EP1431374A1 - Méthode pour réduire les émissions de particules dans les moteurs à combustion interne - Google Patents
Méthode pour réduire les émissions de particules dans les moteurs à combustion interne Download PDFInfo
- Publication number
- EP1431374A1 EP1431374A1 EP03255769A EP03255769A EP1431374A1 EP 1431374 A1 EP1431374 A1 EP 1431374A1 EP 03255769 A EP03255769 A EP 03255769A EP 03255769 A EP03255769 A EP 03255769A EP 1431374 A1 EP1431374 A1 EP 1431374A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- amide
- alkylene oxide
- fuel
- hydrocarbyl
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GDOPTJXRTPNYNR-UHFFFAOYSA-N CC1CCCC1 Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/224—Amides; Imides carboxylic acid amides, imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/02—Use of additives to fuels or fires for particular purposes for reducing smoke development
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/1811—Organic compounds containing oxygen peroxides; ozonides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/183—Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
- C10L1/1832—Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
- C10L1/1985—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/223—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/223—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
- C10L1/2235—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom hydroxy containing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/23—Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
- C10L1/231—Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites nitro compounds; nitrates; nitrites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/232—Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2431—Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
- C10L1/2437—Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/12—Engines characterised by fuel-air mixture compression with compression ignition
Definitions
- This invention relates to a method for reducing particulate emissions in an internal combustion engine. More particularly, this invention relates to a method for reducing particulate emissions in an internal combustion engine which comprises operating the internal combustion engine with a particulate emission-reducing fuel composition of the present invention.
- Particulate emissions are solid or liquid emissions (which may form from emission gases either before or after emission from the engine exhaust system). Of particular concern are particles which are emitted in the size range below 100 nanometers. Particles in this size range are referred to as "ultrafine" and are the focus of a great deal of attention due to potential environmental and public health concerns.
- additives have been a common technique for improving the combustion performance of a given fuel for use in internal combustion engines.
- additives e.g. Ferrocene, Tetra-Ethyl Lead, MTBE, etc.
- MTBE Tetra-Ethyl Lead
- the additive disclosed and employed herein possesses none of these drawbacks, and can be used with a wide variety of other existing additives.
- the producer In order to produce a finished hydrocarbon fuel, the producer must highly refine a base feedstock (e.g. crude oil) to create a final product.
- a base feedstock e.g. crude oil
- the final properties of this fuel are largely determined by the refining process used in its production.
- the additive employed in the present invention may be added to lower quality fuels to maintain adequate combustion performance of the finished fuel composition. This allows for a lower degree of base stock refining, thus reducing the total cost per volume required to produce a finished fuel.
- the present invention provides a method for reducing particulate emissions in an internal combustion engine. More particularly, this invention relates to a method for reducing particulate emissions in an internal combustion engine which comprises operating the internal combustion engine with a fuel composition comprising:
- the present invention is directed to the use of an alkylene oxide-adducted hydrocarbyl amide in a fuel composition to reduce particulate emissions in an internal combustion engine.
- the present invention is based on the discovery that particulate emissions can be effectively reduced in internal combustion engines by employing the unique method described herein. Moreover, the method of the present invention is suitable for use in removing such particulate emissions in spark ignition engines (including conventional port fuel injection and direct injection spark ignition engines) and in compression ignition engines (including direct and indirect injection diesel engines as well as homogeneous charge compression ignition engines.
- spark ignition engines including conventional port fuel injection and direct injection spark ignition engines
- compression ignition engines including direct and indirect injection diesel engines as well as homogeneous charge compression ignition engines.
- the present invention involves a method for reducing the particulate emissions in an internal combustion engine, such as gasoline or diesel engines, particularly port fuel injected spark ignition engines, direct injection spark ignition engines or compression ignition engines.
- an internal combustion engine such as gasoline or diesel engines, particularly port fuel injected spark ignition engines, direct injection spark ignition engines or compression ignition engines.
- amino refers to the group: -NH 2.
- hydrocarbyl refers to an organic radical primarily composed of carbon and hydrogen which may be aliphatic, alicyclic, aromatic or combinations thereof, e.g., aralkyl or alkaryl. Such hydrocarbyl groups may also contain aliphatic unsaturation, i.e., olefinic or acetylenic unsaturation, and may contain minor amounts of heteroatoms, such as oxygen or nitrogen, or halogens, such as chlorine. When used in conjunction with carboxylic fatty acids, hydrocarbyl will also include olefinic unsaturation.
- alkyl refers to both straight- and branched-chain alkyl groups.
- lower alkyl refers to alkyl groups having 1 to about 6 carbon atoms and includes primary, secondary and tertiary alkyl groups.
- Typical lower alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl and the like.
- polyalkyl refers to alkyl groups which are generally derived from polyolefins which are polymers or copolymers of mono-olefins, particularly 1-mono-olefins, such as ethylene, propylene, butylene, and the like.
- the mono-olefin employed will have from about 2 to 24 carbon atoms, and more preferably, from about 3 to 12 carbon atoms. More preferred mono-olefins include propylene, butylene, particularly isobutylene, 1-octene, and 1-decene.
- Polyolefins prepared from such mono-olefins include polypropylene, polybutene, especially polyisobutene, and the polyalphaolefins produced from 1-octene and 1-decene.
- alkenyl refers to an alkyl group with unsaturation.
- alkylene oxide refers to a compound having the formula: wherein R 1 and R 2 are each independently hydrogen or lower alkyl having from 1 to about 6 carbon atoms.
- highly reactive polyisobutene refers to a polyisobutene wherein at least about 20% of the residual olefinic double bonds are of the vinylidene type, i.e., represented by the formula:
- succinimide is understood in the art to include many of the amide, imide, etc. species that are also formed by the reaction of a succinic anhydride with an amine and is so used herein.
- Alkenyl or alkyl succinimides are disclosed in numerous references and are well known in the art. Certain fundamental types of succinimides and related materials encompassed by the term of art "succinimide" are taught in U.S. Patent Nos.
- particle emissions refers to solid or liquid emissions which may form either from incomplete oxidation of carbon in the combustion chamber, or from precursors contained in the emission gases (either before or after emission from the engine exhaust system). Of particular concern are particles which are emitted in the size range below 100 nanometers.
- fuel or "hydrocarbon-based fuel” refers to normally liquid hydrocarbons having boiling points in the range of gasoline and diesel fuels.
- the present invention employs a fuel composition containing an alkylene oxide-adducted hydrocarbyl amide having from about 3 to 50 moles, preferably from about 3 to 20 moles, more preferably from about 4 to 15 moles, of alkylene oxide per mole of hydrocarbyl amide.
- the alkylene oxide-adducted hydrocarbyl amides will have the following structure: wherein, R is a hydrocarbyl group having from about 4 to 75, preferably from about 6 to 24, most preferably from about 6 to 20, carbon atoms; R' is a divalent alkylene group having from 1 to about 10, preferably from about 2 to 5, more preferably from about 2 to 3, carbon atoms; R" is a divalent alkylene group having from about 2 to 5, preferably from about 2 to 3, carbon atoms; c and d are independently 0 or 1, preferably both are 1; and e and f are independently integers from about 0 to 50, such that the total of e plus f ranges from about 3 to 50.
- the hydrocarbyl group, R is alkyl or alkenyl, more preferably, alkyl.
- e and f are independently integers from about 0 to 20, such that the total of e plus f ranges from about 3 to 20. More preferably, e and f are independently integers from about 0 to 15, and that the total of e plus f ranges from about 4 to 15.
- the hydrocarbyl amide of the present invention is typically the reaction product of a C 4 to C 75 , preferably C 6 to C 24 , more preferably C 6 to C 20, fatty acid or ester, and ammonia, or a mono- or di-hydroxy hydrocarbon amine, wherein the hydrocarbyl amide has the following structure: wherein R and R' are as defined above and a is an integer from about 0 to 2. Preferably, a is 0.
- the acid moiety may preferably be RCO- wherein R is preferably an alkyl or alkenyl hydrocarbon group containing about 5 to 19 carbon atoms typified by caprylic, caproic, capric, lauric, myristic, palmitic, stearic, oleic, linoleic, etc.
- R is preferably an alkyl or alkenyl hydrocarbon group containing about 5 to 19 carbon atoms typified by caprylic, caproic, capric, lauric, myristic, palmitic, stearic, oleic, linoleic, etc.
- the acid is saturated although unsaturated acid may be present.
- the reactant bearing the acid moiety may be natural oil: coconut, babassu, palm kernel, palm, olive, castor, peanut, rape, beef tallow, lard, lard oil, whale blubber, sunflower, etc.
- oils which may be employed will contain several acid moieties, the number and type varying with the source of the oil.
- the acid moiety may be supplied in a fully esterified compound or one which is less than fully esterified, e.g., glyceryl tri-stearate, glyceryl di-laurate, glyceryl mono-oleate, etc.
- Esters of polyols, including diols and polyalkylene glycols may be employed such as esters of mannitol, sorbitol, pentaerythritol, polyoxyethylene polyol, etc.
- Ammonia or a mono- or di-(hydroxyhydrocarbon) amine with a primary or secondary amine nitrogen may be reacted to form the hydrocarbyl amides of the present invention.
- the mono- or di-(hydroxyhydrocarbon) amines may be characterized by the formula: HN(R'OH) 2-b H b wherein R' is as defined above and b is 0 or 1.
- Typical amines may include, but are not limited to, ethanolamine, diethanolamine, propanolamine, isopropanolamine, dipropanolamine, diisopropanolamine, butanolamines etc.
- Reaction may be effected by heating the oil containing the acid moiety and the amine in equivalent quantities to produce the desired product.
- Reaction may typically be effected by maintaining the reactants at about 100 °C. to 200 °C., preferably about 120 ° C. to 150 °C. for 1 to about 10 hours, preferably about 4 hours.
- Reaction may be carried out in a solvent, preferably one which is compatible with the ultimate composition in which the product is to be used.
- Typical reaction products which may be employed in the practice of this invention may include those formed from esters having the following acid moieties and alkanolamines: Acid Moiety in Ester Amine Lauric Acid propanolamine Lauric Acid diethanolamine Lauric Acid ethanolamine Lauric Acid dipropanolamine Palmitic Acid diethanolamine Palmitic Acid ethanolamine Stearic Acid diethanolamine Stearic Acid ethanolamine
- Other useful mixed reaction products with alkanolamines may be formed from the acid component of the following oils: coconut, babassu, palm kernel, palm, olive, castor, peanut, rape, beef tallow, lard, whale blubber, corn, tall, cottonseed, etc.
- the desired reaction product may be prepared by the reaction of (i) a fatty acid ester of a polyhydroxy compound (wherein some or all of the OH groups are esterified) and (ii) diethanolamine.
- Typical fatty acid esters may include esters of the fatty acids containing about 6 to 20, preferably about 8 to 16, more preferably about 12, carbon atoms. These acids may be characterized by the formula RCOOH wherein R is an alkyl hydrocarbon group containing about 7 to 15, preferably about 11 to 13, more preferably about 11 carbon atoms.
- Typical of the fatty acid esters which may be employed may be glyceryl tri-laurate, glyceryl tri-stearate, glyceryl tri-palmitate, glyceryl di-laurate, glyceryl mono-stearate, ethylene glycol di-laurate, pentaerythritol tetra-stearate, pentaerythritol tri-laurate, sorbitol mono-palmitate, sorbitol penta-stearate, propylene glycol mono-stearate.
- esters may include those wherein the acid moiety is a mixture as is typified by the following natural oils: coconut, babassu, palm kernel, palm, olive, caster, peanut, rape, beef tallow, lard (leaf), lard oil, whale blubber.
- the preferred ester is coconut oil which contains the following acid moieties: Fatty Acid Moiety Wt. % Caprylic 8.0 Capric 7.0 Lauric 48.0 Myristic 17.5 Palmitic 8.2 Stearic 2.0 Oleic 6.0 Linoleic 2.5
- alkyl amides suitable for the present invention include, but are not limited to, octyl amide (capryl amide), nonyl amide, decyl amide (caprin amide), undecyl amide dodecyl amide (lauryl amide), tridecyl amide, teradecyl amide (myristyl amide), pentadecyl amide, hexadecyl amide (palmityl amide), heptadecyl amide, octadecyl amide (stearyl amide), nonadecyl amide, eicosyl amide (alkyl amide), or docosyl amide (behenyl amide).
- alkenyl amides include, but are not limited to, palmitoolein amide, oleyl amide, isooleyl amide, elaidyl amide, linolyl amide, linoleyl amide.
- the alkyl or alkenyl amide is a coconut oil fatty acid amide.
- hydrocarbyl amides from fatty acid esters and alkanolamines is described, for example, in U.S. Patent No. 4,729,769 to Schlicht et al., the disclosure of which is incorporated herein by reference.
- the alkylene oxide which is adducted to the hydrocarbyl amide is derived from an alkylene group having from about 2 to 5 carbon atoms.
- the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and pentylene oxide. Ethylene oxide and propylene oxide are particularly preferred.
- mixtures of alkylene oxides are desirable in which, for example, a mixture of ethylene oxide and propylene oxide may be used to form the alkylene oxide-adducted hydrocarbyl amide of the present invention.
- a respective molar ratio of from about 1:5 to 5:1 may be used in the case of a mixture of ethylene oxide and propylene oxide.
- a desirable number of moles of the alkylene oxide to be adducted to the hydrocarbyl amide will be in the range of from about 3 to 50 moles of alkylene oxide per 1 mole of hydrocarbyl amide. More preferably, the range of from about 3 to 20 moles is particularly desirable. Most preferably, the range of from about 4 to 15 moles is most preferable as a molar range of the alkylene oxide per mole of hydrocarbyl amide.
- the alkylene oxide-adducted hydrocarbyl amide is derived from an alkylene oxide-adduction reaction involving a coconut oil fatty acid amide with ethylene oxide and propylene oxide.
- the alkylene oxide adducted hydrocarbyl amides useful as fuel additives in the present invention can be also a mixed product wherein various types and different moles of alkylene oxide and can be adducted to various types of hydrocarbyl amides.
- the amount of alkylene oxide-adducted hydrocarbyl amide added in a hydrocarbon-based fuel will typically be in a range of from about 10 to 10,000 ppm by weight per weight (active component ratio).
- the desired range is from about 10 to 5,000 ppm by weight, more preferably a range of from about 10 to 1,000 ppm by weight and most preferably a range from about 50 to 500 ppm by weight, based on the total weight of the fuel composition.
- the fuel composition employed in the method of the present invention may also contain at least one nitrogen-containing detergent additive.
- Suitable detergent additives for use in this invention include, for example, aliphatic hydrocarbyl amines, hydrocarbyl-substituted poly(oxyalkylene) amines, hydrocarbyl-substituted succinimides, Mannich reaction products, nitro and amino aromatic esters of polyalkylphenoxyalkanols, polyalkylphenoxyaminoalkanes, polyalkylpyrrolidines, and mixtures thereof.
- the aliphatic hydrocarbyl-substituted amines which may be employed in the present invention are typically straight or branched chain hydrocarbyl-substituted amines having at least one basic nitrogen atom and wherein the hydrocarbyl group has a number average molecular weight of about 700 to 3,000.
- Preferred aliphatic hydrocarbyl-substituted amines include polyisobutenyl and polyisobutyl monoamines and polyamines.
- aliphatic hydrocarbyl amines employed in this invention are prepared by conventional procedures known in the art. Such aliphatic hydrocarbyl amines and their preparations are described in detail in U.S. Patent Nos. 3,438,757; 3,565,804; 3,574,576; 3,848,056; 3,960,515; 4,832,702; and 6,203,584, the disclosures of which are incorporated herein by reference.
- hydrocarbyl-substituted poly(oxyalkylene) amines also referred to as polyether amines.
- Typical hydrocarbyl-substituted poly(oxyalkylene) amines include hydrocarbyl poly(oxyalkylene) monoamines and polyamines wherein the hydrocarbyl group contains from 1 to about 30 carbon atoms, the number of oxyalkylene units will range from about 5 to 100, and the amine moiety is derived from ammonia, a primary alkyl or secondary dialkyl monoamine, or a polyamine having a terminal amino nitrogen atom.
- the oxyalkylene moiety will be oxypropylene or oxybutylene or a mixture thereof.
- Such hydrocarbyl-substituted poly(oxyalkylene) amines are described, for example, in U.S. Patent No. 6,217,624 to Morris et al., and U.S. Patent No. 5,112,364 to Rath et al., the disclosures of which are incorporated herein by reference.
- a preferred type of hydrocarbyl-substituted poly(oxyalkylene) monoamine is an alkylphenyl poly(oxyalkylene)monoamine wherein the poly(oxyalkylene) moiety contains oxypropylene units or oxybutylene units or mixtures of oxypropylene and oxybutylene units.
- the alkyl group on the alkylphenyl moiety is a straight or branched-chain alkyl of 1 to about 24 carbon atoms.
- An especially preferred alkylphenyl moiety is tetrapropenylphenyl, that is, where the alkyl group is a branched-chain alkyl of about 12 carbon atoms derived from propylene tetramer.
- hydrocarbyl-substituted poly(oxyalkylene)amine finding use in the present invention are hydrocarbyl-substituted poly(oxyalkylene) aminocarbamates disclosed for example, in U.S. Patent Nos. 4,288,612; 4,236,020; 4,160,648; 4,191,537; 4,270,930; 4,233,168; 4,197,409; 4,243,798 and 4,881,945, the disclosure of each of which are incorporated herein by reference.
- hydrocarbyl poly(oxyalkylene)aminocarbamates contain at least one basic nitrogen atom and have an average molecular weight of about 500 to 10,000, preferably about 500 to 5,000, and more preferably about 1,000 to 3,000.
- a preferred aminocarbamate is alkylphenyl poly(oxybutylene) aminocarbamate wherein the amine moiety is derived from ethylene diamine or diethylene triamine.
- a further class of detergent additives suitable for use in the present invention are the hydrocarbyl-substituted succinimides.
- Typical hydrocarbyl-substituted succinimides include polyalkyl and polyalkenyl succinimides wherein the polyalkyl or polyalkenyl group has an average molecular weight of about 500 to 5,000, and preferably about 700 to 3,000.
- the hydrocarbyl-substituted succinimides are typically prepared by reacting a hydrocarbyl-substituted succinic anhydride with an amine or polyamine having at least one reactive hydrogen bonded to an amine nitrogen atom.
- Preferred hydrocarbyl-substituted succinimides include polyisobutenyl and polyisobutanyl succinimides, and derivatives thereof.
- hydrocarbyl-substituted succinimides finding use in the present invention are described; for example, in U.S. Patent Nos. 5,393,309; 5,588,973; 5,620,486; 5,916,825; 5,954,843; 5,993,497; and 6,114,542, and British Patent No. 1,486,144, the disclosure of each of which are incorporated herein by reference.
- Mannich reaction products which are typically obtained from the Mannich condensation of a high molecular weight alkyl-substituted hydroxyaromatic compound, an amine containing at least one reactive hydrogen, and an aldehyde.
- the high molecular weight alkyl-substituted hydroxyaromatic compounds are preferably polyalkylphenols, such as polypropylphenol and polybutylphenol, especially polyisobutylphenol, wherein the polyakyl group has an average molecular weight of about 600 to 3,000.
- the amine reactant is typically a polyamine, such as alkylene polyamines, especially ethylene or polyethylene polyamines, for example, ethylene diamine, diethylene triamine, triethylene tetramine, and the like.
- the aldehyde reactant is generally an aliphatic aldehyde, such as formaldehyde, including paraformaldehyde and formalin, and acetaldehyde.
- a preferred Mannich reaction product is obtained by condensing a polyisobutylphenol with formaldehyde and diethylene triamine, wherein the polyisobutyl group has an average molecular weight of about 1,000.
- a still further class of detergent additive suitable for use in the present invention are polyalkylphenoxyaminoalkanes.
- Preferred polyalkylphenoxyaminoalkanes include those having the formula: wherein:
- a preferred class of detergent additive finding use in the present invention are nitro and amino aromatic esters of polyalkylphenoxyalkanols.
- Preferred nitro and amino aromatic esters of polyalkylphenoxyalkanols include those having the formula: wherein:
- Preferred hydrocarbyl-substituted poly(oxyalkylene) amines which may be employed as detergent additives in the present invention include those having the formula: wherein:
- hydrocarbyl-substituted poly(oxyalkylene) amines of Formula V above and their preparations are described in detail in U.S. Patent No. 6,217,624, the disclosure of which is incorporated herein by reference.
- hydrocarbyl-substituted poly(oxyalkylene) amines of Formula V are preferably utilized either by themselves or in combination with other detergent additives, particularly with the polyalkylphenoxyaminoalkanes of Formula III or the nitro and amino aromatic esters of polyalkylphenoxyalkanols shown in Formula IV. More preferably, the detergent additives employed in the present invention will be combinations of the hydrocarbyl-substituted poly(oxyalkylene) amines of Formula V with the nitro and amino aromatic esters of polyalkylphenoxyalkanols shown in Formula IV.
- a particularly preferred hydrocarbyl-substituted poly(oxyalkylene) amine detergent additive is dodecylphenoxy poly(oxybutylene) amine and a particularly preferred combination of detergent additives is the combination of dodecylphenoxy poly(oxybutylene) amine and 4-polyisobutylphenoxyethyl para-aminobenzoate.
- the carburetor/injector detergent additives are typically relatively low molecular weight compounds having a number average molecular weight of about 100 to 600 and possessing at least one polar moiety and at least one non-polar moiety.
- the non-polar moiety is typically a linear or branched-chain alkyl or alkenyl group having about 6 to 40 carbon atoms.
- the polar moiety is typically nitrogen-containing.
- Typical nitrogen-containing polar moieties include amines (for example, as described in U.S. Patent No. 5,139,534 and PCT International Publication No.
- WO 90/10051 ether amines (for example, as described in U.S. Patent No. 3,849,083 and PCT International Publication No. WO 90/10051), amides, polyamides and amide-esters (for example, as described in U.S. Patent Nos. 2,622,018; 4,729,769; and 5,139,534; and European Patent Publication No. 149,486), imidazolines (for example, as described in U.S. Patent No. 4,518,782), amine oxides (for example, as described in U.S. Patent Nos. 4,810,263 and 4,836,829), hydroxyamines (for example, as described in U.S. Patent No. 4,409,000), and succinimides (for example, as described in U.S. Patent No. 4,292,046).
- imidazolines for example, as described in U.S. Patent No. 4,518,782
- amine oxides for example, as described in U.S. Patent No
- Still other detergent additives useful in the present invention are polyalkylpyrrolidines, as described in U.S. Patent No. 6,033,446, the disclosure of which is incorporated herein by reference, having the following formula: or a fuel-soluble salt thereof; wherein R 1 is a polyalkyl group having an average molecular weight in the range of from about 500 to 5,000; R 2 is a straight- or branched-chain alkylene group having from about 2 to 6 carbon atoms; R 3 is H or CH 3 ; and x is an integer from 0 to about 4.
- R 1 is a polyalkyl group having an average molecular weight in the range of from about 500 to 3,000, more preferably from about 700 to 2,000, and most preferably from about 700 to 1,500.
- R 1 is preferably a polyalkyl group derived from polypropylene, polybutene, or polyalphaolefin oligomers of 1-octene or 1-decene. More preferably, R 1 is a polyalkyl group derived from polyisobutene. Most preferably, R 1 is a polyalkyl group derived from a highly reactive polyisobutene containing at least about 20% of a methylvinylidene isomer.
- R 2 is a straight- or branched-chain alkylene group having from about 2 to 4 carbon atoms. Most preferably, R 2 contains about 2 or 3 carbon atoms.
- R 3 is H.
- x is an integer of from 0 to about 2. Most preferably, x is 0.
- the fuel additive composition of the present invention can also be combined with one, two, or more other additives publicly known to be used in hydrocarbon-based fuels.
- additives include, but are not limited to, deposit control additives such as detergents or dispersants, corrosion inhibitors, oxidation inhibitors, metal deactivators, demulsifiers, static electricity preventing agents, anti-coagulation agents, anti-knock agents, oxygenates, flow improvers, pour point depressants, cetane improvers and auxiliary-solution agents.
- Diesel fuels will typically contain various additives in conventional amounts.
- the additives include cold flow improvers, pour point depressants, storage stabilizers, corrosion inhibitors, anti-static agents, biocidal additives, combustion modifiers or smoke suppressants, dyes, and deodorants. Examples of such additives are known to the art as well as to the literature. Accordingly, only a few additives will be discussed in detail.
- the storage stabilizers they can include various antioxidants which prevent the accumulation of organic peroxides such as hindered phenols, N,N,-dialkyl paraphenylene diamines, paraamino phenols and the like.
- Color stabilizers constitute another group with specific examples including tertiary amines, secondary amines, imidazolines, tertiary alkyl primary amines, and the like.
- Another storage stabilizer group are the various metal deactivators for metals which serve as catalysts for oxidation during storage.
- Yet other storage stabilizers are the various dispersants which keep gummy, insoluble residues and other solids dispersed as small particles so that they do not interfere with the proper burning of the fuel.
- Such compounds can be oil soluble ethoxylated alkyl phenols, polyisobutylene alkylated succinimides, polyglycol, esters of alkylated succinic anhydrides, and the like.
- corrosion inhibitors which generally retard the effects of oxygen and/or water, they are generally polar organic molecules which form a monomolecular protective layer over metal surfaces. Chemically, such corrosion inhibitors fall into three general classes: (1) complex carboxylic acids or their salts, (2) organic phosphorus acids and their salts, and (3) ammonium mahogany sulfonates.
- Combustion modifiers for diesel fuel have been found to suppress the formation of black smoke, that is, unburned carbon particles, in the diesel engine. These additives are believed to not only catalyze the burning of carbon particles to CO 2 , but also to suppress the formation of free carbon in the early stages of the combustion cycle.
- black smoke that is, unburned carbon particles
- CO 2 carbon particles
- free carbon free carbon in the early stages of the combustion cycle.
- two different types of chemicals are effective in suppressing diesel smoke.
- the first type comprises barium and calcium salts in amine or sulfonate complexes while the other type consists of metal alkyls of transition elements such as manganese, iron, cobalt, nickel, and the like.
- Amounts of the various fuel additives in the fuel can vary over a considerable range.
- a suitable amount of a diesel fuel stabilizer is from about 3 to about 300 ppm.
- a suitable amount of a corrosion inhibitor is from about 1 to about 100 ppm with a suitable amount of a smoke suppressant being from about 100 to about 5,000 ppm.
- higher or lower amounts can be utilized depending upon the type of fuel, the type of diesel engine, and the like.
- Diesel fuels may also contain various sulfur-free and sulfur-containing cetane improvers.
- the sulfur-free compounds are nitrate cetane improvers which are known to the art as well as to the literature.
- nitrate cetane improvers are set forth in U.S. Patent Nos. 2,493,284; 4,398,505; 2,226,298; 2,877,749; 3,380,815; an article "Means of Improving Ignition Quality of Diesel Fuels" by Nygarrd et al, J. Inst. Petroleum, 27, 348-368 (1941); an article "Preflame Reactions in Diesel Engines", Part 1, by Gardner et al, The Institute of Petroleum, Vol.
- the cetane improvers are alkyl nitrates having from about 1 to about 18 carbon atoms and desirably from about 2 to about 13 carbon atoms.
- specific nitrate cetane improvers include ethyl nitrate, butyl nitrate, amyl nitrate, 2-ethylhexyl nitrate, polyglycol dinitrate, and the like.
- Amyl nitrate and 2-ethylhexyl nitrate are preferred.
- Sulfur-containing cetane improvers are described, for example, in U.S. Patent No. 4,943,303. Combinations of sulfur-containing cetane improvers with sulfur-free cetane improvers, such as nitrate cetane improvers, may also be employed in diesel fuels.
- a fuel-soluble, nonvolatile carrier fluid or oil may also be used with the alkylene oxide-adducted hydrocarbyl amides employed in the present invention.
- the carrier fluid is a chemically inert hydrocarbon-soluble liquid vehicle which substantially increases the nonvolatile residue (NVR), or solvent-free liquid fraction of the fuel composition while not overwhelmingly contributing to octane requirement increase.
- the carrier fluid may be a natural or synthetic oil, such as mineral oil, refined petroleum oils, synthetic polyalkanes and alkenes, including hydrogenated and unhydrogenated polyalphaolefins, synthetic polyoxyalkylene-derived oils, such as those described, for example, in U.S. Pat. No.
- test vehicle In order to simulate on-road operating conditions, the test vehicle is placed on a mileage accumulation chassis dynamometer.
- This dynamometer can be used to load the vehicle (according to a vehicle-specific road-load model) corresponding to cruising conditions at any desired speed.
- the vehicle fuel system is first drained, flushed of any residual fuel, then re-filled with the test fuel. At this point, the engine is started and the vehicle is operated at a speed of 50 kilometers per hour for 90 minutes to ensure that the engine and drivetrain are at full operating temperature.
- the vehicle speed is brought to the first operating condition (see Table 3).
- the vehicle is allowed to operate at this condition for 15 minutes prior to the start of data collection.
- the vehicle is moved to each of the three remaining operating conditions sequentially, with data collection following the same 15 minute stabilization period.
- the vehicle is run for 30 minutes at a speed of 50 kilometers per hour, then is shut down.
- Engine Test Operating Conditions Operating condition # Vehicle Speed Throttle position (% open) 1 40 km/h 3.7 2 60 km/h 4.9 3 80 km/h 6.5 4 100 km/h 13.9
- a portion of the engine exhaust gas is continuously extracted from the vehicle exhaust system (upstream of the catalytic converter) and is diluted with clean, filtered air to a ratio of approximately 500:1 in a standard free-jet dilution tunnel.
- a scanning mobility particle sizer (SMPS) is then used to measure the number-weighted particle size distribution in the size range from 5 to 80 nanometers. For each test operating condition, a total of ten size distribution measurements are collected; the total particle number concentration in this size range is then reported as an average of the ten measurements.
- Fuel “A” was a typical, commercially available California reformulated base gasoline which contained no additives.
- Fuel “B” was the same base gasoline as fuel “A”, with the addition of a coconut oil fatty acid diethanol amide adducted with 4 moles of propylene oxide at a concentration of 130 ppm. Each fuel was tested twice, in the following order: A - B - B - A. The results are shown in Table 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/328,115 US20040118036A1 (en) | 2002-12-20 | 2002-12-20 | Method of reducing particulate emissions in internal combustion engines |
US328115 | 2002-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1431374A1 true EP1431374A1 (fr) | 2004-06-23 |
EP1431374B1 EP1431374B1 (fr) | 2013-03-13 |
Family
ID=32393152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03255769A Expired - Lifetime EP1431374B1 (fr) | 2002-12-20 | 2003-09-16 | Méthode pour réduire les émissions de particules dans les moteurs à combustion interne |
Country Status (4)
Country | Link |
---|---|
US (1) | US20040118036A1 (fr) |
EP (1) | EP1431374B1 (fr) |
JP (1) | JP5036956B2 (fr) |
CA (1) | CA2440548C (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7744661B2 (en) | 2005-05-13 | 2010-06-29 | Chevron Oronite Company Llc | Fuel composition containing an alkylene oxide-adducted hydrocarbyl amide having reduced amine by-products |
US7790924B2 (en) | 2004-11-19 | 2010-09-07 | Chevron Oronite Company Llc | Process for preparing alkylene oxide-adducted hydrocarbyl amides |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1705234A1 (fr) * | 2005-03-24 | 2006-09-27 | Basf Aktiengesellschaft | Utilisation d'additifs détergents afin d'empêcher ou de réduire la formation des dépôts dans les systèmes d'injection pour moteurs diesel à injection directe |
MY147854A (en) * | 2007-09-27 | 2013-01-31 | Innospec Ltd | Fuel compositions |
WO2010010973A1 (fr) * | 2008-07-25 | 2010-01-28 | トヨタ自動車株式会社 | Epurateur de gaz d'échappement pour moteur à combustion interne |
JP2010163529A (ja) * | 2009-01-15 | 2010-07-29 | Taihokohzai:Kk | 燃料添加剤 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622018A (en) | 1949-10-19 | 1952-12-16 | Socony Vacuum Oil Co Inc | Motor fuel |
US3849083A (en) | 1972-04-14 | 1974-11-19 | Ethyl Corp | Gasoline additive |
US4292046A (en) | 1979-08-10 | 1981-09-29 | Mobil Oil Corporation | Detergent compositions |
US4297107A (en) | 1978-12-16 | 1981-10-27 | Bayer Aktiengesellschaft | Fuels and their use |
US4409000A (en) | 1981-12-14 | 1983-10-11 | The Lubrizol Corporation | Combinations of hydroxy amines and carboxylic dispersants as fuel additives |
US4518782A (en) | 1981-08-10 | 1985-05-21 | Texaco Inc. | Fuel compositions containing N-alkyl glycyl imidazoline |
EP0149486A2 (fr) | 1984-01-17 | 1985-07-24 | Atlantic Richfield Company | Détergents et composition de carburant les contenant |
US4729769A (en) | 1986-05-08 | 1988-03-08 | Texaco Inc. | Gasoline compositions containing reaction products of fatty acid esters and amines as carburetor detergents |
DE3709195A1 (de) | 1987-02-10 | 1988-08-18 | Guenther Dr Boehmke | Lagerstabile emulgatoren |
US4810263A (en) | 1986-04-11 | 1989-03-07 | Exxon Research And Engineering Company | Fuel composition |
US4836829A (en) | 1986-03-14 | 1989-06-06 | Exxon Research And Engineering Company | Fuel composition and process for multi-port fuel injection systems (PNE-509) |
WO1990010051A1 (fr) | 1989-02-21 | 1990-09-07 | Union Oil Company Of California | Composition de carburant permettant la regulation de depots sur des soupapes d'admission |
US5139534A (en) | 1990-04-03 | 1992-08-18 | Shell Oil Company | Diesel fuel additives |
US5458660A (en) | 1994-09-19 | 1995-10-17 | Shell Oil Company | Fuel compositions |
EP0798364A1 (fr) | 1996-03-25 | 1997-10-01 | Oronite Japan Limited | Additifs pour combustible diesel et composition de combutsible diesel |
WO1998016599A1 (fr) | 1996-10-11 | 1998-04-23 | Infineum Holdings Bv | Compositions de carburant |
WO2000042133A1 (fr) | 1999-01-15 | 2000-07-20 | Infineum International Ltd | Compositions combustibles ameliorees |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2854437A1 (de) * | 1978-12-16 | 1980-06-26 | Bayer Ag | Kraftstoffe, verfahren zu ihrer herstellung und ihre verwendung |
US4389322A (en) * | 1979-11-16 | 1983-06-21 | Mobil Oil Corporation | Friction reducing additives and compositions thereof |
JPS61283690A (ja) * | 1985-06-07 | 1986-12-13 | Sanyo Chem Ind Ltd | 燃料油添加剤 |
US5637121A (en) * | 1994-12-30 | 1997-06-10 | Chevron Chemical Company | Poly(oxyalkylene) aromatic amides and fuel compositions containing the same |
JP2000256683A (ja) * | 1999-03-08 | 2000-09-19 | Nippon Mitsubishi Oil Corp | 筒内噴射式ガソリンエンジン用無鉛ガソリン |
-
2002
- 2002-12-20 US US10/328,115 patent/US20040118036A1/en not_active Abandoned
-
2003
- 2003-09-11 CA CA2440548A patent/CA2440548C/fr not_active Expired - Fee Related
- 2003-09-16 EP EP03255769A patent/EP1431374B1/fr not_active Expired - Lifetime
- 2003-12-22 JP JP2003424717A patent/JP5036956B2/ja not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622018A (en) | 1949-10-19 | 1952-12-16 | Socony Vacuum Oil Co Inc | Motor fuel |
US3849083A (en) | 1972-04-14 | 1974-11-19 | Ethyl Corp | Gasoline additive |
US4297107A (en) | 1978-12-16 | 1981-10-27 | Bayer Aktiengesellschaft | Fuels and their use |
US4292046A (en) | 1979-08-10 | 1981-09-29 | Mobil Oil Corporation | Detergent compositions |
US4518782A (en) | 1981-08-10 | 1985-05-21 | Texaco Inc. | Fuel compositions containing N-alkyl glycyl imidazoline |
US4409000A (en) | 1981-12-14 | 1983-10-11 | The Lubrizol Corporation | Combinations of hydroxy amines and carboxylic dispersants as fuel additives |
EP0149486A2 (fr) | 1984-01-17 | 1985-07-24 | Atlantic Richfield Company | Détergents et composition de carburant les contenant |
US4836829A (en) | 1986-03-14 | 1989-06-06 | Exxon Research And Engineering Company | Fuel composition and process for multi-port fuel injection systems (PNE-509) |
US4810263A (en) | 1986-04-11 | 1989-03-07 | Exxon Research And Engineering Company | Fuel composition |
US4729769A (en) | 1986-05-08 | 1988-03-08 | Texaco Inc. | Gasoline compositions containing reaction products of fatty acid esters and amines as carburetor detergents |
DE3709195A1 (de) | 1987-02-10 | 1988-08-18 | Guenther Dr Boehmke | Lagerstabile emulgatoren |
WO1990010051A1 (fr) | 1989-02-21 | 1990-09-07 | Union Oil Company Of California | Composition de carburant permettant la regulation de depots sur des soupapes d'admission |
US5139534A (en) | 1990-04-03 | 1992-08-18 | Shell Oil Company | Diesel fuel additives |
US5458660A (en) | 1994-09-19 | 1995-10-17 | Shell Oil Company | Fuel compositions |
EP0798364A1 (fr) | 1996-03-25 | 1997-10-01 | Oronite Japan Limited | Additifs pour combustible diesel et composition de combutsible diesel |
WO1998016599A1 (fr) | 1996-10-11 | 1998-04-23 | Infineum Holdings Bv | Compositions de carburant |
WO2000042133A1 (fr) | 1999-01-15 | 2000-07-20 | Infineum International Ltd | Compositions combustibles ameliorees |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790924B2 (en) | 2004-11-19 | 2010-09-07 | Chevron Oronite Company Llc | Process for preparing alkylene oxide-adducted hydrocarbyl amides |
US7744661B2 (en) | 2005-05-13 | 2010-06-29 | Chevron Oronite Company Llc | Fuel composition containing an alkylene oxide-adducted hydrocarbyl amide having reduced amine by-products |
Also Published As
Publication number | Publication date |
---|---|
JP5036956B2 (ja) | 2012-09-26 |
EP1431374B1 (fr) | 2013-03-13 |
CA2440548A1 (fr) | 2004-06-20 |
US20040118036A1 (en) | 2004-06-24 |
JP2004204232A (ja) | 2004-07-22 |
CA2440548C (fr) | 2012-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100533490B1 (ko) | 연소실 침적물 형성의 저감을 위한 연료 조성물용 첨가제 | |
RU2721567C1 (ru) | Топливные присадки на основе четвертичного аммония | |
AU689585B2 (en) | Fuel additive compositions containing an aliphatic amine, a polyolefin and a poly(oxyalkylene) monool | |
US7438731B2 (en) | Fuel additive composition and fuel composition containing the same | |
CA2541797C (fr) | Une composition de carburant contenant un hydrocarbylamide additionne d'un oxyde d'alkylene, ayant des teneurs reduites en sous-produits amines | |
US6361573B1 (en) | Fuel dispersants with enhanced lubricity | |
CA2440548C (fr) | Methode de reduction des emissions de particules dans des moteurs a combustion interne | |
CA2454851C (fr) | Composition d'additifs pour carburant et composition de carburant renfermant celle-ci | |
AU689891B2 (en) | Fuel additive compositions containing an aliphatic amine, a polyolefin and an aromatic ester | |
EP0887400B9 (fr) | Composition de combustible contenant une amine aliphatique et un polyoxyalkylenemonool | |
US20220145199A1 (en) | Fuel additives for mitigating injector nozzle fouling and reducing particulate emissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20040714 |
|
17Q | First examination report despatched |
Effective date: 20041209 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 60343493 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C10L0001220000 Ipc: C10L0001238700 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10L 1/224 20060101ALI20120606BHEP Ipc: C10L 1/2387 20060101AFI20120606BHEP Ipc: C10L 10/02 20060101ALI20120606BHEP |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60343493 Country of ref document: DE Effective date: 20130508 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20131216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60343493 Country of ref document: DE Effective date: 20131216 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20200915 Year of fee payment: 18 Ref country code: DE Payment date: 20200901 Year of fee payment: 18 Ref country code: GB Payment date: 20200909 Year of fee payment: 18 Ref country code: FR Payment date: 20200812 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60343493 Country of ref document: DE Representative=s name: HL KEMPNER PATENTANWALT, RECHTSANWALT, SOLICIT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60343493 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20211001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210916 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220401 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |