EP1432501A1 - Procede et dispositif de melange de deux gaz reactifs - Google Patents

Procede et dispositif de melange de deux gaz reactifs

Info

Publication number
EP1432501A1
EP1432501A1 EP02783152A EP02783152A EP1432501A1 EP 1432501 A1 EP1432501 A1 EP 1432501A1 EP 02783152 A EP02783152 A EP 02783152A EP 02783152 A EP02783152 A EP 02783152A EP 1432501 A1 EP1432501 A1 EP 1432501A1
Authority
EP
European Patent Office
Prior art keywords
gases
mixer
gas
orifices
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02783152A
Other languages
German (de)
English (en)
Inventor
Jacques Dugue
Fabien Illy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1432501A1 publication Critical patent/EP1432501A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31425Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4336Mixers with a diverging cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel

Definitions

  • the invention relates to a method for mixing potentially flammable reactive gases.
  • the invention therefore relates to a process for mixing potentially flammable reactive gases making it possible to obtain excellent homogeneity of the mixture for the process for which it is intended while preventing the development of a reaction in the mixer.
  • mixers can be identified. Mixing operations are most often carried out using static mixers. These have a pattern which creates a pressure drop when the gases to be mixed come into contact with this pattern, which generates the mixture of gases.
  • These mixers are very efficient but also very bulky. They cannot easily be adapted to already existing installations as would be necessary for the bottlenecks. In addition, they can constitute a risk of blockage or particle traps. The presence of catalyst particles has already been the cause of accidents and explosions, in particular in the manufacture of nitric acid. Since the mixing mechanisms are not very accessible inside the mixer, this type of material is generally not used when the mixture to be produced is very reactive because the distribution of the residence times in such mixers is difficult to know.
  • Mixers with transverse jets are also used, such as that described in application FR-A-2 665 088: it is a radial gas injector with rotary movement usable for example for the operations of superoxygenation in catalytic crackers fluids (called FCC), catalytic oxidations or furnaces (metallurgy, glass or cement).
  • FCC catalytic crackers fluids
  • furnaces metalurgy, glass or cement.
  • This type of mixer makes it possible to obtain a homogeneous macroscopic mixture, but in certain cases one can observe zones of fluid recirculation behind the plume of the jets (quasi wake) or behind the injectors (drag,), which can increase the times of local stays which can cause spontaneous inflammation.
  • coaxial jet mixers based on the principle of creating multiple small coaxial jets in the main flow. They include many so-called "rake" type injectors ensuring the injection of a very combustible gas into air or an oxidant to limit the risk of ignition (or vice versa). This type of injector is found in the process for synthesizing ethylene oxide (oxygen injection) or maleic anhydride (butane injection).
  • mixers are not very flexible and bulky (presence of a long bundle of small tubes). Due to the coaxial jets, the mixture is mainly diffusional which penalizes the performances because a large contact surface is created between the reactive gases, where the mixing takes place mainly by diffusion (slower mixing).
  • the object of the present invention is to provide a process for mixing two potentially flammable reactive gases making it possible to obtain a homogeneous mixture in a time less than the chemical time of the reaction of the two gases. Another object is to propose a mixer capable of implementing this process.
  • FIG. 1 is a schematic view of a device according to the invention
  • FIG. 2 is an example of distribution residence times obtained by using the device of FIG. 1.
  • the invention relates first of all to a method of mixing at least two reactive gases in a mixer in which: the average residence time (t m ) of the gases in the mixer is less than or equal to the chemical reaction time of the gases to be mixed, and the standard deviation of the distribution of residence times (e) represents at most 20%, preferably at most 10%, of the average residence time (t m ) of the distribution of residence times.
  • the chemical reaction time of the gases is defined as the time for ignition by self-ignition of these gases under the pressure and temperature conditions of the mixture.
  • the invention proposes to use a mixer having the following geometry: a first part of divergent frustoconical shape, a second cylindrical part placed in the extension of the first part and having the same axis of symmetry, said axis of the mixer, an orifice located at the end of the first part and allowing the axial injection of at least one gas so as to form an axial flow in the mixer, said main flow, orifices drilled in the wall of the first part and allowing injection in the form of jets of the other gas or gases within the main flow, said orifices being oriented towards the center of the mixer in the direction of injection of the gases into the mixer and according to a angle ⁇ between 20 ° and 70 ° relative to the axis of the device.
  • the first part of the mixer makes it possible to control the distribution of the gas residence time while the second part makes it possible to complete the mixing of the gases up to the characteristics imposed by the downstream process such as: degree of homogeneity or a dispersion of particles for example.
  • the invention relates more specifically to this type of device consisting of two parts placed in the extension of one another and cooperating with one another.
  • the first part is of divergent frustoconical shape.
  • the gases are introduced on the side of the truncated cone having the cross section of smaller diameter so that they go towards the other side of the cone, towards the second part of the mixer.
  • the half-angle ⁇ at the top of the cone formed by the first part of the mixer is generally at most 10 °, preferably between 2 ° and 8 °, even more preferably between 4 ° and 6 °.
  • the second part is placed in the extension of the first divergent part, therefore on the side of the truncated cone having the cross section of larger diameter.
  • This second part has the shape of a cylinder centered on the same axis of symmetry as the first frustoconical part. The second part cooperates with the first part: thus, the diameter of the cylinder is the same as that of the largest end of the cone.
  • the length of the second cylindrical part is preferably between 1 D and 100 D, preferably between 10 D and 70 D, even more preferably between 20 D and 50 D, with D diameter of the cylinder formed by this second part.
  • This length is generally a function of the degree of homogeneity the required mixture; it must also ensure compliance with the conditions regarding the distribution of residence times.
  • the injection of the gases to be mixed takes place through orifices which are all located in the first part of the mixing device. There are two types of orifices. First of all, the device comprises an orifice located at the end of the first part of the mixer which has the cross section of smaller diameter. The orifice has a shape such that it allows the axial injection of at least one gas so as to form a flow parallel to the axis of the mixer.
  • the device then comprises orifices drilled in the wall of the first part of the mixer.
  • these orifices are distributed uniformly over the wall of the frustum of the first part. They generally all have the same shape, often round. They preferably all have the same diameter. According to a preferred variant, they are distributed in the form of at least two crowns, said crowns corresponding to straight sections of the truncated cone. On the same crown, the orifices are generally placed uniformly at the same distance from each other; this distance preferably represents at least twice the diameter of these orifices.
  • a mixer is used which has as many rows of orifice rings as possible in the first part of the mixer.
  • the holes of one are offset from the other.
  • the central axis of this orifice is oriented towards the center of the mixer in the direction of injection of the gases into the mixer at an angle ⁇ between 20 ° and 70 °, preferably between 20 ° and 60 °.
  • all of these orifices have the same angle of orientation.
  • These orifices can be configured so as to give a radial effect with rotating movement to the gas (s) coming from said orifices. Preferably, this effect is not implemented for the main flow.
  • the diameters of the orifices are generally fixed as a function of the ratios of the speeds of the gases which are injected into the mixer: thus they can make it possible to determine the speed of the injected gas so that it is greater than that of the mixture of flowing gases. in the tapered section.
  • the invention relates more particularly to the mixing device in which all the holes drilled in the wall of the first part of the device have the same shape of section and the same diameter.
  • the previously described mixer is particularly suitable for gas mixtures whose ratio V 2 2 / V ⁇ 2 is between 1 and 2, and preferably between 1 and 1, 5, with: Vi: speed of the gas or gases injected through the orifice located at the end of the first part, V 2 : speed of the gas or gases injected through the holes drilled in the wall of the first part of the mixer
  • the gaseous mixtures of methane and oxygenated gases can be particularly treated by this mixer: an oxygenated gas is injected into the orifice located at the end of the first part of the methane and into the orifices drilled in the wall of the first part. .
  • FIG. 1 illustrates a section of a mixing device according to the invention.
  • An orifice (4) located at the end of the first part allows the axial injection of at least one gas.
  • These orifices are oriented towards the center of the mixer in the direction of injection of the gases into the mixer at an angle of 50 ° relative to the axis of the mixer.
  • the mixer defined in Figure 1 is used for mixing CH and a premix of oxygen and carbon dioxide.
  • CH 4 is introduced with a speed of 46 m / s and the premix of oxygen and carbon dioxide with a speed of 54 m / s.
  • the chemical reaction time is 400 ms.
  • FIG. 2 is the distribution of the residence times obtained during this mixing by monitoring the particles in the flow. The following results are obtained:
  • the average residence time of the gases in the mixer to reach a degree of homogeneity of the coefficient of variation (CV) of 5% is only 27 ms therefore less than the chemical reaction time of the gases to be mixed, which is 400 ms (result obtained by statistical calculation on the distribution of CH 4 concentrations on each cross section of the mixer),
  • the standard deviation of the distribution of residence times (e) represents 3.5 ms, i.e. less than 20% of the average residence time (t m ) of the distribution of residence times

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

Un procédé de mélange d'au moins deux gaz susceptibles de réagir ensemble dans un mélangeur, dans lequel le temps de séjour moyen des gaz dans le mélangeur est inférieur ou égal au temps chimique de réaction des gaz à mélanger, et l'écart type de la distribution des temps de séjour (e) représente au plus 20 % du temps de séjour moyen (t) de la distribution des temps de séjour. Le mélanger concerné présente une première partie de forme tronconique divergente (2) et une deuxième partie cylindrique droite (3). Un orifice (4) situé à l'extrémité de la première partie permet l'injection axiale d'au moins un gaz. Des orifices (5)sont percés dans la paroi de la première partie et permettant l'injection sous forme de jets du ou des autres gaz au sein de l'écoulement principal.

Description

Procédé et dispositif de mélange de deux gaz réactifs
L'invention concerne un procédé de mélange de gaz réactifs potentiellement inflammables.
Pour divers procédés chimiques où interviennent plusieurs gaz à titre de réactifs, il peut être recommandé de préalablement mélanger ces gaz réactifs avant leur introduction dans le procédé chimique auquel ils sont destinés. Or, au cours de la réalisation du mélange préalable des gaz réactifs, des risques liés à la réactivité des gaz peuvent apparaître. Des méthodes existent pour déterminer le risque d'inflammabilité du mélange d'au moins deux gaz réactifs et déterminer le schéma d'injection des gaz en prenant en compte l'évolution de la composition du problème d'inflammabilité, il faut également que le mélange final soit de qualité, c'est-à-dire homogène.
L'invention porte donc sur un procédé de mélange de gaz réactifs potentiellement inflammables permettant d'obtenir une excellente homogénéité du mélange pour le procédé auquel il est destiné tout en prévenant le développement d'une réaction dans le mélangeur. On peut identifier plusieurs types de mélangeurs. Les opérations de mélange sont le plus souvent réalisées à l'aide de mélangeurs statiques. Ceux-ci présentent un motif qui crée une perte de charge lorsque les gaz à mélanger passent au contact de ce motif, ce qui génère le mélange des gaz. Ces mélangeurs sont très efficaces mais aussi très encombrants. Ils ne peuvent pas facilement s'adapter à des installations déjà existantes comme il serait nécessaire pour les degoulottages. De plus, ils peuvent constituer un risque de bouchage ou de pièges à particules. La présence de particules de catalyseur a déjà été à l'origine d'accidents et d'explosions, en particulier dans la fabrication de l'acide nitrique. Les mécanismes de mélange étant peu accessibles à l'intérieur du mélangeur, ce type de matériel n'est généralement pas utilisé quand le mélange à réaliser est très réactif car la distribution des temps de séjours dans de tels mélangeurs est difficile à connaître.
On utilise aussi des mélangeurs à jets transverses, tels que celui décrit dans la demande FR-A-2 665 088 : il s'agit d'un injecteur de gaz radial à mouvement tournant utilisable par exemple pour les opérations de suroxygénation dans les craqueurs catalytiques fluides (dits FCC), les oxydations catalytiques ou les fours (métallurgie, verre ou ciment). Ces mélangeurs sont très efficaces pour obtenir un mélange homogène sur une courte distance. Mais ils sont limités dans les quantités de gaz qu'il est possible de mélanger et dans leur flexibilité par rapport aux débits des gaz. Ce type de mélangeur permet d'obtenir un mélange macroscopique homogène, mais on peut observer dans certains cas des zones de recirculation fluide derrière le panache des jets (quasi sillage) ou derrière les injecteurs (traînée,), ce qui peut augmenter les temps de séjour locaux qui peut être à l'origine d'un inflammation spontanée. Il existe également des mélangeurs à jets coaxiaux basés sur le principe de la création de multiples petits jets coaxiaux à l'écoulement principal. Ils comprennent de nombreux injecteurs dits de type "râteau" assurant l'injection d'un gaz très combustible dans de l'air ou un oxydant pour limiter le risque d'allumage (ou vice-versa). On trouve ce type d'injecteur dans le procédé de synthèse d'oxyde d'éthylène (injection oxygène) ou d'anhydride maléique (injection butane). Ces mélangeurs sont peu flexibles et encombrants (présence d'un long faisceau de petits tubes). Du fait des jets coaxiaux, le mélange est majoritairement diffusionnel ce qui pénalise les performances car il se crée une large surface de contact entre les gaz réactifs, où le mélange a lieu principalement par diffusion (mélange plus lent).
Le but de la présente invention est de proposer un procédé de mélange de deux gaz réactifs potentiellement inflammables permettant d'obtenir un mélange homogène en un temps inférieur au temps chimique de la réaction des deux gaz. Un autre but est de proposer un mélangeur susceptible de mettre en œuvre ce procédé.
Les caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre. Des formes et des modes de réalisation de l'invention sont donnés à titre d'exemples non limitatifs, illustrés par la figure 1 qui est une vue schématique d'un dispositif selon l'invention et par la figure 2 qui est un exemple de distribution des temps de séjour obtenue par utilisation du dispositif de la figure 1.
L'invention concerne tout d'abord un procédé de mélange d'au moins deux gaz réactifs dans un mélangeur dans lequel : le temps de séjour moyen (tm) des gaz dans le mélangeur est inférieur ou égal au temps chimique de réaction des gaz à mélanger, et l'écart type de la distribution des temps de séjour (e) représente au plus 20 %, de préférence au plus 10 %, du temps de séjour moyen (tm) de la distribution des temps de séjour.
Le respect de ces conditions assure l'obtention d'un mélange homogène de deux gaz potentiellement inflammables sans danger. Le temps chimique de réaction des gaz est défini comme le délai d'allumage par auto-inflammation de ces gaz aux condition de pression et température du mélange. Selon une mise en œuvre particulière du procédé de l'invention, le temps de séjour maximum est inférieur ou égal au temps chimique de réaction des gaz à mélanger. Ce temps de séjour maximum est défini par la formule suivante T = 3 X e + tm, e représentant la largeur de la gaussienne de la distribution des temps de séjour et tm la moyenne des temps de séjour de la distribution. Ce temps de séjour maximum est représentatif des temps de séjour pour la quasi totalité de l'écoulement (99,8 % de l'écoulement).
Une telle distribution des temps de séjour peut être contrôlée par le choix de la géométrie du mélangeur et des vitesses et/ou débits des gaz à mélanger. Ainsi, pour mettre en œuvre le procédé précédent, l'invention propose d'utiliser un mélangeur présentant la géométrie suivante : une première partie de forme tronconique divergente, une deuxième partie cylindrique placée dans la prolongation de la première partie et présentant le même axe de symétrie, dit axe du mélangeur, un orifice situé à l'extrémité de la première partie et permettant l'injection axiale d'au moins un gaz de manière à former un écoulement axial dans le mélangeur, dit écoulement principal, des orifices percés dans la paroi de la première partie et permettant l'injection sous forme de jets du ou des autres gaz au sein de l'écoulement principal, lesdits orifices étant orientés vers le centre du mélangeur dans le sens d'injection des gaz dans le mélangeur et selon un angle β compris entre 20° et 70° par rapport à l'axe du dispositif.
La première partie du mélangeur permet de contrôler la distribution du temps de séjour des gaz tandis que la deuxième partie permet d'achever le mélange des gaz jusqu'aux caractéristiques imposées par le procédé aval telles que : degré d'homogénéité ou une dispersion de particules par exemple. L'invention concerne plus spécifiquement ce type de dispositif se composant de deux parties placées dans le prolongement l'une de l'autre et coopérant l'une avec l'autre. La première partie est de forme tronconique divergente. Les gaz sont introduits du côté du tronc de cône présentant la section droite de plus petit diamètre de manière à ce qu'ils se dirigent vers l'autre côté du cône, vers la deuxième partie du mélangeur. Le demi-angle γ au sommet du cône formé par la première partie du mélangeur est généralement d'au plus 10°, de préférence compris entre 2° et 8°, encore plus préférentiellement entre 4° et 6°. La deuxième partie est placée dans la prolongation de la première partie divergente, donc du côté du tronc de cône présentant la section droite de plus grand diamètre. Cette deuxième partie a la forme d'un cylindre centré sur le même axe symétrie que le première partie tronconique. La deuxième partie coopère avec la première partie : ainsi, le diamètre du cylindre est le même que celui de la plus grande extrémité du cône. La longueur de la deuxième partie cylindrique est de préférence comprise entre 1 D et 100 D, de préférence comprise entre 10 D et 70 D, encore plus préférentiellement comprise entre 20 D et 50 D, avec D diamètre du cylindre formé par cette deuxième partie. Cette longueur est généralement fonction du degré d'homogénéité du mélange requis ; elle doit également assurer le respect des conditions quant à la distribution des temps de séjour. L'injection des gaz à mélanger se fait par des orifices qui sont tous situés dans la première partie du dispositif de mélange. On distingue deux types d'orifices. Tout d'abord, le dispositif comprend un orifice situé à l'extrémité de la première partie du mélangeur qui présente la section droite de plus petit diamètre. L'orifice présente une forme telle qu'il permet l'injection axiale d'au moins un gaz de manière à former un écoulement parallèle à l'axe du mélangeur. Le dispositif comprend ensuite des orifices percés dans la paroi de la première partie du mélangeur. De préférence, ces orifices sont répartis de manière uniforme sur la paroi du tronc de cône de la première partie. Ils présentent généralement tous la même forme, souvent ronde. Ils ont de préférence tous le même diamètre. Selon une variante préférée, ils sont répartis sous forme d'au moins deux couronnes, lesdites couronnes correspondant à des sections droites du tronc de cône. Sur une même couronne, les orifices sont généralement placés uniformément à la même distance les uns des autres ; cette distance représente préférentiellement au moins deux fois le diamètre de ces orifices. De préférence, on utilise un mélangeur présentant le plus grand nombre de rangées de couronnes d'orifices possible dans la première partie du mélangeur. Il est préférable que pour deux couronnes adjacentes les trous de l'une soient décalés par rapport à l'autre. Pour chacun de ces orifices percés dans la paroi de la première partie du mélangeur, l'axe central de cet orifice est orienté vers le centre du mélangeur dans le sens d'injection des gaz dans le mélangeur selon un angle β compris entre 20° et 70°, de préférence entre 20° et 60°. De préférence, tous ces orifices présentent le même angle d'orientation. Ces orifices peuvent être configurés de manière à donner un effet radial à mouvement tournant au(x) gaz provenant desdits orifices. De préférence, cet effet n'est pas mis en œuvre pour l'écoulement principal. Les diamètres des orifices sont généralement fixés en fonction des rapports des vitesses des gaz que l'on injecte dans le mélangeur : ainsi ils peuvent permettre de déterminer la vitesse du gaz injecté afin qu'elle soit supérieure à celle du mélange de gaz s'écoulant dans la section tronconique.
L'invention concerne plus particulièrement le dispositif de mélange dans lequel tous les orifices percés dans la paroi de la première partie du dispositif présentent la même forme de section et le même diamètre.
Le mélangeur précédemment décrit convient particulièrement aux mélanges de gaz dont le rapport V2 2/Vι2 est compris entre 1 et 2, et de préférence entre 1 et 1 ,5, avec : Vi : vitesse du ou des gaz injectés par l'orifice situé à l'extrémité de la première partie, V2 : vitesse du ou des gaz injectés par les orifices percés dans la paroi de la première partie du mélangeur Les mélanges gazeux de méthane et de gaz oxygénés peuvent particulièrement être traités par ce mélangeur : on injecte dans l'orifice situé à l'extrémité de la première partie du méthane et dans les orifices percés dans la paroi de la première partie un gaz oxygéné..
La figure 1 illustre une coupe d'un dispositif de mélange selon l'invention. Le mélangeur (1 ) présente une première partie de forme tronconique divergente (2) (demi- angle au sommet = 6°, longueur = 35 mm) et une deuxième partie cylindrique droite (3) placé dans la prolongation de la première partie (diamètre = 34 mm, longueur = 1 190 mm). Un orifice (4) situé à l'extrémité de la première partie permet l'injection axiale d'au moins un gaz. Des orifices (5) (diamètre = 2,5 mm) sont percés dans la paroi de la première partie et permettent l'injection sous forme de jets du ou des autres gaz au sein de l'écoulement principal. Ils sont répartis sous forme de quatre couronnes de 16 orifices chacune, l'axe de chaque couronne étant parallèle à l'axe du mélangeur. Ces orifices sont orientés vers le centre du mélangeur dans le sens d'injection des gaz dans le mélangeur selon un angle de 50° par rapport à l'axe du mélangeur.
EXEMPLE
Le mélangeur défini par la figure 1 est utilisé pour le mélange de CH et d'un prémélange d'oxygène et de dioxyde de carbone. CH4 est introduit avec une vitesse de 46 m/s et le prémélange d'oxygène et de dioxyde de carbone avec une vitesse de 54 m/s. Le temps chimique de la réaction est de 400 ms.
La figure 2 est la distribution des temps de séjour obtenue lors de ce mélange par le suivi des particules dans l'écoulement. Les résultats suivants sont obtenus :
- le temps de séjour moyen des gaz dans le mélangeur pour atteindre un degré d'homogénéité du coefficient de variation (CV) de 5 % est de seulement 27 ms donc inférieur au temps chimique de réaction des gaz à mélanger, qui est de 400 ms (résultat obtenu par calcul statistique sur la distribution des concentrations en CH4 sur chaque section droite du mélangeur),
- l'écart type de la distribution des temps de séjour (e) représente 3,5 ms, soit moins de 20 % du temps de séjour moyen (tm) de la distribution des temps de séjour,
- le temps de séjour maximum T = 3 X e + tm est de 37,5 ms donc est inférieur au temps chimique de 400 ms d'un facteur 10.
On vérifie que l'on obtient à la sortie du mélangeur un mélange homogène en s'assurant que l'homogénéité atteinte à 5 % est compatible avec l'utilisation procédé désirée.

Claims

REVENDICATIONS
1. Procédé de mélange d'au moins deux gaz susceptibles de réagir ensemble dans un mélangeur, caractérisé en ce que : - le temps de séjour moyen des gaz dans le mélangeur est inférieur ou égal au temps chimique de réaction des gaz à mélanger, et
- l'écart type de la distribution des temps de séjour (e) représente au plus 20 % du temps de séjour moyen (tm) de la distribution des temps de séjour.
2. Procédé selon la revendication 1 , caractérisé en ce que l'écart type de la distribution des temps de séjour (e) représente au plus 10 % du temps de séjour moyen de la distribution des temps de séjour (tm).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le temps de séjour maximum est inférieur ou égal au temps chimique de réaction des gaz à mélanger.
4. Procédé de mélange selon l'une des revendications 1 à 3, caractérisé en ce qu'on utilise un mélangeur présentant la géométrie suivante : une première partie de forme tronconique divergente, - une deuxième partie cylindrique placée dans la prolongation de la première partie et présentant le même axe de symétrie, dit axe du dispositif,
- un orifice situé à l'extrémité de la première partie et permettant l'injection axiale d'au moins un gaz de manière à former un écoulement axial dit écoulement principal, au moins deux orifices percés dans la paroi de la première partie et permettant l'injection sous forme de jets du ou des autres gaz au sein de l'écoulement principal, lesdits orifices étant orientés vers le centre du mélangeur dans le sens d'injection des gaz dans le mélangeur et selon un angle β compris entre 20° et 70° par rapport à l'axe du dispositif.
5. Dispositif de mélange d'au moins deux gaz susceptibles de réagir ensemble comprenant : une première partie de forme tronconique divergente, une deuxième partie cylindrique placée dans la prolongation de la première partie et présentant le même axe de symétrie, dit axe du dispositif, - un orifice situé à l'extrémité de la première partie et permettant l'injection axiale d'au moins un gaz de manière à former un écoulement axial dit principal, - des orifices percés dans la paroi de la première partie et permettant l'injection sous forme de jets du ou des autres gaz au sein de l'écoulement principal, lesdits orifices étant orientés vers le centre du mélangeur dans le sens d'injection des gaz dans le mélangeur et selon un angle β compris entre 20° et 70° par rapport à l'axe du dispositif, et lesdits orifices étant répartis sous forme d'au moins deux couronnes, lesdites couronnes correspondant à des sections droites de la première partie de forme tronconique.
6. Dispositif selon la revendication précédente, caractérisé en ce que le demi-angle γ au sommet du cône formé par la première partie est d'au plus 10°, de préférence compris entre 2° et 8°, encore plus préférentiellement entre 4° et 6°.
7. Dispositif selon l'une des revendications 5 ou 6, caractérisé en ce que la longueur de la deuxième partie cylindrique droite est comprise entre 1 et 100 D, avec D diamètre du cylindre formé par cette deuxième partie.
8. Dispositif selon l'une des revendications 5 à 7, caractérisé en ce que tous les orifices percés dans la paroi de la première partie présentent la même forme de section et le même diamètre.
9. Dispositif selon l'une des revendications 5 à 8, caractérisé en ce que les orifices percés dans la paroi de la première partie sont configurés de manière à donner un effet radial à mouvement tournant au(x) gaz provenant de ces orifices.
10. Procédé de mélange d'au moins deux gaz susceptibles de réagir ensemble dans lequel on utilise le dispositif selon l'une des revendications 5 à 9.
11. Procédé selon la revendication précédente, caractérisé en ce que le rapport V^N est compris entre 1 et 2, et de préférence entre 1 et 1 ,5, avec :
\ : vitesse du ou des gaz injectés par l'orifice situé à l'extrémité de la première partie, V2 : vitesse du ou des gaz injectés par les orifices percés dans la paroi de la première partie du mélangeur.
12. Procédé selon la revendication 10 ou 11 , caractérisé en ce qu'il est mis en œuvre pour mélanger du méthane et un gaz oxygéné et en ce qu'on injecte dans l'orifice situé à l'extrémité de la première partie le méthane et dans les orifices percés dans la paroi de la première partie le gaz oxygéné.
EP02783152A 2001-09-19 2002-09-09 Procede et dispositif de melange de deux gaz reactifs Withdrawn EP1432501A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0112101 2001-09-19
FR0112101A FR2829707B1 (fr) 2001-09-19 2001-09-19 Procede et dispositif de melange de deux gaz reactifs
PCT/FR2002/003055 WO2003024580A1 (fr) 2001-09-19 2002-09-09 Procede et dispositif de melange de deux gaz reactifs

Publications (1)

Publication Number Publication Date
EP1432501A1 true EP1432501A1 (fr) 2004-06-30

Family

ID=8867427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02783152A Withdrawn EP1432501A1 (fr) 2001-09-19 2002-09-09 Procede et dispositif de melange de deux gaz reactifs

Country Status (5)

Country Link
US (1) US20040231586A1 (fr)
EP (1) EP1432501A1 (fr)
JP (1) JP2005503254A (fr)
FR (1) FR2829707B1 (fr)
WO (1) WO2003024580A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050098107A1 (en) * 2003-09-24 2005-05-12 Du Bois Dale R. Thermal processing system with cross-flow liner
EP2078898A1 (fr) * 2008-01-11 2009-07-15 Siemens Aktiengesellschaft Brûleur et procédé pour réduire des oscillations de flammes autoinduites
KR100986473B1 (ko) * 2008-03-14 2010-10-08 현대자동차주식회사 연료전지 시스템의 수소 배기 장치
AU2013207783B2 (en) 2012-01-13 2017-07-13 Lummus Technology Llc Process for providing C2 hydrocarbons via oxidative coupling of methane and for separating hydrocarbon compounds
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
DE102012220986B4 (de) * 2012-11-16 2015-04-02 Innovent E.V. Technologieentwicklung Dosiereinheit und ihre Verwendung
WO2014089479A1 (fr) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Procédés et systèmes intégrés pour la conversion de méthane en de multiples produits hydrocarbonés supérieurs
EP3074119B1 (fr) 2013-11-27 2019-01-09 Siluria Technologies, Inc. Réacteurs et systèmes destinés au couplage oxydatif du méthane
CN110655437B (zh) 2014-01-08 2022-09-09 鲁玛斯技术有限责任公司 乙烯成液体的系统和方法
CA3225180A1 (fr) 2014-01-09 2015-07-16 Lummus Technology Llc Couplage oxydatif d'implementations methaniques pour la production d'olefines
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10128087B2 (en) 2014-04-07 2018-11-13 Lam Research Corporation Configuration independent gas delivery system
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
US10557197B2 (en) 2014-10-17 2020-02-11 Lam Research Corporation Monolithic gas distribution manifold and various construction techniques and use cases therefor
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US10058828B2 (en) * 2015-06-01 2018-08-28 Cameron International Corporation Apparatus for mixing of fluids flowing through a conduit
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US10022689B2 (en) * 2015-07-24 2018-07-17 Lam Research Corporation Fluid mixing hub for semiconductor processing tool
EP3362425B1 (fr) 2015-10-16 2020-10-28 Lummus Technology LLC Procédés de séparation et systèmes de couplage oxydatif du méthane
US10215317B2 (en) 2016-01-15 2019-02-26 Lam Research Corporation Additively manufactured gas distribution manifold
EP3442934A4 (fr) 2016-04-13 2019-12-11 Siluria Technologies, Inc. Couplage oxydant de méthane pour la production d'oléfines
CN105771717B (zh) * 2016-05-11 2018-03-30 西南石油大学 一种高粘度介质静态混合器
CN106122964A (zh) * 2016-08-04 2016-11-16 成都国光电子仪表有限责任公司 一种气田燃烧排空管路
WO2018118105A1 (fr) 2016-12-19 2018-06-28 Siluria Technologies, Inc. Procédés et systèmes pour effectuer des séparations chimiques
JP2020521811A (ja) 2017-05-23 2020-07-27 ラマス テクノロジー リミテッド ライアビリティ カンパニー メタン酸化カップリングプロセスの統合
AU2018298234B2 (en) 2017-07-07 2022-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
JP7024646B2 (ja) * 2018-07-24 2022-02-24 日本製鉄株式会社 超音波処理装置及びファインバブルの供給方法
AT521586B1 (de) * 2018-08-28 2020-12-15 Avl List Gmbh Gasmischvorrichtung zur Linearisierung oder Kalibrierung von Gasanalysatoren
CN216114020U (zh) * 2020-10-21 2022-03-22 博西华电器(江苏)有限公司 燃气灶及其引射管
CN117815949B (zh) * 2024-03-05 2024-05-07 山东神驰石化有限公司 一种正丁烷与空气混合装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123285A (en) * 1964-03-03 Diffuser with boundary layer control
US2361150A (en) * 1941-01-24 1944-10-24 Mathieson Alkali Works Inc Method and apparatus for admitting chlorine to a liquid stream
GB618481A (en) * 1946-10-11 1949-02-22 Samuel Harry White Improvements in or relating to the mixing and proportioning of fuel gases
US3702619A (en) * 1971-01-28 1972-11-14 Shell Oil Co In-line mixing apparatus for gases
NL7105973A (fr) * 1971-04-29 1972-10-31
FR2357738A1 (fr) * 1976-07-07 1978-02-03 Snecma Chambre de combustion pour turbomachines
GB1539136A (en) * 1976-07-07 1979-01-24 Snecma Gas turbine combustion chambers
US4474477A (en) * 1983-06-24 1984-10-02 Barrett, Haentjens & Co. Mixing apparatus
DE3412808A1 (de) * 1984-04-05 1985-10-17 Niederrheinische Gas- und Wasserwerke GmbH, 4100 Duisburg Vorrichtung zum anreichern einer atmosphaere mit kohlendioxyd
US4765373A (en) * 1987-07-07 1988-08-23 Coppus Engineering Corporation Gas flow amplifier
US4761077A (en) * 1987-09-28 1988-08-02 Barrett, Haentjens & Co. Mixing apparatus
US5338113A (en) * 1990-09-06 1994-08-16 Transsonic Uberschall-Anlagen Gmbh Method and device for pressure jumps in two-phase mixtures
US5676173A (en) * 1994-11-04 1997-10-14 T I Properties, Inc. In-line venturi
US5785824A (en) * 1995-09-28 1998-07-28 Mitsubishi Denki Kabushiki Kaisha Method of and apparatus for producing ozone
US5893641A (en) * 1998-05-26 1999-04-13 Garcia; Paul Differential injector
JP2000213681A (ja) * 1999-01-27 2000-08-02 Toshiba Corp 流体混合継手
US6623154B1 (en) * 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03024580A1 *

Also Published As

Publication number Publication date
FR2829707A1 (fr) 2003-03-21
US20040231586A1 (en) 2004-11-25
FR2829707B1 (fr) 2003-12-12
WO2003024580A1 (fr) 2003-03-27
JP2005503254A (ja) 2005-02-03

Similar Documents

Publication Publication Date Title
EP1432501A1 (fr) Procede et dispositif de melange de deux gaz reactifs
FR2485692A1 (fr) Procede et bruleur pour produire une combustion a faible teneur en oxydes d'azote des gaz d'echappement dans un tube radiant
SU632311A3 (ru) Устройство дл получени тонкоизмельченных окислов металлов
DE2702896C2 (de) Verfahren zur Herstellung von feinteiligen Metall- und/oder Metalloidoxiden durch Dampfphasenhydrolyse und Vorrichtung zur Durchführung des Verfahrens
EP1640662B1 (fr) Injecteur à effervescence pour système aéromécanique d'injection air/carburant dans une chambre de combustion de turbomachine
CH701946B1 (de) Brennstoffeinspritzdüse mit gestufter Vormischung in mehreren Rohren.
FR2484432A1 (fr) Procede et appareil pour produire du noir de carbone
EP1640661A2 (fr) Système aérodynamique à effervescence d'injection air/carburant dans une chambre de combustion de turbomachine
FR2728655A1 (fr) Bruleur du type a melange externe
US20020006591A1 (en) Method and apparatus for mixing combustion gases
DE10045322C2 (de) Zerstäubungsbrenner für die thermische Spaltung von schwefelhaltigem Reststoff
CA2424310C (fr) Bruleur et procede d'oxydation partielle d'un flux de gaz comprenant du sulfure d'hydrogene et de l'ammoniac
EP2407716B1 (fr) Brûleur pour le traitement d'un gaz acide combustible, four à réaction adapté et procédé
EP2044367A2 (fr) Bruleur et procede pour la mise en oeuvre alternee d'une oxycombustion et d'une aerocombustion
CN1133845C (zh) 改进可燃气体燃烧的装置
WO2011148068A2 (fr) Réacteur pour le reformage autotherme de gasoil
FR2602761A1 (fr) Procede et reacteur de combustion perfectionnes pour la transformation d'hexafluorure d'uranium gazeux en oxyde d'uranium
JPH0860024A (ja) オーブンカーボンブラックの製造のための反応器および製造法
EP0232658B1 (fr) Procédé et dispositif de réaction exothermique entre des gaz
EP1581331B1 (fr) Dispositif de synthese de melanges de gaz et utilisation de ce dispositif pour tester des compositions catalytiques
EP2784387A2 (fr) Chambre de combustion pour le traitement thermique d'au moins un effluent comportant des polluants combustibles
EP2456549B1 (fr) Reacteur catalytique de vaporeformage d'une coupe d'hydrocarbures avec dispositif de melange et de distribution de gaz en amount de la zone catalytique
DE19535370A1 (de) Verfahren zur schadstoffarmen Vormischverbrennung in Gasturbinenbrennkammern
WO2003006879A1 (fr) Dispositif de pulverisation et procede de mise en oeuvre
CA2721602A1 (fr) Nouveau dispositif de controle du profil radial de la temperature d'une veine gazeuse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

17Q First examination report despatched

Effective date: 20080314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090916