EP1431374B1 - Méthode pour réduire les émissions de particules dans les moteurs à combustion interne - Google Patents

Méthode pour réduire les émissions de particules dans les moteurs à combustion interne Download PDF

Info

Publication number
EP1431374B1
EP1431374B1 EP03255769A EP03255769A EP1431374B1 EP 1431374 B1 EP1431374 B1 EP 1431374B1 EP 03255769 A EP03255769 A EP 03255769A EP 03255769 A EP03255769 A EP 03255769A EP 1431374 B1 EP1431374 B1 EP 1431374B1
Authority
EP
European Patent Office
Prior art keywords
amide
hydrocarbyl
oxide
use according
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03255769A
Other languages
German (de)
English (en)
Other versions
EP1431374A1 (fr
Inventor
Brian R. Graskow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron Oronite Co LLC
Original Assignee
Chevron Oronite Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Oronite Co LLC filed Critical Chevron Oronite Co LLC
Publication of EP1431374A1 publication Critical patent/EP1431374A1/fr
Application granted granted Critical
Publication of EP1431374B1 publication Critical patent/EP1431374B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/1811Organic compounds containing oxygen peroxides; ozonides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • C10L1/1832Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • C10L1/2235Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/23Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
    • C10L1/231Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites nitro compounds; nitrates; nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition

Definitions

  • This invention relates to a method for reducing particulate emissions in an internal combustion engine. More particularly, this invention relates to a method for reducing particulate emissions in an internal combustion engine which comprises operating the internal combustion engine with a particulate emission-reducing fuel composition of the present invention.
  • Particulate emissions are solid or liquid emissions (which may form from emission gases either before or after emission from the engine exhaust system). Of particular concern are particles which are emitted in the size range below 100 nanometers. Particles in this size range are referred to as ""ultrafine" and are the focus of a great deal of attention due to potential environmental and public health concerns.
  • US 5458660 discloses the use of cyclic amide compounds containing polyether alcohol backbones as additives in fuel compositions for decreasing intake valve deposits, controlling octane requirement increases and reducing octane requirement.
  • WO 98/16599 states that mono-amide containing polyether compounds have been found to decrease intake valve deposits, controlling octane requirement increases and reducing octane requirement.
  • EP 0798364 discloses a diesel fuel additive comprising a salt of a carboxylic acid and an aliphatic amine, or an amide obtained by dehydration-condensation between a carboxylic acid and an aliphatic amine.
  • the additive reduces the amount of deposit in the injection nozzle of a compression-ignition diesel engine, improves lubricity of the diesel fuel, and reduces wear of the fuel injection pump of the engine.
  • WO 00/42133 discloses a polyoxyalkylene derivative for use in reducing particulate emissions.
  • the polyoxyalkylene segment comprises oxyethylene or oxypropylene units or both, and is derivatized by reacting the terminal hydroxy-group or functional equivalent with a hetero-atom containing substituent.
  • additives have been a common technique for improving the combustion performance of a given fuel for use in internal combustion engines.
  • additives e.g. Ferrocene, Tetra-Ethyl Lead, MTBE, etc.
  • MTBE Tetra-Ethyl Lead
  • the additive disclosed and employed herein possesses none of these drawbacks, and can be used with a wide variety of other existing additives.
  • the producer In order to produce a finished hydrocarbon fuel, the producer must highly refine a base feedstock (e.g. crude oil) to create a final product.
  • a base feedstock e.g. crude oil
  • the final properties of this fuel are largely determined by the refining process used in its production.
  • the additive employed in the present invention may be added to lower quality fuels to maintain adequate combustion performance of the finished fuel composition. This allows for a lower degree of base stock refining, thus reducing the total cost per volume required to produce a finished fuel.
  • the present invention is directed to the use of an alkylene oxide-adducted hydrocarbyl amide having from 3 to 50 notes of alkylene acide per mole of hydrocarbyl amide in a fuel composition comprising a major amount of hydrocarbons boiling in the gasoline range, as an active agent for reducing particulate emissions from the combustion of the fuel composition in a spark ignition internal combustion engine, wherein the alkylene-oxide adducted hydrocarbyl amide has the following structure: in which:
  • the present invention is based on the discovery that particulate emissions can b effectively reduced in internal combustion engines by employing the alkylene oxide-adducted hydrocarbyl amide described herein. Moreover, the present invention is suitable for use in removing such particulate emissions in spark ignition engines (including conventional port fuel injection and direct injection spark ignition engines).
  • the present invention involves reducing the particulate emissions in a spark ignition internal combustion engine, such as gasoline engines, particularly port fuel injected spark ignition engines or direct injection spark ignition engines.
  • amino refers to the group: -NH 2.
  • hydrocarbyl refers to an organic radical primarily composed of carbon and hydrogen which may be aliphatic, alicyclic, aromatic or combinations thereof, e.g., aralkyl or alkaryl. Such hydrocarbyl groups may also contain aliphatic unsaturation, i.e., olefinic or acetylenic unsaturation, and may contain minor amounts of heteroatoms, such as oxygen or nitrogen, or halogens, such as chlorine. When used in conjunction with carboxylic fatty acids, hydrocarbyl will also include olefinic unsaturation.
  • alkyl refers to both straight- and branched-chain alkyl groups.
  • lower alkyl refers to alkyl groups having 1 to about 6 carbon atoms and includes primary, secondary and tertiary alkyl groups.
  • Typical lower alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl and the like.
  • polyalkyl refers to alkyl groups which are generally derived from polyolefins which are polymers or copolymers of mono-olefins, particularly 1-mono-olefins, such as ethylene, propylene, butylene, and the like.
  • the mono-olefin employed will have from about 2 to 24 carbon atoms, and more preferably, from about 3 to 12 carbon atoms. More preferred mono-olefins include propylene, butylene, particularly isobutylene, 1-octene, and 1-decene.
  • Polyolefins prepared from such mono-olefins include polypropylene, polybutene, especially polyisobutene, and the polyalphaolefins produced from 1-octene and 1-decene.
  • alkenyl refers to an alkyl group with unsaturation.
  • alkylene oxide refers to a compound having the formula: wherein R 1 and R 2 are each independently hydrogen or lower alkyl having from 1 to about 6 carbon atoms.
  • highly reactive polyisobutene refers to a polyisobutene wherein at least about 20% of the residual olefinic double bonds are of the vinylidene type, i.e., represented by the formula:
  • succinimide is understood in the art to include many of the amide, imide, etc. species that are also formed by the reaction of a succinic anhydride with an amine and is so used herein.
  • Alkenyl or alkyl succinimides are disclosed in numerous references and are well known in the art. Certain fundamental types of succinimides and related materials encompassed by the term of art "succinimide" are taught in U.S. Patent Nos.
  • particle emissions refers to solid or liquid emissions which may form either from incomplete oxidation of carbon in the combustion chamber, or from precursors contained in the emission gases (either before or after emission from the engine exhaust system). Of particular concern are particles which are emitted in the size range below 100 nanometers.
  • fuel or "hydrocarbon-based fuel” refers to normally liquid hydrocarbons having boiling points in the range of gasoline fuels.
  • the present invention employs a fuel composition containing an alkylene oxide-adducted hydrocarbyl amide having from 3 to 50 moles, preferably from 3 to 20 moles, more preferably from 4 to 15 moles, of alkylene oxide per mole of hydrocarbyl amide.
  • the alkylene oxide-adducted hydrocarbyl amides will have the following structure: wherein,
  • the hydrocarbyl group, R is alkyl or alkenyl, more preferably, alkyl.
  • e and f are independently integers from about 0 to 20, such that the total of e plus f ranges from about 3 to 20. More preferably, e and f are independently integers from about 0 to 15, and that the total of e plus f ranges from about 4 to 15.
  • the hydrocarbyl amide of the present invention is typically the reaction product of a C 4 to C 75 , preferably C 6 to C 24 , more preferably C 6 to C 20, fatty acid or ester, and ammonia, or a mono- or di-hydroxy hydrocarbon amine, wherein the hydrocarbyl amide has the following structure: wherein R and R' are as defined above and a is an integer from about 0 to 2. Preferably, a is 0.
  • the acid moiety may preferably be RCO- wherein R is preferably an alkyl or alkenyl hydrocarbon group containing about 5 to 19 carbon atoms typified by caprylic, caproic, capric, lauric, myristic, palmitic, stearic, oleic, linoleic, etc.
  • R is preferably an alkyl or alkenyl hydrocarbon group containing about 5 to 19 carbon atoms typified by caprylic, caproic, capric, lauric, myristic, palmitic, stearic, oleic, linoleic, etc.
  • the acid is saturated although unsaturated acid may be present.
  • the reactant bearing the acid moiety may be natural oil: coconut, babassu, palm kernel, palm, olive, castor, peanut, rape, beef tallow, lard, lard oil, whale blubber, sunflower, etc.
  • oils which may be employed will contain several acid moieties, the number and type varying with the source of the oil.
  • the acid moiety may be supplied in a fully esterified compound or one which is less than fully esterified, e.g., glyceryl tri-stearate, glyceryl di-laurate, glyceryl mono-oleate, etc.
  • Esters of polyols, including diols and polyalkylene glycols may be employed such as esters of mannitol, sorbitol, pentaerythritol, polyoxyethylene polyol, etc.
  • Ammonia or a mono- or di-(hydroxyhydrocarbon) amine with a primary or secondary amine nitrogen may be reacted to form the hydrocarbyl amides of the present invention.
  • the mono- or di-(hydroxyhydrocarbon) amines may be characterized by the formula: HN(R'OH) 2-b H b wherein R' is as defined above and b is 0 or 1.
  • Typical amines may include, but are not limited to, ethanolamine, diethanolamine, propanolamine, isopropanolamine, dipropanolamine, diisopropanolamine, butanolamines etc.
  • Reaction may be effected by heating the oil containing the acid moiety and the amine in equivalent quantities to produce the desired product.
  • Reaction may typically be effected by maintaining the reactants at about 100 °C. to 200 °C., preferably about 120 ° C. to 150 °C. for 1 to about 10 hours, preferably about 4 hours.
  • Reaction may be carried out in a solvent, preferably one which is compatible with the ultimate composition in which the product is to be used.
  • Typical reaction products which may be employed in the practice of this invention may include those formed from esters having the following acid moieties and alkanolamines: TABLE 1 Acid Moiety in Ester Amine Lauric Acid propanolamine Lauric Acid diethanolamine Lauric Acid ethanolamine Lauric Acid dipropanolamine Palmitic Acid diethanolamine Palmitic Acid ethanolamine Stearic Acid diethanolamine Stearic Acid ethanolamine
  • Other useful mixed reaction products with alkanolamines may be formed from the acid component of the following oils: coconut, babassu, palm kernel, palm, olive, castor, peanut, rape, beef tallow, lard, whale blubber, corn, tall, cottonseed, etc.
  • the desired reaction product may be prepared by the reaction of (i) a fatty acid ester of a polyhydroxy compound (wherein some or all of the OH groups are esterified) and (ii) diethanolamine.
  • Typical fatty acid esters may include esters of the fatty acids containing about 6 to 20, preferably about 8 to 16, more preferably about 12, carbon atoms. These acids may be characterized by the formula RCOOH wherein R is an alkyl hydrocarbon group containing about 7 to 15, preferably about 11 to 13, more preferably about 11 carbon atoms.
  • Typical of the fatty acid esters which may be employed may be glyceryl tri-laurate, glyceryl tri-stearate, glyceryl tri-palmitate, glyceryl di-laurate, glyceryl mono-stearate, ethylene glycol di-laurate, pentaerythritol tetra-stearate, pentaerythritol tri-laurate, sorbitol mono-palmitate, sorbitol penta-stearate, propylene glycol mono-stearate.
  • esters may include those wherein the acid moiety is a mixture as is typified by the following natural oils: coconut, babassu, palm kernel, palm, olive, caster, peanut, rape, beef tallow, lard (leaf), lard oil, whale blubber.
  • the preferred ester is coconut oil which contains the following acid moieties: TABLE 2 Fatty Acid Moiety Wt. % Caprylic 8.0 Capric 7.0 Lauric 48.0 Myristic 17.5 Palmitic 8.2 Stearic 2.0 Oleic 6.0 Linoleic 2.5
  • alkyl amides suitable for the present invention include, but are not limited to, octyl amide (capryl amide), nonyl amide, decyl amide (caprin amide), undecyl amide dodecyl amide (lauryl amide), tridecyl amide, teradecyl amide (myristyl amide), pentadecyl amide, hexadecyl amide (palmityl amide), heptadecyl amide, octadecyl amide (stearyl amide), nonadecyl amide, eicosyl amide (alkyl amide), or docosyl amide (behenyl amide).
  • alkenyl amides include, but are not limited to, palmitoolein amide, oleyl amide, isooleyl amide, elaidyl amide, linolyl amide, linoleyl amide.
  • the alkyl or alkenyl amide is a coconut oil fatty acid amide.
  • the alkylene oxide which is adducted to the hydrocarbyl amide is derived from an alkylene group having from about 2 to 5 carbon atoms.
  • the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and pentylene oxide. Ethylene oxide and propylene oxide are particularly preferred.
  • mixtures of alkylene oxides are desirable in which, for example, a mixture of ethylene oxide and propylene oxide may be used to form the alkylene oxide-adducted hydrocarbyl amide of the present invention.
  • a respective molar ratio of from about 1:5 to 5:1 may be used in the case of a mixture of ethylene oxide and propylene oxide.
  • a desirable number of moles of the alkylene oxide to be adducted to the hydrocarbyl amide will be in the range of from 3 to 50 moles of alkylene oxide per 1 mole of hydrocarbyl amide. More preferably, the range of from 3 to 20 moles is particularly desirable. Most preferably, the range of from about 4 to 15 moles is most preferable as a molar range of the alkylene oxide per mole of hydrocarbyl amide.
  • the alkylene oxide-adducted hydrocarbyl amide is derived from an alkylene oxide-adduction reaction involving a coconut oil fatty acid amide with ethylene oxide and propylene oxide.
  • the alkylene oxide adducted hydrocarbyl amides useful as fuel additives in the present invention can be also a mixed product wherein various types and different moles of alkylene oxide and can be adducted to various types of hydrocarbyl amides.
  • the amount of alkylene oxide-adducted hydrocarbyl amide added in a hydrocarbon-based fuel will typically be in a range of from about 10 to 10,000 ppm by weight per weight (active component ratio).
  • the desired range is from 10 to 5,000 ppm by weight, more preferably a range of from about 10 to 1,000 ppm by weight and most preferably a range from 50 to 500 ppm by weight, based on the total weight of the fuel composition.
  • the fuel composition employed in the method of the present invention may also contain at least one nitrogen-containing detergent additive.
  • Suitable detergent additives for use in this invention include, for example, aliphatic hydrocarbyl amines, hydrocarbyl-substituted poly(oxyalkylene) amines, hydrocarbyl-substituted succinimides, Mannich reaction products, nitro and amino aromatic esters of polyalkylphenoxyalkanols,polyalkylphenoxyaminoalkanes, polyalkylpyrrolidines, and mixtures thereof.
  • the aliphatic hydrocarbyl-substituted amines which may be employed in the present invention are typically straight or branched chain hydrocarbyl-substituted amines having at least one basic nitrogen atom and wherein the hydrocarbyl group has a number average molecular weight of about 700 to 3,000.
  • Preferred aliphatic hydrocarbyl-substituied amines include polyisobutenyl and polyisobutyl monoamines and polyamines.
  • aliphatic hydrocarbyl amines employed in this invention are prepared by conventional procedures known in the art. Such aliphatic hydrocarbyl amines and their preparations are described in detail in U.S. Patent Nos. 3,438,757 ; 3,565,804 ; 3,574,576 ; 3,848,056 ; 3,960,515 ; 4,832,702 ; and 6,203,584 .
  • hydrocarbyl-substituted poly(oxyalkylene) amines also referred to as polyether amines.
  • Typical hydrocarbyl-substituted poly(oxyalkylene) amines include hydrocarbyl poly(oxyalkylene) monoamines and polyamines wherein the hydrocarbyl group contains from 1 to about 30 carbon atoms, the number of oxyalkylene units will range from about 5 to 100, and the amine moiety is derived from ammonia, a primary alkyl or secondary dialkyl monoamine, or a polyamine having a terminal amino nitrogen atom.
  • the oxyalkylene moiety will be oxypropylene or oxybutylene or a mixture thereof.
  • Such hydrocarbyl-substituted poly(oxyalkylene) amines are described, for example, in U.S. Patent No. 6,217,624 to Morris et al. , and U.S. Patent No. 5,112,364 to Rath et al. .
  • a preferred type of hydrocarbyl-substituted poly(oxyalkylene) monoamine is an alkylphenyl poly(oxyalkylene)monoamine wherein the poly(oxyalkylene) moiety contains oxypropylene units or oxybutylene units or mixtures of oxypropylene and oxybutylene units.
  • the alkyl group on the alkylphenyl moiety is a straight or branched-chain alkyl of 1 to about 24 carbon atoms.
  • An especially preferred alkylphenyl moiety is tetrapropenylphenyl, that is, where the alkyl group is a branched-chain alkyl of about 12 carbon atoms derived from propylene tetramer.
  • hydrocarbyl-substituted poly(oxyalkylene)amine finding use in the present invention are hydrocarbyl-substituted poly(oxyalkylene) aminocarbamates disclosed for example, in U.S. Patent Nos. 4,288,612 ; 4,236,020 ; 4,160,648 ; 4,191,537 ; 4,270,930 ; 4,233,168 ; 4,197,409 ; 4,243,798 and 4,881,945 .
  • hydrocarbyl poly(oxyalkylene)aminocarbamates contain at least one basic nitrogen atom and have an average molecular weight of about 500 to 10,000, preferably about 500 to 5,000, and more preferably about 1,000 to 3,000.
  • a preferred aminocarbamate is alkylphenyl poly(oxybutylene) aminocarbamate wherein the amine moiety is derived from ethylene diamine or diethylene triamine.
  • a further class of detergent additives suitable for use in the present invention are the hydrocarbyl-substituted succinimides.
  • Typical hydrocarbyl-substituted succinimides include polyalkyl and polyalkenyl succinimides wherein the polyalkyl or polyalkenyl group has an average molecular weight of about 500 to 5,000, and preferably about 700 to 3,000.
  • the hydrocarbyl-substituted succinimides are typically prepared by reacting a hydrocarbyl-substituted succinic anhydride with an amine or polyamine having at least one reactive hydrogen bonded to an amine nitrogen atom.
  • Preferred hydrocarbyl-substituted succinimides include polyisobutenyl and polyisobutanyl succinimides, and derivatives thereof.
  • hydrocarbyl-substituted succinimides finding use in the present invention are described; for example, in U.S. Patent Nos. 5,393,309 ; 5,588,973 ; 5,620,486 ; 5,916,825 ; 5,954,843 ; 5,993,497 ; and 6,114,542 , and British Patent No. 1,486,144 .
  • Mannich reaction products which are typically obtained from the Mannich condensation of a high molecular weight alkyl-substituted hydroxyaromatic compound, an amine containing at least one reactive hydrogen, and an aldehyde.
  • the high molecular weight alkyl-substituted hydroxyaromatic compounds are preferably polyalkylphenols, such as polypropylphenol and polybutylphenol, especially polyisobutylphenol, wherein the polyalkyl group has an average molecular weight of about 600 to 3,000.
  • the amine reactant is typically a polyamine, such as alkylene polyamines, especially ethylene or polyethylene polyamines, for example, ethylene diamine, diethylene triamine, triethylene tetramine, and the like.
  • the aldehyde reactant is generally an aliphatic aldehyde, such as formaldehyde, including paraformaldehyde and formalin, and acetaldehyde.
  • a preferred Mannich reaction product is obtained by condensing a polyisobutylphenol with formaldehyde and diethylene triamine, wherein the polyisobutyl group has an average molecular weight of about 1,000.
  • a still further class of detergent additive suitable for use in the present invention are polyalkylphenoxyaminoalkanes.
  • Preferred polyalkylphenoxyaminoalkanes include those having the formula: wherein:
  • a preferred class of detergent additive finding use in the present invention are nitro and amino aromatic esters of polyalkylphenoxyalkanols.
  • Preferred nitro and amino aromatic esters of polyalkylphenoxyalkanols include those having the formula: wherein:
  • Preferred hydrocarbyl-substituted poly(oxyalkylene) amines which may be employed as detergent additives in the present invention include those having the formula: wherein:
  • hydrocarbyl-substituted poly(oxyalkylene) amines of Formula V above and their preparations are described in detail in U.S. Patent No. 6,217,624 .
  • hydrocarbyl-substituted poly(oxyalkylene) amines of Formula V are preferably utilized either by themselves or in combination with other detergent additives, particularly with the polyalkylphenoxyaminoalkanes of Formula III or the nitro and amino aromatic esters of polyalkylphenoxyalkanols, shown in Formula IV. More preferably, the detergent additives employed in the present invention will be combinations of the hydrocarbyl-substituted poly(oxyalkylene) amines of Formula V with the nitro and amino aromatic esters of polyalkylphenoxyalkanols shown in Formula IV.
  • a particularly preferred hydrocarbyl-substituted poly(oxyalkylene) amine detergent additive is dodecylphenoxy poly(oxybutylene) amine and a particularly preferred combination of detergent additives is the combination of dodecylphenoxy poly(oxybutylene) amine and 4-polyisobutylphenoxyethyl para-aminobenzoate.
  • the carburetor/injector detergent additives are typically relatively low molecular weight compounds having a number average molecular weight of about 100 to 600 and possessing at least one polar moiety and at least one non-polar moiety.
  • the non-polar moiety is typically a linear or branched-chain alkyl or alkenyl group having about 6 to 40 carbon atoms.
  • the polar moiety is typically nitrogen-containing.
  • Typical nitrogen-containing polar moieties include amines (for example, as described in U.S. Patent No. 5,139,534 and PCT International Publication No.
  • WO 90/10051 ether amines (for example, as described in U.S. Patent No. 3,849,083 and PCT International Publication No. WO 90/10051 ), amides, polyamides and amide-esters (for example, as described in U.S. Patent Nos. 2,622,018 ; 4,729,769 ; and 5,139,534 ; and European Patent Publication No. 149,486 ), imidazolines (for example, as described in U.S. Patent No. 4,518,782 ), amine oxides (for example, as described in U.S. Patent Nos. 4,810,263 and 4,836,829 ), hydroxyamines (for example, as described in U.S. Patent No. 4,409,000 ), and succinimides (for example, as described in U.S. Patent No. 4,292,046 ).
  • imidazolines for example, as described in U.S. Patent No. 4,518,782
  • amine oxides for example,
  • Still other detergent additives useful in the present invention are polyalkylpyrrolidines, as described in U.S. Patent No. 6,033,446 , having the following formula: or a fuel-soluble salt thereof; wherein
  • R 1 is a polyalkyl group having an average molecular weight in the range of from about 500 to 3,000, more preferably from about 700 to 2,000, and most preferably from about 700 to 1,500.
  • R 1 is preferably a polyalkyl group derived from polypropylene, polybutene, or polyalphaolefin oligomers of 1-octene or 1-decene. More preferably, R 1 is a polyalkyl group derived from polyisobutene. Most preferably, R 1 is a polyalkyl group derived from a highly reactive polyisobutene containing at least about 20% of a methylvinylidene isomer.
  • R 2 is a straight- or branched-chain alkylene group having from about 2 to 4 carbon atoms. Most preferably, R 2 contains about 2 or 3 carbon atoms.
  • R 3 is H.
  • x is an integer of from 0 to about 2. Most preferably, x is 0.
  • the fuel additive composition of the present invention can also be combined with one, two, or more other additives publicly known to be used in hydrocarbon-based fuels.
  • additives include, but are not limited to, deposit control additives such as detergents or dispersants, corrosion inhibitors, oxidation inhibitors, metal deactivators, demulsifiers, static electricity preventing agents, anti-coagulation agents, anti-knock agents, oxygenates, flow improvers, pour point depressants, cetane improvers and auxiliary-solution agents.
  • Diesel fuels will typically contain various additives in conventional amounts.
  • the additives include cold flow improvers, pour point depressants, storage stabilizers, corrosion inhibitors, anti-static agents, biocidal additives, combustion modifiers or smoke suppressants, dyes, and deodorants. Examples of such additives are known to the art as well as to the literature. Accordingly, only a few additives will be discussed in detail.
  • the storage stabilizers they can include various antioxidants which prevent the accumulation of organic peroxides such as hindered phenols, N,N,-dialkyl paraphenylene diamines, paraamino phenols and the like.
  • Color stabilizers constitute another group with specific examples including tertiary amines, secondary amines, imidazolines, tertiary alkyl primary amines, and the like.
  • Another storage stabilizer group are the various metal deactivators for metals which serve as catalysts for oxidation during storage.
  • Yet other storage stabilizers are the various dispersants which keep gummy, insoluble residues and other solids dispersed as small particles so that they do not interfere with the proper burning of the fuel.
  • Such compounds can be oil soluble ethoxylated alkyl phenols, polyisobutylene alkylated succinimides, polyglycol, esters of alkylated succinic anhydrides, and the like.
  • corrosion inhibitors which generally retard the effects of oxygen and/or water, they are generally polar organic molecules which form a monomolecular protective layer over metal surfaces. Chemically, such corrosion inhibitors fall into three general classes: (1) complex carboxylic acids or their salts, (2) organic phosphorus acids and their salts, and (3) ammonium mahogany sulfonates.
  • Combustion modifiers for diesel fuel have been found to suppress the formation of black smoke, that is, unburned carbon particles, in the diesel engine. These additives are believed to not only catalyze the burning of carbon particles to CO 2 , but also to suppress the formation of free carbon in the early stages of the combustion cycle.
  • black smoke that is, unburned carbon particles
  • CO 2 carbon particles
  • free carbon free carbon in the early stages of the combustion cycle.
  • two different types of chemicals are effective in suppressing diesel smoke.
  • the first type comprises barium and calcium salts in amine or sulfonate complexes while the other type consists of metal alkyls of transition elements such as manganese, iron, cobalt, nickel, and the like.
  • Amounts of the various fuel additives in the fuel can vary over a considerable range.
  • a suitable amount of a diesel fuel stabilizer is from about 3 to about 300 ppm.
  • a suitable amount of a corrosion inhibitor is from about 1 to about 100 ppm with a suitable amount of a smoke suppressant being from about 100 to about 5,000 ppm.
  • higher or lower amounts can be utilized depending upon the type of fuel, the type of diesel engine, and the like.
  • Diesel fuels may also contain various sulfur-free and sulfur-containing cetane improvers.
  • the sulfur-free compounds are nitrate cetane improvers which are known to the art as well as to the literature.
  • nitrate cetane improvers are set forth in U.S. Patent Nos. 2,493,284 ; 4,398,505 ; 2,226,298 ; 2,877,749 ; 3,380,815 ; an article " Means of Improving Ignition Quality of Diesel Fuels" by Nygarrd et al, J. Inst.
  • cetane improvers are alkyl nitrates having from about 1 to about 18 carbon atoms and desirably from about 2 to about 13 carbon atoms.
  • nitrate cetane improvers examples include ethyl nitrate, butyl nitrate, amyl nitrate, 2-ethylhexyl nitrate, polyglycol dinitrate, and the like. Amyl nitrate and 2-ethylhexyl nitrate are preferred.
  • Sulfur-containing cetane improvers are described, for example, in U.S. Patent No. 4,943,303 . Combinations of sulfur-containing cetane improvers with sulfur-free cetane improvers, such as nitrate cetane improvers, may also be employed in diesel fuels.
  • a fuel-soluble, nonvolatile carrier fluid or oil may also be used with the alkylene oxide-adducted hydrocarbyl amides employed in the present invention.
  • the carrier fluid is a chemically inert hydrocarbon-soluble liquid vehicle which substantially increases the nonvolatile residue (NVR), or solvent-free liquid fraction of the fuel composition while not overwhelmingly contributing to octane requirement increase.
  • the carrier fluid may be a natural or synthetic oil, such as mineral oil, refined petro!eum oils, synthetic polyalkanes and alkenes, including hydrogenated and unhydrogenated polyalphaolefins, synthetic polyoxyalkylene-derived oils, such as those described, for example, in U.S. Pat. No.
  • test vehicle In order to simulate on-road operating conditions, the test vehicle is placed on a mileage accumulation chassis dynamometer.
  • This dynamometer can be used to load the vehicle (according to a vehicle-specific road-load model) corresponding to cruising conditions at any desired speed.
  • the vehicle fuel system is first drained, flushed of any residual fuel, then re-filled with the test fuel. At this point, the engine is started and the vehicle is operated at a speed of 50 kilometers per hour for 90 minutes to ensure that the engine and drivetrain are at full operating temperature.
  • the vehicle speed is brought to the first operating condition (see Table 3).
  • the vehicle is allowed to operate at this condition for 15 minutes prior to the start of data collection.
  • the vehicle is moved to each of the three remaining operating conditions sequentially, with data collection following the same 15 minute stabilization period.
  • the vehicle is run for 30 minutes at a speed of 50 kilometers per hour, then is shut down.
  • Vehicle Speed Throttle position (% open) 1 40 km/h 3.7 2 60 km/h 4.9 3 80 km/h 6.5 4 100 km/h 13.9
  • a portion of the engine exhaust gas is continuously extracted from the vehicle exhaust system (upstream of the catalytic converter) and is diluted with clean, filtered air to a ratio of approximately 500:1 in a standard free-jet dilution tunnel.
  • a scanning mobility particle sizer (SMPS) is then used to measure the number-weighted particle size distribution in the size range from 5 to 80 nanometers. For each test operating condition, a total of ten size distribution measurements are collected; the total particle number concentration in this size range is then reported as an average of the ten measurements.
  • Fuel “A” was a typical, commercially available California reformulated base gasoline which contained no additives.
  • Fuel “B” was the same base gasoline as fuel “A”, with the addition of a coconut oil fatty acid diethanol amide adducted with 4 moles of propylene oxide at a concentration of 130 ppm. Each fuel was tested twice, in the following order: A - B - B - A. The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (17)

  1. Utilisation d'un hydrocarbylamide modifié par un oxyde d'alkylène et ayant entre 3 et 50 moles d'oxyde d'alkylène par mole d'hydrocarbylamide dans une composition de carburant comprenant une quantité majeure d'hydrocarbures bouillant dans l'intervalle de l'essence, comme agent actif pour réduire les émissions de particules de la combustion de la composition de carburant dans un moteur à combustion interne à allumage par étincelles, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène a la structure suivante :
    Figure imgb0012
    dans laquelle :
    R est un groupe hydrocarbyle ayant entre 4 et 75 atomes de carbone ;
    R' est un groupe alkylène divalent ayant entre 1 et 10 atomes de carbone ;
    R" est un groupe alkylène divalent ayant entre 2 et 5 atomes de carbone ;
    c et d sont indépendamment 0 ou 1 ; et
    e et f sont indépendamment des nombres entiers de 0 à 50, de façon que le total de e plus f est entre 3 et 50.
  2. Utilisation selon la revendication 1, dans laquelle :
    R est un groupe hydrocarbyle ayant entre 6 et 24 atomes de carbone ;
    R' est un groupe alkylène divalent ayant entre 2 et 5 atomes de carbone ;
    R" est un groupe alkylène divalent ayant entre 2 et 3 atomes de carbone ;
    c et d sont tous les deux 1.
  3. Utilisation selon la revendication 1, dans laquelle :
    R est un groupe hydrocarbyle ayant entre 6 et 20 atomes de carbone ;
    R' est un groupe alkylène divalent ayant entre 2 et 3 atomes de carbone.
  4. Utilisation selon la revendication 1, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène a entre 3 et 20 moles d'oxyde d'alkylène par mole d'hydrocarbylamide.
  5. Utilisation selon la revendication 4, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène a entre 4 et 15 moles d'oxyde d'alkylène par mole d'hydrocarbylamide.
  6. Utilisation selon la revendication 1, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène est dérivé d'un amide d'acide gras d'huile de noix de coco.
  7. Utilisation selon la revendication 6, dans laquelle l'amide d'acide gras d'huile de noix de coco est obtenu par la réaction d'un acide gras ou ester d'huile de noix de coco et du diéthanolamine.
  8. Utilisation selon la revendication 1, dans laquelle l'oxyde d'alkylène est sélectionné parmi le groupe constitué par l'oxyde d'éthylène, l'oxyde de propylène, l'oxyde de butylène, l'oxyde de pentylène et leurs mélanges.
  9. Utilisation selon la revendication 8, dans laquelle l'oxyde d'alkylène est sélectionné parmi le groupe constitué par l'oxyde d'éthylène, l'oxyde de propylène, ou un de leurs mélanges.
  10. Utilisation selon la revendication 1, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène est dérivé de la réaction d'un amide d'acide gras d'huile de noix de coco avec l'oxyde d'éthylène ou l'oxyde de propylène.
  11. Utilisation selon la revendication 1, dans laquelle la composition de carburant comprend en plus un détergent contenant de l'azote.
  12. Utilisation selon la revendication 1, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène est présent dans le carburant dans l'intervalle entre 10 et 10.000 ppm en poids.
  13. Utilisation selon la revendication 12, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène est présent dans le carburant dans l'intervalle entre 10 et 5.000 ppm en poids.
  14. Utilisation selon la revendication 13, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène est présent dans le carburant dans l'intervalle entre 10 et 1.000 ppm en poids.
  15. Utilisation selon la revendication 14, dans laquelle l'hydrocarbylamide modifié par un oxyde d'alkylène est présent dans le carburant dans l'intervalle entre 50 et 500 ppm en poids.
  16. Utilisation selon la revendication 1, dans laquelle le moteur à combustion interne est un moteur à allumage par étincelles à injection de port.
  17. Utilisation selon la revendication 1, dans laquelle le moteur à combustion interne est un moteur à allumage par étincelles à injection directe.
EP03255769A 2002-12-20 2003-09-16 Méthode pour réduire les émissions de particules dans les moteurs à combustion interne Expired - Fee Related EP1431374B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US328115 1981-12-07
US10/328,115 US20040118036A1 (en) 2002-12-20 2002-12-20 Method of reducing particulate emissions in internal combustion engines

Publications (2)

Publication Number Publication Date
EP1431374A1 EP1431374A1 (fr) 2004-06-23
EP1431374B1 true EP1431374B1 (fr) 2013-03-13

Family

ID=32393152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03255769A Expired - Fee Related EP1431374B1 (fr) 2002-12-20 2003-09-16 Méthode pour réduire les émissions de particules dans les moteurs à combustion interne

Country Status (4)

Country Link
US (1) US20040118036A1 (fr)
EP (1) EP1431374B1 (fr)
JP (1) JP5036956B2 (fr)
CA (1) CA2440548C (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790924B2 (en) * 2004-11-19 2010-09-07 Chevron Oronite Company Llc Process for preparing alkylene oxide-adducted hydrocarbyl amides
EP1705234A1 (fr) * 2005-03-24 2006-09-27 Basf Aktiengesellschaft Utilisation d'additifs détergents afin d'empêcher ou de réduire la formation des dépôts dans les systèmes d'injection pour moteurs diesel à injection directe
US7744661B2 (en) 2005-05-13 2010-06-29 Chevron Oronite Company Llc Fuel composition containing an alkylene oxide-adducted hydrocarbyl amide having reduced amine by-products
EP2205704B1 (fr) * 2007-09-27 2015-08-26 Innospec Limited Compositions de combustible
EP2317114A4 (fr) * 2008-07-25 2015-10-07 Toyota Motor Co Ltd Epurateur de gaz d'échappement pour moteur à combustion interne
JP2010163529A (ja) * 2009-01-15 2010-07-29 Taihokohzai:Kk 燃料添加剤

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042133A1 (fr) * 1999-01-15 2000-07-20 Infineum International Ltd Compositions combustibles ameliorees

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622018A (en) 1949-10-19 1952-12-16 Socony Vacuum Oil Co Inc Motor fuel
US3849083A (en) 1972-04-14 1974-11-19 Ethyl Corp Gasoline additive
DE2854437A1 (de) * 1978-12-16 1980-06-26 Bayer Ag Kraftstoffe, verfahren zu ihrer herstellung und ihre verwendung
DE2854540A1 (de) * 1978-12-16 1980-06-26 Bayer Ag Kraftstoffe
US4292046A (en) 1979-08-10 1981-09-29 Mobil Oil Corporation Detergent compositions
US4389322A (en) * 1979-11-16 1983-06-21 Mobil Oil Corporation Friction reducing additives and compositions thereof
US4518782A (en) 1981-08-10 1985-05-21 Texaco Inc. Fuel compositions containing N-alkyl glycyl imidazoline
US4409000A (en) 1981-12-14 1983-10-11 The Lubrizol Corporation Combinations of hydroxy amines and carboxylic dispersants as fuel additives
EP0149486A3 (fr) 1984-01-17 1986-10-08 Atlantic Richfield Company Détergents et composition de carburant les contenant
JPS61283690A (ja) * 1985-06-07 1986-12-13 Sanyo Chem Ind Ltd 燃料油添加剤
US4836829A (en) 1986-03-14 1989-06-06 Exxon Research And Engineering Company Fuel composition and process for multi-port fuel injection systems (PNE-509)
US4810263A (en) 1986-04-11 1989-03-07 Exxon Research And Engineering Company Fuel composition
US4729769A (en) * 1986-05-08 1988-03-08 Texaco Inc. Gasoline compositions containing reaction products of fatty acid esters and amines as carburetor detergents
DE3709195A1 (de) 1987-02-10 1988-08-18 Guenther Dr Boehmke Lagerstabile emulgatoren
WO1990010051A1 (fr) 1989-02-21 1990-09-07 Union Oil Company Of California Composition de carburant permettant la regulation de depots sur des soupapes d'admission
GB9007431D0 (en) 1990-04-03 1990-05-30 Shell Int Research Diesel fuel additives
US5458660A (en) * 1994-09-19 1995-10-17 Shell Oil Company Fuel compositions
US5637121A (en) * 1994-12-30 1997-06-10 Chevron Chemical Company Poly(oxyalkylene) aromatic amides and fuel compositions containing the same
JPH09255973A (ja) 1996-03-25 1997-09-30 Oronaito Japan Kk 軽油添加剤及び軽油組成物
EP0948587B1 (fr) * 1996-10-11 2003-05-07 Infineum Holdings BV Compositions de carburant
JP2000256683A (ja) * 1999-03-08 2000-09-19 Nippon Mitsubishi Oil Corp 筒内噴射式ガソリンエンジン用無鉛ガソリン

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042133A1 (fr) * 1999-01-15 2000-07-20 Infineum International Ltd Compositions combustibles ameliorees

Also Published As

Publication number Publication date
EP1431374A1 (fr) 2004-06-23
CA2440548C (fr) 2012-04-10
CA2440548A1 (fr) 2004-06-20
JP2004204232A (ja) 2004-07-22
US20040118036A1 (en) 2004-06-24
JP5036956B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
KR100533490B1 (ko) 연소실 침적물 형성의 저감을 위한 연료 조성물용 첨가제
JP3775743B2 (ja) 燃料組成物用摩擦軽減剤である添加剤およびこれの使用方法
EP3071677B1 (fr) Composition détergente mixte pour lutter contre la formation de dépôts sur les soupapes d'admission
AU689585B2 (en) Fuel additive compositions containing an aliphatic amine, a polyolefin and a poly(oxyalkylene) monool
EP1435386B1 (fr) Utilisation d'une composition d'additifs pour améliorer l'accélération d'un moteur.
CA2541797C (fr) Une composition de carburant contenant un hydrocarbylamide additionne d'un oxyde d'alkylene, ayant des teneurs reduites en sous-produits amines
EP1081208B1 (fr) Dispersants à pouvoir lubrifiant accru
EP1431374B1 (fr) Méthode pour réduire les émissions de particules dans les moteurs à combustion interne
EP1435385B1 (fr) Compositions d'additifs pour carburants et compositions de combustibles les contenant
EP0706552B2 (fr) Compositions d'additif pour carburant contenant une amine aliphatique, une polyolefine et un ester aromatique
EP0887400B9 (fr) Composition de combustible contenant une amine aliphatique et un polyoxyalkylenemonool
US20220145199A1 (en) Fuel additives for mitigating injector nozzle fouling and reducing particulate emissions
JPH10195461A (ja) 吸気弁の焼き付きを防止する方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040714

17Q First examination report despatched

Effective date: 20041209

AKX Designation fees paid

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 60343493

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10L0001220000

Ipc: C10L0001238700

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/224 20060101ALI20120606BHEP

Ipc: C10L 1/2387 20060101AFI20120606BHEP

Ipc: C10L 10/02 20060101ALI20120606BHEP

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60343493

Country of ref document: DE

Effective date: 20130508

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60343493

Country of ref document: DE

Effective date: 20131216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200915

Year of fee payment: 18

Ref country code: DE

Payment date: 20200901

Year of fee payment: 18

Ref country code: GB

Payment date: 20200909

Year of fee payment: 18

Ref country code: FR

Payment date: 20200812

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60343493

Country of ref document: DE

Representative=s name: HL KEMPNER PATENTANWALT, RECHTSANWALT, SOLICIT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60343493

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210916

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522