EP1640662B1 - Injecteur à effervescence pour système aéromécanique d'injection air/carburant dans une chambre de combustion de turbomachine - Google Patents

Injecteur à effervescence pour système aéromécanique d'injection air/carburant dans une chambre de combustion de turbomachine Download PDF

Info

Publication number
EP1640662B1
EP1640662B1 EP05291870A EP05291870A EP1640662B1 EP 1640662 B1 EP1640662 B1 EP 1640662B1 EP 05291870 A EP05291870 A EP 05291870A EP 05291870 A EP05291870 A EP 05291870A EP 1640662 B1 EP1640662 B1 EP 1640662B1
Authority
EP
European Patent Office
Prior art keywords
fuel
air
injector
duct
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05291870A
Other languages
German (de)
English (en)
Other versions
EP1640662A1 (fr
Inventor
Victor Ivanovich Furletov
Thomas Noel
Gilles Rollin
Alexander Jur'evich Vasilev
Victor Ivanovich Yagogkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1640662A1 publication Critical patent/EP1640662A1/fr
Application granted granted Critical
Publication of EP1640662B1 publication Critical patent/EP1640662B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices

Definitions

  • the present invention relates to the general field of injection systems of an air / fuel mixture in a turbomachine combustion chamber. It relates more particularly to a fuel injector for an aeromechanical type injection system provided with means for atomizing the fuel before it is mixed with the air.
  • the classic process for developing and optimizing a combustion chamber of a turbomachine has the main objective of reconciling the implementation of the operational performances of the chamber (combustion efficiency, stability range, ignition range and relight, life of the combustion chamber, etc.) depending on the mission envisaged for the aircraft on which the turbomachine is mounted while minimizing pollutant emissions (nitrogen oxides, carbon monoxide, unburned hydrocarbons, etc. .). To do this, it is particularly possible to play on the nature and performance of the fuel / air mixture injection system in the combustion chamber, the distribution of the dilution air in the chamber and the dynamics of the air / fuel mixture. fuel in the room.
  • the combustion chamber of a turbomachine typically consists of a system for injecting an air / fuel mixture into a flame tube, a cooling system and a dilution system.
  • the combustion is organized mainly within a first part of the flame tube (called the primary zone) in which it is stabilized by means of zones of recirculation of the air / fuel mixture induced by the flow of air coming from the injection system.
  • the primary zone a first part of the flame tube
  • the dilution zone the chemical activity used is lower and the flow is diluted by means of dilution holes.
  • the atomization time thus represents the time required for the disintegration of the fuel layer by air and the formation of an air / fuel spray. It mainly depends on the performance and technology of the injection system used and aerodynamics in the vicinity of the fuel table.
  • the evaporation time also depends on the injection system used. It is directly a function of the size of the droplets resulting from the disintegration of the fuel layer; the smaller the droplets, the lower the evaporation time.
  • the mixing time corresponds to the time required for the fuel vapors from the evaporation of the droplets to mix with the air. It mainly depends on the level of turbulence inside the combustion chamber and therefore the dynamics of the flow in the primary zone.
  • chemical time it represents the time required for chemical reactions to develop. It depends on the pressures and temperatures at the entry of the hearth and the nature of the fuel used.
  • the injection system used therefore plays a key role in the process of developing a combustion chamber, in particular in the optimization of the characteristic times of atomization and evaporation of the fuel.
  • the aeromechanical injection systems known from the prior art have many disadvantages.
  • the pressure limitation does not reduce the size of the fuel droplets sufficiently.
  • the air / fuel spray created by these injection systems is also not always stable at all operating speeds of the turbomachine.
  • US 6128894 discloses a method of operating a burner of injecting into the fuel injection nozzle a gas having a pressure slightly higher than that of the fuel.
  • the main purpose of the present invention is therefore to overcome such drawbacks by proposing an injector for an aeromechanical injection system that makes it possible to reduce the characteristic times of atomization and evaporation of the fuel at all operating speeds of the turbomachine.
  • a fuel injector for an aeromechanical injection system of an air / fuel mixture in a turbomachine combustion chamber according to claim 1.
  • the injector comprises a tubular pipe of gas which is disposed inside the fuel pipe and which has a plurality of orifices opening into the fuel pipe.
  • the orifices of the gas pipe open substantially perpendicularly into the fuel pipe and they are arranged in at least one transverse plane.
  • the fuel atomizer cap may comprise a cylindrical portion centered on the axis XX ', having an outside diameter smaller than the internal diameter of the fuel line and provided with a plurality of profiled fins extending radially outwards, fins having an outer surface in contact with an inner surface of the fuel line.
  • the wings of the atomizer fuel cap are evenly distributed over the entire circumference of the cylindrical portion. They may have an angular torsion, preferably of the order of 45 °, in the same direction.
  • the openings in the gas line open into the fuel line at the atomizer fuel cap.
  • the ports of the gas line open between two adjacent wings of the fuel atomizer cap and open tangentially in the gas line.
  • a device for controlling the flow of gas injected into the fuel line is provided.
  • the present invention also relates to an aeromechanical injection system provided with a fuel injector as defined above.
  • the fuel injector 2 is in the general form of a main tubular structure 4 of axis XX 'which opens at a downstream end 4a for the air / fuel mixture.
  • the downstream end 4a of the tubular structure 4 may have a substantially conical shape.
  • a tubular fuel pipe 6 is disposed inside the main structure 4 so as to provide an annular passage 8 therewith.
  • the tubular pipe 6, which is centered on the axis XX ', opens at a downstream end in the main structure 4 via a fuel atomizer plug 10. Its downstream end may also have a substantially conical shape.
  • the atomizer fuel cap 10 allows to introduce into the main structure 4, at its downstream end 4a, the fuel at a pressure P C , for example of the order of 4 to 80 bar. Its main function is to create a dispersion of the fuel in the form of a plurality of bundles (or tubes) of fuel.
  • the fuel injector 2 further comprises at least one air supply channel 12 which is connected to a compressor stage (Not shown) of the turbomachine and which opens into the annular passage 8 so as to introduce air at a pressure P A , for example of the order of 0.5 to 50 bar.
  • the fuel injector 2 thus comprises a plurality of air supply ducts 12 which are regularly distributed around the axis XX 'and which open into the annular passage 8 at the upstream end 4b of the main structure 4 .
  • An air swirler 14 may be arranged in the annular passage 8, between the downstream ends 4a and upstream 4b of the main structure 4. Such an air swirler 14 makes it possible to create a rotating effect (or "swirl") of the flow of air in the annular passage 8.
  • the fuel injector 2 further comprises means for injecting into the fuel line 6 a gas at a pressure P G which is greater than P A and greater than or equal to P C in order to create an effervescence of the fuel. fuel when introduced into the main structure 4.
  • a tubular gas pipe 16 is disposed inside the fuel line 6 and has a plurality of orifices 18 opening into the fuel line 6.
  • This gas pipe 16 is also centered on the XX 'axis and household with the fuel line 6 an annular passage 20 for the flow of fuel.
  • the introduction of a gas into the fuel line 6 at a pressure P G greater than the pressure P A and greater than or equal to the pressure P C makes it possible to create a liquid / gas mixture at the pressure P C before its introduction into the the main structure 4.
  • the effervescence of the fuel is characterized by the atomization of the fuel produced by the sudden expansion of the gas when introduced into the main structure 4. The characteristic times of atomization and evaporation of the fuel are therefore reduced.
  • the effervescence of the fuel occurs when the following conditions are met: the gas must be at least at a pressure P G substantially equal to that (P C ) of the fuel (or slightly overpressure relative thereto) , and the liquid / gas mixture must occur in a substantially confined space so that the mixture is at the pressure P C (in this case, mixing takes place in the confluence zone of the orifices 18 and the fuel line 6 in which they open).
  • the gas is an inert gas which has no direct influence on the subsequent combustion of the air / fuel mixture.
  • the gas may be air that is taken from a compressor stage of the turbomachine and is compressed again to reach a pressure P G greater than the pressure P A of the air supplying the duct or channels. air supply 12.
  • the orifices 18 of the gas duct 16 open substantially perpendicularly into the fuel line 6. This particular arrangement makes it possible to promote the appearance of the effervescence of the fuel.
  • the axis of the orifices 18 may form an inclination downstream with the axis XX ', for example of the order of 60 °.
  • the orifices 18 of the gas pipe 16 are arranged in at least one transverse plane (on two transverse planes on the figure 4 ).
  • the atomizer fuel cap 10 may comprise a substantially cylindrical portion 22 which is centered on the axis XX ', has an outside diameter less than the internal diameter of the fuel pipe and is provided with a plurality of profiled fins 24 s extending radially outward.
  • the profiled fins 24 have an outer surface that contacts an inner surface of the fuel line 6 ( figures 1 and 3 ). Thus, grooves 26 are formed between two fins 24 adjacent to allow the fuel line 6 to flow to the main structure 4 in the form of a plurality of bundles (or tubes) of fuel.
  • the fins 24 of the atomizer fuel cap 10 may be evenly distributed over the entire circumference of the cylindrical portion 22. They may also be twisted in the same direction, that is to say that they may present an angular torsion in the same direction . The assembly thus forms a thread.
  • the angular torsion of the fins 24 is approximately 45 ° with respect to the axis XX '.
  • the angular torsion makes it possible to create a rotation effect (or "swirl") of the flow of fuel, and more particularly of the fuel bundles, at the exit of the fuel atomizer 10.
  • the fuel injector 2 comprises an air swirler 14 disposed in the annular passage 8
  • the angular torsion of the fins 24 is advantageously made in the same direction as that of the air swirler 14.
  • the injection system 2 further comprises a device 28 for controlling the flow of gas injected into the fuel line 6.
  • a device 28 thus makes it possible to control the flow of gas which it is necessary to inject to achieve the effervescence of the fuel.
  • the control of the gas flow can be a function of the flow rate and the pressure P C of the fuel.
  • the orifices 18 of the gas duct 16 open into the fuel line 6 at the level of the fuel atomizer cap 10.
  • the gas duct 16 extends axially to the atomizer cap 10 on which it is fixed.
  • the atomizer plug 10 may have a hollow cavity into which the gas pipe 16 opens and opens into the orifices 18.
  • the gas pipe 16 and the atomizer plug could be made in one and the same piece.
  • the orifices 18 of the gas pipe 16 open between two adjacent fins 24 of the fuel atomizer plug 10, that is to say that they open at the grooves 26 in which the fuel bundles are formed.
  • the mixture between the fuel and the gas is effected in the confluence zone of the orifices 18 and grooves 26 and the effervescence of the resulting fuel disintegrates the fuel bundles into fine drops.
  • the orifices 18 advantageously open tangentially in the gas pipe 16, which makes it possible to amplify the phenomenon of rotation of the fuel created by the angular torsion of the fins 24 of the atomizer plug 10.
  • the orifices 18 of the gas pipe 16 open into the fuel line 6 upstream of the fuel atomizer cap 10 '.
  • the gas pipe 16 extends axially to the atomizer cap 10 'on which it is fixed (or with which it can form a single piece).
  • the orifices 18 may be arranged in two transverse planes. Thus, the mixture between the fuel and the gas is effected in the confluence zone between the orifices 18 and the zone of the gas pipe 16 into which they open. The liquid / gas mixture is carried out before it is dispersed in bundles at the atomizer cap 10 '.
  • the fuel injector 2 as described above is suitable for the aeromechanical injection systems of an air / fuel mixture in a turbomachine combustion chamber.
  • the figures 5 and 6 thus illustrate two variants of such aeromechanical injection systems.
  • the injection system 100 illustrated by the figure 5 comprises a fuel injector 2 according to the invention centered on its axis YY '. It further comprises an internal air swirler 102 disposed downstream of the injector 2 and for injecting air in a radial direction and an external air swirler 104 disposed downstream of the internal air swirler. 102 and also for injecting air in a radial direction.
  • the air swirlers 102, 104 rotate the flow of the mixture air / fuel and thus increase turbulence to promote the atomization of fuel and its mixture with air.
  • a venturi 106 having an internal contour of divergent convergent shape is interposed between the internal air 102 and external 104 air jibs. It makes it possible to delimit the air flows coming from the air swirlers 102, 104.
  • a downstream flared bowl 108 is mounted downstream of the external air swirler 104. Through its opening angle, the bowl 108 distributes the air / fuel mixture in the primary zone of the combustion chamber. combustion.
  • the injection system 200 illustrated by the figure 6 also being of the aeromechanical type, only the differences existing with the injection system 100 of the figure 5 .
  • this injection system is of the LPP type (for "Lean Premixed Prevaporized").
  • the injection system 200 comprises a fuel injector 2 according to the invention centered on its axis ZZ '. It comprises an internal air swirler 202 disposed downstream of the injector 2 and for injecting air in a radial direction and an external air swirler 204 disposed downstream of the internal air swirler 202 and for injecting air in a radial direction.
  • a first venturi 206 is interposed between the air swirlers 202, 204, and a second venturi 208 is disposed downstream of the external air swirler 204.
  • a premix and / or pre-vaporization tube 210 is elsewhere disposed downstream of the second venturi 208.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Nozzles (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description

    Arrière-plan de l'invention
  • La présente invention se rapporte au domaine général des systèmes d'injection d'un mélange air/carburant dans une chambre de combustion de turbomachine. Elle vise plus particulièrement un injecteur de carburant pour un système d'injection de type aéromécanique muni de moyens pour atomiser le carburant avant son mélange avec l'air.
  • Le processus classique d'élaboration et d'optimisation d'une chambre de combustion d'une turbomachine a pour objectif principal de concilier la mise en oeuvre des performances opérationnelles de la chambre (rendement de combustion, domaine de stabilité, domaine d'allumage et de rallumage, durée de vie du foyer de combustion, etc.) en fonction de la mission envisagée pour l'avion sur lequel est montée la turbomachine tout en minimisant les émissions polluantes (oxydes d'azote, monoxyde de carbone, hydrocarbures imbrûlés, etc.). Pour ce faire, il est notamment possible de jouer sur la nature et les performances du système d'injection du mélange air/carburant dans la chambre de combustion, la répartition de l'air de dilution dans la chambre et la dynamique du mélange air/carburant dans la chambre.
  • La chambre de combustion d'une turbomachine se compose typiquement d'un système d'injection d'un mélange air/carburant dans un tube à flamme, d'un système de refroidissement et d'un système de dilution. La combustion s'organise principalement au sein d'une première partie du tube à flamme (appelée zone primaire) dans laquelle elle est stabilisée au moyen de zones de re-circulation du mélange air/carburant induites par l'écoulement d'air issu du système d'injection. Dans la seconde partie du tube de mélange (appelée zone de dilution), l'activité chimique mise en oeuvre est plus faible et l'écoulement est dilué au moyen de trous de dilution.
  • Dans la zone primaire du tube à flamme, différents phénomènes physiques interviennent : injection et atomisation en fines gouttelettes du carburant, évaporation des gouttelettes, mélange des vapeurs de carburant avec l'air et réactions chimiques d'oxydation du carburant par l'oxygène de l'air.
  • Ces phénomènes physiques sont régis par des temps caractéristiques. Le temps d'atomisation représente ainsi le temps nécessaire à la désintégration de la nappe de carburant par l'air et à la formation d'un spray d'air/carburant. Il dépend principalement des performances et de la technologie du système d'injection utilisé et de l'aérodynamique au voisinage de la nappe de carburant. Le temps d'évaporation dépend également du système d'injection utilisé. Il est directement fonction de la taille des gouttelettes issues de la désintégration de la nappe de carburant ; plus les gouttelettes sont petites, plus le temps d'évaporation est faible. Le temps de mélange correspond au temps nécessaire aux vapeurs de carburant provenant de l'évaporation des gouttelettes pour se mélanger à l'air. Il dépend principalement du niveau de turbulence à l'intérieur du foyer de combustion et donc de la dynamique de l'écoulement dans la zone primaire. Quant au temps chimique, il représente le temps nécessaire aux réactions chimiques pour se développer. Il dépend des pressions et températures en entrée de foyer et de la nature du carburant utilisé.
  • Le système d'injection utilisé joue donc un rôle primordial dans le processus d'élaboration d'une chambre de combustion, notamment dans l'optimisation des temps caractéristiques d'atomisation et d'évaporation du carburant.
  • Il existe deux familles principales de systèmes d'injection : les systèmes « aéromécaniques » pour lesquels l'atomisation du carburant provient d'une différence importante de pression entre le carburant et l'air et les systèmes « aérodynamiques » pour lesquels l'atomisation du carburant est due au cisaillement du carburant entre deux nappes d'air. La présente invention vise plus particulièrement des systèmes de type aéromécanique.
  • Les systèmes d'injection aéromécaniques connus de l'art antérieur présentent de nombreux inconvénients. Notamment, la limitation en pression ne permet pas de réduire suffisamment la taille des gouttelettes de carburant. Le spray d'air/carburant créé par ces systèmes d'injection n'est par ailleurs pas toujours stable à tous les régimes de fonctionnement de la turbomachine.
  • US-6,128,894 décrit un procédé de fonctionnement d'un brûleur consistant à injecter dans la buse d'injection de combustible un gaz ayant une pression légèrement supérieure à celle du combustible.
  • Objet et résumé de l'invention
  • La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un injecteur pour système d'injection aéromécanique qui permet de réduire les temps caractéristiques d'atomisation et d'évaporation du carburant à tous les régimes de fonctionnement de la turbomachine.
  • A cet effet, il est prévu un injecteur de carburant pour système d'injection aéromécanique d'un mélange air/carburant dans une chambre de combustion de turbomachine selon la revendication 1. c
  • Le fait d'injecter dans la conduite de carburant un gaz à une pression supérieure ou égale à la pression du carburant créé un mélange liquide/gaz à la pression PC préalablement à son introduction dans la structure principale dans laquelle il sera dispersé. Lors de la détente de ce mélange de pression PC à la pression interne dans la structure principale, l'expansion brutale de la phase gazeuse provoque la désintégration de la nappe de carburant : c'est l'effervescence. De la sorte, les temps caractéristiques d'atomisation et d'évaporation du carburant à la sortie du système d'injection peuvent être considérablement réduits.
  • Ces gains permettent ainsi, aux faibles régimes de fonctionnement de la turbomachine, d'améliorer le rendement de combustion et d'augmenter la résistance du foyer de combustion à l'extinction, et aux régimes plein gaz de fonctionnement de la turbomachine, de limiter la formation d'émissions polluantes de type oxydes d'azote et suies.
  • De façon plus particulière, l'injecteur comporte une conduite tubulaire de gaz qui est disposée à l'intérieur de la conduite de carburant et qui comporte une pluralité d'orifices débouchant dans la conduite de carburant.
  • Avantageusement, les orifices de la conduite de gaz débouchent de façon sensiblement perpendiculaire dans la conduite de carburant et ils sont disposés selon au moins un même plan transversal.
  • Le bouchon atomiseur de carburant peut comporter une partie cylindrique centrée sur l'axe XX', ayant un diamètre externe inférieur au diamètre interne de la conduite de carburant et muni d'une pluralité d'ailettes profilées s'étendant radialement vers l'extérieur, les ailettes ayant une surface externe en contact avec une surface interne de la conduite de carburant.
  • De préférence, les ailettes du bouchon atomiseur de carburant sont régulièrement réparties sur toute la circonférence de la partie cylindrique. Elles peuvent présenter une torsion angulaire, de préférence de l'ordre de 45°, selon une même direction.
  • Les orifices de la conduite de gaz débouchent dans la conduite de carburant au niveau du bouchon atomiseur de carburant.
  • De façon plus particulière, les orifices de la conduite de gaz débouchent entre deux ailettes adjacentes du bouchon atomiseur de carburant et ils s'ouvrent de façon tangentielle dans la conduite de gaz.
  • Selon une caractéristique avantageuse de l'invention, il est prévu un dispositif de pilotage du débit de gaz injecté dans la conduite de carburant.
  • La présente invention a également pour objet un système d'injection aéromécanique muni d'un injecteur de carburant tel que défini précédemment.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
    • la figure 1 est une vue en coupe longitudinale d'un injecteur selon un mode de réalisation de l'invention ;
    • la figure 2 est une vue en perspective du bouchon atomiseur de carburant de l'injecteur de la figure 1 ;
    • la figure 3 est une vue en coupe selon III-III de la figure 1 ;
    • la figure 4 est une vue en coupe axiale d'un injecteur selon un mode de réalisation non conforme à l'invention;
    • la figure 5 est une vue en coupe axiale d'un système d'injection air/carburant muni d'un injecteur selon l'invention ; et
    • la figure 6 est une vue en coupe axiale d'un autre système d'injection air/carburant muni d'un injecteur selon l'invention.
    Description détaillée d'un mode de réalisation
  • En liaison avec la figure 1 l'injecteur de carburant 2, selon l'invention se présente sous la forme générale d'une structure tubulaire principale 4 d'axe XX' qui s'ouvre à une extrémité aval 4a pour le mélange air/carburant. L'extrémité aval 4a de la structure tubulaire 4 peut présenter une forme sensiblement conique.
  • Une conduite tubulaire de carburant 6 est disposée à l'intérieur de la structure principale 4 de façon à ménager un passage annulaire 8 avec celle-ci. La conduite tubulaire 6, qui est centrée sur l'axe XX', débouche à une extrémité aval dans la structure principale 4 par l'intermédiaire d'un bouchon atomiseur de carburant 10. Son extrémité aval peut également présenter une forme sensiblement conique.
  • Le bouchon atomiseur de carburant 10 permet d'introduire dans la structure principale 4, au niveau de son extrémité aval 4a, du carburant à une pression PC, par exemple de l'ordre de 4 à 80 bar. Il a pour fonction principale de créer une dispersion du carburant sous la forme d'une pluralité de faisceaux (ou tubes) de carburant.
  • L'injecteur de carburant 2 comporte en outre au moins un canal d'alimentation en air 12 qui est relié à un étage de compresseur (non représenté) de la turbomachine et qui débouche dans le passage annulaire 8 de façon à y introduire de l'air à une pression PA, par exemple de l'ordre de 0,5 à 50 bar.
  • Dans le mode de réalisation représenté par la figure 1 l'injecteur de carburant 2 comporte ainsi une pluralité de canaux d'alimentation en air 12 qui sont régulièrement répartis autour de l'axe XX' et qui débouchent dans le passage annulaire 8 au niveau de l'extrémité amont 4b de la structure principale 4.
  • Une vrille d'air 14 peut être disposée dans le passage annulaire 8, entre les extrémités aval 4a et amont 4b de la structure principale 4. Une telle vrille d'air 14 permet de créer un effet de rotation (ou « swirl ») de l'écoulement de l'air dans le passage annulaire 8.
  • L'air s'écoulant dans le passage annulaire 8, qui est éventuellement mis en rotation par la vrille d'air 14, vient alors « briser » les faisceaux de carburant créés par l'atomiseur de carburant 10 au niveau de l'extrémité aval 4a de la structure principale 4. Sous l'effet combiné de l'atomiseur de carburant 10 et de l'air circulant dans le passage annulaire 8, un spray d'air/carburant se créé en sortie de l'injecteur.
  • Selon l'invention, l'injecteur de carburant 2 comporte en outre des moyens pour injecter dans la conduite de carburant 6 un gaz à une pression PG qui est supérieure à PA et supérieure ou égale à PC afin de créer une effervescence du carburant lors de son introduction dans la structure principale 4.
  • De façon plus particulière, une conduite tubulaire de gaz 16 est disposée à l'intérieur de la conduite de carburant 6 et comporte une pluralité d'orifices 18 débouchant dans la conduite de carburant 6. Cette conduite de gaz 16 est également centrée sur l'axe XX' et ménage avec la conduite de carburant 6 un passage annulaire 20 pour l'écoulement du carburant.
  • L'introduction d'un gaz dans la conduite de carburant 6 à une pression PG supérieure à la pression PA et supérieure ou égale à la pression PC permet de créer un mélange liquide/gaz à la pression PC avant son introduction dans la structure principale 4. L'effervescence du carburant se caractérise par l'atomisation du carburant produit par l'expansion brutale du gaz lors de l'introduction dans la structure principale 4. Les temps caractéristiques d'atomisation et d'évaporation du carburant se trouvent donc diminués.
  • Plus particulièrement, l'effervescence du carburant se produit lorsque les conditions suivantes sont réunies : le gaz doit être au moins à une pression PG sensiblement égale à celle (PC) du carburant (voire en légère surpression par rapport à celle-ci), et le mélange liquide/gaz doit se produire dans un espace sensiblement confiné pour que le mélange soit à la pression PC (en l'espèce, le mélange s'effectue dans la zone de confluence des orifices 18 et de la conduite de carburant 6 dans laquelle ils débouchent).
  • De préférence, le gaz est un gaz inerte qui n'a pas d'influence directe sur la combustion ultérieure du mélange air/carburant. Par exemple, le gaz peut être de l'air qui est prélevé sur un étage de compresseur de la turbomachine et qui est à nouveau comprimé pour atteindre une pression PG supérieure à la pression PA de l'air alimentant le ou les canaux d'alimentation en air 12.
  • Selon une caractéristique avantageuse de l'invention, les orifices 18 de la conduite de gaz 16 débouchent de façon sensiblement perpendiculaire dans la conduite de carburant 6. Cet arrangement particulier permet de favoriser l'apparition de l'effervescence du carburant.
  • Alternativement, l'axe des orifices 18 peut former une inclinaison vers l'aval avec l'axe XX', par exemple de l'ordre de 60° environ.
  • Selon une autre caractéristique avantageuse de l'invention, les orifices 18 de la conduite de gaz 16 sont disposés selon au moins un même plan transversal (sur deux plans transversaux sur la figure 4).
  • Comme illustré sur la figure 2, le bouchon atomiseur de carburant 10 peut comporter une partie sensiblement cylindrique 22 qui est centrée sur l'axe XX', possède un diamètre externe inférieur au diamètre interne de la conduite de carburant et est muni d'une pluralité d'ailettes profilées 24 s'étendant radialement vers l'extérieur.
  • Les ailettes profilées 24 ont une surface externe qui est en contact avec une surface interne de la conduite de carburant 6 (figures 1 et 3). Ainsi, des rainures 26 sont formées entre deux ailettes 24 adjacentes afin de permettre au carburant de la conduite 6 de s'écouler vers la structure principale 4 sous la forme d'une pluralité de faisceaux (ou tubes) de carburant.
  • Les ailettes 24 du bouchon atomiseur de carburant 10 peuvent être régulièrement réparties sur toute la circonférence de la partie cylindrique 22. Elles peuvent également être vrillées selon une même direction, c'est à dire qu'elles peuvent présenter une torsion angulaire selon une même direction. L'ensemble forme ainsi un filetage.
  • De préférence, la torsion angulaire des ailettes 24 est de 45° environ par rapport à l'axe XX'. La torsion angulaire permet de créer un effet de rotation (ou « swirl ») de l'écoulement de carburant, et plus particulièrement des faisceaux de carburant, à la sortie de l'atomiseur de carburant 10.
  • Par ailleurs, lorsque l'injecteur de carburant 2 comporte une vrille d'air 14 disposée dans le passage annulaire 8, la torsion angulaire des ailettes 24 est avantageusement réalisée dans le même sens que celle de la vrille d'air 14.
  • Selon encore une autre caractéristique avantageuse de l'invention, le système d'injection 2 comporte en outre un dispositif de pilotage 28 du débit de gaz injecté dans la conduite de carburant 6. Un tel dispositif 28 permet ainsi de contrôler le débit de gaz qu'il est nécessaire d'injecter pour réaliser l'effervescence du carburant. Par exemple, le pilotage du débit de gaz peut être fonction du débit et de la pression PC du carburant.
  • On décrira maintenant les particularités de l'injecteur de carburant 2 illustré sur les figures 1 à 3.
  • Dans ce mode de réalisation, les orifices 18 de la conduite de gaz 16 débouchent dans la conduite de carburant 6 au niveau du bouchon atomiseur de carburant 10. A cet effet, la conduite de gaz 16 s'étend axialement jusqu'au bouchon atomiseur 10 sur lequel elle est fixée. Le bouchon atomiseur 10 peut présenter une cavité creuse dans laquelle débouche la conduite de gaz 16 et s'ouvrant dans les orifices 18. Alternativement, la conduite de gaz 16 et le bouchon atomiseur pourraient être réalisés en une seule et même pièce.
  • Plus particulièrement, les orifices 18 de la conduite de gaz 16 débouchent entre deux ailettes 24 adjacentes du bouchon atomiseur de carburant 10, c'est à dire qu'ils débouchent au niveau des rainures 26 dans lesquelles se forment les faisceaux de carburant. De la sorte, le mélange entre le carburant et le gaz s'effectue dans la zone de confluence des orifices 18 et des rainures 26 et l'effervescence du carburant qui en résulte désintègre les faisceaux de carburant en fines gouttes.
  • Comme illustré sur la figure 3, les orifices 18 s'ouvrent avantageusement de façon tangentielle dans la conduite de gaz 16, ce qui permet d'amplifier le phénomène de rotation du carburant créée par la torsion angulaire des ailettes 24 du bouchon atomiseur 10.
  • On décrira maintenant les particularités de l'injecteur de carburant 2' illustré sur la figure 4.
  • Dans ce mode de réalisation non conforme à l'invention, les orifices 18 de la conduite de gaz 16 débouchent dans la conduite de carburant 6 en amont du bouchon atomiseur de carburant 10'. La conduite de gaz 16 s'étend axialement jusqu'au bouchon atomiseur 10' sur lequel elle est fixée (ou avec lequel elle peut former une seule et même pièce).
  • Les orifices 18 peuvent être arrangés selon deux plans transversaux. Ainsi, le mélange entre le carburant et le gaz s'effectue dans la zone de confluence entre les orifices 18 et la zone de la conduite de gaz 16 dans laquelle ils débouchent. Le mélange liquide/gaz se réalise avant sa dispersion en faisceaux au niveau du bouchon atomiseur 10'.
  • Toujours dans ce mode de réalisation, on remarque également sur la figure 4 que le bouchon atomiseur de carburant 10' présente une section droite sensiblement conique.
  • L'injecteur de carburant 2tel que décrit précédemment convient pour les systèmes d'injection aéromécaniques d'un mélange air/carburant dans une chambre de combustion de turbomachine. Les figures 5 et 6 illustrent ainsi deux variantes de tels systèmes d'injection aéromécaniques.
  • Le système d'injection 100 illustré par la figure 5 comporte un injecteur de carburant 2 selon l'invention centré sur son axe YY'. Il comporte en outre une vrille d'air interne 102 disposée en aval de l'injecteur 2 et permettant d'injecter de l'air selon une direction radiale et une vrille d'air externe 104 disposée en aval de la vrille d'air interne 102 et permettant également d'injecter de l'air selon une direction radiale. Les vrilles d'air 102, 104 mettent en rotation l'écoulement du mélange air/carburant et augmentent ainsi la turbulence afin de favoriser l'atomisation du carburant et son mélange avec l'air.
  • Un venturi 106 ayant un contour interne de forme convergente divergente est interposé entre les vrilles d'air interne 102 et externe 104. Il permet de délimiter les écoulements d'air issus des vrilles d'air 102, 104.
  • Un bol 108 évasé vers l'aval est monté en aval de la vrille d'air externe 104. Par l'intermédiaire de son angle d'ouverture, le bol 108 permet de répartir le mélange air/carburant dans la zone primaire du foyer de combustion.
  • Le système d'injection 200 illustré par la figure 6 étant également de type aéromécanique, on ne détaillera que les différences existant avec le système d'injection 100 de la figure 5. Notamment, ce système d'injection est du type LPP (pour « Lean Premixed Prevaporized »).
  • Le système d'injection 200 comporte un injecteur de carburant 2 selon l'invention centré sur son axe ZZ'. Il comporte une vrille d'air interne 202 disposée en aval de l'injecteur 2 et permettant d'injecter de l'air selon une direction radiale et une vrille d'air externe 204 disposée en aval de la vrille d'air interne 202 et permettant d'injecter de l'air selon une direction radiale.
  • Un premier venturi 206 est interposé entre les vrilles d'air 202, 204, et un second venturi 208 est disposé en aval de la vrille d'air externe 204. Un tube de pré-mélange et/ou de pré-vaporisation 210 est par ailleurs disposé en aval du second venturi 208.

Claims (14)

  1. Injecteur de carburant (2, 2') pour système d'injection aéromécanique d'un mélange air/carburant dans une chambre de combustion de turbomachine, comportant :
    une structure tubulaire principale (4) d'axe XX' qui s'ouvre à une extrémité aval (4a) pour le mélange air/carburant ;
    une conduite tubulaire de carburant (6) qui est disposée à l'intérieur de la structure principale (4) de façon à ménager un passage annulaire (8) avec celle-ci, et qui débouche à une extrémité aval dans la structure principale (4) par l'intermédiaire d'un bouchon atomiseur de carburant (10) de façon à y introduire du carburant à une pression PC;
    au moins un canal d'alimentation en air (12) qui est reliable à un étage de compresseur de la turbomachine et qui débouche dans le passage annulaire (8) de façon à y introduire de l'air à une pression PA ; et
    une conduite tubulaire de gaz (16) disposée à l'intérieur de la conduite de carburant (6) et comportant une pluralité d'orifices (18) débouchant dans ladite conduite de carburant (6) pour injecter dans celle-ci un gaz à une pression PG qui est supérieure à PA et supérieure ou égale à PC afin de créer une effervescence du carburant lors de son introduction dans la structure principale (4), les orifices (18) de la conduite de gaz (16) étant disposés selon au moins un même plan transversal, caractérisé en ce que les orifices (18) de la conduite de gaz (16) débouchent dans la conduite de carburant (6) au niveau du bouchon atomiseur de carburant (10).
  2. Injecteur selon la revendication 1, caractérisé en ce que les orifices (18) de la conduite de gaz (16) débouchent de façon sensiblement perpendiculaire dans la conduite de carburant (6).
  3. Injecteur selon l'une des revendications 1 et 2, caractérisé en ce que le bouchon atomiseur de carburant (10) comporte une partie cylindrique (22) centrée sur l'axe XX', ayant un diamètre externe inférieur au diamètre interne de la conduite de carburant (6) et muni d'une pluralité d'ailettes profilées (24) s'étendant radialement vers l'extérieur, lesdites ailettes (24) ayant une surface externe en contact avec une surface interne de la conduite de carburant (6).
  4. Injecteur selon la revendication 3, caractérisé en ce que les ailettes profilées (24) du bouchon atomiseur de carburant (10) sont régulièrement réparties sur toute la circonférence de la partie cylindrique (22).
  5. Injecteur selon l'une des revendications 3 et 4, caractérisé en ce que les ailettes profilées (24) du bouchon atomiseur de carburant (10) présentent une torsion angulaire selon une même direction.
  6. Injecteur selon la revendication 5, caractérisé en ce que la torsion angulaire des ailettes profilées (24) est de l'ordre de 45° par rapport à l'axe XX'.
  7. Injecteur selon l'une quelconque des revendications 3 à 6, caractérisé en ce que les orifices (18) de la conduite de gaz (16) débouchent entre deux ailettes (24) adjacentes du bouchon atomiseur de carburant (10).
  8. Injecteur selon la revendication 7, caractérisé en ce que les orifices (18) de la conduite de gaz (16) s'ouvrent de façon tangentielle dans la conduite de gaz (16).
  9. Injecteur selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comporte en outre un dispositif de pilotage (28) du débit de gaz injecté dans la conduite de carburant (6).
  10. Système d'injection aéromécanique (100, 200) d'un mélange air/carburant dans une chambre de combustion de turbomachine, caractérisé en ce qu'il comporte un injecteur de carburant (2, 2') selon l'une quelconque des revendications 1 à 9 centré sur l'axe YY' du système d'injection et des moyens pour injecter de l'air en aval de l'injecteur de carburant.
  11. Système (100) selon la revendication 10, caractérisé en ce qu'il comporte une vrille d'air interne (102) disposée en aval de l'injecteur (2, 2') et permettant d'injecter de l'air selon une direction radiale, une vrille d'air externe (104) disposée en aval de la vrille d'air interne (102) et permettant d'injecter de l'air selon une direction radiale, un venturi (106) interposé entre les vrilles d'air interne (102) et externe (104) et un bol (108) monté en aval de la vrille d'air externe (104).
  12. Système (200) selon la revendication 10, caractérisé en ce qu'il comporte une vrille d'air interne (202) disposée en aval de l'injecteur (2, 2') et permettant d'injecter de l'air selon une direction radiale, une vrille d'air externe (204) disposée en aval de la vrille d'air interne (202) et permettant d'injecter de l'air selon une direction radiale, un premier venturi (206) interposé entre les vrilles d'air interne (202) et externe (204), un second venturi (208) disposé en aval de la vrille d'air externe (204) et un tube (210) de pré-mélange et/ou de pré-vaporisation disposé en aval du second venturi (208).
  13. Chambre de combustion de turbomachine comprenant un injecteur de carburant (2, 2') selon l'une quelconque des revendications 1 à 9.
  14. Turbomachine comprenant une chambre de combustion munie d'un injecteur de carburant (2, 2') selon l'une quelconque des revendications 1 à 9.
EP05291870A 2004-09-23 2005-09-09 Injecteur à effervescence pour système aéromécanique d'injection air/carburant dans une chambre de combustion de turbomachine Active EP1640662B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0410051A FR2875584B1 (fr) 2004-09-23 2004-09-23 Injecteur a effervescence pour systeme aeromecanique d'injection air/carburant dans une chambre de combustion de turbomachine

Publications (2)

Publication Number Publication Date
EP1640662A1 EP1640662A1 (fr) 2006-03-29
EP1640662B1 true EP1640662B1 (fr) 2008-07-30

Family

ID=34949668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05291870A Active EP1640662B1 (fr) 2004-09-23 2005-09-09 Injecteur à effervescence pour système aéromécanique d'injection air/carburant dans une chambre de combustion de turbomachine

Country Status (7)

Country Link
US (1) US7568345B2 (fr)
EP (1) EP1640662B1 (fr)
JP (1) JP4632913B2 (fr)
CN (1) CN100545434C (fr)
DE (1) DE602005008530D1 (fr)
FR (1) FR2875584B1 (fr)
RU (1) RU2382942C2 (fr)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249460B2 (en) * 2002-01-29 2007-07-31 Nearhoof Jr Charles F Fuel injection system for a turbine engine
US7308793B2 (en) * 2005-01-07 2007-12-18 Power Systems Mfg., Llc Apparatus and method for reducing carbon monoxide emissions
US7624576B2 (en) * 2005-07-18 2009-12-01 Pratt & Whitney Canada Corporation Low smoke and emissions fuel nozzle
WO2008097320A2 (fr) * 2006-06-01 2008-08-14 Virginia Tech Intellectual Properties, Inc. Injecteur de prémélange pour moteurs de turbine à gaz
FR2908867B1 (fr) * 2006-11-16 2012-06-15 Snecma Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
US8286433B2 (en) * 2007-10-26 2012-10-16 Solar Turbines Inc. Gas turbine fuel injector with removable pilot liquid tube
JP5453322B2 (ja) * 2008-03-07 2014-03-26 アルストム テクノロジー リミテッド バーナ装置並びにバーナ装置の使用
EP2107301B1 (fr) * 2008-04-01 2016-01-06 Siemens Aktiengesellschaft Injection de gaz dans un brûleur
US8230687B2 (en) * 2008-09-02 2012-07-31 General Electric Company Multi-tube arrangement for combustor and method of making the multi-tube arrangement
US8220269B2 (en) * 2008-09-30 2012-07-17 Alstom Technology Ltd. Combustor for a gas turbine engine with effusion cooled baffle
US8220271B2 (en) * 2008-09-30 2012-07-17 Alstom Technology Ltd. Fuel lance for a gas turbine engine including outer helical grooves
US8567199B2 (en) * 2008-10-14 2013-10-29 General Electric Company Method and apparatus of introducing diluent flow into a combustor
US20100089020A1 (en) * 2008-10-14 2010-04-15 General Electric Company Metering of diluent flow in combustor
US20100089022A1 (en) * 2008-10-14 2010-04-15 General Electric Company Method and apparatus of fuel nozzle diluent introduction
US9121609B2 (en) 2008-10-14 2015-09-01 General Electric Company Method and apparatus for introducing diluent flow into a combustor
US8607570B2 (en) * 2009-05-06 2013-12-17 General Electric Company Airblown syngas fuel nozzle with diluent openings
US20100281872A1 (en) * 2009-05-06 2010-11-11 Mark Allan Hadley Airblown Syngas Fuel Nozzle With Diluent Openings
US8375548B2 (en) * 2009-10-07 2013-02-19 Pratt & Whitney Canada Corp. Fuel nozzle and method of repair
FR2955375B1 (fr) * 2010-01-18 2012-06-15 Turbomeca Dispositif d'injection et chambre de combustion de turbomachine equipee d'un tel dispositif d'injection
US8919673B2 (en) * 2010-04-14 2014-12-30 General Electric Company Apparatus and method for a fuel nozzle
EP2434221A1 (fr) 2010-09-22 2012-03-28 Siemens Aktiengesellschaft Procédé et agencement pour injecter une émulsion dans une flamme
US10317081B2 (en) * 2011-01-26 2019-06-11 United Technologies Corporation Fuel injector assembly
US9228741B2 (en) * 2012-02-08 2016-01-05 Rolls-Royce Plc Liquid fuel swirler
US9383097B2 (en) * 2011-03-10 2016-07-05 Rolls-Royce Plc Systems and method for cooling a staged airblast fuel injector
US9310073B2 (en) * 2011-03-10 2016-04-12 Rolls-Royce Plc Liquid swirler flow control
FR2987430B1 (fr) * 2012-02-24 2014-02-28 Snecma Injecteur de carburant pour une turbomachine
FR2987429B1 (fr) * 2012-02-24 2014-03-07 Snecma Injecteur de carburant pour une turbomachine
EP2667098B1 (fr) * 2012-05-25 2017-04-12 Rolls-Royce plc INJECTEUR DE CARBURANT Liquide
FR3003013B1 (fr) * 2013-03-05 2016-07-29 Snecma Dispositif de dosage compact pour injecteur a deux circuits de carburant, de preference pour turbomachine d'aeronef
US9593857B2 (en) * 2014-03-07 2017-03-14 ProGreen Labs, LLC. Heating system
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
US20160010556A1 (en) * 2014-07-10 2016-01-14 Delavan, Inc. Fluid nozzle and method of distributing fluid through a nozzle
US9765974B2 (en) * 2014-10-03 2017-09-19 Pratt & Whitney Canada Corp. Fuel nozzle
US20170328568A1 (en) * 2014-11-26 2017-11-16 Siemens Aktiengesellschaft Fuel lance with means for interacting with a flow of air and improve breakage of an ejected liquid jet of fuel
US10228140B2 (en) * 2016-02-18 2019-03-12 General Electric Company Gas-only cartridge for a premix fuel nozzle
US10502425B2 (en) * 2016-06-03 2019-12-10 General Electric Company Contoured shroud swirling pre-mix fuel injector assembly
US10443854B2 (en) * 2016-06-21 2019-10-15 General Electric Company Pilot premix nozzle and fuel nozzle assembly
US20170363294A1 (en) * 2016-06-21 2017-12-21 General Electric Company Pilot premix nozzle and fuel nozzle assembly
US11067277B2 (en) 2016-10-07 2021-07-20 General Electric Company Component assembly for a gas turbine engine
US10520195B2 (en) 2017-06-09 2019-12-31 General Electric Company Effervescent atomizing structure and method of operation for rotating detonation propulsion system
US20210140640A1 (en) * 2017-06-13 2021-05-13 Indian Institute Of Science Injector for Dispensing an Effervescent Fluid and a Fluid Injector System Thereof
CN108716694A (zh) * 2018-06-06 2018-10-30 西北工业大学 一种低污染燃烧室的贫预混旋流喷嘴及全环燃烧室
FR3099231B1 (fr) * 2019-07-24 2022-08-12 Safran Helicopter Engines Injecteur de carburant a circuit de purge pour une turbomachine d’aeronef
US11346557B2 (en) * 2019-08-12 2022-05-31 Raytheon Technologies Corporation Aerodynamic guide plate collar for swirler assembly
FR3103540B1 (fr) * 2019-11-26 2022-01-28 Safran Aircraft Engines Système d'injection de carburant d'une turbomachine, chambre de combustion comprenant un tel système et turbomachine associée
EP4165348B1 (fr) 2020-07-17 2024-04-17 Siemens Energy Global GmbH & Co. KG Ensemble injecteur de prémélange dans un moteur à turbine à gaz
CN113483362B (zh) * 2021-08-18 2023-06-16 中国联合重型燃气轮机技术有限公司 火焰筒及燃气轮机
CN116147016A (zh) * 2021-11-22 2023-05-23 通用电气公司 用于燃料-空气混合器组件的套圈

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1512132A (en) * 1923-04-13 1924-10-21 Severance Mfg Company S Gas and oil burner
GB1272757A (en) * 1968-07-18 1972-05-03 Lucas Industries Ltd Liquid atomising devices
GB1275255A (en) * 1968-07-18 1972-05-24 Lucas Industries Ltd Liquid atomising devices
US3703259A (en) * 1971-05-03 1972-11-21 Gen Electric Air blast fuel atomizer
DE2645754A1 (de) * 1976-10-09 1978-04-13 Campos Virgilio Zurrica Brennerduese fuer heizoel, dieseloel oder gas
FR2538880B3 (fr) * 1983-01-04 1985-11-29 Air Liquide Procede et dispositif de pulverisation d'un combustible liquide par un fluide gazeux auxiliaire
CH670296A5 (en) * 1986-02-24 1989-05-31 Bbc Brown Boveri & Cie Gas turbine fuel nozzle - has externally-supported premixing chamber for liq. fuel and air
FR2717250B1 (fr) * 1994-03-10 1996-04-12 Snecma Système d'injection à prémélange.
US5697553A (en) * 1995-03-03 1997-12-16 Parker-Hannifin Corporation Streaked spray nozzle for enhanced air/fuel mixing
GB2307980B (en) * 1995-12-06 2000-07-05 Europ Gas Turbines Ltd A fuel injector arrangement; a method of operating a fuel injector arrangement
DE19653059A1 (de) * 1996-12-19 1998-06-25 Asea Brown Boveri Verfahren zum Betrieb eines Brenners
DE19905996A1 (de) * 1999-02-15 2000-08-17 Abb Alstom Power Ch Ag Brennstofflanze zum Eindüsen von flüssigen und/oder gasförmigen Brennstoffen in eine Brennkammer
JP3069347B1 (ja) * 1999-06-11 2000-07-24 川崎重工業株式会社 ガスタ―ビンの燃焼器用バ―ナ装置
US6308831B1 (en) * 1999-07-12 2001-10-30 J. E. Saxe & Co. Container and kit for protection and display of collectible items
FR2832493B1 (fr) * 2001-11-21 2004-07-09 Snecma Moteurs Systeme d'injection multi-etages d'un melange air/carburant dans une chambre de combustion de turbomachine

Also Published As

Publication number Publication date
US20060059915A1 (en) 2006-03-23
DE602005008530D1 (de) 2008-09-11
EP1640662A1 (fr) 2006-03-29
RU2382942C2 (ru) 2010-02-27
FR2875584B1 (fr) 2009-10-30
FR2875584A1 (fr) 2006-03-24
CN1757893A (zh) 2006-04-12
US7568345B2 (en) 2009-08-04
JP4632913B2 (ja) 2011-02-16
CN100545434C (zh) 2009-09-30
JP2006090326A (ja) 2006-04-06
RU2005129654A (ru) 2007-03-27

Similar Documents

Publication Publication Date Title
EP1640662B1 (fr) Injecteur à effervescence pour système aéromécanique d'injection air/carburant dans une chambre de combustion de turbomachine
EP1640661B1 (fr) Système aérodynamique à effervescence d'injection air/carburant dans une chambre de combustion de turbomachine
EP1873455B1 (fr) Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP0828115B1 (fr) Système d'injection de carburant pour une chambre de combustion
CA2207834C (fr) Systeme d'injection aerodynamique d'un melange air carburant
CA2588952C (fr) Chambre de combustion d'une turbomachine
CA2478876C (fr) Systeme d'injection air/carburant ayant des moyens de generation de plasmas froids
EP0214003B1 (fr) Dispositif d'injection à bol elargi pour chambre de combustion de turbomachine
EP1909031B1 (fr) Injecteur de carburant pour chambre de combustion de moteur à turbine à gaz
FR2971040A1 (fr) Systeme de premelange d'air et de combustible dans une tuyere de combustible
EP1923636B1 (fr) Dispositif d'injection d'un mélange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
FR2724447A1 (fr) Melangeur de carburant double pour chambre de combustion de turbomoteur
FR2931203A1 (fr) Injecteur de carburant pour turbine a gaz et son procede de fabrication
CA2033366C (fr) Bruleur industriel a combustible liquide a faible emission d'oxydes d'azote, ledit bruleur generant plusieurs flammes elementaires et son utilisation
FR2969253A1 (fr) Injecteur secondaire de combustible sans tetons
FR2706020A1 (fr) Ensemble de chambre de combustion, notamment pour turbine à gaz; comprenant des zones de combustion et de vaporisation séparées.
EP4004443B1 (fr) Chambre de combustion comportant des systèmes d'injection secondaires et procédé d'alimentation en carburant
US8381531B2 (en) Gas turbine fuel injector with a rich catalyst
JPH08145363A (ja) 液体燃料用ガスタービン燃焼器
RU2818739C2 (ru) Сопло с низкими выбросами, камера сгорания для двухкомпонентного горючего с низкими выбросами и газотурбогенераторный агрегат
FR2952699A1 (fr) Systeme d'injection pour chambre de combustion de turbomachine, comprenant des moyens d'injection et de melange de deux carburants distincts
FR2975466A1 (fr) Chambre annulaire de combustion pour une turbomachine
FR3113302A1 (fr) Chambre de combustion pour une turbomachine
FR3057648A1 (fr) Systeme d'injection pauvre de chambre de combustion de turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005008530

Country of ref document: DE

Date of ref document: 20080911

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090506

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005008530

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 19

Ref country code: GB

Payment date: 20230823

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 19

Ref country code: DE

Payment date: 20230822

Year of fee payment: 19