powder inlet channels 36-1, 36-2 and their powder inlet valves 38-1, 38-2 through the metering chambers 4-1 and 4-2 and then also on their powder outlet valves 42-1 and 42-2 and the Pulverauslasskanäle 40-1, 40-2 can flow to the powder discharge line 50 and from there through the powder injection device 52 into the outside
  • pump control device 68 may also be provided that at the same time or after this cleaning pressurized gas, for. B. compressed air from a compressed gas source 45-1 and 45-2 via the compressed gas inlet channel 44-1 and 44-2 and their associated controllable compressed gas inlet valve 46-1 and 46-2 in the one end of the metering chamber 4-1 and 4 respectively -2 blown and thus powder from the metering chamber at the other end of the chamber through the local Pulverauslassventil 42-1 or 42-2 and the subsequent Pulverauslasskanal 40-1 or 40-2 is blown out through the powder discharge line 50 and the powder spray device 52.
  • compressed air from a compressed gas source 45-1 and 45-2 via the compressed gas inlet channel 44-1 and 44-2 and their associated controllable compressed gas inlet valve 46-1 and 46-2 in the one end of the metering chamber 4-1 and 4 respectively -2 blown and thus powder from the metering chamber at the other end of the chamber through the local Pulverauslassventil 42-1 or 42-2 and the subsequent Pulverauslasskanal 40-1 or 40-2
  • the compressed gas inlet channel 44-1 or 44-2 may have a pressure gas cleaning channel 72-1 or 72-2 arranged parallel to it, which is directed against the downstream parts of the relevant powder inlet valve 38-1 or 38-2, to that of powder particles to clean, if not already the compressed gas inlet channel 44-1 or 44-2 directed against the downstream areas of the powder inlet valves 38-1 and 38-2 and thereby cleans them.
  • compressed gas for. B. compressed air
  • the pump device 68 controls all controllable valves and the color changer 60.
  • the pump control device 68 includes a timing device 74, by which, depending on the since a predetermined suction stroke position, z. B. P1 or P2 of the membrane shown on the left 8-1 and a predetermined suction stroke position, z. B. P4 or P3, the membrane shown on the right 8-2, last predetermined delay time period, the feeding of the powder from the respective metering chamber 4-1 and 4-2 is started.
  • Said "predetermined suction stroke position” may, according to one embodiment, be the suction stroke start position "a" corresponding to P1 for the left diaphragm 8-1 and "d” corresponding to P4 for the right diaphragm 8-2, which in Fig. 1 for the diaphragm 8 shown on the left -1 is the position "a” shown in solid lines, and which for the diaphragm 8-2 shown on the right in FIG. 1 is the position "d” shown in dashed lines.
  • the suction stroke start position "a" is detected by a sensor S1 at a position P1 for the membrane 8-1 shown on the left in FIGS. 1 and 2. This is the Druckhubendposition for the left diaphragm 8-1 at the same time.
  • the position P1 on the sensor S1 is the suction stroke end position and at the same time the pressure stroke start position.
  • the suction stroke start position "d" is detected by a sensor S4 at a position P4 for the diaphragm 8-2 shown on the right in FIGS. 1 and 2. This is at the same time the Druckhubendposition for the right diaphragm 8-2.
  • the position P4 at the sensor S4 is the suction stroke end position and at the same time the pressure stroke start position.
  • the sensor in question indicates a signal the pump control device 68 for reversing the movement of the drive piston 12 and thus also the two membranes in one or the other direction Compressed air supply to the compressed air control port 26 or the compressed air control port 28 and by venting the other compressed air control port.
  • the timing controller 74 detects the pump control device 68 based on the signals from the sensors S1 and S4 when the membranes 8-1 and 8-2 have reached the respective end position.
  • the sensors S1 and S4 can be arranged at any point where positions of the diaphragm 8-1 and 8-2 can be determined, in particular at locations of the cylinder 22 or the drive piston 12 or the piston rods 14-1 and 14-2 or the chamber housing 6-1, 6-2 or membranes 8-1 and 8-2. According to a preferred embodiment, they are arranged on the cylinder 22, preferably on the outside thereof, at positions P1 and P4 which the drive piston 12 has in each case when the diaphragms 8-1 and 8-2 are in one of the two end positions.
  • the respectively associated powder inlet valve 38-1 or 38-2 is closed immediately in each case if compressed gas of the compressed gas source 45-1 or 45-2 via the compressed gas inlet channel 44-1 or 44-2 in FIG the respective dosing chamber 4-1 or 4-2 is blown.
  • a larger or smaller amount of powder has been sucked in the respective metering chamber at the time of powder ejection.
  • the movement frequency of the membranes can be kept constant or also variable.
  • the "predetermined suction stroke position" is at a position between the suction stroke start position “a” and “d” and the suction stroke end position "b” and “a”, respectively, preferably closer to the suction stroke start position than to the suction stroke end position.
  • this predetermined suction stroke position for the diaphragm 8-1 shown on the left in FIGS. 1 and 2 is indicated by a sensor S2 at a position P2 and by a sensor S3 for the diaphragm 8-2 shown on the right in FIGS defined a position P3.
  • the two sensors S2 and S3, like the sensors S1 and S2, can be arranged at any point where they can detect defined positions of the diaphragm 8-1 and 8-2 between their end positions a, b, c and d, for example on the cylinder 22 , on the drive piston 12, on the piston rods 14-1 and 14-2 or on the membranes themselves or on the chamber housing 6-1, 6-2.
  • a sensor signal is triggered when the drive piston 12 or a specific part of the drive piston 12 is adjacent to the respective sensor.
  • the sensor S2 then sends a signal to the timing device 74 of the pump control device 68, when the left diaphragm 8-1 reaches a position corresponding to the sensor S2, which is selected so that it during the suction stroke of predetermined suction stroke position of the left diaphragm 8-1 corresponds.
  • the sensor S3 sends a signal to the timing controller 74 of the pump controller 68 each time the right diaphragm 8-2 reaches a position corresponding to the sensor S3, which is selected to be at the suction stroke of the predetermined suction stroke position of the right diaphragm 8-2 equivalent.
  • the timing controller detects whether, upon receipt of a signal from the sensor S2 or the sensor S3, the left diaphragm 8-1 or the right diaphragm 8-2 performs a suction stroke at this time.
  • the time delay device 74 starts the predetermined time delay period, at the end of which compressed gas is left in the metering chamber 4-1 or in the metering chamber 4-2 for pushing out the metered amount of powder.
  • the movement distance of the membranes 8-1 and 8-2 is constantly the same for all strokes and extends from the sensor S1 to the sensor S4 or vice versa.
  • the movement distance could also be shortened.
  • FIG. 2 shows a diagram above the pump device in which, on the horizontal axis S, the stroke distance of the drive piston 12, which corresponds to the travel distance of the diaphragms 8-1 and 8-2, coincides with the end position P1 at the sensor S1, the end position P4 the sensor S4, the predetermined partial suction stroke position P2 at the sensor S2 and the predetermined partial suction stroke position P3 at the sensor S3.
  • Plotted on the vertical axis of the diagram are the suction stroke times It 0 to It 10 for the membrane 8-1 shown on the left. In the reverse direction from the end position P4 to the end position P1, this corresponds to the pressure stroke of the diaphragm 8-1 shown on the left.
  • a predetermined, preferably variably adjustable, delay period started at the end of the pressurized gas of the pressurized gas source 45-1 is introduced via the Druckgaseinlasskanal 44-1 in the metering chamber 4-1, so that the pressurized gas sucked into this metering chamber 4-1 until then
  • the end of the delay period may be any time during which the drive piston 12 and, correspondingly, the membrane 8-1 shown on the left between the predetermined suction and the powder discharge valve 42-1 presses into and out of the powder injection device 50 Partial stroke position P2 at the sensor S2 and the suction stroke end position P4 at the sensor S4.
  • This timing at which the powder is ejected from the metering chamber 4-2 by means of the pressurized gas may be anywhere in the movement of the driving piston 12 between the predetermined suction stroke position P3 at the sensor S3 and the suction stroke end position P1 at the sensor S1. This corresponds to a period between the time scale rt 0 to rt 10 shown in FIG. 2 in the upper half of the diagram.
  • the numbers of the time axes It 0 to It 10 and rt 0 to rt 10 are arbitrarily selected.
  • the powder inlet valves 38-1 and 38-2 and / or the powder outlet valves 42-1 and 42-2 are not controlled valves, but are self-opening and closing valves in the manner of a check valve.
  • the powder inlet valves 38-1 and 38-2 are arranged such that they are opened by suction or negative pressure in their metering chamber 4-1 and 4-2 during the suction stroke of the associated membrane 8-1 and 8-2, respectively To suck powder from the respective powder container 62, 63 or 64 through the powder inlet channel 36-1 or 36-2 into the metering chambers 4-1 and 4-2, respectively.
  • the gas pressure of the compressed gas source 45-1 and 45-2 used for discharging the metered powder amount from the respective metering chamber 4-1 and 4-2, respectively, is greater than the negative pressure, and causes the powder inlet valve 38-1 and 38-2 to be automatic is closed.
  • the powder inlet valves 38-1 and 38-2 and / or the powder outlet valves 42-1 and 42-1 are valves controlled by the pump controller 68.
  • the powder outlet valves 42-1 and 42-2 are disposed in reverse to the powder inlet valves.
  • the respective powder outlet valve 42-1 or 42-2 is closed by the negative pressure during the suction stroke of the associated membrane 8-1 or 8-2 and opened by the compressed gas in the metering chambers for ejecting the metered amount of powder to the metered amount of powder by means of Press compressed gas through the open Pulverauslassventil 42-1 or 42-2 and the subsequent Pulverauslasskanal 40-1 or 40-2 in the powder discharge line 50 and from there into the powder injection device 52.
  • the compressed gas overcomes the negative pressure.
  • the powder suction line 58 could go directly to one of the powder containers 62, 63 or 64 instead of a color changer 60.
  • the powder spray device 52 also commonly referred to as a powder spray device, may comprise a nozzle or a rotary body or a rotating nozzle for spraying or spraying the powder, as known from the prior art.
  • a method for conveying powder, in particular coating powder in which, by increasing the volume of a metering chamber 4-1 and / or 4-2, powder can be sucked from a powder source into the metering chamber 4-1 or 4-2 and then the metered amount of powder from the metering chamber can be pressed out by means of compressed gas.
  • the cycle is periodically repeatable.
  • a predetermined phase or position of the periodic volume changes of the metering chamber 4-1 or 4-2 is determined and after a predetermined time delay after reaching the predetermined phase by means of the compressed air metered until then Quantity of powder is pushed out of the dosing chamber 4-1 or 4-2.
  • each membrane 8-1 and 8-2 may have its own drive 10.
  • a membrane 8-1 or 8-2 as a displacer allows a compact, compact design.
  • the invention is not limited to the use of a membrane, but instead of a membrane, a piston can also be used in a cylinder.
  • FIG. 3 shows an embodiment of the invention, in which instead of a membrane, a piston is used as a displacement body. Furthermore, FIG. 3 shows the possibility of using a separate drive instead of a single drive for two or more displacement bodies (diaphragm or piston) for each displacement body (diaphragm or piston).
  • FIG. 3 also shows the possibility of not arranging the sensors S1, S2, S3 and S4 for the detection of the drive piston 12, but for detecting the respective position of the displacement body piston 8-1 or 8-2. In Fig. 3, however, there is also the possibility of not assigning these sensors to the displacement piston 8-1 and 8-2, but the drive piston 12 or another element.
  • a separate Pulveransaug Arthur 58 is provided for each powder inlet channel 36-1 and 36-2, which to various powder sources (powder container or color changer) or according to in Fig. 3 to a common powder source, for. B. can lead a powder container 62.
  • a common Pulveransaug réelle 58 similar to FIG. 1 could be provided for both powder inlet channels 36-1 and 36-2. These can go directly to a powder container, eg. B. 62, lead or to a color changer 60 according to FIG. 1.
  • the invention is also applicable to combinations of three or more powder pumps whose powder inlet passages are connected or connectable to a common or different powder source and whose powder outlet passages are all connected to a common powder discharge port, a pump control device being arranged to drive the pumps, offset relative to each other their suction strokes and correspondingly offset in time also their pressure strokes, so that the pumps suck in time offset powders and temporally staggered metered quantities of powder deliver, but at least one pump their displacer (diaphragm or Pulververdrängerkolben) in an intermediate position between end positions, when the displacer of at least one of the other of the pumps is in an end position.
  • a pump control device being arranged to drive the pumps, offset relative to each other their suction strokes and correspondingly offset in time also their pressure strokes, so that the pumps suck in time offset powders and temporally staggered metered quantities of powder deliver, but at least one pump their displacer (diaphragm or Pulververd
  • compressed gases and compressed gas sources can be compressed air or compressed air sources.
  • other compressed gases eg. B. noble gases
  • corresponding other sources of compressed gas eg. B. noble gas sources
  • Two or more or all of the compressed gas sources mentioned can together be a single compressed gas source, from which the various compressed gases can be taken.
  • the pump control means 68 is adapted to switch the movements of the displacers 8-1 and 8-2 from suction stroke to compression stroke, and vice versa, depending on To cause signals from the sensors S1 and S4, which each generate a signal when the displacement body 8-1 or 8-2 is along the stroke at one or the other of two predetermined movement reversal positions.
  • the pump controller 68 includes a clock timer 80 through which the time-delayed injection of pressurized gas into the metering chamber 4-1 and 4-2, respectively, is subject to a fixed cycle time. After this cycle time sends the pump control device 68 control signals to the switching valve 30, which by pressurized gas supply and gas discharge in or out of the cylinder 22 of the drive 10, the movements of the displacement 8-1 and 8-2 and thus the opposing volume changes of the two metering chambers 4-1 and 4-2 causes.
  • control signals preferably the control signal for starting the suction stroke
  • these control signals also cause the time delay of the timer 74 to be started.
  • pressurized gas is introduced through the one pressure gas inlet valve 46-1 into one dosing chamber 8-1 or through the other pressure gas inlet valve 46-2 into the other dosing chamber 4-2 for powder feeding in relation to FIGS to 3 described way.
  • the pump control device 68 does not detect the predetermined suction stroke position of the displacers 8-1 and 8-2 on the basis of sensor signals (sensors S1, S2, S3, S4), but rather by control signals, which respectively occur Expiration of the cycle time of the clock timer 80 are generated.
  • a sensor S5 may be arranged at a position P5, which the pump control device 68 provides a signal when the relevant Element, in the preferred embodiment, the drive piston 12 is located in the position P5 of the control sensor S5.
  • the pump driving controller 68 can calculate whether the driving piston 12 has reached the control sensor S5 (or at a predetermined speed) in a predetermined time required is, so that he reaches his final position in time. In case of deviations by a predetermined value, the pump controller 68 may generate a defect signal (or warning signal).
  • the pump controller 68 can determine whether the displacers 8-1, 8-2 each reach their predetermined end position within the cycle time.
  • the speed of the drive piston 12 or the displacement body 4-1, 4-2 can be calculated by the pump control device and compared with a desired speed.
  • the pump controller 68 may generate a defect signal.
  • the defect signal can be used for various purposes, for example for optical and / or acoustic display of the defect or for storing the defect value in the memory of a computer for diagnostic purposes.
  • the defect signal can be used, depending on the difference between the set time (or speed) and actual time (or speed) of the drive piston 12, the switching valve 30 accordingly to control so that the changed speed of the drive piston 12 through a change in its stroke frequency is compensated, so that the powder volume delivery of the pump device remains constant within a predetermined tolerance range.
  • FIG. 4 is identical to that of FIGS. 1 and 2, except that the pump controller 68 includes the clock timer 80 and the sensors S1, S2, S3 and S4 are controlled by the control sensor S5 or by the two control sensors S5 and S5 S6 are replaced.
  • the same parts have the same reference numbers.
  • FIG. 4 The embodiments of the invention described with reference to FIG. 4 are also applicable to embodiments which, unlike FIGS. 1, 2 and 4, have diaphragms but pistons according to FIG. 3 as displacers 8-1 and 8-2, respectively.
  • the cycle time and / or the delay time may be variably adjustable.
  • the cycle time is kept constant and the delay time period is variably adjustable to the desired To set the powder delivery rate per unit of time.
  • the delay time period is here the time duration by which the delivery of the powder from the respective metering chamber 4-1 or 4-2 is started after the relevant cycle time has expired, at which the displacer 8-1 or 8-2 of the pressure stroke has started Suction stroke has been switched.
  • FIGS 5 to 8 show a further embodiment of the invention, according to which the powder inlet valves 38-1 and 38-2 and / or the powder outlet valves 42-1 and 42-2 are self-acting one-way valves in the manner of a duck bill (duck bill valve) be opened automatically in the forward direction of the pressure of the compressed gas and closed automatically in the reverse direction of the pressure of the compressed gas and / or by its own material spring elasticity.
  • a duck bill is designated in Figures 5 to 8 by the reference numeral 38/42. It consists of a one-piece body made of elastic material, such as rubber. It includes a cylindrical portion 82 with a radially outwardly annular flange 84 protruding at one end and with a duckbill tapered tube portion 86 at the other end.
  • Fig. 9 shows the one-way valve 38/42 in side view relative to Figures 5 and 7 rotated by 90 °.

Claims (26)

  1. Dispositif de pompage de poudre (54), notamment pour de la poudre de revêtement, comprenant au moins une pompe à poudre (2-1, 2-2) qui présente une chambre de dosage (4-1, 4-2), laquelle est délimitée par un boîtier de chambre (6-1, 6-2) et un corps déplaceur (8-1, 8-2) qui peut avancer par rapport au boîtier de chambre pendant une course de compression et reculer pendant une course d'aspiration, la chambre de la pompe présentant un canal d'entrée de poudre (36-1, 36-2) auquel est associée une vanne d'entrée de poudre (38-1, 38-2), un canal de sortie de poudre (40-1, 40-2) auquel est associée une vanne de sortie de poudre (42-1, 42-2) et un canal d'entrée de gaz comprimé (44-1, 44-2) auquel est associée une vanne d'entrée de gaz comprimé (46-1, 46-2), la vanne d'entrée de poudre (38-1, 38-2) pouvant être ouverte et la vanne de sortie de poudre (42-1, 42-2) ainsi que la vanne d'entrée de gaz comprimé (46-1, 46-2) pouvant être fermées pour aspirer une quantité dosée de poudre (54) dans la chambre de dosage (4-1, 4-2), de sorte que le corps déplaceur qui se déplace dans le sens de la course d'aspiration puisse aspirer de la poudre (54) dans la chambre de dosage (4-1, 4-2) à travers le canal d'entrée de poudre (36-1, 36-2), et la vanne d'entrée de poudre (38-1, 38-2) pouvant être fermée et la vanne de sortie de poudre (42-1, 42-2) ainsi que la vanne d'entrée de gaz comprimé (46-1, 46-2) pouvant être ouvertes pour refouler la quantité dosée de poudre hors de la chambre de dosage (4-1, 4-2), de sorte que le gaz comprimé qui s'écoule du canal d'entrée de gaz comprimé (44-1, 44-2) dans la chambre de dosage (4-1, 4-2) puisse pousser la quantité dosée de poudre de la chambre de dosage (4-1, 4-2) dans le canal de sortie de poudre (40-1, 40-2), et un dispositif de commande de pompe (68) pour commander la vanne d'entrée de gaz comprimé (46-1, 46-2), caractérisé en ce que le dispositif de commande de pompe (68) électronique ou informatisé présente un dispositif de commande dans le temps (74) par le biais duquel le refoulement de la poudre hors de la chambre de dosage (4-1, 4-2) est démarré en fonction de la durée de retard prédéfinie écoulée depuis un moment de fonctionnement prédéfini, le gaz comprimé pouvant entrer dans la chambre de dosage (4-1, 4-2) à la fin de la durée de retard et la quantité de poudre dosée jusqu'à la fin de la durée de retard étant expulsée hors de la chambre de dosage (4-1, 4-2) au moyen du gaz comprimé.
  2. Dispositif de pompage selon la revendication 1, caractérisé en ce que le dispositif de commande de pompe (68) présente un générateur de temps de cycle et envoie, à chaque fois après l'écoulement d'un temps de cycle prédéfini, des signaux de commande à un dispositif inverseur (34) pour inverser le mouvement du corps déplaceur (8-1, 8-2) de la course d'aspiration en la course de compression et inversement de la course de compression en la course d'aspiration au rythme du temps de cycle prédéfini et que le dispositif de commande de pompe (68) est configuré pour démarrer la durée de retard prédéfinie sur le dispositif de commande dans le temps (74) à chaque fois en fonction du moment d'occurrence du signal de commande qui provoque le démarrage de la course d'aspiration, le gaz comprimé pouvant pénétrer dans la chambre de dosage (4-1, 4-2) à la fin de la durée de retard et la quantité de poudre dosée jusqu'à la fin de la durée de retard étant expulsée hors de la chambre de dosage (4-1, 4-2) au moyen du gaz comprimé.
  3. Dispositif de pompage selon la revendication 1 ou 2, caractérisé en ce qu'il est prévu au moins un capteur de contrôle (S5, S6) pour détecter à quel moment le corps déplaceur (8-1, 8-2) se trouve dans une position prédéfinie et pour générer un signal de capteur lors de la détection du fait que le corps déplaceur se trouve dans la position prédéfinie, que le dispositif de commande de pompe (68) est relié fonctionnellement avec l'au moins un capteur de contrôle et que le dispositif de commande de pompe (68) est configuré pour la comparaison automatique du moment du signal de capteur avec le moment d'au moins l'un des signaux de commande afin de contrôler si la durée entre les deux moments est différente d'une valeur prédéfinie, et pour générer un signal de défaut lorsqu'il existe un écart prédéfini par rapport à la valeur prédéfinie.
  4. Dispositif de pompage selon la revendication 1 ou 2, caractérisé en ce qu'il est prévu au moins deux capteurs de contrôle (S5, S6) qui sont reliés avec le dispositif de commande de pompe (68) pour détecter à quel moment le corps déplaceur (8-1, 8-2) se trouve dans une position parmi deux positions prédéfinies respectivement différentes et pour générer des signaux de capteur lors de la détection du corps déplaceur dans les positions prédéfinies, et que le dispositif de commande de pompe (68) est configuré pour comparer la différence de temps entre les signaux de l'un des capteurs de contrôle et les signaux de l'autre capteur de contrôle avec une durée prédéfinie, et pour générer un signal de défaut lorsque la différence de temps varie de plus d'une valeur prédéfinie par rapport à la durée prédéfinie.
  5. Dispositif de pompage selon la revendication 1, caractérisé en ce que le dispositif de commande de pompe (68) présente un dispositif de commande dans le temps (74) pour démarrer le refoulement de la poudre depuis la chambre de dosage en fonction de la durée de retard prédéfinie écoulée depuis une position prédéfinie de la course d'aspiration du corps déplaceur (8-1, 8-2), le gaz comprimé pénétrant dans la chambre de dosage (4-1, 4-2) à la fin de la durée de retard et la quantité de poudre dosée jusqu'à la fin de la durée de retard étant expulsée hors de la chambre de dosage (4-1, 4-2) au moyen du gaz comprimé.
  6. Dispositif de pompage selon la revendication 5, caractérisé en ce que la position prédéfinie de la course d'aspiration est une position de début de la course d'aspiration.
  7. Dispositif de pompage selon la revendication 5, caractérisé en ce que la position prédéfinie de la course d'aspiration se trouve entre une position de début de la course d'aspiration et une position de fin de la course d'aspiration.
  8. Dispositif de pompage selon la revendication 5, caractérisé en ce que la position prédéfinie de la course d'aspiration se trouve entre une position de début de la course d'aspiration et une position de fin de la course d'aspiration plus proche de la position de début de la course d'aspiration que de la position de fin de la course d'aspiration.
  9. Dispositif de pompage selon au moins l'une des revendications précédentes 5 à 8, caractérisé en ce que le dispositif de commande dans le temps (74) présente au moins un capteur (S1, S4 ; S2, S3) pour générer un signal lorsque le corps déplaceur (8-1, 8-2) se trouve dans la position prédéfinie de la course d'aspiration.
  10. Dispositif de pompage selon l'une des revendications 5 à 9, caractérisé en ce qu'il est prévu un dispositif de commande de pompe (68) par le biais duquel les inversions des mouvements du corps déplaceur (8-1, 8-2) de la course d'aspiration en la course de compression et inversement s'effectuent en fonction des signaux de capteurs (S1, S4) qui génèrent respectivement un signal lorsque le corps déplaceur (8-1, 8-2) se trouve le long du trajet de la course sur l'une ou l'autre de deux positions d'inversion de mouvement prédéfinies.
  11. Dispositif de pompage selon au moins l'une des revendications précédentes, caractérisé en ce que le trajet de déplacement du corps déplaceur (8-1, 8-2) a la même longueur constante pour toutes les courses.
  12. Dispositif de pompage selon au moins l'une des revendications précédentes, caractérisé en ce qu'une deuxième durée de retard est prévue en au moins l'un des points morts d'inversion de mouvement du corps déplaceur (8-1, 8-2) avant que le corps déplaceur (8-1, 8-2) soit déplacé dans l'autre sens de déplacement correspondant après l'un des sens de déplacement.
  13. Dispositif de pompage selon au moins l'une des revendications précédentes, caractérisé en ce que la durée de retard est réglable de manière variable.
  14. Dispositif de pompage selon au moins l'une des revendications précédentes, caractérisé en ce que le corps déplaceur (8-1, 8-2) est une membrane souple.
  15. Dispositif de pompage selon au moins l'une des revendications précédentes, caractérisé en ce que la vanne d'entrée de poudre (38-1, 38-2) et la vanne de sortie de poudre (42-1, 42-2) sont des vannes automatiques qui s'ouvrent ou se ferment automatiquement par la pression différentielle entre leurs deux côtés de vanne.
  16. Dispositif de pompage selon la revendication 15, caractérisé en ce que la vanne d'entrée de poudre (38-1, 38-2) et la vanne de sortie de poudre (42-1, 42-2) sont des vannes automatiques qui peuvent être actionnées à la manière d'un clapet anti-retour par la pression différentielle de gaz de part et d'autre de leur corps de vanne (38-3, 42-3), le corps de vanne (38-3, 42-3) pouvant être déplacé en position d'ouverture ou en position de fermeture par rapport à un siège de vanne (38-4, 42-4) en fonction de cette pression différentielle de gaz et pouvant être maintenu dans la position concernée.
  17. Dispositif de pompage selon la revendication 15, caractérisé en ce que la vanne d'entrée de poudre (38-1, 38-2) et la vanne de sortie de poudre (42-1, 42-2) sont des vannes automatiques à la manière d'un bec de canard dont le bec de canard s'ouvre ou se ferme automatiquement par la différence de pression entre le côté intérieur du bec de canard et le côté extérieur du bec de canard.
  18. Dispositif de pompage selon au moins l'une des revendications précédentes, caractérisé en ce qu'au moins deux desdites pompes à poudre (2-1, 2-2) sont prévues, les canaux d'entrée de poudre (36-1, 36-2) de celles-ci pouvant être ou étant reliés avec une source de poudre et les canaux de sortie de poudre (40-1, 40-2) de celles-ci pouvant être ou étant reliés avec une ouverture de diffusion de poudre (48) commune, et que les deux pompes à poudre (2-1, 2-2) peuvent fonctionner en opposition l'une par rapport à l'autre de sorte qu'une quantité de poudre dosée puisse être expulsée au moyen du gaz comprimé dans le canal de sortie de poudre (40-1, 40-2) en alternance de la chambre de dosage (4-1) depuis l'une des pompes à poudre (2-1) ou depuis la chambre de dosage (4-2) de l'autre pompe à poudre (2-2) et, à l'inverse, de sorte que de la poudre puisse être aspirée en alternance à travers les canaux d'entrée de poudre (36-1, 36-2) dans l'une ou l'autre des chambres de dosage (4-1, 4-2).
  19. Dispositif de pompage selon la revendication 18, caractérisé en ce que les corps déplaceurs (8-1, 8-2) des deux pompes possèdent un mécanisme d'entraînement (10) commun.
  20. Dispositif de poudrage caractérisé par un dispositif de pompage selon au moins l'une des revendications précédentes pour refouler la poudre de revêtement.
  21. Procédé de refoulement de poudre (54), notamment de poudre de revêtement, avec lequel de la poudre (54) est aspirée d'une source de poudre dans la chambre de dosage (4-1, 4-2) en augmentant le volume de la chambre de dosage (4-1, 4-2) et ensuite la quantité de poudre dosée est expulsée hors de la chambre de dosage (4-1, 4-2) au moyen de gaz comprimé, après quoi le volume de la chambre de dosage (4-1, 4-2) est réduit, puis le cycle se répète ensuite périodiquement, caractérisé en ce qu'une phase prédéfinie du changement de volume ayant lieu périodiquement de la chambre de dosage (4-1, 4-2) est déterminée au moyen de capteurs (S1, S4 ; S2, S3) et d'un dispositif de commande de pompe électronique ou informatisé et que la quantité de poudre dosée jusqu'à ce moment-là est expulsée de la chambre de dosage (4-1, 4-2) au moyen de gaz comprimé avec un retard prédéfini après avoir atteint la phase prédéfinie.
  22. Procédé selon la revendication 21, caractérisé en ce qu'au moins une vanne est à chaque fois utilisée dans le trajet concerné dans un canal d'entrée de poudre (36-1, 36-2) dans la chambre de dosage (4-1, 4-2) et dans un canal de sortie de poudre (40-1, 40-2) hors de la chambre de dosage (4-1, 4-2), laquelle s'ouvre et se ferme automatiquement à la manière d'un clapet anti-retour en fonction de la différence de pression de gaz respective entre son côté amont et son côté aval.
  23. Procédé de refoulement de poudre (54), notamment de poudre de revêtement, avec lequel de la poudre (54) est aspirée d'une source de poudre dans une chambre de dosage (4-1, 4-2) en augmentant le volume d'au moins la chambre de dosage (4-1, 4-2) et ensuite la quantité de poudre dosée est expulsée hors de la chambre de dosage (4-1, 4-2) au moyen de gaz comprimé, après quoi le volume de la chambre de dosage (4-1, 4-2) est réduit, puis le cycle se répète ensuite périodiquement, caractérisé en ce que les changements de volume de l'au moins une chambre de dosage (4-1, 4-2) sont commandés par un temps de cycle prédéfini au moyen d'un générateur de temps de cycle (80) électronique, qu'au moins un signal de commande est à chaque fois généré après l'écoulement du temps de cycle prédéfini, que le sens de changement de volume est inversé par le biais de cet au moins un signal de commande, d'agrandissement en rétrécissement ou de rétrécissement en agrandissement, et en même temps un retard prédéfini est démarré, et que la quantité dosée de poudre n'est expulsée hors de la chambre de dosage qu'après écoulement du retard prédéfini.
  24. Procédé selon la revendication 23, caractérisé en ce que les changements de volume de l'au moins une chambre de dosage (4-1, 4-2) sont provoqués par un corps déplaceur (8-1, 8-2), que la présence du corps déplaceur dans une position prédéfinie est déterminée au moyen d'au moins un capteur de contrôle (S5, S6) et un signal de contrôle est ici généré en cas de détection du corps déplaceur dans la position prédéfinie et que la différence de temps entre le moment du signal de commande et le moment de l'au moins un signal de commande est comparée avec une durée prédéfinie qui serait égale à la différence de temps si le corps déplaceur avait parcouru un trajet prédéterminé pendant chaque temps de cycle, et qu'un signal de défaut est généré lorsque la différence entre la différence de temps et la durée prédéfinie est supérieure à une valeur prédéfinie.
  25. Procédé selon la revendication 23, caractérisé en ce que les changements de volume de l'au moins une chambre de dosage sont produits par un corps déplaceur (8-1, 8-2), que des signaux de contrôle sont générés avec au moins deux capteurs de contrôle (S5, S6) qui sont espacés l'un de l'autre le long d'un trajet correspondant ou trajet de déplacement maximale du corps déplaceur lorsque le corps déplaceur se trouve dans une position correspondant à la position du capteur, que la différence de temps entre les signaux de contrôle de l'un des capteurs de contrôle et les signaux de contrôle de l'autre capteur de contrôle est comparée avec une durée prédéfinie qui serait égale à la différence de temps si le corps déplaceur avait parcouru un trajet de consigne prédéterminé pendant le temps de cycle, et qu'au moins un signal de défaut est à chaque fois généré lorsque la différence de temps diffère de la durée prédéfinie de plus d'une valeur prédéfinie.
  26. Procédé selon l'une des revendications 21 à 25, caractérisé en ce que les volumes de deux chambres de dosage (4-1, 4-2) sont modifiés simultanément, mais avec un déphasage, le volume de l'une des chambres de dosage étant augmenté pendant que le volume de l'autre chambre de dosage est réduit, et inversement.
EP03014661A 2003-01-08 2003-06-27 Installation et procédé de pompage de poudre et installation de revêtement par poudrage Expired - Lifetime EP1437178B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE10300280A DE10300280A1 (de) 2003-01-08 2003-01-08 Pumpeneinrichtung für Pulver, Verfahren hierfür und Pulverbeschichtungseinrichtung
DE50309018T DE50309018D1 (de) 2003-01-08 2003-06-27 Pumpeneinrichtung für Pulver, Verfahren hierfür und Pulverbeschichtungseinrichtung
EP03014661A EP1437178B1 (fr) 2003-01-08 2003-06-27 Installation et procédé de pompage de poudre et installation de revêtement par poudrage
CA002453866A CA2453866A1 (fr) 2003-01-08 2003-12-18 Methode et systeme pour pomper de la poudre et appareil a peinturer a la poudre
CNA200310123292XA CN1517548A (zh) 2003-01-08 2003-12-22 粉末的泵装置及其使用方法和粉末涂层装置
JP2003435540A JP2004210544A (ja) 2003-01-08 2003-12-26 粉末用のポンプ装置、粉末用の方法および粉末コーティング装置
KR1020040000644A KR100561219B1 (ko) 2003-01-08 2004-01-06 코팅 분말용 펌핑 시스템, 분말 코팅 장치, 및 코팅 분말운반 방법
US10/752,099 US7287964B2 (en) 2003-01-08 2004-01-07 Method and system for pumping powder, and powder coating apparatus
TW093100311A TWI275555B (en) 2003-01-08 2004-01-07 Method and system for pumping powder, and powder coating apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10300280 2003-01-08
DE10300280A DE10300280A1 (de) 2003-01-08 2003-01-08 Pumpeneinrichtung für Pulver, Verfahren hierfür und Pulverbeschichtungseinrichtung
EP03014661A EP1437178B1 (fr) 2003-01-08 2003-06-27 Installation et procédé de pompage de poudre et installation de revêtement par poudrage

Publications (3)

Publication Number Publication Date
EP1437178A2 EP1437178A2 (fr) 2004-07-14
EP1437178A3 EP1437178A3 (fr) 2006-01-18
EP1437178B1 true EP1437178B1 (fr) 2008-01-16

Family

ID=32657769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03014661A Expired - Lifetime EP1437178B1 (fr) 2003-01-08 2003-06-27 Installation et procédé de pompage de poudre et installation de revêtement par poudrage

Country Status (8)

Country Link
US (1) US7287964B2 (fr)
EP (1) EP1437178B1 (fr)
JP (1) JP2004210544A (fr)
KR (1) KR100561219B1 (fr)
CN (1) CN1517548A (fr)
CA (1) CA2453866A1 (fr)
DE (2) DE10300280A1 (fr)
TW (1) TWI275555B (fr)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499288B1 (en) * 2001-06-12 2002-12-31 Andrew F. Knight Pressurizer for a rocket engine
US7150585B2 (en) 2002-10-14 2006-12-19 Nordson Corporation Process and equipment for the conveyance of powdered material
US7793869B2 (en) 2003-08-18 2010-09-14 Nordson Corporation Particulate material applicator and pump
US20050249614A1 (en) * 2004-05-06 2005-11-10 Sukhoi Naphtha Corporation Pump for evacuation of viscous liquids
DE102004052949A1 (de) * 2004-10-29 2006-05-04 Nordson Corp., Westlake Verfahren und Vorrichtung zur Überwachung von Strömungsverhältnissen in einem Leitungsstrang
DE102005006522B3 (de) 2005-02-11 2006-08-03 J. Wagner Ag Vorrichtung zum Fördern von Beschichtungspulver und Verfahren zum Fördern von Pulver mit der Fördervorrichtung
US20060185671A1 (en) * 2005-02-17 2006-08-24 Durr Systems, Inc. Powder conveying pump
US7530768B2 (en) * 2005-02-17 2009-05-12 Durr Systems, Inc. Powder conveying pump
US7731456B2 (en) 2005-10-07 2010-06-08 Nordson Corporation Dense phase pump with open loop control
US20070295836A1 (en) * 2006-06-08 2007-12-27 Durr Systems, Inc. Powder delivery method and apparatus
US20080152437A1 (en) * 2006-12-26 2008-06-26 Illinois Tool Works Inc. Pulverulent material transport
DE102007007588A1 (de) * 2007-02-13 2008-08-14 Itw Gema Ag Pulverfördervorrichtung für Sprühbeschichtungspulver
EP1958899B1 (fr) 2007-02-16 2013-08-21 J. Wagner AG Dispositif d'alimentation de fluide
US20080205189A1 (en) * 2007-02-27 2008-08-28 Illinois Tool Works Inc. Dense phase pump for pulverulent material
DE102007011736A1 (de) * 2007-03-10 2008-09-11 Bayerische Motoren Werke Aktiengesellschaft Förderanlage für ein Pulver
DE102007046806A1 (de) * 2007-09-29 2009-04-02 Itw Gema Gmbh Pulversprühbeschichtungsvorrichtung und Pulverfördervorrichtung hierfür
DE102007049219A1 (de) * 2007-10-13 2009-04-16 Itw Gema Gmbh Pulverfördervorrichtung für Pulversprühbeschichtungsvorrichtungen
CN102292548B (zh) * 2009-01-23 2014-11-05 沃伦鲁普公司 用于提高泵中压缩空气效率的方法
US20100243252A1 (en) 2009-03-31 2010-09-30 Rajesh Luharuka Apparatus and Method for Oilfield Material Delivery
CN101992950A (zh) * 2009-08-18 2011-03-30 裕东投资控股有限公司 用于平稳传输粉末的粉末传输方法及其粉末传输系统
US8382445B2 (en) * 2009-12-16 2013-02-26 Warren Rupp, Inc. Air logic controller
DE102010013108A1 (de) * 2010-03-26 2011-09-29 Promera Gmbh & Co. Kg Doppelmembranpumpe
EP2609329B1 (fr) * 2010-08-25 2015-01-07 Basf Se Pistolet pulvérisateur pour expulser un fluide
DE102011004035A1 (de) * 2011-02-14 2012-08-16 Illinois Tool Works Inc. Pulverpumpe zum Fördern von Beschichtungspulver
DE102011007066A1 (de) * 2011-04-08 2012-10-11 Siemens Aktiengesellschaft Membran-Staubpumpen-System
DE102011052432A1 (de) * 2011-04-15 2012-10-18 Reinhausen Plasma Gmbh Membranpumpe und Verfahren zum Fördern von feinkörnigen Pulvern mit Hilfe einer Membranpumpe
US8690554B2 (en) * 2011-07-15 2014-04-08 Xylem Ip Holdings Llc Diaphragm pump using duckbill and other types of valves
CN102765604B (zh) * 2012-07-31 2014-12-24 瑞赛高廷仕(中山)涂装设备有限公司 一种粉末输送装置
US9169088B2 (en) 2012-09-20 2015-10-27 Nordson Corporation Adhesive dispensing device having optimized cyclonic separator unit
US9304028B2 (en) 2012-09-20 2016-04-05 Nordson Corporation Adhesive dispensing device having optimized reservoir and capacitive level sensor
US10099242B2 (en) 2012-09-20 2018-10-16 Nordson Corporation Adhesive melter having pump mounted into heated housing
US9200741B2 (en) 2012-10-25 2015-12-01 Nordson Corporation Adhesive dispensing system and method using smart melt heater control
US9120115B2 (en) 2012-10-25 2015-09-01 Nordson Corporation Dispensing systems and methods for monitoring actuation signals for diagnostics
US9243626B2 (en) 2012-11-19 2016-01-26 Nordson Corporation Adhesive dispensing system and method including a pump with integrated diagnostics
DE102013003620B4 (de) * 2013-02-18 2016-02-04 Dürr Systems GmbH Beschichtungsmittelpumpe und Reinigungsverfahren für eine Beschichtungsmittelpumpe
WO2014161718A1 (fr) * 2013-04-03 2014-10-09 Gema Switzerland Gmbh Pompe à poudre en phase dense et procédé de fonctionnement correspondant
DE102013205895A1 (de) * 2013-04-03 2014-10-09 Gema Switzerland Gmbh Pulverdichtstrompumpe zum Fördern von Beschichtungspulver sowie entsprechendes Verfahren
US9574714B2 (en) 2013-07-29 2017-02-21 Nordson Corporation Adhesive melter and method having predictive maintenance for exhaust air filter
AU2014381624B2 (en) 2014-02-07 2019-01-17 Graco Minnesota Inc. Pulseless positive displacement pump and method of pulselessly displacing fluid
DE102014105044A1 (de) * 2014-04-09 2015-10-15 Gema Switzerland Gmbh System zum Fördern von Beschichtungspulver und Verfahren zum Betreiben eines solchen Systems
DE102014006759A1 (de) * 2014-05-08 2015-11-12 Dürr Systems GmbH Abluftführung für eine Beschichtungsmittelpumpe
ES2873199T3 (es) * 2014-06-16 2021-11-03 Flow Control LLC Bomba de diafragma que utiliza válvulas de pico de pato, puertos multi-direccionales y conectividad eléctrica flexible
DE102015108492A1 (de) 2015-05-29 2016-12-01 Gema Switzerland Gmbh Verfahren zum Betreiben einer Pulverdichtstrompumpe sowie Pulverdichtstrompumpe
DE102015110312B4 (de) 2015-06-26 2019-08-01 Gema Switzerland Gmbh Pulverweiche und Pulverabgabesystem mit Pulverweiche
US11022106B2 (en) 2018-01-09 2021-06-01 Graco Minnesota Inc. High-pressure positive displacement plunger pump
CN108331730A (zh) * 2018-03-13 2018-07-27 袁基芳 一种气动压力液体输送泵
PL3685924T3 (pl) * 2019-01-25 2022-04-19 Wagner International Ag Urządzenie przenoszące proszek do proszku powlekającego i instalacja do powlekania proszkowego z urządzeniem przenoszącym proszek
JP7241618B2 (ja) * 2019-06-18 2023-03-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 散布装置及びドア
DE102019212631A1 (de) 2019-08-22 2021-02-25 Putzmeister Engineering Gmbh Verfahren zur Zustandsüberwachung einer Vorrichtung und Vorrichtung
DE102019128669A1 (de) * 2019-10-23 2021-04-29 Scheugenpflug Ag Pump-Einheit, damit ausgestattete Lagervorrichtung sowie Verfahren zum Betreiben der Lagervorrichtung
CN115362316A (zh) 2020-03-31 2022-11-18 固瑞克明尼苏达有限公司 电动操作的往复式泵
EP3904679B1 (fr) * 2020-04-30 2024-05-01 Robatech AG Procédé de fonctionnement d'une pompe à piston à double action, pompe à piston à double action ainsi que système d'application permettant d'appliquer un milieu fluide à un substrat
EP4141390B1 (fr) 2021-08-31 2024-03-20 Wagner International AG Dispositif de mesure permettant de mesurer un débit massique de poudre de revêtement pouvant être généré à l'aide du gaz comprimé dans une conduite de poudre et dispositif de transport pour le poudre de revêtement

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2687280A (en) * 1954-08-24 Pump-turbine
US2667280A (en) 1949-04-01 1954-01-26 Standard Oil Dev Co Handling finely divided solid materials
DE1087520B (de) 1957-08-07 1960-08-18 Polysius Gmbh Vorrichtung zum pneumatischen Foerdern von schuettfaehigem Gut
US3391963A (en) 1967-02-06 1968-07-09 Handley Weeks Inc Permeable diaphragm pump
JPS5825614B2 (ja) * 1980-08-31 1983-05-28 重夫 中島 粉粒体圧送方法ならびに同装置
CH652100A5 (fr) 1983-04-28 1985-10-31 Frederic Dietrich Procede de transport des poudres et dispositif de mise en oeuvre.
DE3900718A1 (de) * 1989-01-12 1990-07-26 Depa Ges Fuer Verfahrenstechni Verfahren und vorrichtung zur steuerung einer druckluftbetriebenen doppelmembranpumpe
US5078084A (en) * 1990-04-16 1992-01-07 Nordson Corporation Powder coating system
US5330576A (en) * 1990-04-26 1994-07-19 Baldwin-Gegenheimer Gmbh Recirculating coating liquid supply system with viscosity regulation
US5739429A (en) * 1995-07-13 1998-04-14 Nordson Corporation Powder coating system incorporating improved method and apparatus for monitoring flow rate of entrained particulate flow
US5816778A (en) * 1996-01-16 1998-10-06 Micron Technology, Inc. System for controlling the stroke length of a double-diaphragm pump
DE19959473A1 (de) 1999-12-10 2001-06-13 Frederic Dietrich Vorrichtung und Verfahren zum pneumatischen Fördern pulverförmiger Stoffe sowie Verwendung der Vorrichtung
DE10145448A1 (de) 2001-09-14 2003-05-22 Bayerische Motoren Werke Ag Vorrichtung zum Fördern von Pulver und Verfahren zu deren Betrieb

Also Published As

Publication number Publication date
DE50309018D1 (de) 2008-03-06
TWI275555B (en) 2007-03-11
CA2453866A1 (fr) 2004-07-08
CN1517548A (zh) 2004-08-04
KR100561219B1 (ko) 2006-03-15
EP1437178A2 (fr) 2004-07-14
DE10300280A1 (de) 2004-07-22
US20060159565A1 (en) 2006-07-20
JP2004210544A (ja) 2004-07-29
TW200418704A (en) 2004-10-01
EP1437178A3 (fr) 2006-01-18
US7287964B2 (en) 2007-10-30
KR20040063817A (ko) 2004-07-14

Similar Documents

Publication Publication Date Title
EP1437178B1 (fr) Installation et procédé de pompage de poudre et installation de revêtement par poudrage
EP1427536B1 (fr) Dispositif pour transporter de la poudre et procede pour le faire fonctionner
DE602004008632T2 (de) Vorrictung zum fördern von pulverförmigem material durch rohrleitungen
EP0561262B1 (fr) Pompe pour matière épaisse ayant des cylindres, en particulier pompe à béton à deux cylindres
DE3239190C2 (fr)
EP2848578B1 (fr) Dispositif pour doser un produit dans un récipient à remplir
EP0808422A1 (fr) Procede et dispositif de transfert de beton ou d'autres liquides epais
DE10353968A1 (de) Beschichtungspulver-Fördervorrichtung und -Förderverfahren
DE202004021629U1 (de) Pumpe zum Transport in dichter Phase für trockenes Teilchenmaterial
DE102007045330A1 (de) Beschichtungspulver-Förderverfahren, Beschichtungspulver-Fördervorrichtung und elektrostatische Pulversprühbeschichtungsvorrichtung
EP0062182A1 (fr) Dispositif pour préparer par réaction un mélange fluide moussant ou massif à partir d'au moins deux composants fluides
DE3134101C2 (fr)
CH700417A1 (de) Verfahren, Steuerung, Ventilanordnung und Portioniereinrichtung zum Portionieren einer fliessfähigen, druckbeaufschlagten Masse.
DE102004009362B4 (de) Kolben-Dickstoffpumpe
EP2956242A1 (fr) Pompe à agent de revêtement et procédé de nettoyage d'une pompe à agent de revêtement
WO2021229096A1 (fr) Pompe péristaltique médicale à éléments formant poinçon et ensemble tuyau flexible associé
EP0407884B1 (fr) Dispositif de conditionnement et de déshydratation de boues dans une presse filtrante
EP3489693A2 (fr) Procédé de commande d'un dispositif de pipetage
AT401693B (de) Zumischeinrichtung zum zumischen von zusatzmitteln zu einer flüssigkeit
EP1574261B1 (fr) Pompe à poudre
DE2711208A1 (de) Verfahren und vorrichtung zum dosieren und abfuellen insbesondere hochviskoser medien
EP0564807A1 (fr) Dispositif de transport et de dosage pour produits visqueux
DE4445946C2 (de) Vorrichtung zum Zuführen der Einzelkomponenten von flüssigem Mehrkomponenten-Kunststoff an eine Ausgußdüse
WO1995000251A1 (fr) Dispositif de pulverisation sous haute pression
DE2542392A1 (de) Hochdruckmembranpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060524

AKX Designation fees paid

Designated state(s): CH DE ES FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50309018

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080427

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080731

Year of fee payment: 6

Ref country code: CH

Payment date: 20080919

Year of fee payment: 6

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101