EP1412954A2 - Einrichtung zur rekondensation von tiefsiedenden gasen mit einem kryogenerator des aus einem flussiggas-behalter verdampfenden gases - Google Patents

Einrichtung zur rekondensation von tiefsiedenden gasen mit einem kryogenerator des aus einem flussiggas-behalter verdampfenden gases

Info

Publication number
EP1412954A2
EP1412954A2 EP02772094A EP02772094A EP1412954A2 EP 1412954 A2 EP1412954 A2 EP 1412954A2 EP 02772094 A EP02772094 A EP 02772094A EP 02772094 A EP02772094 A EP 02772094A EP 1412954 A2 EP1412954 A2 EP 1412954A2
Authority
EP
European Patent Office
Prior art keywords
cold
tube
stage
heat
liquid gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02772094A
Other languages
English (en)
French (fr)
Inventor
Albert Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1412954A2 publication Critical patent/EP1412954A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/086Mounting arrangements for vessels for Dewar vessels or cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Definitions

  • the invention relates to a device for the recondensation of low-boiling gases of the gas evaporating from a liquid gas container with a cryogenerator.
  • a superconducting magnet which is cooled as liquid gas by immersion in liquid helium, is operated continuously with a small refrigeration system, a so-called cryocooler, which is coupled to the system.
  • cryocooler which is coupled to the system.
  • the entire cryocontainer 1 consists of an inner container 2, which to a level 7 with the low-boiling liquid gas, for. B. liquid helium is filled.
  • the superconducting device typically a magnetic coil 5 with the current leads 6a and 6b, is immersed in the liquid gas.
  • the helium evaporating due to the heat supplied to the container 2 is discharged to the surroundings or to a collecting container via a narrowed neck tube 8.
  • the helium container 2 is surrounded by a casing 3.
  • a radiation shield 4 is attached in the vacuum space located between the two containers and is cooled by the helium exhaust gas via a contact ring 10 attached to the neck tube 8.
  • the neck tube 8 should on the one hand be as narrow as possible in order to reduce the incidence of heat, but on the other hand it must have a sufficient cross section in order not to rule out the case that the magnet suddenly becomes normally conductive to allow additional evaporating gas to escape in the container 2 without an impermissibly high pressure rise.
  • cryogenerators there are small refrigeration systems with which the helium evaporating from the helium bath can be liquefied directly in the cold container, and which provide additional cooling capacity in two or more stages for cooling radiation shields.
  • cryogenerators are currently the pulse tube cooler and the Gifford-McMahon cooler.
  • Such a cryogenic system should, as far as this is possible with such low-temperature cooling systems, be easy to handle, operate in an uncomplicated manner and can be easily maintained.
  • This is the case with systems whose cooling units are pulse tube coolers, in particular Gifford-McMahon coolers, in which the steam of low-boiling gases is re-liquefied.
  • the following are considered as low-boiling gases: helium, He, hydrogen, H 2 , neon, Ne; Nitrogen, N 2 , which are also used as coolants in superconductor technology.
  • Such a device is constructed according to the features of claim 1 and consists in the simplest version of the cooling device, the so-called cold head.
  • This cold head flanged to the outside of the device, projects in the tube 8, the neck tube 8, to the vessel 3 for the liquid gas.
  • the cold surface 26 is exposed above the liquid level 7 of the liquid gas.
  • This entire single-stage cooling device is designed and built in such a way that it can be installed and removed without heating up the liquid gas bath to be supplied.
  • the cold head consists of the regenerator 21 and the pulse tube 23 with the heat exchanger 25 in between.
  • the heat exchanger 25 is embedded in the cold surface 26, which is exposed to the liquid gas bath.
  • regenerator (21), pulse tube (23) are each covered with a thermally insulating jacket / heat shield (20, 30, 31, 32) in order to prevent thermal coupling to the outside or to keep the process within permissible limits.
  • the extended cooling device which is designed in many ways, the cold head, is an at least two-stage cooling device which also projects into the neck tube 8 and ends with its last cold surface 28 above the liquid gas bath.
  • This multi-stage cold head can also be installed and removed without heating up the liquid gas bath to be supplied.
  • Each stage of the cold head consists of a regenerator 21 or 22 and a pulse tube 23 or 24 with a heat exchanger 25 or 27 in between, and each heat exchanger is contained in a cold surface 26 or 28.
  • the exposed surface of the cold surface 28 of the last stage viewed from the outside projects into the cold steam room of the liquid gas container 2 alone.
  • regenerator 21 or 22 Pul tube 23 or 24 of the respective stage are the same as in the single-stage version each encased a thermally insulating jacket / heat shield 20, 30, 31, 32. All cold surfaces 26 except the last face coaxially in the direction of the following stage each with a heat transfer ring 10, which is attached to the corresponding point in the neck tube 8 with good thermal conductivity.
  • This cooling device which is mounted on a flange cover 33, which is screwed to a connecting flange 9 of the vessel wall 3, can expand axially due to permissible thermal action without bumping.
  • Claim 2 describes that the / the respective thermally insulating jacket / heat shield 20, 30, 31, 32 consists only of a layer which is poorly conductive on the associated component and which does not allow axial and radial heat conduction for the application, if at all tolerable.
  • Claim 3 describes the principle of thermal insulation with the aid of a continuous vacuum chamber from face to face of the casing.
  • the respective component is encased by a poorly heat-conducting, thin-walled cylindrical tube, which remains so stiff on its surface through shaping or support measures that the external pressure - usually ambient pressure - in the event of faults such as a sudden transition of the immersed coil from the superconducting to the normal conducting state , Overpressure - cannot press the same or at least not extensively against the wall of the encased.
  • This is or are according to claim 4 also a poorly heat-conductive support device or support devices that keep the outer wall of the vacuum chamber formed stiff.
  • the outer wall of the vacuum chamber is a thin-walled corrugated tube, the small clear width of which is slightly larger than the component to be surrounded, so that there are point-like, locally at most short, linear contact with the outer wall of the Component comes or may come.
  • This type of chamber formation can also be set up by means of a thin-walled tube provided with beads or line-shaped reinforcements, which can rest in a line-like manner at points or at most over a short distance.
  • the outer wall of the vacuum chamber also consists of the thin-walled corrugated tube, the small internal width of which is also slightly larger than the surrounding component.
  • This corrugated tube is, however, held at a distance from the component via poorly heat-conducting, helically or axially attached to the outer jacket wall of the component (claim 9).
  • each cold surface 26 there is at least one bore 37a in each cold surface 26; in the case of at least two, there are bores 37a distributed uniformly around the circumference (claim 10).
  • FIG. 1 shows the structure with two pulse tube coolers
  • FIG. 2a shows the helical cord winding for maintaining distance
  • FIG. 2b shows the corrugated tube as an outer vacuum wall
  • FIG. 4 shows the basic construction of the cryostat.
  • Fig. 2 shows the schematic structure of the cold head of the two-stage pulse tube cooler and its installation in the cryostat.
  • the pulse tube cooler and its components are only shown with the relevant components.
  • the two-stage cooler consists of the regenerator 21 with the connecting line 35 to a compressor, not shown, which supplies the pulsating gas flow.
  • the pressure typically varies between about 10 bar and 25 bar.
  • the gas flow is divided, so that a first partial flow through the first heat exchanger 25 is fed to the first pulse tube 23.
  • a second gas flow is supplied via the connection 34.
  • the heat exchanger 25 With suitably set sizes and temporal offset of these gas flows, there is a cooling effect in the area of the heat exchanger 25. With this cooling capacity, the radiation shield 4 is cooled to a first temperature level which is already considerably below the ambient temperature.
  • the heat exchanger 26 is built into a structure that is a good heat conductor, the so-called first cold surface 26.
  • the first cold surface 26 On the side facing the heat transfer ring 10 attached to the neck tube 8, the first cold surface 26 has a circumferential toothed structure, and the heat transfer ring 10 is provided with a complementary structure.
  • This tooth structure is structurally designed in such a way that a very narrow gap, which is filled with the gas evaporating in the container 2, forms at the vertically extending interfaces between the cold surface 26 and the heat transfer ring 10.
  • the toothing is to be designed in such a way that it can be shifted in the vertical direction. This measure on the one hand results in a good thermal coupling, on the other hand a shift, as occurs, for example, due to differences in the thermal contractions, can occur It is possible to remove and install the cold head if necessary without warming up the cryostat.
  • the second heat exchanger 27 is embedded in the second cold surface 28, also a good heat-conducting structure with a large surface area on the side of the evaporating helium, the helium evaporating in the container 2 can condense there and flow back to the bath below.
  • both regenerators 21, 22 and both pulse tubes 23, 24 are formed with thermally insulating walls 29 to 32. This can be done either by covering with an overlying, poorly heat-conducting plastic layer or by providing an evacuated space in the vacuum chamber.
  • the number 30 denotes the cladding tube surrounding the first regeneration, 29 the cladding tube of the first pulse tube, 31 the cladding tube of the second regenerator and 32 the cladding tube of the second pulse tube.
  • the disadvantage is that the wall of such a cladding tube creates an additional heat flow towards the cold end. To reduce this effect, it is necessary to make the cladding tubes as thin-walled as possible. If the wall thickness is too small, there is a risk that the pipes will buckle due to the external pressure load.
  • FIG. 2a shows an example of the component with the largest diameter, namely the first regenerator 21, of how the cladding tube 30 is stabilized by the support structure placed on the inner tube 21a.
  • FIG. 2b shows an example of the component with the largest diameter, namely the first regenerator 21, of how the cladding tube 30 is stabilized by the support structure placed on the inner tube 21a.
  • the cladding tube is designed as a thin-walled corrugated tube. If its small clear width is slightly larger than the outer diameter of the inner tube, there can only be point-like contact with negligible thermal bridges.
  • These cladding tubes can either be permanently sealed, or can be provided with connecting lines for connection to a vacuum pump.
  • the helium gas within the neck tube 8a, 8b assumes a stationary temperature distribution without internal convection, and the exhaust gas line 37 is closed. Only if the pressure in the gas space exceeds a predetermined value due to a fault, is the exhaust pipe 37 opened, for example via a pressure relief valve. If it is necessary for the outflow of a large amount of gas, the body 26 of the first cold face can be provided with bores which allow the gas to flow out more easily from the lower neck part with the wall 8b into the part with the wall 8a.
  • the Gifford-McMahon cooler for helium re-liquefaction is shown schematically in its important components here, namely the analog solution for the use of a two-stage Gifford-McMahon cooler.
  • the first stage is formed by a circular cylindrical structure 41. Its lower end face forms the first cold face 26.
  • the second cylinder 43 with a smaller diameter attached to it forms the second stage.
  • the pressure pulsation inside these cylinders 41, 43 and the movement of the regenerators there also result in temperature fluctuations on the outer walls. To avoid the undesirable heat flows caused by this, it is appropriate to thermally insulate the outer surfaces of both cylinders.
  • the illustration shows the solution with a corrugated tube casing 42, 44.
  • the other solutions discussed above can also be applied to the Gifford-McMahon cooler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

Die Einrichtung zur Rekondensation von tiefsiedenden Gasen mit einem Kryogenerator des aus einem Flüssiggas-Behälter verdampfenden Gases besteht aus einer oder mindestens zwei zusammenhängenden Kühlstufen, dem Kaltkopf. Jede Stufe ist ein Pulsrohrkühler, deren Wärmeübetrager zwischen dem Regenerator und zugehörigem Pulsrohr in eine exponierte Kaltfläche eingebettet ist. Der gesamte Kaltkopf ist nur am Aussengefäss der Einrichtung angeflanscht und ragt im Halsrohr der Einrichtung ins Innere hinein. Die letzte Kaltfläche des Kaltkopfes sitzt am Ende des Halsrohr und ist im Dampfraum über dem Flüssiggas-Kältebad exponiert. Die andern Kaltflächen stehen jeweils einem am Halsrohr angebrachten Wärmeübertragungsring gegenüber. Die jeweils einander gegenüberstehenden beiden Stirnflächen greifen, ohne sich je an einer Stelle zu berühren, unter schmaler Spaltbildung ineinander, so dass vom Dampfraum über dem Flüssiggas-Bad bis zum Flansch des Kaltkopfes im Halsrohr stets ein freier Durchgang besteht. Die beiden Komponenten: Regenerator, Pulsrohr, jeder Pulsrohr-Kühlerstufe sind jeweils mit einem Wärmeschild ummantelt, das einerseits ein aufliegender, schlecht wärmeleitender Belag oder andrerseits eine ringförmige Vakuumkammer darum herum sein kann, deren Aussenwand die ummantelnde Komponente nur punktförmig oder allenfalls über kurze Strecken linienförmig berührt.

Description

Einrichtung zur Rekondensation von tiefsiedenden Gasen mit einem Kryogenerator des aus einem Flüssiggas-Behälter verdampfenden Gases
Die Erfindung betrifft eine Einrichtung zur Rekondensation von tiefsiedenden Gasen des aus einem Flüssiggas-Behälter verdampfenden Gases mit einem Kryogenerator. Mit ihr wird beispielsweise einen supraleitender Magnet, der durch Eintauchen in flüssiges Helium als Flüssiggas gekühlt wird, kontinuierlich mit einer an das System angekoppelten Kleinkälteanlage, einem sogenannten Kryokühler, betrieben. Entsprechend bei einem supraleitenden Magneten aus hochtemperatursupraleitendem Material, der entsprechend durch Eintauchen in flüssigen Stickstoff gekühlt wird.
Der derzeitige Stand der Technik wird kurz (siehe auch Figur 4) erläutert:
Der gesamte Kryobehälter 1 besteht aus einem Innenbehälter 2, der bis zu einem Niveau 7 mit dem tiefsiedenden Flüssiggas, z. B. flüssiges Helium, gefüllt ist. Die supraleitende Einrichtung, typischerweise eine Magnetspule 5 mit den Stromzuführungen 6a und 6b, ist in das Flüssiggas eingetaucht. Das aufgrund der dem Behältnis 2 zugeführten Wärme verdampfende Helium wir über ein verengtes Halsrohr 8 zur Umgebung beziehungsweise zu einem Sammelbehälter abgeführt . Zur Verringerung des Wärmeein- falls ist der Heliumbehälter 2 von einer Hülle 3 umgeben. Zur weiteren Verringerung des Wärmeeinfalls ist in dem zwischen beiden Behältern befindlichen Vakuumraum ein Strahlungsschirm 4 angebracht , der über einen an dem Halsrohr 8 angebrachten Kontaktierungsring 10 von dem Helium-Abgas gekühlt wird. Das Halsrohr 8 sollte einerseits zur Verringerung des Wärmeeinfalls möglichst eng sein, andererseits muss es aber einen hinreichenden Querschnitt haben, um bei nicht dem auszuschließendem Fall, dass der Magnet plötzlich normalleitend wird, das zusätzlich verdampfende Gas ohne unzulässig hohen Druckanstieg in dem Behältnis 2 entweichen zu lassen.
Wenn der Heliumstand unter einen bestimmte Höhe abgefallen ist, muss er aus einem Transportbehälter nachgefüllt werden.
Dies ist mit beträchtlichem Aufwand verbunden.
Mittlerweile gibt es kleine Kälteanlagen, mit denen das aus dem Heliumbad abdampfende Helium direkt in dem kalten Behälter wieder verflüssigt werden kann, und die in zwei- oder mehrstufiger Ausführung zusätzliche Kälteleistung zur Kühlung von Strahlungsschirmen bereitstellen. Die wichtigsten Ausführungsformen solcher Kryogeneratoren sind zur Zeit der Pulsrohrkuhler und der Gifford-McMahon-Kühler .
Eine solche Kryoanlage soll, soweit das bei solchen Tieftempe- raturkühlanlagen geht, einfach in ihrer Handhabung sein, unkompliziert betrieben und unkompliziert gewartet werden können. Das bei solchen Anlagen, deren Kühlaggregate Pulsrohrkuhler insbesondere Gifford-McMahon-Kühler sind, bei denen der Dampf tiefsiedender Gase rückverflüssigt wird. Als tiefsiedende Gase werden hier betrachtet: Helium, He, Wasserstoff, H2, Neon, Ne; Stickstoff, N2, die auch in der Supraleitertechnik als Kühlmittel verwendet werden.
Eine solche Einrichtung ist gemäß den Merkmalen des Anspruchs 1 aufgebaut und besteht in der einfachsten Ausführung aus der Kühleinrichtung, dem sogenannten Kaltkopf. Dieser Kaltkopf ragt, außen an der Einrichtung angeflanscht, in dem Rohr 8, dem Halsrohr 8, bis zum Gefäße 3 für das Flüssiggas. Dort ist die Kaltfläche 26 über dem Flüssigkeitsspiegel 7 des Flüssiggases exponiert. Diese gesamte einstufige Kühleinrichtung ist konstruktiv so gestaltet und eingebaut, dass sie, ohne das zu versorgende Flüssiggas-Bad aufzuwärmen, ein- und ausgebaut werden kann. Der Kaltkopf besteht aus dem Regenerator 21 und dem Pulsrohr 23 mit dazwischen liegendem Wärmeübertrager 25. Der Wärmeübertrager 25 ist in die Kaltfläche 26 eingebettet, die zu dem Flüssiggas-Bad hin exponiert ist.
Die Komponenten: Regenerator (21) , Pulsrohr (23) sind mit je einem thermisch isolierenden Mantel/Hitzeschild (20, 30, 31, 32) ummantelt sind, um thermische Kopplungen nach außen zu unterbinden oder für den Prozess in zulässigen Schranken zu halten.
Die erweiterte, in ihrem Aufbau vielfach ausgebildete Kühleinrichtung, der Kaltkopf, ist eine mindestens zweistufige Kühleinrichtung, die ebenso in das Halsrohr 8 ragt und mit ihrer letzten Kaltfläche 28 über dem Flüssiggas-Bad endet. Auch dieser mehrstufige Kaltkopf kann ein- und ausgebaut werden, ohne das zu versorgende Flüssiggas-Bad aufzuwärmen. Jede Stufe des Kaltkopfes besteht aus einem Regenerator 21 bzw.22 und einem Pulsrohr 23 bzw. 24 mit dazwischen liegendem Wärmeübertrager 25 bzw. 27, und jeder Wärmeübertrager ist in je eine Kaltfläche 26 bzw. 28 gefasst. Der Kaltfläche 28 der von außen her betrachteten letzten Stufe ragt mit ihrer exponierten Fläche alleine in den kalten Dampfräum des Flüssiggas-Behälters 2. Die Komponenten: Regenerator 21 bzw. 22, Pulsrohr 23 bzw. 24 der jeweiligen Stufe sind wie in der einstufigen Ausführung mit je einem thermisch isolierenden Mantel/Hitzeschild 20, 30, 31, 32 ummantelt. Sämtliche Kaltflächen 26 außer der letzten stehen in Richtung der folgenden Stufe koaxial je einem Wärme- übetragungsring 10 gegenüber, der an der entsprechenden Stelle im Halsrohr 8 gut wärmeleitend angebracht ist. Die jeweilige Kaltfläche 26 greift, axial beweglich, unter schmaler Spaltbildung um den Umfang, idealerweise äquidistanter, in den zugeordneten Wärmeübertragungsring 10, ohne diesen an irgend einer Stelle zu berühren. Dadurch besteht stets ein gasdurchgängiger Kanal vom Dampfräum über dem Flüssiggas-Bad bis zum Flansch des Kaltkopfes. Die mehrstufige, in das Halsrohr 8 ra- gende Kühleinrichtung, die an einem Flanschdeckel 33 anmontiert, der mit einem Anschlussflansch 9 der Gefäßwand 3 verschraubt ist, kann sich axial aufgrund zulässiger thermischer Einwirkung dehnen ohne anzustoßen.
In den Unteransprüchen sind Maßnahmen spezifiziert, die den Betrieb der Einrichtung von Fall zu Fall erleichtern.
Anspruch 2 beschreibt, dass der/das jeweilige thermisch isolierende Mantel/Hitzeschild 20, 30, 31, 32 lediglich aus einer auf der zugeordneten Komponente die Wärme schlecht leitenden Schicht besteht, die für den Anwendungsfall eine axiale und radiale Wärmeleitung nicht, allenfalls tolerierbar zulässt.
Anspruch 3 beschreibt das Prinzip der thermischen Isolierung mit Hilfe einer von Stirn zu Stirn der Ummantelung durchgehenden Vakuumkammer. Hierzu ist die jeweilige Komponente von einem schlecht die Wärme leitenden, dünnwandigen zylindrischen Rohr ummantelt, das durch Formung oder Stützmaßnahmen auf seiner Fläche so steif bleibt, dass der Außendruck - üblicherweise Umgebungsdruck, in Fehlerfällen wie sprunghafter Übergang der eingetauchten Spule vom supraleitenden in den normalleitenden Zustand, Überdruck - dieselbe nicht oder zumindest nicht großflächig an die Wand der ummantelten drücken kann. Das ist oder sind nach Anspruch 4 ebenfalls eine schlecht wärmeleitende Stützeinrichtung oder Stützeinrichtungen, die die Außenwand der gebildeten Vakuumkammer steif halten. Oder es ist nach Anspruch 5 eine helixfδrmig um die Komponente von oben bis unten oder umgekehrt gewundene Schnur. An Stelle einer solchen durchgehenden Schnur können das nach Anspruch 6 auch um den Umfang liegende, sich nicht berührende Schnurstücke sein. Andere, aus der Kälteisolationstechnik bekannte technische Maßnahmen sind, soweit anwendbar ebenfalls einsetzbar. Eine andere wirkungsvolle Art der Vakuumkammerbildung ist in Anspruch 7 gekennzeichnet : Die Außenwand der Vakuumkammer ist da ein dünnwandiges Wellrohr, dessen kleine lichte Weite geringfügig größer ist als die zu umgebende Komponente, so dass es zu punktartigen, lokal allenfalls kurzen linienförmigen Berührungen mit der Außenwand der Komponente kommt oder kommen kann. Diese Art Kammerbildung kann auch durch ein dünnwandiges, mit Sicken oder linienförmigen Verstärkungen versehenes Rohr eingerichtet werden, das punktartig oder allenfalls über eine kurze Strecke linienförmig anliegen kann.
Wie in Anspruch 7 zunächst gekennzeichnet, besteht in Anspruch 8 die äußere Wand der Vakuumkammer der ebenfalls aus dem dünnwandigen Wellrohr, dessen kleine lichte Weite ebenfalls geringfügig größer ist als die umgebende Komponente. Dieses Wellrohr wird jedoch über schlecht wärmeleitende, helikal oder axial auf der äußeren Mantelwand der Komponente angebrachte Stabelemente zu dieser auf Distanz gehalten (Anspruch 9) .
Für eine hindernisarme Gasstrδmung insbesondere im Fehlerfall besteht in jeder Kaltfläche 26 mindestens eine Bohrung 37a, im Falle von mindestens zwei bestehen solche um den Umfang gleichverteilte Bohrungen 37a (Anspruch 10) .
Anhand der Zeichnung und im Zusammenhang mit der Beschreibung werden weiter unten die Vorteile der Erfindung als Schlussfolgerung aus den getroffenen Maßnahmen noch hervorgehoben. Die Zeichnung besteht aus den Figuren 1 bis 4, sie zeigen im einzelnen:
Figur 1 den Aufbau mit zwei Pulsrohr-Kühlern, Figur 2a die helikale Schnurwindung zur Distanzaufrechterhal- tung,
Figur 2b den Wellschlauch als Vakuumaußenwand, Figur 3 Einrichtung mit zwei McMahon-Kühlern, Figur 4 die prinzipielle Bauweise des Kryostaten. Abb. 2 zeigt den schematischen Aufbau des Kaltkopfs des zweistufigen Pulsrohrkühlers und dessen Einbau in den Kryostaten. Der Pulsrohrkuhler und dessen Komponenten sind nur mit den hier maßgeblichen Komponenten sind dargestellt. Der zweistufige Kühler besteht aus dem Regenerator 21 mit der Verbindungsleitung 35 zu einem nicht dargestellten Kompressor, der den pulsierenden Gasstrom liefert. Der Druck variiert typischerweise zwischen etwa 10 bar und 25 bar. Am anderen Ende des Regenerators 21 wird der Gasstrom aufgeteilt, so dass ein erster Teilstrom durch den ersten Wärmeübertrager 25 dem erstem Pulsröhr 23 zugeführt wird. An dessen gegenüberliegendem Ende wird ein zweiter Gastrom über den Anschluss 34 zugeführt. Bei geeignet eingestellten Größen und zeitlichem Versatz dieser Gasströme kommt es im Bereich des Wärmeübertragers 25 zu einer Kühlwirkung. Mit dieser Kälteleistung wird der Strahlungsschirm 4 auf ein erstes Temperaturniveau, das bereits beträchtlich unter der Umgebungstemperatur liegt, abgekühlt. Zur thermischen Ankopplung des Strahlungsschirms 4 an die Stelle der Kälteerzeugung ist der Wärmeübertrger 26 in eine gut wärmeleitende Struktur, der sogenannten ersten Kaltfläche 26, eingebaut. An der dem am Halsrohr 8 angebrachten Wärmeübertragungsring 10 zugewandten Seite ist die erste Kaltfläche 26 mit einer zirkumferalen verzahnten Struktur, und der Wärmeübertragungsring 10 ist mit einer komplementären Struktur versehen. Diese Zahnstruktur ist konstruktiv so gestaltet, dass sich an den in der Figur vertikal verlaufenden Grenzflächen zwischen der Kaltfläche 26 und dem Wärmeübertragungsring 10 ein sehr enger Spalt, der mit dem in dem Behälter 2 verdampfenden Gas gefüllt ist, ausbildet. Andererseits ist die Verzahnung aber so zu gestallten, dass in vertikaler Richtung eine Verschiebung möglich ist. Durch diese Maßnahme wird einerseits eine gute thermische Ankopplung bewirkt, andererseits kann eine Verschiebung, wie sie zum Beispiel durch Unterschiede in den thermischen Kontraktionen auftritt, erfolgen, und es ist möglich, bei Bedarf den Kaltkopf ohne ein Aufwärmen des Kryostaten aus- und einzubauen.
Der zweite Teilstrom des aus dem ersten Regenerator 21 mit einer Zwischentemperatur austretenden Gases wird zu dem zweiten Regenerator 22 geführt und von dort über den zweiten Wärmeübertrager 27 in des zweites Pulsrohr 24 geleitet, dem am oberen Ende über den Anschluss 36 ebenfalls ein pulsierender Gasstrom zugeführt wird. Dadurch kommt es im Bereich des zweiten Wärmeübertragers 27 zu einer weiteren Temperaturabsenkung. Es ist Stand der Technik, derartige Kühler so zu gestalten, dass an der ersten Stufe eine erste Kälteleistung im Temperaturbereich zwischen 30 K und 100 K und an der zweiten Stufe ein zweite, zwar recht geringe Kälteleistung im Bereich von Temperaturen, die für die Kondensation von Helium, nämlich kleiner als 5 K, verfügbar ist. Wenn der zweite Wärmeübertrager 27 in die zweite Kaltfläche 28, eine ebenfalls gut wärmeleitende Struktur mit großer Oberfläche auf der Seite des verdampfenden Heliums, eingebettet ist, kann das im Behälter 2 abdampfende Helium dort kondensieren und zu dem darunter liegenden Bad zurückfließen.
Aufgrund der Betriebsweise des Kühlers mit einem pulsierenden Gasstrom kommt es im Laufe eines einzelnen Arbeitszyklus auch zu geringen TemperaturSchwankungen an dem Oberflächen der diesem Innendruck ausgesetzten Rohre. In den Pulsrohren 23 und 24 ist dieser Effekt besonders ausgeprägt . Mit der Temperaturänderung an der dem verdampfenden Helium zugewandten Seite ist eine lokal begrenzte Ausdehnung dieses Gases verbunden. Diese bewirkt aber eine Bewegung des Gases in dem ganzen durch die Rohre 8a und 8b gebildeten Gefäßhals. Hierdurch kommt es letztendlich zu einem unerwünschten Wärmestrom vom warmen oberen Halteflansch 33 zum Kaltgasraum 7. Hinzu kommt noch ein weiterer Effekt, der mit den unterschiedlichen Temperaturver- teilungen, die sich in den Regeneratoren und den Pulsrohren einstellen, verbunden ist. Hierdurch kann es vorkommen, dass auf gleicher Höhe unterschiedliche Temperaturen an diesen Komponenten vorliegen. Zwangläufig wird dadurch eine Naturkonvek- tion, die ebenfalls mit einem schädlichen Wärmetransport verbunden ist, angeregt.
Beide Effekte werden vermieden, wenn beide Regeneratoren 21, 22 und beide Pulsrohre 23, 24 mit thermisch isolierenden Wänden 29 bis 32 ausgebildet werden. Dies kann entweder durch Ummantelung mit einer aufliegenden, schlecht wärmeleitenden Kunststoffschicht oder durch Anbringen eines evakuierten Zwischenraums der Vakuumkammer erfolgen. Die Ziffer 30 bezeichnet das den ersten Regeneratur umgebende Hüllrohr, 29 das Hüllrohr des ersten Pulsrohrs, 31 das Hüllrohr des zweiten Regenerators und 32 das Hüllrohr des zweiten Pulsrohrs. Nachteilig ist, dass durch die Wand eines solchen Hüllrohrs ein zusätzlicher Wärmestrom zu dem jeweils kalten Ende hin entsteht. Zur Verringerung dieses Effektes ist es notwendig die Hüllrohre möglichst dünnwandig auszubilden. Bei zu kleiner Wandstärke besteht aber die Gefahr, dass die Rohre aufgrund der von außen wirkenden Druckbelastung einbeulen. Dem wird durch die in Abb. 2a und b skizzierten Maßnahmen entgegengewirkt. In Figur 2a ist exemplarisch für die Komponente mit dem größten Durchmesser, nämlich dem ersten Regenerator 21, dargestellt, wie das Hüllrohr 30 durch die auf dem Innenrohr 21a aufgesetzte Stützstruktur stabilisiert wird. Eine zweite Lösung ist im Figur 2b dargestellt. Hierbei ist das Hüllrohr als dünnwandiges Wellrohr ausgebildet. Wenn dessen kleine lichte Weite geringfügig größer ist als der Außendurchmesser des Innenrohrs, kann es nur zu punktartigen Berührungen mit vernachlässigbaren Wärmebrücken kommen. Diese Hüllrohre können entweder dauerhaft abgedichtet sein, oder mit Verbindungsleitungen zum Anschluss an eine Vakuumpumpe versehen sein. Bei normalem Betrieb nimmt das Helium-Gas innerhalb des Halsrohrs 8a, 8b eine stationäre Temperaturverteilung ohne interne Konvektion an, und die Abgasleitung 37 ist verschlossen. Nur wenn aufgrund einer Störung der Druck im Gasraum einen vorgegebenen Wert übersteigt, wird die Abgasleitung 37 z.B. über ein Überdruckventil geöffnet. Falls es für die Ausströmung einer großen Gasmenge erforderlich ist, kann der Körper 26 der ersten Kaltfläche mit Bohrungen, die ein leichteres Ausströmen des Gases von dem unteren Halsteil mit der Umwandung 8b in den Teil mit der Umwandung 8a ermöglicht, versehen werden.
In Figur 3 ist der Gifford-McMahon-Kühler für Helium-Rückverflüssigung in seinen hier wichtigen Komponenten schematisch dargestellt, und zwar die analoge Lösung für den Einsatz eines zweistufigen Gifford-McMahon-Kühlers . Die erste Stufe ist durch kreiszylindrische Struktur 41 ausgebildet. Ihre untere Stirnfläche bildet die erste Kaltfläche 26. Der daran angesetzt zweite Zylinder 43 mit kleinerem Durchmesser bildet die zweite Stufe. Durch die Druckpulsation im Inneren dieser Zylinder 41, 43 und durch die dort erfolgende Bewegung der Regeneratoren, kommt es auch zu TemperaturSchwankungen an den Außenwänden. Zur Vermeidung der dadurch verursachten unerwünschten Wärmeströme, ist es angebracht, die Mantelflächen beider Zylinder thermisch zu isolieren. In der Darstellung ist die Lösung mit einer Wellröhr-Ummantelung 42, 44 dargestellt. Die anderen, oben besprochenen Lösungen können beim Gifford- McMahon-Kühler ebenfalls angewandt werden.
Bezugszeichenliste
1 Kryobehalter, Helium-Kryostat
2 Innenbehälter
3 Gefäßwand
4 Strahlungsschirm
5 Magnetspule 6a Stromzuführung 6b Stromzuführung
7 Niveau
8 Halsröhr
9 Anschlußflansch
10 Kontaktierungsring, Wärmeübertragungsring
20 Pulsrohrkuhler
21 Regenerator
22 Regenerator
23 Pulsröhr
24 Pulsröhr
25 Wärmeübertrager
26 Kaltfläche
27 Wärmeübertrager
28 Kaltfläche
29 Hü11röhr
30 Hüllröhr
31 Hü11röhr
32 Hüllröhr
33 Flanschdeckel
34 Gasleitung
35 Gasleitung
36 Gasleitung
37 Abgasleitung
37a Abgasleitung
37b Abgasdurchgang Gifford-McMahon-Kühler Struktur Wellrohr-Ummantelung Zylinder Wellrohr-Ummantelung

Claims

Patentansprüche :
1. Einrichtung zur Rekondensation von tiefsiedenden Gasen mit einem Kryogenerator des aus einem Flüssiggas-Behälter verdampfenden Gases, bestehend aus:
- einer entweder einstufigen Kühleinrichtung, dem Kaltkopf, in einem Rohr (8) , dem Halsrohr (8) , die von der Öffnung/dem Anschlussflansch (9) des Gefäßes (3) der Einrichtung her zum Flüssiggas-Behälter (2) der Einrichtung ragt, mit einer Kaltfläche (28) , die mit ihrer exponierten Fläche in den kalten Dampfräum des Flüssiggas-Behälters (2) ragt, wobei die Kühleinrichtung , der Kaltkopf, aus einem Regenerator (21) und einem Pulsrohr (23) mit dazwischen liegendem Wärmeübertrager (25) besteht, und der Wärmeübertrager
(25) in der Kaltfläche (26) gefasst ist, die Komponenten: Regenerator (21) , Pulsrohr (23) der Kühleinrichtung mit je einem thermisch isolierenden Mantel/Hitzeschild (20, 30, 31, 32) ummantelt sind,
- oder einer mindestens zweistufigen Kühleinrichtung in dem Halsrohr (8) von der Öffnung/Anschlussflansch (9) eines Gefäßes (3) zum Flüssiggas-Behälter (2) mit je einer Kaltfläche
(26) bzw. (28) , die ein- und ausgebaut werden können, ohne das zu versorgende Flüssiggas-Bad aufzuwärmen, wobei jede Stufe der Kühleinrichtung aus einem Regenerator (21) bzw. (22) und einem Pulsrohr (23) bzw. (24) mit dazwischen liegendem Wärmeübertrager (25) bzw. (27) besteht, und jeder Wärmeübertrager in je einen Kaltfläche (26) bzw. (28) gefasst ist, die Kaltfläche (28) der zweiten/letzten Stufe mit ihrer exponierten Fläche in den kalten Dampfraum des Flüssigheliumbehälters (2) ragt, die Komponenten: Regenerator (21) bzw. (22) , Pulsrohr (23) bzw. (24) der jeweiligen Stufe der Kälteeinrichtung mit je einem thermisch isolierenden Mantel/Hitzeschild
(20, 30, 31, 32) ummantelt sind, sämtliche Kaltflächen (26) außer der letzten Kaltfläche
(28) stehen in Richtung der folgenden Stufe koaxial je einem Wärmeübertragungsring (10) gegenüber, die an der entsprechenden Stelle im Halsrohr (8) gut wärmeleitend angebracht sind, und die jeweilige Kaltfläche (28) greift, axial beweglich, unter äquidistanter Spaltbildung um den Umfang in den zugeordneten Wärmeübertragungsring (10) , ohne diesen zu berühren, so dass ein gasdurchgängiger Kanal vom Dampfraum über dem Flüssiggas-Bad bis zum Anfang der ersten Kühlstufe besteht und der mindestens zweistufige, in das Halsrohr (8) ragende Kaltkopf, der an einem Flanschdeckel (33) verankert ist, der wiederum mit einem Anschlussflansch (9) der Gefäßwand
(3) verschraubt ist, axiale thermische Ausdehnungen, ohne anzustoßen, ausführen kann.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der jeweilige thermisch isolierende Mantel/Hitzeschild (20, 30, 31, 32) aus einer die Wärme schlecht leitenden Schicht besteht.
3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der jeweilige thermisch isolierende Mantel/Hitzeschild (20, 30, 31, 32) aus einer von Stirnseite zu Stirnseite durchgehenden Vakuumkammer besteht, deren Außenwand mit einem dünnwandigen zylindrischen Rohr gebildet wird, das durch Formung oder Stützung so steif bleibt, dass der Außendruck dieselbe nicht oder zumindest nicht großflächig an die Innenwand drücken kann.
4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Rohre (20, 30, 31, 32) über eine schlecht wärmeleitende Stützeinrichtung oder Stützeinrichtungen, die sie jeweils ummanteln, gehalten werden.
5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Stützeinrichtung eine helixformig um die Komponente von oben bis unten oder umgekehrt gewundene Schnur ist .
6. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Stützeinrichtungen helixformig um die Komponente, nicht durchgehend von oben bis unten oder umgekehrt und sich auch gegenseitig nicht berührend, gewundene Schnüre sind.
7. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der jeweilige thermisch isolierende Mantel/Hitzeschild (20, 30, 31, 32) ein dünnwandiges Wellrohr ist Rohr ist, dessen kleine lichte Weite geringfügig größer ist als die zu umgebende Komponente, so dass es zu punktartigen, lokal allenfalls kurzen linienförmigen Berührungen kommt.
8. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der jeweilige thermisch isolierende Mantel/Hitzeschild (20, 30, 31, 32) ein dünnwandiges, mit Sicken oder linienförmigen Verstärkungen versehenes Rohr ist, das punktartig oder allenfalls lokal kurz linienfδrmig anliegen kann.
9. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der jeweilige thermisch isolierende Mantel/Hitzeschild (20, 30, 31, 32) ein dünnwandiges Wellrohr ist Rohr ist, dessen kleine lichte Weite geringfügig größer ist als die umgebende Komponente, und dieses Rohr über schlecht wärmeleitende, helikal oder axial auf der Komponente angebrachte Stabelemente zu dieser mit Durchgang über die Länge auf Distanzgehalten wird.
0. Einrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in jeder Kaltfläche (26) mindestens eine Bohrung (37a) besteht, im Falle von mindestens zwei: um den Umfang gleichverteilte Bohrungen (37a) bestehen, die eine Gasströmung erleichtern.
EP02772094A 2001-08-01 2002-07-04 Einrichtung zur rekondensation von tiefsiedenden gasen mit einem kryogenerator des aus einem flussiggas-behalter verdampfenden gases Withdrawn EP1412954A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10137552A DE10137552C1 (de) 2001-08-01 2001-08-01 Einrichtung mit einem Kryogenerator zur Rekondensation von tiefsiedenden Gasen des aus einem Flüssiggas-Behälter verdampfenden Gases
DE10137552 2001-08-01
PCT/EP2002/007406 WO2003012803A2 (de) 2001-08-01 2002-07-04 Einrichtung zur rekondensation von tiefsiedenden gasen mit einem kryogenerator des aus einem flüssiggas-behälter verdampfenden gases

Publications (1)

Publication Number Publication Date
EP1412954A2 true EP1412954A2 (de) 2004-04-28

Family

ID=7693896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02772094A Withdrawn EP1412954A2 (de) 2001-08-01 2002-07-04 Einrichtung zur rekondensation von tiefsiedenden gasen mit einem kryogenerator des aus einem flussiggas-behalter verdampfenden gases

Country Status (7)

Country Link
US (1) US6990818B2 (de)
EP (1) EP1412954A2 (de)
JP (1) JP2004537026A (de)
CN (1) CN1269147C (de)
AU (1) AU2002336924A1 (de)
DE (1) DE10137552C1 (de)
WO (1) WO2003012803A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108036576A (zh) * 2017-12-15 2018-05-15 陕西仙童科技有限公司 一种结合脉动热管的制冷机导冷装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0227067D0 (en) 2002-11-20 2002-12-24 Oxford Magnet Tech Integrated recondensing compact pulse tube refrigerator
GB0408425D0 (en) * 2004-04-15 2004-05-19 Oxford Instr Superconductivity Cooling apparatus
JP4606059B2 (ja) * 2004-05-07 2011-01-05 株式会社神戸製鋼所 極低温装置
GB0411605D0 (en) * 2004-05-25 2004-06-30 Oxford Magnet Tech Reduction of croygen loss during transportation
DE102004034729B4 (de) * 2004-07-17 2006-12-07 Bruker Biospin Ag Kryostatanordnung mit Kryokühler und Gasspaltwärmeübertrager
DE102005013620B3 (de) * 2005-03-24 2006-07-27 Bruker Biospin Ag Kryostatanordnung mit thermisch kompensierter Zentrierung
DE102005029151B4 (de) * 2005-06-23 2008-08-07 Bruker Biospin Ag Kryostatanordnung mit Kryokühler
CN101213468B (zh) * 2005-06-28 2012-06-27 皇家飞利浦电子股份有限公司 用于磁共振成像的铁磁屏蔽罩
JP4068108B2 (ja) * 2005-11-04 2008-03-26 大陽日酸株式会社 熱媒加熱冷却装置
GB0523499D0 (en) * 2005-11-18 2005-12-28 Magnex Scient Ltd Superconducting magnet systems
US7500366B2 (en) * 2005-12-08 2009-03-10 Shi-Apd Cryogencis, Inc. Refrigerator with magnetic shield
JP2007194258A (ja) * 2006-01-17 2007-08-02 Hitachi Ltd 超伝導磁石装置
US20090049862A1 (en) * 2007-08-21 2009-02-26 Cryomech, Inc. Reliquifier
US8375742B2 (en) * 2007-08-21 2013-02-19 Cryomech, Inc. Reliquifier and recondenser with vacuum insulated sleeve and liquid transfer tube
US8671698B2 (en) * 2007-10-10 2014-03-18 Cryomech, Inc. Gas liquifier
GB2459316B (en) * 2008-09-22 2010-04-07 Oxford Instr Superconductivity Cryogenic cooling apparatus and method using a sleeve with heat transfer member
JP5815557B2 (ja) 2009-12-28 2015-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 無冷媒型磁石のための管状の熱スイッチ
CN101923148B (zh) * 2010-05-21 2013-06-05 南京丰盛超导技术有限公司 一种结构紧凑的超导磁体用冷头容器
JP6209160B2 (ja) 2011-08-03 2017-10-04 プレッシャー・ウェーブ・システムズ・ゲーエムベーハーPressure Wave Systems Gmbh 圧縮機デバイス、圧縮機デバイスを備える冷却デバイス、および圧縮機デバイスを備える冷却ユニット
DE102011080377B4 (de) * 2011-08-03 2015-10-22 Pressure Wave Systems Gmbh Kühlvorrichtung mit Kompressorvorrichtung sowie Gifford-McMahon-Kühler oder Pulsrohrkühler
JP5917153B2 (ja) * 2012-01-06 2016-05-11 住友重機械工業株式会社 極低温冷凍機、ディスプレーサ
CN102997036B (zh) * 2012-12-20 2014-12-03 奥泰医疗系统有限责任公司 用于有液氦消耗低温容器的升级结构
CN103077797B (zh) * 2013-01-06 2016-03-30 中国科学院电工研究所 用于头部成像的超导磁体系统
KR101805075B1 (ko) 2013-04-24 2017-12-05 지멘스 헬스케어 리미티드 2단 극저온 냉동기 및 관련 장착 설비를 포함하는 조립체
CN103225650B (zh) * 2013-04-24 2015-05-20 中国科学院电工研究所 超导磁悬浮支承装置
GB2513351B (en) * 2013-04-24 2015-08-05 Siemens Plc Refrigerator Mounting Assembly for Cryogenic Refrigerator
DE102013219169B4 (de) * 2013-09-24 2018-10-25 Siemens Healthcare Gmbh Anordnung zur Wärmeisolation eines MR-Magneten
CN104763873B (zh) * 2014-01-07 2016-08-17 同济大学 一种低温液体储罐盖子系统及低温液体储罐
CN103779033B (zh) * 2014-02-09 2017-02-15 奥泰医疗系统有限责任公司 低温冷却系统
EP2916112B1 (de) * 2014-03-05 2016-02-17 VEGA Grieshaber KG Radiometrische Messanordnung
DE102014219849B3 (de) * 2014-09-30 2015-12-10 Bruker Biospin Gmbh Kühlvorrichtung mit Kryostat und Kaltkopf mit verringerter mechanischer Kopplung
WO2016055915A1 (en) 2014-10-09 2016-04-14 Elekta Ab (Publ). An apparatus and a method for helium collection and reliquefaction in a magnetoencephalography measurement device
CN104392821A (zh) * 2014-12-12 2015-03-04 广东电网有限责任公司电网规划研究中心 应用于饱和铁心型超导限流器冷却系统的杜瓦结构
CN106641697B (zh) * 2016-12-09 2018-11-23 中国科学院理化技术研究所 一种带有狭缝内翅式换热器冷屏的低温液体储存容器
US11788783B2 (en) * 2017-11-07 2023-10-17 MVE Biological Solutions US, LLC Cryogenic freezer
EP3850264A4 (de) 2018-09-12 2022-03-02 The Regents Of The University Of Colorado Kryogenisch gekühlte vakuumkammerstrahlungsschilde für ultratieftemperaturexperimente und für bedingungen mit extrem hohem vakuum (xhv)
JP7186132B2 (ja) 2019-05-20 2022-12-08 住友重機械工業株式会社 極低温装置およびクライオスタット
KR102142312B1 (ko) * 2019-12-27 2020-08-07 한국기초과학지원연구원 헬륨 가스 액화기 및 헬륨 가스 액화 방법
CN113654382B (zh) * 2021-07-20 2022-04-15 中国科学院高能物理研究所 一种无运动部件驱动的超导冷却循环系统
DE102022115715A1 (de) 2022-06-23 2023-12-28 Pressure Wave Systems Gmbh Kompressorvorrichtung und Kühlvorrichtung mit Kompressorvorrichtung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179549A (en) * 1964-06-10 1965-04-20 Gen Electric Thermal insulating panel and method of making the same
DE1951659C3 (de) * 1969-10-14 1979-08-16 Kabel- Und Metallwerke Gutehoffnungshuette Ag, 3000 Hannover Abstandwendel für koaxiale Rohrsysteme
US4046407A (en) * 1975-04-18 1977-09-06 Cryogenic Technology, Inc. Elongated cryogenic envelope
US4223540A (en) * 1979-03-02 1980-09-23 Air Products And Chemicals, Inc. Dewar and removable refrigerator for maintaining liquefied gas inventory
DE3314884A1 (de) * 1983-04-25 1984-10-25 kabelmetal electro GmbH, 3000 Hannover Leitungsrohr zum transport von tiefgekuehlten medien
US4484458A (en) * 1983-11-09 1984-11-27 Air Products And Chemicals, Inc. Apparatus for condensing liquid cryogen boil-off
JP3347870B2 (ja) * 1994-04-15 2002-11-20 三菱電機株式会社 超電導マグネット並びに該マグネット用の蓄冷型冷凍機
DE19612539A1 (de) * 1996-03-29 1997-10-02 Leybold Vakuum Gmbh Mehrstufige Tieftemperaturkältemaschine
GB2329701B (en) * 1997-09-30 2001-09-19 Oxford Magnet Tech Load bearing means in nmr cryostat systems
GB2330194B (en) * 1997-09-30 2002-05-15 Oxford Magnet Tech A cryogenic pulse tube refrigerator
US6070414A (en) * 1998-04-03 2000-06-06 Raytheon Company Cryogenic cooler with mechanically-flexible thermal interface
US5918470A (en) * 1998-07-22 1999-07-06 General Electric Company Thermal conductance gasket for zero boiloff superconducting magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03012803A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108036576A (zh) * 2017-12-15 2018-05-15 陕西仙童科技有限公司 一种结合脉动热管的制冷机导冷装置
CN108036576B (zh) * 2017-12-15 2024-04-12 陕西仙童科技有限公司 一种结合脉动热管的制冷机导冷装置

Also Published As

Publication number Publication date
CN1269147C (zh) 2006-08-09
WO2003012803A3 (de) 2003-09-18
WO2003012803A2 (de) 2003-02-13
DE10137552C1 (de) 2003-01-30
JP2004537026A (ja) 2004-12-09
CN1537314A (zh) 2004-10-13
AU2002336924A1 (en) 2003-02-17
US6990818B2 (en) 2006-01-31
US20040144101A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
EP1412954A2 (de) Einrichtung zur rekondensation von tiefsiedenden gasen mit einem kryogenerator des aus einem flussiggas-behalter verdampfenden gases
DE102004061869B4 (de) Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
DE102005029151B4 (de) Kryostatanordnung mit Kryokühler
DE19914778B4 (de) Supraleitende Magnetvorrichtung
DE102011078608B4 (de) Kryostatanordnung
EP2821741B1 (de) Verfahren zum Umrüsten einer Kryostatanordnung auf Umlaufkühlung
DE69929402T2 (de) Thermisch leitfähige Dichtung für einen supraleitenden Magneten ohne Verdampfungsverluste
EP3230666B1 (de) Kryostat mit einem ersten und einem zweiten heliumtank, die zumindest in einem unteren bereich flüssigkeitsdicht voneinander abgetrennt sind
DE3633313A1 (de) Supraleiter-spulenvorrichtung
EP1504458A1 (de) Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer k lteeinheit
EP1311785B1 (de) Kryostat für elektrische apparate wie supraleitende strombegrenzer und elektrische maschinen wie transformatoren, motoren, generatoren und elektrische magnete mit supraleitender wicklung
EP3382411B1 (de) Kryostatanordnung mit einem halsrohr mit einer tragenden struktur und ein die tragende struktur umgebendes aussenrohr zur verringerung des kryogenverbrauchs
DE19704485C2 (de) Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
DE2638283A1 (de) Tieftemperatur-kuehlgeraet
EP1742234B1 (de) Unterkühlte Horizontalkryostatanordnung
DE102004034729B4 (de) Kryostatanordnung mit Kryokühler und Gasspaltwärmeübertrager
DE102010028750B4 (de) Verlustarme Kryostatenanordnung
EP3611528A1 (de) Kryostatanordnung mit supraleitendem magnetspulensystem mit thermischer verankerung der befestigungsstruktur
DE10339048A1 (de) Tieftemperaturkühlsystem für Supraleiter
DE102016203200A1 (de) Verfahren zum Abkühlen eines ersten kryogenen Druckbehälters
DE69402017T2 (de) Lagerbehälter für Hochdruckgas sowie Anlage für die Lagerung und Lieferung von Hochdruckgas
DE69203595T2 (de) Heliumauffülleinrichtung.
DE19645492C1 (de) System und Verfahren zum Aufrechterhalten oder Erhöhen des Drucks in einem Kryotank
DE202005010892U1 (de) Unterkühlte Horizontalkryostatanordnung
WO2001035034A1 (de) Tieftemperaturkühlvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031025

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040611

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060110