EP1433737A1 - Aufzugskabine mit Horizontalbalanciersystem - Google Patents
Aufzugskabine mit Horizontalbalanciersystem Download PDFInfo
- Publication number
- EP1433737A1 EP1433737A1 EP03028777A EP03028777A EP1433737A1 EP 1433737 A1 EP1433737 A1 EP 1433737A1 EP 03028777 A EP03028777 A EP 03028777A EP 03028777 A EP03028777 A EP 03028777A EP 1433737 A1 EP1433737 A1 EP 1433737A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- elevator car
- balancing
- hydraulic
- weight
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B11/00—Main component parts of lifts in, or associated with, buildings or other structures
- B66B11/02—Cages, i.e. cars
- B66B11/026—Attenuation system for shocks, vibrations, imbalance, e.g. passengers on the same side
- B66B11/028—Active systems
Definitions
- the present invention relates to an elevator car a balancing system for weight compensation with eccentric Loading and a method for balancing weight.
- Elevator systems usually have an elevator shaft in the guide rails for guiding an elevator car are mounted or provided.
- the elevator car is with Rollers fitted along the guide rails roll.
- the feathers, especially at High-performance elevators are typically used a progressive spring characteristic that is designed that with small spring strokes the springs have a soft suspension effect of the elevator car. With larger spring strokes the springs work around in the hard area of the characteristic intercept larger forces.
- An elevator system which has a system for mechanical shifting of a counterweight provides for to counteract an eccentric load.
- the elevator system is the Japanese patent application see published under the number JP08067465-A2 has been.
- the balance weight is below the bottom of the Elevator car arranged and can be moved. It is a load detector is provided which is an uneven Load recorded and a suitable position for the Balance weight determined. The balance weight is then moved to this position.
- Such a system is slow and, depending on the embodiment, causes noise when moving the balance weight, which is annoying can be felt.
- a method according to the invention is characterized by the features of Claim 9 given. An expedient and advantageous Further development of the method is the dependent claim 10 can be seen.
- FIG. 1a and 1b are schematic representations of an elevator system with a hydraulic balancing system for weight balancing an elevator car, according to the invention
- 2a and 2b is a schematic representation of the hydraulic Compensation system after a first execution of the Invention.
- FIG. 2c shows a schematic representation of a control unit to control the hydraulic compensation system the first embodiment of the invention.
- 3a and 3b is a schematic representation of the hydraulic Compensation system according to a second version of the Invention.
- 3c shows a schematic representation of the control unit to control the hydraulic balancing system after the second embodiment of the invention.
- 4a and 4b is a schematic representation of the hydraulic Compensation system according to a third version of the Invention.
- Fig. 4c is a schematic representation of the control unit to control the hydraulic balancing system after the third embodiment of the invention.
- 5a and 5b is a schematic representation of the hydraulic Compensation system according to a fourth version of the Invention.
- 5c shows a schematic representation of the control unit to control the hydraulic balancing system after the fourth embodiment of the invention.
- Fig. 6 is a flowchart showing an inventive Method of balancing the weight of the elevator car.
- the elevator installation 10 comprises an elevator car 1 for vertical movement in an elevator shaft 9, which has vertically arranged guide rails 4.
- the elevator car 1 further comprises spring-mounted rollers 3.1.1 to 3.4.3 in order to guide the elevator car 1 along the guide rails 4.
- the spring-mounted rollers 3.1.1 to 3.4.3 can be designed such that a non-linear spring force is exerted on the rollers. With small deflections or compression of the spring - depending on the installation position - the spring works in a soft area of the non-linear spring characteristic. If the spring is deflected or compressed further, a harder area of the non-linear spring characteristic is used.
- Springs with non-linear spring characteristics can be advantageous for stabilizing or cushioning the elevator car 1 with respect to the guide rails 4, the springs working in the soft area with small roller loads and cushioning impacts gently. Greater roller loads mean that the springs are deflected or compressed more. The spring characteristics are steeper in this range, ie the increase in spring force with a defined increase in deflection is greater than in the linear range. With an eccentric loading 2 of the elevator car 1 with a weight G, some of the springs acting on the rollers 3.1.1 to 3.4.3 can work in the harder area of the spring characteristic, thereby reducing the suspension comfort of the elevator car.
- the elevator system 10 comprises a hydraulic compensation system 6 which can be fastened to the elevator car 1.
- the compensation system 6 can advantageously be fastened under the floor 11 of the elevator car 1, as shown in FIG. 1a.
- a displacement of a liquid within the hydraulic compensation system 6 compensates for a torque acting on the elevator car 1, which is caused by the weight G which is horizontally offset with respect to the suspension point P of the elevator car 1. This is shown schematically in FIG. 1 a, where the weight G, which is offset with respect to the central car suspension, in cooperation with the suspension force A, causes a torque acting counterclockwise on the elevator car 1.
- the springs of the spring-mounted rollers 3.1.1 and 3.3.1 are strongly compressed and thus work in the hard area of the spring characteristic.
- the springs of the spring-mounted rollers 3.2.1 and 3.4.1 are not very compressed with such an eccentric load.
- a weight F of the fluid together with the suspension force A causes a torque that acts in the opposite direction (clockwise) and the elevator car 1 is thereby brought into a balanced position.
- the springs of all spring-mounted rollers 3.1.1 to 3.4.3 can be operated in the soft range of the spring characteristics, since the corresponding spring forces of the rollers 3.1.1 to 3.4.3 are evenly distributed. This advantageously serves to improve driving comfort and to extend the life of the spring-mounted rollers 3.1.1 to 3.4.3.
- the liquid can be water with appropriate admixtures, oil, or another suitable liquid.
- the elevator car 1 further comprises a sensor system 5 which serves to determine the eccentric load 2. in the According to the invention, all relevant imbalance positions can thus the elevator car 1 can be detected.
- the sensor system 5 preferably comprises a plurality of position sensors 8, which shows the position of the elevator car 1 with respect to the Guide rails 4 can determine.
- 1b shows as Top view of a possible arrangement of the position sensors 8 the guide rails 4 are shown as a T-profile, wherein however, other profile shapes are also possible.
- the sensor system 5 can advantageously in an arrangement with one of the guide rollers 3.1.1 to 3.4.3 must be integrated, or installed on the floor of the elevator car 1 as in Fig. 1a shown.
- a first sensor can For example, be assigned to role 3.1.1. This sensor then monitors the location of the elevator car in relation to its Rotation around an imaginary perpendicular to the plane of the drawing Axis.
- a second sensor can, for example, role 3.1.2 be assigned. This sensor then monitors the position of the Elevator car in terms of its rotation about a horizontal, axis parallel to the plane of the drawing. To be safer Obtain measurement results for the position of the elevator car, can record the positions of additional roles and be evaluated.
- the position sensors 8 can be implemented as analog elements be, for example, spring forces that the elevator car 1 in different directions on the guide rail 4 exercises, are measured. In another form of realization For example, distances can be measured which correspond to the Distance of the elevator car 1 from the guide rail 4 correspond to different places and in different directions.
- the position sensors can 8 can be designed as digital elements, which one Establish mechanical contact with the guide rail 4 can. It can be the presence of one or more mechanical contacts regarding different points of contact an imbalance position on the guide rail 4 signal the elevator car 1. Accordingly, it can Absence of mechanical contacts an equilibrium position signal the elevator car 1.
- analog and digital Position sensors 8 which are integrated in the sensor system 5, possible.
- Optical, inductive or magnetic sensors can also be used be used.
- FIG. 2a shows a schematic plan view with four cube-shaped Containers 20 as an example.
- a container 20 can advantageously a container 20 have a volume of approximately 150 l to 200 l.
- the container 20 can also be cylindrical or be spherical or have another shape.
- the number of containers 20 is not limited to four.
- the connecting lines 21 between the containers 20 can can also be implemented in a different arrangement than in Fig. 2a shown.
- the arrangement of the containers is advantageous 20 and the connecting lines 21 designed so that a greatest possible spatial displacement of the point of attack the resulting weight F with the smallest possible total volume is possible. This results in a hydraulic Compensation system 6 with the smallest possible dimensions and Total weight.
- Fig. 2b shows a schematic view of the hydraulic Compensation system 6 according to the first embodiment of the Invention.
- the container 20 comprises a displacement system 22 for liquid displacement, the displacement system 22 a movable stamp 24 and one comprises flexible membrane 23.
- the stamp 24 can have a Spindle 25 are moved, the drive of the spindle 25 can take place via a servomotor 26.
- the position of the Spindle 25 can be detected with a displacement sensor 27. This allows the amount that is displaced in the container 20 Liquid 7 can be determined.
- the one just described Displacement system 22 can also have the same effect be realized in another way, for example by a piston moving in the container 20.
- An expert it is clear that to implement the hydraulic balancing system 6 other parts such as fasteners, mechanical guiding elements, or ventilation devices are required, which are not shown in FIGS. 2a and 2b are.
- the control system 200 comprises a computing unit 29, which is connected to the position sensors 8 is connectable.
- the control unit 200 further comprises a plurality of motor driver units 28, which are connected to the computing unit 29 are connectable, each motor driver unit 28 is further connectable to a servomotor 26.
- the computing unit 29 can be connected to the displacement sensors 27.
- the Control unit 200 is designed so that the Position sensors 8 of the computing unit 29, the position of the compensation cabin 1 signal, whereupon the computing unit 29 a Calculation of the fluid transfer required for Performs weight balancing and what the result is corresponding servomotors 26 via the motor driver units 28 are operated.
- the displacement sensors 27 signal the Computing unit 29, the position of the movable stamp 24 and thereby enable a determination of the current status the fluid shift. This process can be done as Control loop are designed, the position sensors 8 a Feedback of the current status of the weight balance deliver.
- FIGS. 2a to 2c can be modified as follows.
- a control loop can be installed using position sensors 8 each determines the position of the elevator car 1 and via a feeback signal as long as the liquid is displaced causes until a balanced position is reached.
- the equilibrium position position the elevator car 1 with respect to guide rails 4) one Control variable for moving the membranes 23 generated.
- no computing unit 29 is necessary in this embodiment.
- FIG. 3a and 3b A second embodiment according to the invention is shown in Fig. 3a and 3b.
- the compensation system 6 comprises several containers 30 which hold the liquid 7 contain.
- the containers 30 are through connecting lines 31 interconnected to create a controlled To allow displacement of the liquid 7.
- Figure 3a shows a schematic plan view with four cube-shaped Containers 30 as an example. In terms of shape, Number, volume of contents and arrangement of containers 30 the same considerations for an advantageous realization are used as in the first embodiment is explained.
- the compressed air system 32 comprises a compressed air pump 33 and a pressure compensation valve 34, being the air pressure or the liquid level can be measured in the container 30 with a sensor 35.
- a compressed air pump 33 and the pressure compensation valves 34 can be controlled Shifting the liquid 7 to balance the weight Elevator car 1 can be effected.
- the pressure compensation valves 34 can also use differently designed compressed air systems be applied.
- the control system 300 comprises a computing unit 38, which is connected to the position sensors 8 is connectable.
- the control unit 300 further comprises a plurality of motor driver units 37, which are connected to the computing unit 38 are connectable, the motor driver unit 37 is further connectable to the compressed air pump 33, and several Valve driver units 36 which are connected to the computing unit 38 are connectable, the valve driver unit 36 with the Pressure compensation valve 34 is connectable.
- the computing unit 38 can also be connected to sensors 35.
- the control unit 300 is designed so that the position sensors 8 of the computing unit 38 the position of the compensation cabin 1 signal, whereupon the computing unit 38 makes a calculation the necessary fluid transfer to balance weight and what as a result the corresponding ones Air pumps 33 via the motor driver units 37 are operated and the corresponding pressure compensation valves 34 are closed via the valve driver units 36.
- the sensors 35 signal the computing unit 38 Air pressure or the fluid level in the corresponding Vessels 30 and thereby enable a determination of the current status of fluid transfer.
- This Process can be designed as a control loop, the Position sensors 8 provide feedback on the current state of the Deliver weight balance.
- FIGS. 3a to 3c can be modified as follows.
- Providing sensors 35 and a computing unit 38 can be a Control loop can be installed, which by means of position sensors 8 in each case the position of the elevator car 1 is determined and via a Feeback signal as long as the fluid moves causes until a balanced position is reached.
- the equilibrium position position the elevator car 1 with respect to guide rails 4) one Generated variable for moving the liquid.
- This Embodiment can with only one air pump 33 (for Example in the form of a compressor) and with a pressure vessel will be realized.
- FIG. 4a and 4b A third embodiment according to the invention is shown in Fig. 4a and 4b.
- the hydraulic compensation system 6 comprises several Container 40, which by connecting lines 41 and Liquid pumps 42 can be connected to one another.
- the Container 40 is connected to a level sensor 43, which can measure the liquid level in the container 40.
- the arrangement of containers 40 shown in FIGS. 4a and 4b, Liquid pumps 42 and connecting lines 41 can also can be realized by another arrangement, which one controlled displacement of the liquid 7 in the sense of Invention enables.
- the control system 400 comprises a computing unit 45 which is connected to the position sensors 8 is connectable.
- the control unit 400 further comprises a plurality of motor driver units 44, which are connected to the computing unit 45 can be connected, the motor driver unit 44 is further connectable to the liquid pump 42.
- the Computing unit 45 is further connected to level sensors 43 connectable.
- the control unit 400 is designed so that that the position sensors 8 of the computing unit 45 the position the compensation cabin 1 signal, whereupon the computing unit 45 a calculation of the required fluid transfer for weight balancing and what to do Result the corresponding liquid pumps 42 on the Motor driver units 44 are operated.
- the level sensors 43 signal the liquid level to the computing unit 45 or the air pressure in the containers 40 and enable thereby a determination of the current status of the fluid transfer. This process can act as a control loop be interpreted, the position sensors 8 providing feedback the current state of the weight balance.
- FIGS. 4a to 4c can be modified as follows.
- a control loop can be installed using position sensors 8 each determines the position of the elevator car 1 and via a feeback signal as long as hydraulic pumping the liquid causes a balanced position is reached.
- position sensors 8 each determines the position of the elevator car 1 and via a feeback signal as long as hydraulic pumping the liquid causes a balanced position is reached.
- a manipulated variable for pumping the Creates liquid can without Level sensors 43 and implemented without arithmetic unit 45 become.
- FIG. 5a and 5b A fourth embodiment according to the invention is shown in Fig. 5a and 5b.
- the Container 50 comprises several baffles 56, which sloshing of the liquid 7 during the tilting process or dampen while the elevator car 1 is moving.
- the Baffles 56 can be, for example, perforated sheets be executed, which can be fastened inside the container 50 are.
- the container 50 can be tilted in two planes, the inclination in one plane by a cable 53 of the is guided over pulleys 54, can be effected.
- the cable pull 53 can thereby by a rope drum 52, which with a Motor 51 is connectable to be moved.
- To determine the Inclination can serve a cable travel sensor 55, which the Can detect movement of the cable 53.
- 5a and 5b is schematically an embodiment with a toroidal Container 50 shown.
- the container 50 can in the sense of Invention also have another suitable shape to the To be able to shift liquid 7 as asymmetrically as possible, resulting in a wide range for the compensation of the eccentric Loading 2 results.
- the fourth Embodiment of the invention can also have multiple containers 50, which are interconnected by flexible connecting lines are connectable, are used. Doing so can shift fluid by appropriate vertical lowering or lifting the container 50, for example via cables and Servomotors can be effected.
- the control system 500 comprises a computing unit 58 which is connected to the position sensors 8 is connectable.
- the control unit 500 further comprises a plurality of motor driver units 57, which are connected to the computing unit 58 are connectable, the motor driver unit 57 is further connectable to the motor 51.
- the computing unit 58 can also be connected to the cable travel sensors 55.
- the Control unit 500 is designed so that the Position sensors 8 of the computing unit 58, the position of the compensation cabin 1 signal, whereupon the computing unit 58 a Calculation of the fluid transfer required for Performs weight balancing and what the result is corresponding motors 51 via the motor driver units 57 be operated.
- the cable travel sensors 55 signal the Computing unit 58 the inclination of the container 50 in the two Levels and thereby enable a determination of the current status of fluid transfer.
- This Process can be designed as a control loop, the Position sensors 8 provide feedback on the current state of the Deliver weight balance.
- FIGS. 5a to 5c can be modified as follows.
- a control loop can be installed using position sensors 8 each determines the position of the elevator car 1 and via a feeback signal as long as the container 50 is tilted and thus causes a displacement of the liquid 7 until a balanced situation is reached.
- position sensors 8 each determines the position of the elevator car 1 and via a feeback signal as long as the container 50 is tilted and thus causes a displacement of the liquid 7 until a balanced situation is reached.
- a manipulated variable for Tilting the container 50 creates.
- This embodiment can realized without rope travel sensors 55 and without computing unit 58 become.
- FIG. 1a to 5c can be simplified by using fewer than four containers be used.
- An inexpensive embodiment can be realized with two containers, one of which is in the area below the cabin door and one in the area is located below the rear cabin wall.
- This Embodiment takes into account the fact that it is common comes to loading conditions in which an overload in Area of the rear cabin wall occurs. By Relocate the liquid from the rear container the container in the area below the cabin door such a loading state can be compensated become.
- An elevator installation according to the invention can be particularly safe and be designed comfortably when an elevator car with integrated weight balancing, as described in connection with Figures 1a to 5c.
- the invention is particularly suitable for use in a high performance elevator operating at high speed covers larger height differences. Especially at High performance elevators, it is important that the smallest Bumps in the guide rails due to the sprung Rolls are caught while these feathers are soft Work in the area of the spring characteristic.
- Another embodiment of the invention stands out in that an optical sensor on the elevator car 1 is attached and a transmitter and a receiver includes.
- the transmitter emits light from reflectors is reflected, which is the area on each floor Elevator shaft 9 are located.
- the reflected light is from received by the receiver and from the position of the received An indication of the eccentric loading of the light Elevator car 1 won.
- the computing units (29, 38, 45, 58) can, for example, as "Application Specific Integrated Circuits" (ASIC), or as Microcomputers can be implemented and preferably include all necessary functions to control the hydraulic Compensation system 6 to be able to perform.
- ASIC Application Specific Integrated Circuits
- Microcomputers can be implemented and preferably include all necessary functions to control the hydraulic Compensation system 6 to be able to perform.
- the system according to the invention is designed so that the time to perform weight balancing is not more than three to five seconds.
- the described method can be expanded in which the Position of the elevator car door (open or closed), the Condition of the elevator car (standstill, slow travel, fast drive) and / or other information for activation or deactivation of the weight balance included becomes.
- the weight compensation of the elevator car 1 can according to Invention with empty or loaded elevator car 1 possible his. This has the advantage of balancing to be able to make the empty elevator car 1 dynamically.
- the weight compensation of the elevator car 1 according to the method can only be activated before a fast journey. This has the advantage that the time it takes to Weight balance is needed, can be saved, or that the system can be designed to save energy.
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Elevator Control (AREA)
- Types And Forms Of Lifts (AREA)
Abstract
Description
Die Aufzugskabine 1 umfasst weiter federgelagerte Rollen 3.1.1 bis 3.4.3, um die Aufzugskabine 1 entlang der Führungsschienen 4 zu führen. Dabei können die federgelagerten Rollen 3.1.1 bis 3.4.3 derart ausgelegt sein, dass eine nichtlineare Federkraft auf die Rollen ausgeübt wird. Bei kleinen Auslenkungen oder Stauchungen der Feder - je nach Einbaulage - arbeitet die Feder in einem weichen Bereich der nichtlinear verlaufenden Federkennlinie. Wird die Feder weiter ausgelenkt oder gestaucht, kommt ein härter ausgelegter Bereich der nichtlinear verlaufenden Federkennlinie zur Anwendung. Federn mit nichtlinear verlaufenden Federkennlinien können vorteilhaft zur Stabilisierung bzw. zum Abfedern der Aufzugskabine 1 bezüglich der Führungsschienen 4 sein, wobei die Federn bei kleinen Rollenbelastungen im weichen Bereich arbeiten und Stösse sanft abfedern. Grössere Rollenbelastungen führen dazu, dass die Federn stärker ausgelenkt oder gestaucht werden. In diesem Bereich sind die Federkennlinien steiler, d. h. die Zunahme der Federkraft bei einer definierten Zunahme der Einfederung ist gösser als im linearen Bereich. Bei einer exzentrischen Beladung 2 der Aufzugskabine 1 mit einem Gewicht G, können dabei ein Teil der auf die Rollen 3.1.1 bis 3.4.3 wirkenden Federn im härter ausgelegten Bereich der Federkennlinie arbeiten, wodurch der Federungskomfort der Aufzugskabine reduziert wird.
Dies ist schematisch in Fig. 1a gezeigt, wo das gegenüber der zentrischen Kabinenaufhängung versetzt angeordnete Gewicht G in Zusammenwirkung mit der Aufhängungskraft A ein ein im Gegenuhrzeigersinn auf die Aufzugskabine 1 wirkendes Drehmoment verursacht. Bei einer solchen exzentrischen Beladung werden die Federn der federgelagerten Rollen 3.1.1 und 3.3.1 stark gestaucht und arbeiten dadurch im harten Bereich der Federkennlinie. Die Federn der federgelagerten Rollen 3.2.1 und 3.4.1 dagegen sind bei einer solchen exzentrischen Beladung wenig gestaucht. Durch eine entsprechende Flüssigkeitsverlagerung wird erreicht, dass ein Gewicht F der Flüssigkeit zusammen mit der Aufhängungskraft A ein Drehmoment verursacht, dass in entgegen gesetzter Richtung (im Uhrzeigersinn) wirkt und die Aufzugskabine 1 dadurch in eine ausbalancierte Lage gebracht wird. Mit einem solchen System, das in beiden Horizontalachsen wirkt, lassen sich die Federn aller federgelagerten Rollen 3.1.1 bis 3.4.3 im weichen Bereich der Federkennlinien betreiben, da die entsprechenden Federkräfte der Rollen 3.1.1 bis 3.4.3 gleichmässig verteilt sind. Dies dient vorteilhafterweise einer Verbesserung des Fahrkomforts sowie einer Verlängerung der Lebensdauer der federgelagerten Rollen 3.1.1 bis 3.4.3 Die Flüssigkeit kann dabei Wasser mit entsprechenden Beimischungen, Öl, oder eine andere geeignete Flüssigkeit sein.
- Bestimmen der Lage der Aufzugskabine 1 mit dem Sensorsystem 5 (Schritt S1);
- Berechnen einer erforderlichen Flüssigkeitsverlagerung mittels der Steuereinheit 200, 300, 400, 500 (Schritt S2);
- Betätigen des hydraulischen Ausgleichssystems 6 mittels der Steuereinheit 200, 300, 400, 500 zur Ausführung des Gewichtsausgleichs (Schritt S3);
- Überwachen des Gewichtsausgleichs mittels des Sensorsystems 5 (dieser Schritt ist optional);
- Beenden des Gewichtsausgleichs (Schritt S4).
Claims (10)
- Aufzugskabine (1) zur vertikalen Bewegung in einem Aufzugsschacht (9), der vertikal angeordnete Führungsschienen (4) aufweist, wobei die Aufzugskabine (1) federgelagerte Rollen (3.1 - 3.4) aufweist, um die Aufzugskabine (1) entlang der Führungsschienen (4) zu führen, und die Aufzugskabine (1) Mittel aufweist, um bei einer exzentrischen Beladung (2) der Aufzugskabine (1) einen Gewichtsausgleich vornehmen zu können,
dadurch gekennzeichnet, dass
die Mittel ein hydraulisches Ausgleichssystem (6) umfassen, bei dem durch Verlagern einer Flüssigkeit (7) ein Gewichtsausgleich möglich ist. - Aufzugskabine (1) nach Anspruch 1,
dadurch gekennzeichnet, dass das hydraulische Ausgleichssystem (6) ein Sensorsystem (5) zur Feststellung der exzentrischen Beladung (2) umfasst. - Aufzugskabine (1) nach Anspruch 2, dadurch gekennzeichnet, dass das Sensorsystem (5) zwei oder mehrer Lagesensoren (8) umfasst, welche die Lage der Aufzugskabine (1) bezüglich der Führungsschienen (4) feststellen können.
- Aufzugskabine (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Lagesensoren (8) eine analoge Erfassung der exzentrischen Beladung (2) mittels Messung eines Federwegs der federgelagerten Rollen (3.1 - 3.4) oder eine digitale Erfassung der exzentrischen Beladung (2) durch mechanische Berührung oder Nichtberührung mit den Führungsschienen (4) ermöglichen.
- Aufzugskabine (1) nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass durch das hydraulische Ausgleichssystem (6) zum Gewichtsausgleich eine Verlagerung der Flüssigkeit (7) durch eine mechanische Verdrängung bewirkbar ist, wobei das Ausgleichssystem (6) durch eine Steuerungseinheit (200) gesteuert wird, wobei das Ausgleichssystem (6) mehrere Behälter (20) umfasst, welche durch Verbindungsleitungen (21) untereinander verbindbar sind, wobei ein Verdrängungssystem (22) mit dem Behälter (20) verbunden werden kann, wobei das Verdrängungssystem (22) einen beweglichen Stempel (24) und eine flexible Membran (23) umfasst, wobei der Stempel über eine Spindel (25) und einen Stellmotor (26) bewegt werden kann. - Aufzugskabine (1) nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass durch das hydraulische Ausgleichssystem (6) zum Gewichtsausgleich eine Verlagerung der Flüssigkeit (7) durch Pressluft bewirkbar ist, wobei das Ausgleichssystem (6) durch eine Steuerungseinheit (300) gesteuert wird, wobei das Ausgleichssystem (6) mehrere Behälter (30) umfasst, welche durch Verbindungsleitungen (31) untereinander verbindbar sind, wobei ein Pressluftsystem (32) mit dem Behälter (30) verbunden werden kann, wobei das Pressluftsystem (32) eine Pressluftpumpe (33) und ein Ventil (34) umfasst. - Aufzugskabine (1) nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass
durch das hydraulische Ausgleichssystem (6) zum Gewichtsausgleich eine Verlagerung der Flüssigkeit (7) durch hydraulisches Umpumpen bewirkbar ist, wobei das Ausgleichssystem (6) durch eine Steuerungseinheit (400) gesteuert wird, wobei das Ausgleichssystem (6) mehrere Behälter (40) umfasst, welche durch Verbindungsleitungen (41) und Flüssigkeitspumpen (42) untereinander verbindbar sind. - Aufzugskabine (1) nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass durch das hydraulische Ausgleichssystem (6) zum Gewichtsausgleich eine Verlagerung der Flüssigkeit (7) durch eine Neigung eines torusförmigen Behälters (50) bewirkbar ist, wobei das Ausgleichssystem (6) durch eine Steuerungseinheit (500) gesteuert wird, wobei der Behälter (50) mehrere Schwallbleche (56) umfasst, wobei der Behälter (50) in zwei Ebenen neigbar ist, wobei die Neigung in einer Ebene durch einen Seilzug (53) der über Umlenkrollen (54) geführt ist, bewirkbar ist, wobei der Seilzug (53) von einem Motor (51) und einer Seiltrommel (52) die mit dem Motor (51) verbindbar ist, bewegt werden kann. - Verfahren zum Gewichtsausgleich einer Aufzugskabine (1) bei exzentrischer Beladung (2) mittels eines hydraulischen Ausgleichssystems (6) und einem Sensorsystem (5), wobei das Verfahren die folgenden Schritte umfasst:Bestimmen der Lage der Aufzugskabine (1) mit dem Sensorsystem (5),Betätigen des hydraulischen Ausgleichssystems (6) zur Ausführung des Gewichtsausgleichs,Überwachen des Gewichtsausgleichs mittels des Sensorsystems (5).
- Verfahren nach Anspruch 9, wobei eine erforderliche Flüssigkeitsverlagerung mittels einer Steuereinheit (200, 300, 400, 500) berechnet wird, bevor oder während des Betätigens des hydraulischen Ausgleichssystems (6).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20030028777 EP1433737B1 (de) | 2002-12-24 | 2003-12-13 | Aufzugskabine mit Horizontalbalanciersystem |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02406145 | 2002-12-24 | ||
EP02406145 | 2002-12-24 | ||
EP20030028777 EP1433737B1 (de) | 2002-12-24 | 2003-12-13 | Aufzugskabine mit Horizontalbalanciersystem |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1433737A1 true EP1433737A1 (de) | 2004-06-30 |
EP1433737B1 EP1433737B1 (de) | 2007-01-24 |
Family
ID=32471913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20030028777 Expired - Lifetime EP1433737B1 (de) | 2002-12-24 | 2003-12-13 | Aufzugskabine mit Horizontalbalanciersystem |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1433737B1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014220445A1 (de) * | 2014-10-09 | 2016-04-14 | Thyssenkrupp Ag | Vorrichtung zur Überprüfung von Führungen und Verfahren zum Ausbalancieren einer Aufzugskabine |
CN114291693A (zh) * | 2021-12-14 | 2022-04-08 | 南通吉程机械有限公司 | 一种电梯轿厢底部自适应平衡结构 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016204180A1 (de) | 2016-03-15 | 2017-09-21 | Thyssenkrupp Ag | Verfahren und Ausgleichssystem zum Entgegenwirken von mindestens einem Drehmoment, das auf einen Fahrkorb einer Aufzugsanlage wirkt |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07215635A (ja) * | 1994-02-08 | 1995-08-15 | Hitachi Building Syst Eng & Service Co Ltd | エレベータのバランス装置 |
JPH08143234A (ja) * | 1994-11-28 | 1996-06-04 | Toshiba Corp | エレベーター |
-
2003
- 2003-12-13 EP EP20030028777 patent/EP1433737B1/de not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07215635A (ja) * | 1994-02-08 | 1995-08-15 | Hitachi Building Syst Eng & Service Co Ltd | エレベータのバランス装置 |
JPH08143234A (ja) * | 1994-11-28 | 1996-06-04 | Toshiba Corp | エレベーター |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 11 26 December 1995 (1995-12-26) * |
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 10 31 October 1996 (1996-10-31) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014220445A1 (de) * | 2014-10-09 | 2016-04-14 | Thyssenkrupp Ag | Vorrichtung zur Überprüfung von Führungen und Verfahren zum Ausbalancieren einer Aufzugskabine |
DE102014220445B4 (de) * | 2014-10-09 | 2017-06-08 | Thyssenkrupp Ag | Vorrichtung zur Überprüfung von Führungen |
CN114291693A (zh) * | 2021-12-14 | 2022-04-08 | 南通吉程机械有限公司 | 一种电梯轿厢底部自适应平衡结构 |
CN114291693B (zh) * | 2021-12-14 | 2024-02-09 | 南通吉程机械有限公司 | 一种电梯轿厢底部自适应平衡结构 |
Also Published As
Publication number | Publication date |
---|---|
EP1433737B1 (de) | 2007-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69420248T2 (de) | Schlupfkorrekturlastgreifsystem | |
DE3911391C2 (de) | Verfahren und Vorrichtung zum Überprüfen der Treibfähigkeit | |
DE102013110926B4 (de) | Fahrzeugsitz oder Fahrzeugkabine mit einer Federungseinrichtung und Nutzkraftfahrzeug | |
EP3052330B1 (de) | Fahrzeugsitz oder fahrzeugkabine mit einer federungseinrichtung und nutzkraftfahrzeug | |
EP1067084B1 (de) | Vorrichtung und Verfahren zur Verhinderung von Vertikalverschiebungen und Vertikalschwingungen an Lastaufnahmemitteln von Vertikalförderanlagen | |
DE69224240T2 (de) | Aufzugskabine Führungsvorrichtung | |
EP1988047B1 (de) | Aufzugsanlage mit einer Kabine, eine Umlenkrolleneinheit zu einer Aufzugsanlage und ein Verfahren zur Anordnung eines Lastmessaufnehmers in einer Aufzugsanlage. | |
DE69725684T2 (de) | Verfahren und Vorrichtung zur Messung der Last einer Aufzugskabine | |
EP3476791A1 (de) | Transporteinrichtung für einen kran | |
DE3715098C2 (de) | ||
DE69022850T2 (de) | Vorrichtung für lasthebezeug. | |
DE10144913B4 (de) | Aufzugbremslast-Wägesystem | |
EP0366883A1 (de) | Verfahren und Vorrichtung zur Ausübung des Verfahrens für die Schwingungsabsorbierung an Kabinen bei schnellaufenden Aufzügen | |
EP0591304A1 (de) | Elektronische balance-steuerung und -regelung für ein hebezeug. | |
DE112012004971T5 (de) | Vibrations-Verringerungseinrichtung für einen Aufzug | |
DE102010018181A1 (de) | Vorrichtung mit einem Zuschaltventil | |
DE3939668A1 (de) | Federungsvorrichtung fuer ein fahrzeug | |
EP2316776B1 (de) | Verfahren zur Inbetriebnahme einer Aufzugsanlage | |
EP1433737B1 (de) | Aufzugskabine mit Horizontalbalanciersystem | |
DE68915087T2 (de) | Fahrzeugaufhängungssystem. | |
DE2845055B2 (de) | Verfahren zum schnellen Trennen der Walzen eines Kalanders und Vorrichtung zu dessen Durchführung | |
EP0016929A1 (de) | Einrichtung zur Überwachung des Vorrates an fliessfähigem Schmiermittel in einem Kraftfahrzeug | |
DE102007055363A1 (de) | Verfahren zur Messung und Regelung der Höhe eines beweglichen Bauteils einer Arbeitsmaschine und Arbeitsmaschine mit einem Basisbauteil und einem beweglichen Bauteil | |
EP0555635A1 (de) | Verfahren und Vorrichtung zur Reduktion der Antriebsleistung für einen hydraulischen Aufzug | |
DE2806956C3 (de) | Vorrichtung zum Verschieben eines Geräteteils an einem Röntgenuntersuchungsgerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20041217 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1067609 Country of ref document: HK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50306365 Country of ref document: DE Date of ref document: 20070315 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070226 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1067609 Country of ref document: HK |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20071025 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20100108 Year of fee payment: 7 Ref country code: GB Payment date: 20091218 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091222 Year of fee payment: 7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20101213 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110103 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50306365 Country of ref document: DE Effective date: 20110701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101213 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110701 |