EP1640662B1 - Effervescent injector for an aeromechanical air/fuel injection system integrated into a gas turbine combustor - Google Patents
Effervescent injector for an aeromechanical air/fuel injection system integrated into a gas turbine combustor Download PDFInfo
- Publication number
- EP1640662B1 EP1640662B1 EP05291870A EP05291870A EP1640662B1 EP 1640662 B1 EP1640662 B1 EP 1640662B1 EP 05291870 A EP05291870 A EP 05291870A EP 05291870 A EP05291870 A EP 05291870A EP 1640662 B1 EP1640662 B1 EP 1640662B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- air
- injector
- duct
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims description 139
- 238000002347 injection Methods 0.000 title claims description 32
- 239000007924 injection Substances 0.000 title claims description 32
- 239000000203 mixture Substances 0.000 claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 20
- 238000009834 vaporization Methods 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 38
- 238000000889 atomisation Methods 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/24—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/30—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
Definitions
- the present invention relates to the general field of injection systems of an air / fuel mixture in a turbomachine combustion chamber. It relates more particularly to a fuel injector for an aeromechanical type injection system provided with means for atomizing the fuel before it is mixed with the air.
- the classic process for developing and optimizing a combustion chamber of a turbomachine has the main objective of reconciling the implementation of the operational performances of the chamber (combustion efficiency, stability range, ignition range and relight, life of the combustion chamber, etc.) depending on the mission envisaged for the aircraft on which the turbomachine is mounted while minimizing pollutant emissions (nitrogen oxides, carbon monoxide, unburned hydrocarbons, etc. .). To do this, it is particularly possible to play on the nature and performance of the fuel / air mixture injection system in the combustion chamber, the distribution of the dilution air in the chamber and the dynamics of the air / fuel mixture. fuel in the room.
- the combustion chamber of a turbomachine typically consists of a system for injecting an air / fuel mixture into a flame tube, a cooling system and a dilution system.
- the combustion is organized mainly within a first part of the flame tube (called the primary zone) in which it is stabilized by means of zones of recirculation of the air / fuel mixture induced by the flow of air coming from the injection system.
- the primary zone a first part of the flame tube
- the dilution zone the chemical activity used is lower and the flow is diluted by means of dilution holes.
- the atomization time thus represents the time required for the disintegration of the fuel layer by air and the formation of an air / fuel spray. It mainly depends on the performance and technology of the injection system used and aerodynamics in the vicinity of the fuel table.
- the evaporation time also depends on the injection system used. It is directly a function of the size of the droplets resulting from the disintegration of the fuel layer; the smaller the droplets, the lower the evaporation time.
- the mixing time corresponds to the time required for the fuel vapors from the evaporation of the droplets to mix with the air. It mainly depends on the level of turbulence inside the combustion chamber and therefore the dynamics of the flow in the primary zone.
- chemical time it represents the time required for chemical reactions to develop. It depends on the pressures and temperatures at the entry of the hearth and the nature of the fuel used.
- the injection system used therefore plays a key role in the process of developing a combustion chamber, in particular in the optimization of the characteristic times of atomization and evaporation of the fuel.
- the aeromechanical injection systems known from the prior art have many disadvantages.
- the pressure limitation does not reduce the size of the fuel droplets sufficiently.
- the air / fuel spray created by these injection systems is also not always stable at all operating speeds of the turbomachine.
- US 6128894 discloses a method of operating a burner of injecting into the fuel injection nozzle a gas having a pressure slightly higher than that of the fuel.
- the main purpose of the present invention is therefore to overcome such drawbacks by proposing an injector for an aeromechanical injection system that makes it possible to reduce the characteristic times of atomization and evaporation of the fuel at all operating speeds of the turbomachine.
- a fuel injector for an aeromechanical injection system of an air / fuel mixture in a turbomachine combustion chamber according to claim 1.
- the injector comprises a tubular pipe of gas which is disposed inside the fuel pipe and which has a plurality of orifices opening into the fuel pipe.
- the orifices of the gas pipe open substantially perpendicularly into the fuel pipe and they are arranged in at least one transverse plane.
- the fuel atomizer cap may comprise a cylindrical portion centered on the axis XX ', having an outside diameter smaller than the internal diameter of the fuel line and provided with a plurality of profiled fins extending radially outwards, fins having an outer surface in contact with an inner surface of the fuel line.
- the wings of the atomizer fuel cap are evenly distributed over the entire circumference of the cylindrical portion. They may have an angular torsion, preferably of the order of 45 °, in the same direction.
- the openings in the gas line open into the fuel line at the atomizer fuel cap.
- the ports of the gas line open between two adjacent wings of the fuel atomizer cap and open tangentially in the gas line.
- a device for controlling the flow of gas injected into the fuel line is provided.
- the present invention also relates to an aeromechanical injection system provided with a fuel injector as defined above.
- the fuel injector 2 is in the general form of a main tubular structure 4 of axis XX 'which opens at a downstream end 4a for the air / fuel mixture.
- the downstream end 4a of the tubular structure 4 may have a substantially conical shape.
- a tubular fuel pipe 6 is disposed inside the main structure 4 so as to provide an annular passage 8 therewith.
- the tubular pipe 6, which is centered on the axis XX ', opens at a downstream end in the main structure 4 via a fuel atomizer plug 10. Its downstream end may also have a substantially conical shape.
- the atomizer fuel cap 10 allows to introduce into the main structure 4, at its downstream end 4a, the fuel at a pressure P C , for example of the order of 4 to 80 bar. Its main function is to create a dispersion of the fuel in the form of a plurality of bundles (or tubes) of fuel.
- the fuel injector 2 further comprises at least one air supply channel 12 which is connected to a compressor stage (Not shown) of the turbomachine and which opens into the annular passage 8 so as to introduce air at a pressure P A , for example of the order of 0.5 to 50 bar.
- the fuel injector 2 thus comprises a plurality of air supply ducts 12 which are regularly distributed around the axis XX 'and which open into the annular passage 8 at the upstream end 4b of the main structure 4 .
- An air swirler 14 may be arranged in the annular passage 8, between the downstream ends 4a and upstream 4b of the main structure 4. Such an air swirler 14 makes it possible to create a rotating effect (or "swirl") of the flow of air in the annular passage 8.
- the fuel injector 2 further comprises means for injecting into the fuel line 6 a gas at a pressure P G which is greater than P A and greater than or equal to P C in order to create an effervescence of the fuel. fuel when introduced into the main structure 4.
- a tubular gas pipe 16 is disposed inside the fuel line 6 and has a plurality of orifices 18 opening into the fuel line 6.
- This gas pipe 16 is also centered on the XX 'axis and household with the fuel line 6 an annular passage 20 for the flow of fuel.
- the introduction of a gas into the fuel line 6 at a pressure P G greater than the pressure P A and greater than or equal to the pressure P C makes it possible to create a liquid / gas mixture at the pressure P C before its introduction into the the main structure 4.
- the effervescence of the fuel is characterized by the atomization of the fuel produced by the sudden expansion of the gas when introduced into the main structure 4. The characteristic times of atomization and evaporation of the fuel are therefore reduced.
- the effervescence of the fuel occurs when the following conditions are met: the gas must be at least at a pressure P G substantially equal to that (P C ) of the fuel (or slightly overpressure relative thereto) , and the liquid / gas mixture must occur in a substantially confined space so that the mixture is at the pressure P C (in this case, mixing takes place in the confluence zone of the orifices 18 and the fuel line 6 in which they open).
- the gas is an inert gas which has no direct influence on the subsequent combustion of the air / fuel mixture.
- the gas may be air that is taken from a compressor stage of the turbomachine and is compressed again to reach a pressure P G greater than the pressure P A of the air supplying the duct or channels. air supply 12.
- the orifices 18 of the gas duct 16 open substantially perpendicularly into the fuel line 6. This particular arrangement makes it possible to promote the appearance of the effervescence of the fuel.
- the axis of the orifices 18 may form an inclination downstream with the axis XX ', for example of the order of 60 °.
- the orifices 18 of the gas pipe 16 are arranged in at least one transverse plane (on two transverse planes on the figure 4 ).
- the atomizer fuel cap 10 may comprise a substantially cylindrical portion 22 which is centered on the axis XX ', has an outside diameter less than the internal diameter of the fuel pipe and is provided with a plurality of profiled fins 24 s extending radially outward.
- the profiled fins 24 have an outer surface that contacts an inner surface of the fuel line 6 ( figures 1 and 3 ). Thus, grooves 26 are formed between two fins 24 adjacent to allow the fuel line 6 to flow to the main structure 4 in the form of a plurality of bundles (or tubes) of fuel.
- the fins 24 of the atomizer fuel cap 10 may be evenly distributed over the entire circumference of the cylindrical portion 22. They may also be twisted in the same direction, that is to say that they may present an angular torsion in the same direction . The assembly thus forms a thread.
- the angular torsion of the fins 24 is approximately 45 ° with respect to the axis XX '.
- the angular torsion makes it possible to create a rotation effect (or "swirl") of the flow of fuel, and more particularly of the fuel bundles, at the exit of the fuel atomizer 10.
- the fuel injector 2 comprises an air swirler 14 disposed in the annular passage 8
- the angular torsion of the fins 24 is advantageously made in the same direction as that of the air swirler 14.
- the injection system 2 further comprises a device 28 for controlling the flow of gas injected into the fuel line 6.
- a device 28 thus makes it possible to control the flow of gas which it is necessary to inject to achieve the effervescence of the fuel.
- the control of the gas flow can be a function of the flow rate and the pressure P C of the fuel.
- the orifices 18 of the gas duct 16 open into the fuel line 6 at the level of the fuel atomizer cap 10.
- the gas duct 16 extends axially to the atomizer cap 10 on which it is fixed.
- the atomizer plug 10 may have a hollow cavity into which the gas pipe 16 opens and opens into the orifices 18.
- the gas pipe 16 and the atomizer plug could be made in one and the same piece.
- the orifices 18 of the gas pipe 16 open between two adjacent fins 24 of the fuel atomizer plug 10, that is to say that they open at the grooves 26 in which the fuel bundles are formed.
- the mixture between the fuel and the gas is effected in the confluence zone of the orifices 18 and grooves 26 and the effervescence of the resulting fuel disintegrates the fuel bundles into fine drops.
- the orifices 18 advantageously open tangentially in the gas pipe 16, which makes it possible to amplify the phenomenon of rotation of the fuel created by the angular torsion of the fins 24 of the atomizer plug 10.
- the orifices 18 of the gas pipe 16 open into the fuel line 6 upstream of the fuel atomizer cap 10 '.
- the gas pipe 16 extends axially to the atomizer cap 10 'on which it is fixed (or with which it can form a single piece).
- the orifices 18 may be arranged in two transverse planes. Thus, the mixture between the fuel and the gas is effected in the confluence zone between the orifices 18 and the zone of the gas pipe 16 into which they open. The liquid / gas mixture is carried out before it is dispersed in bundles at the atomizer cap 10 '.
- the fuel injector 2 as described above is suitable for the aeromechanical injection systems of an air / fuel mixture in a turbomachine combustion chamber.
- the figures 5 and 6 thus illustrate two variants of such aeromechanical injection systems.
- the injection system 100 illustrated by the figure 5 comprises a fuel injector 2 according to the invention centered on its axis YY '. It further comprises an internal air swirler 102 disposed downstream of the injector 2 and for injecting air in a radial direction and an external air swirler 104 disposed downstream of the internal air swirler. 102 and also for injecting air in a radial direction.
- the air swirlers 102, 104 rotate the flow of the mixture air / fuel and thus increase turbulence to promote the atomization of fuel and its mixture with air.
- a venturi 106 having an internal contour of divergent convergent shape is interposed between the internal air 102 and external 104 air jibs. It makes it possible to delimit the air flows coming from the air swirlers 102, 104.
- a downstream flared bowl 108 is mounted downstream of the external air swirler 104. Through its opening angle, the bowl 108 distributes the air / fuel mixture in the primary zone of the combustion chamber. combustion.
- the injection system 200 illustrated by the figure 6 also being of the aeromechanical type, only the differences existing with the injection system 100 of the figure 5 .
- this injection system is of the LPP type (for "Lean Premixed Prevaporized").
- the injection system 200 comprises a fuel injector 2 according to the invention centered on its axis ZZ '. It comprises an internal air swirler 202 disposed downstream of the injector 2 and for injecting air in a radial direction and an external air swirler 204 disposed downstream of the internal air swirler 202 and for injecting air in a radial direction.
- a first venturi 206 is interposed between the air swirlers 202, 204, and a second venturi 208 is disposed downstream of the external air swirler 204.
- a premix and / or pre-vaporization tube 210 is elsewhere disposed downstream of the second venturi 208.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Nozzles (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
Description
La présente invention se rapporte au domaine général des systèmes d'injection d'un mélange air/carburant dans une chambre de combustion de turbomachine. Elle vise plus particulièrement un injecteur de carburant pour un système d'injection de type aéromécanique muni de moyens pour atomiser le carburant avant son mélange avec l'air.The present invention relates to the general field of injection systems of an air / fuel mixture in a turbomachine combustion chamber. It relates more particularly to a fuel injector for an aeromechanical type injection system provided with means for atomizing the fuel before it is mixed with the air.
Le processus classique d'élaboration et d'optimisation d'une chambre de combustion d'une turbomachine a pour objectif principal de concilier la mise en oeuvre des performances opérationnelles de la chambre (rendement de combustion, domaine de stabilité, domaine d'allumage et de rallumage, durée de vie du foyer de combustion, etc.) en fonction de la mission envisagée pour l'avion sur lequel est montée la turbomachine tout en minimisant les émissions polluantes (oxydes d'azote, monoxyde de carbone, hydrocarbures imbrûlés, etc.). Pour ce faire, il est notamment possible de jouer sur la nature et les performances du système d'injection du mélange air/carburant dans la chambre de combustion, la répartition de l'air de dilution dans la chambre et la dynamique du mélange air/carburant dans la chambre.The classic process for developing and optimizing a combustion chamber of a turbomachine has the main objective of reconciling the implementation of the operational performances of the chamber (combustion efficiency, stability range, ignition range and relight, life of the combustion chamber, etc.) depending on the mission envisaged for the aircraft on which the turbomachine is mounted while minimizing pollutant emissions (nitrogen oxides, carbon monoxide, unburned hydrocarbons, etc. .). To do this, it is particularly possible to play on the nature and performance of the fuel / air mixture injection system in the combustion chamber, the distribution of the dilution air in the chamber and the dynamics of the air / fuel mixture. fuel in the room.
La chambre de combustion d'une turbomachine se compose typiquement d'un système d'injection d'un mélange air/carburant dans un tube à flamme, d'un système de refroidissement et d'un système de dilution. La combustion s'organise principalement au sein d'une première partie du tube à flamme (appelée zone primaire) dans laquelle elle est stabilisée au moyen de zones de re-circulation du mélange air/carburant induites par l'écoulement d'air issu du système d'injection. Dans la seconde partie du tube de mélange (appelée zone de dilution), l'activité chimique mise en oeuvre est plus faible et l'écoulement est dilué au moyen de trous de dilution.The combustion chamber of a turbomachine typically consists of a system for injecting an air / fuel mixture into a flame tube, a cooling system and a dilution system. The combustion is organized mainly within a first part of the flame tube (called the primary zone) in which it is stabilized by means of zones of recirculation of the air / fuel mixture induced by the flow of air coming from the injection system. In the second part of the mixing tube (called the dilution zone), the chemical activity used is lower and the flow is diluted by means of dilution holes.
Dans la zone primaire du tube à flamme, différents phénomènes physiques interviennent : injection et atomisation en fines gouttelettes du carburant, évaporation des gouttelettes, mélange des vapeurs de carburant avec l'air et réactions chimiques d'oxydation du carburant par l'oxygène de l'air.In the primary zone of the flame tube, various physical phenomena occur: injection and atomization into fine droplets of the fuel, evaporation of the droplets, mixing of the vapors of fuel with air and chemical reactions of oxidation of fuel by the oxygen of the air.
Ces phénomènes physiques sont régis par des temps caractéristiques. Le temps d'atomisation représente ainsi le temps nécessaire à la désintégration de la nappe de carburant par l'air et à la formation d'un spray d'air/carburant. Il dépend principalement des performances et de la technologie du système d'injection utilisé et de l'aérodynamique au voisinage de la nappe de carburant. Le temps d'évaporation dépend également du système d'injection utilisé. Il est directement fonction de la taille des gouttelettes issues de la désintégration de la nappe de carburant ; plus les gouttelettes sont petites, plus le temps d'évaporation est faible. Le temps de mélange correspond au temps nécessaire aux vapeurs de carburant provenant de l'évaporation des gouttelettes pour se mélanger à l'air. Il dépend principalement du niveau de turbulence à l'intérieur du foyer de combustion et donc de la dynamique de l'écoulement dans la zone primaire. Quant au temps chimique, il représente le temps nécessaire aux réactions chimiques pour se développer. Il dépend des pressions et températures en entrée de foyer et de la nature du carburant utilisé.These physical phenomena are governed by characteristic times. The atomization time thus represents the time required for the disintegration of the fuel layer by air and the formation of an air / fuel spray. It mainly depends on the performance and technology of the injection system used and aerodynamics in the vicinity of the fuel table. The evaporation time also depends on the injection system used. It is directly a function of the size of the droplets resulting from the disintegration of the fuel layer; the smaller the droplets, the lower the evaporation time. The mixing time corresponds to the time required for the fuel vapors from the evaporation of the droplets to mix with the air. It mainly depends on the level of turbulence inside the combustion chamber and therefore the dynamics of the flow in the primary zone. As for chemical time, it represents the time required for chemical reactions to develop. It depends on the pressures and temperatures at the entry of the hearth and the nature of the fuel used.
Le système d'injection utilisé joue donc un rôle primordial dans le processus d'élaboration d'une chambre de combustion, notamment dans l'optimisation des temps caractéristiques d'atomisation et d'évaporation du carburant.The injection system used therefore plays a key role in the process of developing a combustion chamber, in particular in the optimization of the characteristic times of atomization and evaporation of the fuel.
Il existe deux familles principales de systèmes d'injection : les systèmes « aéromécaniques » pour lesquels l'atomisation du carburant provient d'une différence importante de pression entre le carburant et l'air et les systèmes « aérodynamiques » pour lesquels l'atomisation du carburant est due au cisaillement du carburant entre deux nappes d'air. La présente invention vise plus particulièrement des systèmes de type aéromécanique.There are two main families of injection systems: "aeromechanical" systems for which the atomization of fuel comes from a significant difference in pressure between fuel and air and "aerodynamic" systems for which the atomization of the Fuel is caused by shearing fuel between two air layers. The present invention relates more particularly to aeromechanical type systems.
Les systèmes d'injection aéromécaniques connus de l'art antérieur présentent de nombreux inconvénients. Notamment, la limitation en pression ne permet pas de réduire suffisamment la taille des gouttelettes de carburant. Le spray d'air/carburant créé par ces systèmes d'injection n'est par ailleurs pas toujours stable à tous les régimes de fonctionnement de la turbomachine.The aeromechanical injection systems known from the prior art have many disadvantages. In particular, the pressure limitation does not reduce the size of the fuel droplets sufficiently. The air / fuel spray created by these injection systems is also not always stable at all operating speeds of the turbomachine.
La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un injecteur pour système d'injection aéromécanique qui permet de réduire les temps caractéristiques d'atomisation et d'évaporation du carburant à tous les régimes de fonctionnement de la turbomachine.The main purpose of the present invention is therefore to overcome such drawbacks by proposing an injector for an aeromechanical injection system that makes it possible to reduce the characteristic times of atomization and evaporation of the fuel at all operating speeds of the turbomachine.
A cet effet, il est prévu un injecteur de carburant pour système d'injection aéromécanique d'un mélange air/carburant dans une chambre de combustion de turbomachine selon la revendication 1. cFor this purpose, there is provided a fuel injector for an aeromechanical injection system of an air / fuel mixture in a turbomachine combustion chamber according to claim 1. c
Le fait d'injecter dans la conduite de carburant un gaz à une pression supérieure ou égale à la pression du carburant créé un mélange liquide/gaz à la pression PC préalablement à son introduction dans la structure principale dans laquelle il sera dispersé. Lors de la détente de ce mélange de pression PC à la pression interne dans la structure principale, l'expansion brutale de la phase gazeuse provoque la désintégration de la nappe de carburant : c'est l'effervescence. De la sorte, les temps caractéristiques d'atomisation et d'évaporation du carburant à la sortie du système d'injection peuvent être considérablement réduits.The fact of injecting into the fuel line a gas at a pressure greater than or equal to the pressure of the fuel creates a liquid / gas mixture at the pressure P C prior to its introduction into the main structure in which it will be dispersed. When this mixture of pressure P C is expanded to the internal pressure in the main structure, the sudden expansion of the gas phase causes the disintegration of the fuel layer: this is effervescence. In this way, the characteristic times of atomization and evaporation of the fuel at the exit of the injection system can be considerably reduced.
Ces gains permettent ainsi, aux faibles régimes de fonctionnement de la turbomachine, d'améliorer le rendement de combustion et d'augmenter la résistance du foyer de combustion à l'extinction, et aux régimes plein gaz de fonctionnement de la turbomachine, de limiter la formation d'émissions polluantes de type oxydes d'azote et suies.These gains thus make it possible, at the low operating speeds of the turbomachine, to improve the combustion efficiency and to increase the resistance of the combustion chamber to extinction, and to the full operating gas regimes of the engine. turbomachine, to limit the formation of pollutant emissions such as nitrogen oxides and soot.
De façon plus particulière, l'injecteur comporte une conduite tubulaire de gaz qui est disposée à l'intérieur de la conduite de carburant et qui comporte une pluralité d'orifices débouchant dans la conduite de carburant.More particularly, the injector comprises a tubular pipe of gas which is disposed inside the fuel pipe and which has a plurality of orifices opening into the fuel pipe.
Avantageusement, les orifices de la conduite de gaz débouchent de façon sensiblement perpendiculaire dans la conduite de carburant et ils sont disposés selon au moins un même plan transversal.Advantageously, the orifices of the gas pipe open substantially perpendicularly into the fuel pipe and they are arranged in at least one transverse plane.
Le bouchon atomiseur de carburant peut comporter une partie cylindrique centrée sur l'axe XX', ayant un diamètre externe inférieur au diamètre interne de la conduite de carburant et muni d'une pluralité d'ailettes profilées s'étendant radialement vers l'extérieur, les ailettes ayant une surface externe en contact avec une surface interne de la conduite de carburant.The fuel atomizer cap may comprise a cylindrical portion centered on the axis XX ', having an outside diameter smaller than the internal diameter of the fuel line and provided with a plurality of profiled fins extending radially outwards, fins having an outer surface in contact with an inner surface of the fuel line.
De préférence, les ailettes du bouchon atomiseur de carburant sont régulièrement réparties sur toute la circonférence de la partie cylindrique. Elles peuvent présenter une torsion angulaire, de préférence de l'ordre de 45°, selon une même direction.Preferably, the wings of the atomizer fuel cap are evenly distributed over the entire circumference of the cylindrical portion. They may have an angular torsion, preferably of the order of 45 °, in the same direction.
Les orifices de la conduite de gaz débouchent dans la conduite de carburant au niveau du bouchon atomiseur de carburant.The openings in the gas line open into the fuel line at the atomizer fuel cap.
De façon plus particulière, les orifices de la conduite de gaz débouchent entre deux ailettes adjacentes du bouchon atomiseur de carburant et ils s'ouvrent de façon tangentielle dans la conduite de gaz.More particularly, the ports of the gas line open between two adjacent wings of the fuel atomizer cap and open tangentially in the gas line.
Selon une caractéristique avantageuse de l'invention, il est prévu un dispositif de pilotage du débit de gaz injecté dans la conduite de carburant.According to an advantageous characteristic of the invention, there is provided a device for controlling the flow of gas injected into the fuel line.
La présente invention a également pour objet un système d'injection aéromécanique muni d'un injecteur de carburant tel que défini précédemment.The present invention also relates to an aeromechanical injection system provided with a fuel injector as defined above.
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
- la
figure 1 est une vue en coupe longitudinale d'un injecteur selon un mode de réalisation de l'invention ; - la
figure 2 est une vue en perspective du bouchon atomiseur de carburant de l'injecteur de lafigure 1 ; - la
figure 3 est une vue en coupe selon III-III de lafigure 1 ; - la
figure 4 est une vue en coupe axiale d'un injecteur selon un mode de réalisation non conforme à l'invention; - la
figure 5 est une vue en coupe axiale d'un système d'injection air/carburant muni d'un injecteur selon l'invention ; et - la
figure 6 est une vue en coupe axiale d'un autre système d'injection air/carburant muni d'un injecteur selon l'invention.
- the
figure 1 is a longitudinal sectional view of an injector according to one embodiment of the invention; - the
figure 2 is a perspective view of the atomizer fuel cap of the injector of thefigure 1 ; - the
figure 3 is a sectional view along III-III of thefigure 1 ; - the
figure 4 is an axial sectional view of an injector according to an embodiment not in accordance with the invention; - the
figure 5 is an axial sectional view of an air / fuel injection system provided with an injector according to the invention; and - the
figure 6 is an axial sectional view of another air / fuel injection system provided with an injector according to the invention.
En liaison avec la
Une conduite tubulaire de carburant 6 est disposée à l'intérieur de la structure principale 4 de façon à ménager un passage annulaire 8 avec celle-ci. La conduite tubulaire 6, qui est centrée sur l'axe XX', débouche à une extrémité aval dans la structure principale 4 par l'intermédiaire d'un bouchon atomiseur de carburant 10. Son extrémité aval peut également présenter une forme sensiblement conique.A
Le bouchon atomiseur de carburant 10 permet d'introduire dans la structure principale 4, au niveau de son extrémité aval 4a, du carburant à une pression PC, par exemple de l'ordre de 4 à 80 bar. Il a pour fonction principale de créer une dispersion du carburant sous la forme d'une pluralité de faisceaux (ou tubes) de carburant.The
L'injecteur de carburant 2 comporte en outre au moins un canal d'alimentation en air 12 qui est relié à un étage de compresseur (non représenté) de la turbomachine et qui débouche dans le passage annulaire 8 de façon à y introduire de l'air à une pression PA, par exemple de l'ordre de 0,5 à 50 bar.The
Dans le mode de réalisation représenté par la
Une vrille d'air 14 peut être disposée dans le passage annulaire 8, entre les extrémités aval 4a et amont 4b de la structure principale 4. Une telle vrille d'air 14 permet de créer un effet de rotation (ou « swirl ») de l'écoulement de l'air dans le passage annulaire 8.An
L'air s'écoulant dans le passage annulaire 8, qui est éventuellement mis en rotation par la vrille d'air 14, vient alors « briser » les faisceaux de carburant créés par l'atomiseur de carburant 10 au niveau de l'extrémité aval 4a de la structure principale 4. Sous l'effet combiné de l'atomiseur de carburant 10 et de l'air circulant dans le passage annulaire 8, un spray d'air/carburant se créé en sortie de l'injecteur.The air flowing in the
Selon l'invention, l'injecteur de carburant 2 comporte en outre des moyens pour injecter dans la conduite de carburant 6 un gaz à une pression PG qui est supérieure à PA et supérieure ou égale à PC afin de créer une effervescence du carburant lors de son introduction dans la structure principale 4.According to the invention, the
De façon plus particulière, une conduite tubulaire de gaz 16 est disposée à l'intérieur de la conduite de carburant 6 et comporte une pluralité d'orifices 18 débouchant dans la conduite de carburant 6. Cette conduite de gaz 16 est également centrée sur l'axe XX' et ménage avec la conduite de carburant 6 un passage annulaire 20 pour l'écoulement du carburant.More particularly, a
L'introduction d'un gaz dans la conduite de carburant 6 à une pression PG supérieure à la pression PA et supérieure ou égale à la pression PC permet de créer un mélange liquide/gaz à la pression PC avant son introduction dans la structure principale 4. L'effervescence du carburant se caractérise par l'atomisation du carburant produit par l'expansion brutale du gaz lors de l'introduction dans la structure principale 4. Les temps caractéristiques d'atomisation et d'évaporation du carburant se trouvent donc diminués.The introduction of a gas into the
Plus particulièrement, l'effervescence du carburant se produit lorsque les conditions suivantes sont réunies : le gaz doit être au moins à une pression PG sensiblement égale à celle (PC) du carburant (voire en légère surpression par rapport à celle-ci), et le mélange liquide/gaz doit se produire dans un espace sensiblement confiné pour que le mélange soit à la pression PC (en l'espèce, le mélange s'effectue dans la zone de confluence des orifices 18 et de la conduite de carburant 6 dans laquelle ils débouchent).More particularly, the effervescence of the fuel occurs when the following conditions are met: the gas must be at least at a pressure P G substantially equal to that (P C ) of the fuel (or slightly overpressure relative thereto) , and the liquid / gas mixture must occur in a substantially confined space so that the mixture is at the pressure P C (in this case, mixing takes place in the confluence zone of the
De préférence, le gaz est un gaz inerte qui n'a pas d'influence directe sur la combustion ultérieure du mélange air/carburant. Par exemple, le gaz peut être de l'air qui est prélevé sur un étage de compresseur de la turbomachine et qui est à nouveau comprimé pour atteindre une pression PG supérieure à la pression PA de l'air alimentant le ou les canaux d'alimentation en air 12.Preferably, the gas is an inert gas which has no direct influence on the subsequent combustion of the air / fuel mixture. For example, the gas may be air that is taken from a compressor stage of the turbomachine and is compressed again to reach a pressure P G greater than the pressure P A of the air supplying the duct or channels.
Selon une caractéristique avantageuse de l'invention, les orifices 18 de la conduite de gaz 16 débouchent de façon sensiblement perpendiculaire dans la conduite de carburant 6. Cet arrangement particulier permet de favoriser l'apparition de l'effervescence du carburant.According to an advantageous characteristic of the invention, the
Alternativement, l'axe des orifices 18 peut former une inclinaison vers l'aval avec l'axe XX', par exemple de l'ordre de 60° environ.Alternatively, the axis of the
Selon une autre caractéristique avantageuse de l'invention, les orifices 18 de la conduite de gaz 16 sont disposés selon au moins un même plan transversal (sur deux plans transversaux sur la
Comme illustré sur la
Les ailettes profilées 24 ont une surface externe qui est en contact avec une surface interne de la conduite de carburant 6 (
Les ailettes 24 du bouchon atomiseur de carburant 10 peuvent être régulièrement réparties sur toute la circonférence de la partie cylindrique 22. Elles peuvent également être vrillées selon une même direction, c'est à dire qu'elles peuvent présenter une torsion angulaire selon une même direction. L'ensemble forme ainsi un filetage.The
De préférence, la torsion angulaire des ailettes 24 est de 45° environ par rapport à l'axe XX'. La torsion angulaire permet de créer un effet de rotation (ou « swirl ») de l'écoulement de carburant, et plus particulièrement des faisceaux de carburant, à la sortie de l'atomiseur de carburant 10.Preferably, the angular torsion of the
Par ailleurs, lorsque l'injecteur de carburant 2 comporte une vrille d'air 14 disposée dans le passage annulaire 8, la torsion angulaire des ailettes 24 est avantageusement réalisée dans le même sens que celle de la vrille d'air 14.Furthermore, when the
Selon encore une autre caractéristique avantageuse de l'invention, le système d'injection 2 comporte en outre un dispositif de pilotage 28 du débit de gaz injecté dans la conduite de carburant 6. Un tel dispositif 28 permet ainsi de contrôler le débit de gaz qu'il est nécessaire d'injecter pour réaliser l'effervescence du carburant. Par exemple, le pilotage du débit de gaz peut être fonction du débit et de la pression PC du carburant.According to yet another advantageous characteristic of the invention, the
On décrira maintenant les particularités de l'injecteur de carburant 2 illustré sur les
Dans ce mode de réalisation, les orifices 18 de la conduite de gaz 16 débouchent dans la conduite de carburant 6 au niveau du bouchon atomiseur de carburant 10. A cet effet, la conduite de gaz 16 s'étend axialement jusqu'au bouchon atomiseur 10 sur lequel elle est fixée. Le bouchon atomiseur 10 peut présenter une cavité creuse dans laquelle débouche la conduite de gaz 16 et s'ouvrant dans les orifices 18. Alternativement, la conduite de gaz 16 et le bouchon atomiseur pourraient être réalisés en une seule et même pièce.In this embodiment, the
Plus particulièrement, les orifices 18 de la conduite de gaz 16 débouchent entre deux ailettes 24 adjacentes du bouchon atomiseur de carburant 10, c'est à dire qu'ils débouchent au niveau des rainures 26 dans lesquelles se forment les faisceaux de carburant. De la sorte, le mélange entre le carburant et le gaz s'effectue dans la zone de confluence des orifices 18 et des rainures 26 et l'effervescence du carburant qui en résulte désintègre les faisceaux de carburant en fines gouttes.More particularly, the
Comme illustré sur la
On décrira maintenant les particularités de l'injecteur de carburant 2' illustré sur la
Dans ce mode de réalisation non conforme à l'invention, les orifices 18 de la conduite de gaz 16 débouchent dans la conduite de carburant 6 en amont du bouchon atomiseur de carburant 10'. La conduite de gaz 16 s'étend axialement jusqu'au bouchon atomiseur 10' sur lequel elle est fixée (ou avec lequel elle peut former une seule et même pièce).In this embodiment not according to the invention, the
Les orifices 18 peuvent être arrangés selon deux plans transversaux. Ainsi, le mélange entre le carburant et le gaz s'effectue dans la zone de confluence entre les orifices 18 et la zone de la conduite de gaz 16 dans laquelle ils débouchent. Le mélange liquide/gaz se réalise avant sa dispersion en faisceaux au niveau du bouchon atomiseur 10'.The
Toujours dans ce mode de réalisation, on remarque également sur la
L'injecteur de carburant 2tel que décrit précédemment convient pour les systèmes d'injection aéromécaniques d'un mélange air/carburant dans une chambre de combustion de turbomachine. Les
Le système d'injection 100 illustré par la
Un venturi 106 ayant un contour interne de forme convergente divergente est interposé entre les vrilles d'air interne 102 et externe 104. Il permet de délimiter les écoulements d'air issus des vrilles d'air 102, 104.A
Un bol 108 évasé vers l'aval est monté en aval de la vrille d'air externe 104. Par l'intermédiaire de son angle d'ouverture, le bol 108 permet de répartir le mélange air/carburant dans la zone primaire du foyer de combustion.A downstream flared
Le système d'injection 200 illustré par la
Le système d'injection 200 comporte un injecteur de carburant 2 selon l'invention centré sur son axe ZZ'. Il comporte une vrille d'air interne 202 disposée en aval de l'injecteur 2 et permettant d'injecter de l'air selon une direction radiale et une vrille d'air externe 204 disposée en aval de la vrille d'air interne 202 et permettant d'injecter de l'air selon une direction radiale.The
Un premier venturi 206 est interposé entre les vrilles d'air 202, 204, et un second venturi 208 est disposé en aval de la vrille d'air externe 204. Un tube de pré-mélange et/ou de pré-vaporisation 210 est par ailleurs disposé en aval du second venturi 208.A
Claims (14)
- A fuel injector (2, 2') for an aero-mechanical injection system for injecting an air/fuel mixture into a turbomachine combustion chamber, the injector comprising:a main tubular structure (4) of axis XX' opening out at a downstream end (4a) for delivering the air/fuel mixture;a tubular fuel duct (6) disposed inside the main structure (4) so as to co-operate therewith to form an annular passage (8), and opening out at a downstream end into the main structure (4) via a fuel atomizer plug (10) so as to introduce fuel at a pressure PC into the main structure; andat least one air feed channel (12) that can be connected to a compressor stage of the turbomachine and opening out into the annular passage (8) in such a manner as to introduce air at a pressure PA into said passage; anda tubular gas duct (16) disposed inside the fuel duct (6) and having a plurality of orifices (18) opening out into said fuel duct (6) to inject therein a gas at a pressure PG that is greater than PA and greater than or equal to PC so as to create effervescence in the fuel on being introduced into the main structure (4), the orifices (18) of the gas duct (16) being disposed in at least one common transverse plane, the injector beingcharacterised in that the orifices (18) of the gas duct (16) open out into the fuel duct (6) at the fuel atomizer plug (10).
- An injector according to claim 1, characterised in that the orifices (18) of the gas duct (16) open out substantially perpendicularly into the fuel duct (6).
- An injector according to claim 1 or claim 2, characterised in that the fuel atomizer plug (10) comprises a cylindrical portion (22) centred on the axis XX', having an outside diameter that is smaller than the inside diameter of the fuel duct (6), and provided with a plurality of profiled fins (24) extending radially outwards, said fins (24) having outside surfaces coming into contact with an inside surface of the fuel duct (6).
- An injector according to claim 3, characterised in that the profiled fins (24) of the fuel atomizer plug (10) are distributed regularly over the entire circumference of the cylindrical portion (22).
- An injector according to claim 3 or claim 4, characterised in that the profiled fins (24) of the fuel atomizer plug (10) present angular twist in a common direction.
- An injector according to claim 5, characterised in that the angular twist of the profiled fins (24) is at about 45° relative to the axis XX'.
- An injector according to any one of claims 3 to 6, characterised in that the orifices (18) of the gas duct (16) open out between pairs of adjacent fins (24) of the fuel atomizer plug (10).
- An injector according to claim 7, characterised in that the orifices (18) of the gas duct (16) open out tangentially into the gas duct (16).
- An injector according to any one of claims 1 to 8, characterised in that it further comprises a device (28) for controlling the flow rate of the gas injected into the fuel duct (6).
- An aero-mechanical injection system (100, 200) for injecting an air/fuel mixture into a turbomachine combustion chamber, the system being characterised in that it comprises a fuel injector (2, 2') according to any one of claims 1 to 9, centred on the axis YY' of the injection system, and means for injecting air downstream from the fuel injector.
- A system (100) according to claim 10, characterised in that it includes an inner air swirler (102) disposed downstream from the injector (2, 2') enabling air to be injected in a radial direction, an outer air swirler (104) disposed downstream from the inner air swirler (102), and serving to inject air in a radial direction, a Venturi (106) interposed between the inner and outer air swirlers (102, 104), and a bowl (108) mounted downstream from the outer air swirler (104).
- A system (200) according to claim 10, characterised in that it comprises an inner air swirler (202) disposed downstream from the injector (2, 2') and enabling air to be injected in a radial direction, an outer air swirler (204) disposed downstream from the inner air swirler (202) and enabling air to be injected into a radial direction, a first Venturi (206) interposed between the inner and outer air swirlers (202, 204), a second Venturi (208) disposed downstream from the outer air swirler (204), and a pre-mixer and/or pre-vaporization tube (210) disposed downstream from the second Venturi (208).
- A turbomachine combustion chamber including a fuel injector (2, 2') according to any one of claims 1 to 9.
- A turbomachine including a combustion chamber fitted with a fuel injector (2, 2') according to any one of claims 1 to 9.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0410051A FR2875584B1 (en) | 2004-09-23 | 2004-09-23 | EFFERVESCENCE INJECTOR FOR AEROMECHANICAL AIR / FUEL INJECTION SYSTEM IN A TURBOMACHINE COMBUSTION CHAMBER |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1640662A1 EP1640662A1 (en) | 2006-03-29 |
EP1640662B1 true EP1640662B1 (en) | 2008-07-30 |
Family
ID=34949668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05291870A Active EP1640662B1 (en) | 2004-09-23 | 2005-09-09 | Effervescent injector for an aeromechanical air/fuel injection system integrated into a gas turbine combustor |
Country Status (7)
Country | Link |
---|---|
US (1) | US7568345B2 (en) |
EP (1) | EP1640662B1 (en) |
JP (1) | JP4632913B2 (en) |
CN (1) | CN100545434C (en) |
DE (1) | DE602005008530D1 (en) |
FR (1) | FR2875584B1 (en) |
RU (1) | RU2382942C2 (en) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7249460B2 (en) * | 2002-01-29 | 2007-07-31 | Nearhoof Jr Charles F | Fuel injection system for a turbine engine |
US7308793B2 (en) * | 2005-01-07 | 2007-12-18 | Power Systems Mfg., Llc | Apparatus and method for reducing carbon monoxide emissions |
US7624576B2 (en) * | 2005-07-18 | 2009-12-01 | Pratt & Whitney Canada Corporation | Low smoke and emissions fuel nozzle |
WO2008097320A2 (en) * | 2006-06-01 | 2008-08-14 | Virginia Tech Intellectual Properties, Inc. | Premixing injector for gas turbine engines |
FR2908867B1 (en) * | 2006-11-16 | 2012-06-15 | Snecma | DEVICE FOR INJECTING A MIXTURE OF AIR AND FUEL, COMBUSTION CHAMBER AND TURBOMACHINE HAVING SUCH A DEVICE |
US8286433B2 (en) * | 2007-10-26 | 2012-10-16 | Solar Turbines Inc. | Gas turbine fuel injector with removable pilot liquid tube |
JP5453322B2 (en) * | 2008-03-07 | 2014-03-26 | アルストム テクノロジー リミテッド | Burner device and use of burner device |
EP2107301B1 (en) * | 2008-04-01 | 2016-01-06 | Siemens Aktiengesellschaft | Gas injection in a burner |
US8230687B2 (en) * | 2008-09-02 | 2012-07-31 | General Electric Company | Multi-tube arrangement for combustor and method of making the multi-tube arrangement |
US8220269B2 (en) * | 2008-09-30 | 2012-07-17 | Alstom Technology Ltd. | Combustor for a gas turbine engine with effusion cooled baffle |
US8220271B2 (en) * | 2008-09-30 | 2012-07-17 | Alstom Technology Ltd. | Fuel lance for a gas turbine engine including outer helical grooves |
US9121609B2 (en) | 2008-10-14 | 2015-09-01 | General Electric Company | Method and apparatus for introducing diluent flow into a combustor |
US20100089022A1 (en) * | 2008-10-14 | 2010-04-15 | General Electric Company | Method and apparatus of fuel nozzle diluent introduction |
US20100089020A1 (en) * | 2008-10-14 | 2010-04-15 | General Electric Company | Metering of diluent flow in combustor |
US8567199B2 (en) * | 2008-10-14 | 2013-10-29 | General Electric Company | Method and apparatus of introducing diluent flow into a combustor |
US8607570B2 (en) * | 2009-05-06 | 2013-12-17 | General Electric Company | Airblown syngas fuel nozzle with diluent openings |
US20100281872A1 (en) * | 2009-05-06 | 2010-11-11 | Mark Allan Hadley | Airblown Syngas Fuel Nozzle With Diluent Openings |
US8375548B2 (en) * | 2009-10-07 | 2013-02-19 | Pratt & Whitney Canada Corp. | Fuel nozzle and method of repair |
FR2955375B1 (en) * | 2010-01-18 | 2012-06-15 | Turbomeca | INJECTION DEVICE AND TURBOMACHINE COMBUSTION CHAMBER EQUIPPED WITH SUCH AN INJECTION DEVICE |
US8919673B2 (en) * | 2010-04-14 | 2014-12-30 | General Electric Company | Apparatus and method for a fuel nozzle |
EP2434221A1 (en) | 2010-09-22 | 2012-03-28 | Siemens Aktiengesellschaft | Method and arrangement for injecting an emulsion into a flame |
US10317081B2 (en) * | 2011-01-26 | 2019-06-11 | United Technologies Corporation | Fuel injector assembly |
US9228741B2 (en) * | 2012-02-08 | 2016-01-05 | Rolls-Royce Plc | Liquid fuel swirler |
US9383097B2 (en) * | 2011-03-10 | 2016-07-05 | Rolls-Royce Plc | Systems and method for cooling a staged airblast fuel injector |
US9310073B2 (en) * | 2011-03-10 | 2016-04-12 | Rolls-Royce Plc | Liquid swirler flow control |
FR2987430B1 (en) * | 2012-02-24 | 2014-02-28 | Snecma | FUEL INJECTOR FOR A TURBOMACHINE |
FR2987429B1 (en) * | 2012-02-24 | 2014-03-07 | Snecma | FUEL INJECTOR FOR A TURBOMACHINE |
EP2667098B1 (en) * | 2012-05-25 | 2017-04-12 | Rolls-Royce plc | A liquid fuel injector |
FR3003013B1 (en) * | 2013-03-05 | 2016-07-29 | Snecma | COMPACT DOSING DEVICE FOR TWO FUEL CIRCUIT INJECTOR, PREFERABLY FOR AIRCRAFT TURBOMACHINE |
US9593857B2 (en) * | 2014-03-07 | 2017-03-14 | ProGreen Labs, LLC. | Heating system |
US20150285502A1 (en) * | 2014-04-08 | 2015-10-08 | General Electric Company | Fuel nozzle shroud and method of manufacturing the shroud |
US20160010556A1 (en) * | 2014-07-10 | 2016-01-14 | Delavan, Inc. | Fluid nozzle and method of distributing fluid through a nozzle |
US9765974B2 (en) * | 2014-10-03 | 2017-09-19 | Pratt & Whitney Canada Corp. | Fuel nozzle |
US20170328568A1 (en) * | 2014-11-26 | 2017-11-16 | Siemens Aktiengesellschaft | Fuel lance with means for interacting with a flow of air and improve breakage of an ejected liquid jet of fuel |
US10228140B2 (en) * | 2016-02-18 | 2019-03-12 | General Electric Company | Gas-only cartridge for a premix fuel nozzle |
US10502425B2 (en) * | 2016-06-03 | 2019-12-10 | General Electric Company | Contoured shroud swirling pre-mix fuel injector assembly |
US20170363294A1 (en) * | 2016-06-21 | 2017-12-21 | General Electric Company | Pilot premix nozzle and fuel nozzle assembly |
US10443854B2 (en) * | 2016-06-21 | 2019-10-15 | General Electric Company | Pilot premix nozzle and fuel nozzle assembly |
US11067277B2 (en) | 2016-10-07 | 2021-07-20 | General Electric Company | Component assembly for a gas turbine engine |
US10520195B2 (en) | 2017-06-09 | 2019-12-31 | General Electric Company | Effervescent atomizing structure and method of operation for rotating detonation propulsion system |
WO2018229643A1 (en) * | 2017-06-13 | 2018-12-20 | Indian Institute Of Science | An injector for dispensing an effervescent fluid and a fluid injector system thereof |
CN108716694A (en) * | 2018-06-06 | 2018-10-30 | 西北工业大学 | A kind of poor premixed swirl nozzle of low pollution combustor and loopful combustion chamber |
FR3099231B1 (en) * | 2019-07-24 | 2022-08-12 | Safran Helicopter Engines | PURGE CIRCUIT FUEL INJECTOR FOR AN AIRCRAFT TURBOMACHINE |
US11346557B2 (en) * | 2019-08-12 | 2022-05-31 | Raytheon Technologies Corporation | Aerodynamic guide plate collar for swirler assembly |
FR3103540B1 (en) * | 2019-11-26 | 2022-01-28 | Safran Aircraft Engines | Fuel injection system of a turbomachine, combustion chamber comprising such a system and associated turbomachine |
US11708974B2 (en) | 2020-07-17 | 2023-07-25 | Siemens Energy Global GmbH & Co. KG | Premixer injector assembly in gas turbine engine |
CN113483362B (en) * | 2021-08-18 | 2023-06-16 | 中国联合重型燃气轮机技术有限公司 | Flame tube and gas turbine |
CN116147016A (en) * | 2021-11-22 | 2023-05-23 | 通用电气公司 | Ferrule for fuel-air mixer assembly |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1512132A (en) * | 1923-04-13 | 1924-10-21 | Severance Mfg Company S | Gas and oil burner |
GB1275255A (en) * | 1968-07-18 | 1972-05-24 | Lucas Industries Ltd | Liquid atomising devices |
GB1272757A (en) * | 1968-07-18 | 1972-05-03 | Lucas Industries Ltd | Liquid atomising devices |
US3703259A (en) * | 1971-05-03 | 1972-11-21 | Gen Electric | Air blast fuel atomizer |
DE2645754A1 (en) * | 1976-10-09 | 1978-04-13 | Campos Virgilio Zurrica | Burner head for heating fuel, diesel oil or gas - has two co-axial injectors, air-fuel mixing zones and venturi turbulator between zones |
FR2538880B3 (en) * | 1983-01-04 | 1985-11-29 | Air Liquide | METHOD AND DEVICE FOR SPRAYING A LIQUID FUEL BY AN AUXILIARY GAS FLUID |
CH670296A5 (en) * | 1986-02-24 | 1989-05-31 | Bbc Brown Boveri & Cie | Gas turbine fuel nozzle - has externally-supported premixing chamber for liq. fuel and air |
FR2717250B1 (en) * | 1994-03-10 | 1996-04-12 | Snecma | Premix injection system. |
US5697553A (en) * | 1995-03-03 | 1997-12-16 | Parker-Hannifin Corporation | Streaked spray nozzle for enhanced air/fuel mixing |
GB2307980B (en) * | 1995-12-06 | 2000-07-05 | Europ Gas Turbines Ltd | A fuel injector arrangement; a method of operating a fuel injector arrangement |
DE19653059A1 (en) * | 1996-12-19 | 1998-06-25 | Asea Brown Boveri | Process for operating a burner |
DE19905996A1 (en) * | 1999-02-15 | 2000-08-17 | Abb Alstom Power Ch Ag | Fuel lance for injecting liquid and / or gaseous fuels into a combustion chamber |
JP3069347B1 (en) * | 1999-06-11 | 2000-07-24 | 川崎重工業株式会社 | Burner device for gas turbine combustor |
US6308831B1 (en) * | 1999-07-12 | 2001-10-30 | J. E. Saxe & Co. | Container and kit for protection and display of collectible items |
FR2832493B1 (en) * | 2001-11-21 | 2004-07-09 | Snecma Moteurs | MULTI-STAGE INJECTION SYSTEM OF AN AIR / FUEL MIXTURE IN A TURBOMACHINE COMBUSTION CHAMBER |
-
2004
- 2004-09-23 FR FR0410051A patent/FR2875584B1/en not_active Expired - Fee Related
-
2005
- 2005-09-09 EP EP05291870A patent/EP1640662B1/en active Active
- 2005-09-09 DE DE602005008530T patent/DE602005008530D1/en active Active
- 2005-09-22 US US11/232,002 patent/US7568345B2/en active Active
- 2005-09-22 JP JP2005275037A patent/JP4632913B2/en active Active
- 2005-09-22 RU RU2005129654/06A patent/RU2382942C2/en active
- 2005-09-23 CN CNB200510109797XA patent/CN100545434C/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR2875584B1 (en) | 2009-10-30 |
DE602005008530D1 (en) | 2008-09-11 |
RU2005129654A (en) | 2007-03-27 |
RU2382942C2 (en) | 2010-02-27 |
EP1640662A1 (en) | 2006-03-29 |
FR2875584A1 (en) | 2006-03-24 |
JP2006090326A (en) | 2006-04-06 |
JP4632913B2 (en) | 2011-02-16 |
CN1757893A (en) | 2006-04-12 |
CN100545434C (en) | 2009-09-30 |
US20060059915A1 (en) | 2006-03-23 |
US7568345B2 (en) | 2009-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1640662B1 (en) | Effervescent injector for an aeromechanical air/fuel injection system integrated into a gas turbine combustor | |
EP1640661B1 (en) | Aerodynamic effervescent fuel/air injection system for a gas turbine combustion chamber | |
EP1873455B1 (en) | Device for injecting a mix of air and fuel, combustion chamber and turbomachine equipped with such a device | |
EP0828115B1 (en) | Fuel injection system for a combustion chamber | |
CA2207834C (en) | Aerodynamic system for injecting an air-fuel mix | |
CA2588952C (en) | Turbojet engine combustion chamber | |
CA2478876C (en) | Air/fuel injection system with cold-plasma generation capability | |
EP0214003B1 (en) | Fuel injection nozzle with an enlarged screen for the combustion chamber of a gas turbine | |
EP1909031B1 (en) | Fuel injector for the combustion chamber of a gas turbine engine | |
FR2971040A1 (en) | AIR AND FUEL PRE-COMBINATION SYSTEM IN A FUEL TUBE | |
EP1923636B1 (en) | Device for injecting a mix of air and fuel, combustion chamber and turbomachine equipped with such a device | |
FR2724447A1 (en) | DOUBLE FUEL MIXER FOR TURBOMOTOR COMBUSTION CHAMBER | |
FR2931203A1 (en) | FUEL INJECTOR FOR GAS TURBINE AND METHOD FOR MANUFACTURING THE SAME | |
CA2033366C (en) | Industrial oil burner with low nitrogen oxides emission generating multiple elementary flames and use thereof | |
FR2969253A1 (en) | SECONDARY FUEL INJECTOR WITHOUT TETONS | |
FR2706020A1 (en) | Combustion chamber assembly, in particular for a gas turbine; comprising separate combustion and vaporization zones. | |
EP4004443B1 (en) | Combustion chamber comprising secondary injection systems, and fuel supply method | |
US8381531B2 (en) | Gas turbine fuel injector with a rich catalyst | |
JPH08145363A (en) | Gas turbine combustor for liquid fuel | |
RU2818739C2 (en) | Nozzle with low emissions, combustion chamber for two-component fuel with low emissions and gas turbine generator unit | |
FR2952699A1 (en) | Fuel and air injection system for annular combustion chamber of turbomachine of aircraft, has space allowing air flow to be mixed with fuel in system, and fuel injection unit with injection channels to inject one type of fuel in space | |
FR2975466A1 (en) | Annular combustion chamber for e.g. turbojet of aircraft, has injection system comprising tailspin with air-passage channels, which includes sections, where axes of sections are oriented in direction as fuel passage channels | |
FR3113302A1 (en) | Combustion chamber for a turbomachine | |
FR3057648A1 (en) | LOW TURBOMACHINE COMBUSTION CHAMBER INJECTION SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050915 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 602005008530 Country of ref document: DE Date of ref document: 20080911 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090506 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005008530 Country of ref document: DE Representative=s name: CBDL PATENTANWAELTE GBR, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230822 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240820 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240822 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 20 |