EP1407462B1 - Method for producing nanocrystalline magnet cores, and device for carrying out said method - Google Patents

Method for producing nanocrystalline magnet cores, and device for carrying out said method Download PDF

Info

Publication number
EP1407462B1
EP1407462B1 EP02745429.7A EP02745429A EP1407462B1 EP 1407462 B1 EP1407462 B1 EP 1407462B1 EP 02745429 A EP02745429 A EP 02745429A EP 1407462 B1 EP1407462 B1 EP 1407462B1
Authority
EP
European Patent Office
Prior art keywords
furnace
magnet cores
high thermal
annealing zone
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02745429.7A
Other languages
German (de)
French (fr)
Other versions
EP1407462A2 (en
Inventor
Jörg PETZOLD
Volker Kleespies
Hans-Rainier Hilzinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Vaccumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Vaccumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG, Vaccumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1407462A2 publication Critical patent/EP1407462A2/en
Application granted granted Critical
Publication of EP1407462B1 publication Critical patent/EP1407462B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2281/00Making use of special physico-chemical means

Definitions

  • the invention relates to a method for the production of nanocrystalline magnetic cores and to devices for carrying out such a method.
  • Nanocrystalline soft magnetic iron-base alloys have been known for a long time and have been described, for example, in US Pat EP 0 271 657 B1 described.
  • the magnetically soft iron-based alloys described therein generally have a composition with the formula: (Fe 1 -a M a ) 100-xyz- ⁇ Cu x Si y B z M ' ⁇ in which M is cobalt and / or nickel, M 'is at least one of the elements niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, the indices a, x, y, z and ⁇ are each the condition 0 ⁇ a 0.5; 0.1 ⁇ x ⁇ 3.0; 0 ⁇ y ⁇ 30.0; 0 ⁇ z ⁇ 25.0; 5 ⁇ y + z ⁇ 30.0 and 0.1 ⁇ ⁇ ⁇ 30.
  • the soft magnetic iron-base alloy may also have a composition having the general formula (Fe 1 -a M a ) 100-xyz- ⁇ - ⁇ - ⁇ Cu x Si y B z M ' ⁇ M " ⁇ X ⁇
  • M is cobalt and / or nickel
  • M ' is at least one of niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum
  • X is at least one of the elements carbon, germanium, phosphorus, gallium, antimony, indium, beryllium and arsenic and where a, x, y, z, ⁇ , ⁇ and ⁇ respectively satisfy the condition 0 ⁇ a ⁇ 0.5, 0.1 ⁇
  • the nanocrystalline alloys in question can, for example, be produced inexpensively by means of the so-called rapid solidification technology (for example by melt-spinning or planar-flow-casting).
  • rapid solidification technology for example by melt-spinning or planar-flow-casting.
  • an alloy melt is first provided in which subsequently by rapid quenching from the melt state, an initially amorphous alloy is produced.
  • the cooling rates required for the above-mentioned alloying systems amount to about 10 6 K / sec. This is achieved with the aid of the melt spin method, in which the melt is injected through a narrow nozzle onto a rapidly rotating cooling roll and thereby solidified into a thin strip.
  • This method allows the continuous production of thin strips and films in a single operation directly from the melt at a rate of 10 to 50 m / sec., With tape thicknesses of 20 to 50 ⁇ m and bandwidths to about a few cm are possible.
  • the initially amorphous strip produced by means of this rapid solidification technology is then wound into geometrically widely variable magnetic cores, which can be oval, rectangular or round.
  • the central step in achieving good soft magnetic properties is the "nanocrystallization" of the previously amorphous alloy ribbons. From a soft magnetic point of view, these alloy strips still have poor properties since they have a relatively high magnetostriction
  • an ultrafine microstructure is created, ie an alloy structure is formed in which at least 50% of the alloy structure is occupied by cubic body-centered FeSi crystallites. These crystallites are embedded in an amorphous residual phase of metals and metalloids.
  • the amorphous strips are first wound on special winding machines with as little stress as possible to form ring band cores.
  • the amorphous tape is first wound into a round core ring core and - if necessary - brought by means of suitable shaping tools in a shape deviating from the round shape.
  • suitable winding bodies it is also possible to achieve forms that deviate from the round shape directly when winding the amorphous ribbons into toroidal cores.
  • the stress-free wound toroidal cores in so-called retort furnaces subjected to a crystallization heat treatment which serves to achieve the nanocrystalline microstructure.
  • the toroidal cores are stacked and retracted in such an oven.
  • weak magnetic stray fields such as B. the magnetic earth field, a position dependence of the magnet values in the magnetic core stack is induced. While high permeability values with an intrinsically caused high remanence ratio of more than 60% are present at the stack edges, for example, the magnet values in the middle of the stack are characterized by more or less pronounced flat hysteresis loops with low permeability and remanence values.
  • FIG. 1a shows the scattering of the permeability at a frequency of 50 heart as a function of the current core number within an annealing stack.
  • FIG. 1b shows the dependence of the remanence ratio B r / B m as a function of the current core number within an annealing stack.
  • the distribution curve for the magnet values of a Glühfertigungs loses wide and steady. The distribution curve drops monotonically to high values. The exact specific course depends on the alloy, the magnetic core geometry and of course the stack height.
  • T a 450 ° C to 620 ° C
  • the necessary hold times can be between a few minutes and about 12 hours.
  • the present invention is based on the discovery that in the FIGS. 1a and 1b shown magnetostatically induced parabolic formations in the stack annealing of toroidal cores in retort furnaces are magnetostatic nature and are due to the location dependence of the demagnetization factor of a cylinder. Furthermore, it has been found that the exothermic heat of the crystallization process, which increases with the core weight, can only be dissipated incompletely to the surroundings of the glow stack and can therefore lead to a marked deterioration of the permeability values. It is noted that nanocrystallization is, of course, an exothermic physical process. This phenomenon has already been in the JP 03 146 615 A2 described.
  • the US 5,914,088 discloses a device for heat treating amorphous metallic cores in the pass.
  • the DE 35 42 257 A1 discloses a continuous furnace for annealing ferromagnetic layers, comprising a magnet for generating a magnetic field and a heating coil for generating a temperature gradient. This continuous furnace is used to magnetize ferromagnetic layers and to reduce anisotropic field strength.
  • the US 2,960,744 discloses a tunnel kiln for producing ferrites of ceramic materials, wherein the tunnel kiln may be divided into different zones having different temperatures and different atmospheres.
  • this object is achieved by a method for the production of toroidal cores of the type mentioned, in which the finished wound amorphous toroidal cores are heat treated unstacked in the flow to nanocrystalline toroidal cores.
  • FIGS. 1a and 1b shown "parabolic effect" and thus a limitation of the scattering on alloy-specific, geometric and / or thermal causes.
  • the heat treatment of the unstacked amorphous toroidal cores is performed on heat sinks, which have a high heat capacity and a high thermal conductivity, which also already from the JP 03 146 615 A2 is known.
  • a metal or a metallic alloy may be considered as the material for the heat sinks.
  • the metals copper, silver and thermally conductive steel have proved to be particularly suitable.
  • thermoforming amorphous toroidal cores are introduced into a mold bed of ceramic powder or metal powder, preferably copper powder.
  • Ceramic materials both for a solid ceramic plate or for a ceramic powder bed, in particular magnesium oxide, aluminum oxide and aluminum nitride have been found to be particularly suitable.
  • the heat treatment for crystallization is carried out in a temperature range of about 450 ° C to about 620 ° C, wherein the heat treatment passes through a temperature window of 450 ° C to 500 ° C and thereby with a heating rate of 0.1 K / min to approx 20 cycles per minute.
  • the invention is preferably carried out with an oven, the oven having a furnace housing having at least one annealing zone and a heating source, means for charging the annealing zone with unstacked amorphous magnetic cores, means for conveying the unstacked amorphous magnetic cores through the annealing zone and means for removal the unstacked heat-treated nanocrystalline magnetic cores from the annealing zone.
  • the annealing zone of such a furnace is subjected to a protective gas.
  • the furnace housing in the form of a tower furnace, in which the annealing zone extends vertically.
  • the means for conveying the unstacked amorphous magnetic cores through the vertically extending annealing zone are preferably a vertically extending conveyor belt.
  • the vertically extending conveyor belt in this case has perpendicular to the conveyor belt stationary supports made of a material with high heat capacity, ie either from the metals described above or the ceramics described above, which have a high heat capacity and high thermal conductivity exhibit.
  • the toroidal cores rest on the supports.
  • the vertically extending annealing zone is preferably divided into several separate heating zones, which are provided with separate heating controls.
  • this has the shape of a tower furnace, in which the annealing zone extends horizontally.
  • the horizontally extending annealing zone is again divided into several separate heating zones, which are provided with separate heating controls.
  • As a means for conveying the unstacked amorphous toroidal cores through the horizontally extending annealing zone at least one, but preferably a plurality, of support plates rotating about the turret axis is provided.
  • the support plates in turn consist entirely or partially of a material with high heat capacity and high thermal conductivity, on which rest the magnetic cores.
  • metallic plates come into consideration, which consist of the metals mentioned above, d. H. So copper, silver or thermally conductive steel exist.
  • this has a furnace housing which has the shape of a horizontal continuous furnace, in which the annealing zone in turn extends horizontally.
  • This embodiment is particularly preferred because such a furnace is relatively easy to manufacture.
  • a conveyor belt is provided, wherein the conveyor belt is in turn provided with pads consisting of a material with high heat capacity and high thermal conductivity, on which rest the toroidal cores.
  • pads consisting of a material with high heat capacity and high thermal conductivity, on which rest the toroidal cores.
  • the horizontally extending annealing zone is divided into several separate heating zones, which are provided with separate heating controls.
  • the transverse magnetic field treatment required for the generation of flat hysteresis loops can also be generated directly and simultaneously in the pass.
  • at least a portion of the enclosed by the furnace housing flow channel between the two pole pieces of a magnetic yoke, so that the continuous magnetic cores are acted upon in the axial direction with a homogeneous magnetic field, thereby forming in them a uniaxial anisotropy transverse to the direction of the wound tape.
  • the field strength of the yoke must be so high that the magnetic cores are at least partially saturated during the heat treatment in the axial direction.
  • the hysteresis loops become all the flatter and more linear, the greater the proportion of the length of the furnace channel over which the yoke is laid.
  • the separate heating zones have a first heating zone, a crystallization zone, a second heating zone and a maturing zone.
  • annealing processes are needed, which allows the formation and maturation of an ultrafine nanocrystalline structure under as field-free and thermally exact conditions.
  • the annealing is usually carried out in so-called retort furnaces, in which the magnetic cores are retracted stacked.
  • the key disadvantage of this method is that weak by stray fields such.
  • the distribution curve for the magnetic characteristics of a production lot is wide, continuous and decreases monotonically to high values.
  • the exact course depends on the respectively used soft magnetic alloy, the magnetic core geometry and the stack height.
  • the batch annealing in retort furnaces has the further disadvantage that with increasing magnetic core weight, the exothermic heat of the crystallization process can only be released incompletely to the environment. The result is overheating of the stacked magnetic cores, which can lead to lower permeabilities and to high coercivities. To circumvent these problems must be in the field of onset of crystallization, d. H. So from about 450 ° C to be heated very slowly, which is uneconomical. Typical heating rates are there at 0.1 to 0.2 K / min, which alone the passage through the range up to 490 ° C can be up to 7 hours.
  • FIG. 2 shows the influence of the magnetic core weight on the magnet values ( ⁇ 10 ⁇ ⁇ max ) when the magnetic cores are heat-treated directly without a heat sink.
  • FIG. 4 shows the influence of the thickness of the heat sinks on the maximum permeability of toroidal cores of different geometries or magnetic core masses. While after the FIG. 4 With magnetic cores with a low core weight and / or a small magnetic core height, a 4 mm thick copper heat sink already leads to good magnetic characteristics, heavier or higher magnetic cores require thicker heat sinks with a higher heat capacity. It has proved to be an empirical rule of thumb that the plate thickness should be d ⁇ 0.4 x the core height h.
  • FIG. 6 shows the faces of two ring cores of dimensions 50 x 40 x 25 mm 3 after a continuous annealing without heat sink (left core) and on a 10 mm thick copper heat sink (right core).
  • the right core virtually no further faults occurred on the front side.
  • FIG. 7 schematically shows a first embodiment of the present invention, a so-called tower furnace.
  • the tower furnace in this case has a furnace housing in which the annealing zone is vertical.
  • the unstacked amorphous magnetic cores be promoted by a vertically extending annealing zone by a vertically extending conveyor belt.
  • the vertically extending conveyor belt has perpendicular to the conveyor belt surface standing heat sinks made of a material with high heat capacity, preferably copper on.
  • the toroidal cores lie with their faces on the pads.
  • the vertically extending annealing zone is divided into several separate heaters, which are provided with separate heating controls.
  • FIG. 8 another embodiment of the present invention is illustrated.
  • the shape of the furnace is that of a tower furnace, in which the annealing zone, however, is horizontal.
  • the horizontally extending annealing zone is again divided into several separate heating zones, which are provided with separate heating controls.
  • As a means for transporting the unstacked amorphous toroidal cores through the horizontally extending annealing zone is again one, but preferably a plurality of rotating around the tower kiln axis bearing plates provided, which serve as heat sinks.
  • the support plates in turn are wholly or partly made of a material with high heat capacity and high thermal conductivity, on which rest the magnetic cores with their faces.
  • FIG. 3 shows a third particularly preferred alternative embodiment of the present invention, in which the furnace housing has the shape of a horizontal continuous furnace.
  • the annealing zone again runs horizontally. This embodiment is particularly preferred because, unlike the two ovens mentioned above, such an oven can be manufactured with less effort.
  • the annular band cores are conveyed through the horizontally extending annealing zone via a conveyor belt, wherein the conveyor belt is preferably again provided with pads that serve as heat sinks. Again, copper plates are particularly preferred here. In an alternative embodiment of the transport plates are taken as heat sinks, which slide on rollers through the oven housing.
  • the horizontally extending annealing zone is again divided into several separate heating zones, which are provided with separate heating controls.
  • the required for generating a flat hysteresis loop magnetic cross-field treatment can be carried out directly in the run.
  • the device required for this is in the FIG. 10 shown.
  • at least a part of the passage channel of the furnace between the pole pieces of a yoke is guided so that the continuous magnetic cores are acted upon in the axial direction with a homogeneous magnetic field, thereby forming in them a uniaxial anisotropy transverse to the direction of the wound strip.
  • the field strength of the yoke must be so high that the magnetic cores are at least partially saturated during the heat treatment in the axial direction.
  • the hysteresis loops become all the flatter and more linear, the greater the proportion of the length of the furnace channel over which the yoke is laid.
  • a large-scale production path can be tread by first crystallizing all the resulting magnetic cores in the passage. Depending on whether the required hysteresis should be round, flat or rectangular, these magnetic cores are then either immediately end-processed, d. H. taken in housing, remixed in a longitudinal magnetic field on a rectangular Hystereschleife or in a magnetic transverse field on a flat hysteresis loop and only then finished.
  • the cores can be produced much faster and in a much more economical manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von nanokristallinen Magnetkernen sowie Vorrichtungen zur Durchführung eines solchen Verfahrens.The invention relates to a method for the production of nanocrystalline magnetic cores and to devices for carrying out such a method.

Nanokristalline weichmagnetische Eisen-Basis-Legierungen sind seit langer Zeit bekannt und wurden beispielsweise in der EP 0 271 657 B1 beschrieben. Die dort beschriebenen weichmagnetischen Eisen-Basis-Legierungen weisen generell eine Zusammensetzung mit der Formel:

        (Fe1-a Ma)100-x-y-z-α CuxSiyBzM'α

auf, wobei M Kobalt und/oder Nickel ist, M' mindestens eines der Elemente Niob, Wolfram, Tantal, Zirkonium, Hafnium, Titan und Molybdän ist, die Indizes a, x, y, z und α jeweils die Bedingung 0 ≤ a ≤ 0,5; 0,1 ≤ x ≤ 3,0; 0 ≤ y ≤ 30,0; 0 ≤ z ≤ 25,0; 5 ≤ y+z ≤ 30,0 und 0,1 ≤ α ≤ 30 erfüllen.
Nanocrystalline soft magnetic iron-base alloys have been known for a long time and have been described, for example, in US Pat EP 0 271 657 B1 described. The magnetically soft iron-based alloys described therein generally have a composition with the formula:

(Fe 1 -a M a ) 100-xyz-α Cu x Si y B z M ' α

in which M is cobalt and / or nickel, M 'is at least one of the elements niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, the indices a, x, y, z and α are each the condition 0 ≤ a ≤ 0.5; 0.1 ≤ x ≤ 3.0; 0 ≤ y ≤ 30.0; 0≤z≤25.0; 5 ≤ y + z ≤ 30.0 and 0.1 ≤ α ≤ 30.

Des Weiteren können die weichmagnetischen Eisen-Basis-Legierung auch eine Zusammensetzung mit der generellen Formel

        (Fe1-a Ma)100-x-y-z-α-β-γ CuxSiyBzM'αM"βXγ

aufweisen, wobei M Kobalt und/oder Nickel ist, M' mindestens eines der Elemente Niob, Wolfram, Tantal, Zirkonium, Hafnium, Titan und Molybdän ist, M" mindestens eines der Elemente Vanadium, Chrom, Mangan, Aluminium, ein Element der Platingruppe, Skandium, Yttrium, eine Selten Erde, Gold, Zink, Zinn und/oder Rhenium und X mindestens eines der Elemente Kohlenstoff, Germanium, Phosphor, Gallium, Antimon, Indium, Beryllium und Arsen ist und wobei a, x, y, z, α, β und γ jeweils die Bedingung 0 ≤ a ≤ 0,5, 0,1 ≤ x ≤ 3,0, 0 ≤ y ≤ 30,0, 0 ≤ z ≤ 25,0, 5 ≤ y + z ≤ 30,0, 0,1 ≤ α ≤ 30,0, β ≤ 10,0 und γ ≤ 10,0 erfüllen.
Furthermore, the soft magnetic iron-base alloy may also have a composition having the general formula

(Fe 1 -a M a ) 100-xyz-α-β-γ Cu x Si y B z M ' α M " β X γ

where M is cobalt and / or nickel, M 'is at least one of niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, M "is at least one of vanadium, chromium, manganese, aluminum, a platinum group element , Scandium, yttrium, a rare earth, gold, zinc, tin and / or rhenium and X is at least one of the elements carbon, germanium, phosphorus, gallium, antimony, indium, beryllium and arsenic and where a, x, y, z, α, β and γ respectively satisfy the condition 0 ≦ a ≦ 0.5, 0.1 ≦ x ≦ 3.0, 0 ≦ y ≦ 30.0, 0 ≦ z Satisfies ≦ 25.0, 5 ≦ y + z ≦ 30.0, 0.1 ≦ α ≦ 30.0, β ≦ 10.0 and γ ≦ 10.0.

In beiden Legierungssystemen sind mindestens 50% der Legierungsstruktur von feinkristallinen Teilchen mit einer mittleren Teilchengröße von 100 nm oder weniger eingenommen. Diese weichmagnetischen nanokristallinen Legierungen werden in zunehmendem Umfang als Magnetkerne in Induktivitäten für verschiedenste elektrotechnische Anwendungen eingesetzt. Beispielsweise sind Summenstromwandler für wechselstromsensitive und auch pulsstromsensitive Fehlerstromschutzschalter, Drosseln und Transformatoren für geschaltete Netzteile, stromkompensierte Drosseln, Glättungsdrosseln oder Transduktoren aus Bandkernen, die aus Bändern aus den oben beschriebenen nanokristallinen Bändern hergestellt worden sind, bekannt. Dies -geht beispielsweise aus der EP 0 299 498 B1 hervor. Des Weiteren ist der Einsatz solcher Ringbandkerne auch für Filtersätze.in der Telekommunikation bekannt, beispielsweise als Schnittstellenübertrager bei ISDN- oder auch DSL-Anwendungen.In both alloy systems, at least 50% of the alloy structure is occupied by fine crystalline particles having an average particle size of 100 nm or less. These magnetically soft nanocrystalline alloys are increasingly being used as magnetic cores in inductors for a wide variety of electrical engineering applications. For example, summation current transformers for AC sensitive and also pulse current sensitive residual current circuit breakers, reactors and transformers for switched power supplies, current-compensated chokes, smoothing chokes or transducers made of band cores, which have been made of strips of nanocrystalline tapes described above, known. This goes, for example, from the EP 0 299 498 B1 out. Furthermore, the use of such annular band cores is also known for filter sets in telecommunications, for example as an interface transmitter for ISDN or DSL applications.

Die in Rede stehenden nanokristallinen Legierungen können beispielsweise kostengünstig mittels der sogenannten Rascherstarrungstechnologie (beispielsweise mittels melt-spinning oder planar-flow-casting) hergestellt werden. Dabei wird zuerst eine Legierungsschmelze bereitgestellt, bei der anschließend durch rasches Abschrecken aus dem Schmelzzustand eine zunächst amorphe Legierung hergestellt wird. Die für die oben in Rede stehenden Legierungssysteme erforderlichen Abkühlgeschwindigkeiten betragen dabei etwa 106 K/sec. Dies wird mit Hilfe des Schmelzspin-Verfahrens erreicht, bei welchem die Schmelze durch eine enge Düse auf eine schnell rotierende Kühlwalze gespritzt wird und dabei zu einem dünnen Band erstarrt. Dieses Verfahren ermöglicht die kontinuierliche Herstellung von dünnen Bändern und Folien in einem einzigen Arbeitsgang direkt aus der Schmelze mit einer Geschwindigkeit von 10 bis 50 m/sec., wobei Banddicken von 20 bis 50 µm und Bandbreiten bis ca. einigen cm möglich sind.The nanocrystalline alloys in question can, for example, be produced inexpensively by means of the so-called rapid solidification technology (for example by melt-spinning or planar-flow-casting). In this case, an alloy melt is first provided in which subsequently by rapid quenching from the melt state, an initially amorphous alloy is produced. The cooling rates required for the above-mentioned alloying systems amount to about 10 6 K / sec. This is achieved with the aid of the melt spin method, in which the melt is injected through a narrow nozzle onto a rapidly rotating cooling roll and thereby solidified into a thin strip. This method allows the continuous production of thin strips and films in a single operation directly from the melt at a rate of 10 to 50 m / sec., With tape thicknesses of 20 to 50 μ m and bandwidths to about a few cm are possible.

Das mittels dieser Rascherstarrungstechnologie hergestellte zunächst amorphe Band wird dann zu geometrisch weiträumig variierbaren Magnetkernen gewickelt, wobei diese oval, rechteckig oder rund sein können. Der zentrale Schritt zum erreichen guter weichmagnetischer Eigenschaften ist die "Nanokristallisation" der bis dahin noch amorphen Legierungsbänder. Diese Legierungsbänder weisen aus weichmagnetischer Sicht noch schlechte Eigenschaften auf, da sie eine relativ hohe Magnetostriktion |λS| von ca. 25 x 10-6 aufweisen. Bei der Durchführung einer auf die Legierung abgestimmten Kristallisationswärmebehandlung entsteht dann ein ultrafeines Gefüge, d. h. es entsteht eine Legierungsstruktur, bei der mindestens 50% der Legierungsstruktur von kubisch raumzentrierten FeSi-Kristalliten eingenommen wird. Diese Kristallite sind in einer amorphen Restphase aus Metallen und Metalloiden eingebettet. Die festkörperphysikalischen Hintergründe für die Entstehung der feinkristallinen Struktur und die daher eingehende drastische Verbesserung der weichmagnetischen Eigenschaften ist beispielsweise in G. Herzer, IEEE Transactions on Magnetics, 25 (1989), Seiten 3327 ff . beschrieben. Danach entstehen gute weichmagnetische Eigenschaften wie eine hohe Permeabilität oder kleine Hystereseverluste durch Ausmittelung der Kristallanisotropie Ku des zufallsorientierten nanokristallinen "Gefüges".The initially amorphous strip produced by means of this rapid solidification technology is then wound into geometrically widely variable magnetic cores, which can be oval, rectangular or round. The central step in achieving good soft magnetic properties is the "nanocrystallization" of the previously amorphous alloy ribbons. From a soft magnetic point of view, these alloy strips still have poor properties since they have a relatively high magnetostriction | λ S | of about 25 x 10 -6 . When carrying out a heat treatment adapted to the alloy, an ultrafine microstructure is created, ie an alloy structure is formed in which at least 50% of the alloy structure is occupied by cubic body-centered FeSi crystallites. These crystallites are embedded in an amorphous residual phase of metals and metalloids. The solid-state physical background for the formation of the finely crystalline structure and therefore the drastic improvement of the soft magnetic properties, which is therefore the subject of detailed discussion, are described, for example, in US Pat G. Herzer, IEEE Transactions on Magnetics, 25 (1989), pages 3327 et seq , described. Thereafter, good soft magnetic properties such as a high permeability or small hysteresis losses arise by averaging out the crystal anisotropy K u of the randomly oriented nanocrystalline "microstructure".

Nachdem aus der EP 0 271 657 B1 bzw. der 0 299 498 B1 bekannten Stand der Technik werden die amorphen Bänder zunächst auf speziellen Wickelmaschinen möglichst spannungsfrei zu Ringbandkernen gewickelt. Dazu wird das amorphe Band zunächst zu einem runden Ringbandkern gewickelt und - falls erforderlich - mittels geeigneter Formgebungswerkzeuge in eine von der runden Form abweichenden Form gebracht. Durch die Verwendung geeigneter Wickelkörper lassen sich jedoch auch direkt beim Wickeln der amorphen Bänder zu Ringbandkernen Formen erreichen, die von der runden Form abweichen.After leaving the EP 0 271 657 B1 or the prior art known from EP 0 299 498 B1, the amorphous strips are first wound on special winding machines with as little stress as possible to form ring band cores. For this purpose, the amorphous tape is first wound into a round core ring core and - if necessary - brought by means of suitable shaping tools in a shape deviating from the round shape. However, by using suitable winding bodies, it is also possible to achieve forms that deviate from the round shape directly when winding the amorphous ribbons into toroidal cores.

Danach werden nach dem Stand der Technik die spannungsfrei gewickelten Ringbandkerne in sogenannten Retortenöfen einer Kristallisationswärmebehandlung unterworfen, die zur Erzielung des nanokristallinen Gefüges dient. Hierbei werden die Ringbandkerne übereinander gestapelt und in einem solchen Ofen eingefahren. Es hat sich gezeigt, daß ein entscheidender Nachteil dieses Verfahrens darin liegt, daß durch schwache magnetische Streufelder, wie z. B. dem magnetischen Erdfeld eine Positionsabhängigkeit der Magnetwerte im Magnetkernstapel induziert wird. Während an den Stapelrändern beispielsweise hohe Permeabilitätswerte mit einem intrinsisch bedingten hohen Remanenzverhältnis von mehr als 60% vorliegen, sind die Magnetwerte im Bereich der Stapelmitte durch mehr oder weniger ausgeprägte flache Hystereseschleifen mit niedrigen Werten bezüglich der Permeabilität und Remanenz gekennzeichnet.Thereafter, according to the prior art, the stress-free wound toroidal cores in so-called retort furnaces subjected to a crystallization heat treatment, which serves to achieve the nanocrystalline microstructure. Here, the toroidal cores are stacked and retracted in such an oven. It has been found that a major disadvantage of this method is that weak magnetic stray fields such. B. the magnetic earth field, a position dependence of the magnet values in the magnetic core stack is induced. While high permeability values with an intrinsically caused high remanence ratio of more than 60% are present at the stack edges, for example, the magnet values in the middle of the stack are characterized by more or less pronounced flat hysteresis loops with low permeability and remanence values.

Dies ist beispielsweise in der Figur 1 dargestellt. Figur 1a zeigt dabei die Streuung der Permeabilität bei einer Frequenz von 50 Herz in Abhängigkeit der laufenden Kernnummer innerhalb eines Glühstapels. Die Figur 1b zeigt die Abhängigkeit des Remanenzverhältnisses Br/Bm in Abhängigkeit der laufenden Kernnummer innerhalb eines Glühstapels. Wie den Figuren 1a und 1b zu entnehmen ist, verläuft die Verteilungskurve für die Magnetwerte eines Glühfertigungsloses breit und stetig. Die Verteilungskurve fällt zu hohen Werten hin monoton ab. Der genaue spezifische Verlauf hängt dabei von der Legierung, der Magnetkerngeometrie und natürlich der Stapelhöhe ab.This is for example in the FIG. 1 shown. FIG. 1a shows the scattering of the permeability at a frequency of 50 heart as a function of the current core number within an annealing stack. The FIG. 1b shows the dependence of the remanence ratio B r / B m as a function of the current core number within an annealing stack. Like that FIGS. 1a and 1b can be seen, the distribution curve for the magnet values of a Glühfertigungsloses wide and steady. The distribution curve drops monotonically to high values. The exact specific course depends on the alloy, the magnetic core geometry and of course the stack height.

Bei den in Rede stehenden nanokristallinen Legierungssystemen erfolgt die Einstellung des nanokristallinen Gefüges typischerweise bei Temperaturen von Ta = 450°C bis 620°C, wobei die notwendigen Haltezeiten zwischen wenigen Minuten und ca. 12 Stunden liegen können. Insbesondere geht aus der US 5,911,840 hervor, daß bei nanokristallinen Magnetkernen mit einer runden B-H-Schleife eine Maximalpermeabilität von µ max = 760.000 dann erreicht wird, wenn ein stationäres Temperaturplateau mit einer Dauer von 0,1 bis 10 Stunden unterhalb der für die Kristallisation erforderlichen Temperatur von 250°C bis 480°C zur Relaxation des Magnetkernes verwendet wird. Dies erhöht die Dauer der Wärmebehandlung und reduziert damit die Wirtschaftlichkeit.In the nanocrystalline alloy systems in question, the setting of the nanocrystalline microstructure is typically carried out at temperatures of T a = 450 ° C to 620 ° C, the necessary hold times can be between a few minutes and about 12 hours. In particular, goes from the US 5,911,840 show that in nanocrystalline magnetic cores with a round bra loop a maximum permeability of μ max = 760,000 is reached when a stationary temperature plateau is used for a period of 0.1 to 10 hours below the temperature required for the crystallization of 250 ° C to 480 ° C for the relaxation of the magnetic core. This increases the duration of the heat treatment and thus reduces the economic efficiency.

Der vorliegenden Erfindung liegt die Entdeckung zugrunde, daß die in den Figuren 1a und 1b gezeigten magnetostatisch bedingten Parabelbildungen bei der Stapelglühung von Ringbandkernen in Retortenöfen magnetostatischer Natur sind und auf die Ortsabhängigkeit des Entmagnetisierungsfaktors eines Zylinders zurückzuführen sind. Weiterhin wurde -festgestellt, daß die mit dem Kerngewicht zunehmende exotherme Wärme des Kristallisationsprozesses nur unvollständig an die Umgebung des Glühstapels abgegeben werden kann und deshalb zu einer deutlichen Verschlechterung der Permeabilitätswerte führen kann. Es wird angemerkt, daß die Nanokristallisation selbstverständlich ein exothermer physikalischer Vorgang ist. Dieses Phänomen wurde bereits in der JP 03 146 615 A2 beschrieben. Die Folge dieser unzureichenden Abfuhr der Kristallisationswärme ist eine lokale Überhitzung der Ringbandkerne innerhalb des Stapels, die zu niedrigeren Permeabilitäten und zu höheren Remanenzen führen kann. Demnach sind die Permeabilitäten und die Remanenzen von Kernen im Zentrum des Glühstapels niedriger als die Permeabilitäten und Remanenzen von Ringbandkernen an den äußeren Enden des Glühstapels. Bisher hat man dieses Problem, soweit man es überhaupt erkannt hat, damit umschifft, daß man beispielsweise eben wie in der US 5,911,840 , im Bereich der einsetzenden Nanokristallisation, d. h. also ab ca. 450°C, in unwirtschaftlicher Weise sehr langsam aufgeheizt hat. Typische Aufheizraten lagen dabei zwischen 0,1 und 0,2 K/min., wodurch alleine das Durchfahren des Bereiches bis zur Temperatur von 490°C bis zu 7 Stunden betragen konnte. Diese Verfahrensweise war sehr unwirtschaftlich.The present invention is based on the discovery that in the FIGS. 1a and 1b shown magnetostatically induced parabolic formations in the stack annealing of toroidal cores in retort furnaces are magnetostatic nature and are due to the location dependence of the demagnetization factor of a cylinder. Furthermore, it has been found that the exothermic heat of the crystallization process, which increases with the core weight, can only be dissipated incompletely to the surroundings of the glow stack and can therefore lead to a marked deterioration of the permeability values. It is noted that nanocrystallization is, of course, an exothermic physical process. This phenomenon has already been in the JP 03 146 615 A2 described. The consequence of this insufficient dissipation of the heat of crystallization is a local overheating of the toroidal cores within the stack, which can lead to lower permeabilities and higher remanences. Thus, the permeabilities and remanence of nuclei in the center of the anneal stack are lower than the permeabilities and remanences of toroidal cores at the outer ends of the anneal stack. So far, one has this problem, as far as it has ever recognized, umschifft that one, for example, just as in the US 5,911,840 , In the beginning of the nano-crystallization, that is heated from about 450 ° C, in an uneconomical way very slowly. Typical heating rates were between 0.1 and 0.2 K / min, which alone could be the passage through the range up to the temperature of 490 ° C up to 7 hours. This procedure was very uneconomical.

Die US 5,914,088 offenbart eine Vorrichtung zur Wärmebehandlung amorpher metallischer Kerne im Durchlauf.The US 5,914,088 discloses a device for heat treating amorphous metallic cores in the pass.

Die DE 35 42 257 A1 offenbart einen Durchlaufofen zum Tempern ferromagnetischer Schichten, der einen Magnet zur Erzeugung eines Magnetfelds und eine Heizspule zur Erzeugung eines Temperaturgradienten aufweist. Dieser Durchlaufofen wird zur Magnetisierung ferromagnetischer Schichten und zur Reduzierung der Anisoptropiefeldstärke benutzt.The DE 35 42 257 A1 discloses a continuous furnace for annealing ferromagnetic layers, comprising a magnet for generating a magnetic field and a heating coil for generating a temperature gradient. This continuous furnace is used to magnetize ferromagnetic layers and to reduce anisotropic field strength.

Die US 2,960,744 offenbart einen Tunnelofen zur Herstellung von Ferriten keramischen Materialien, wobei der Tunnelofen in verschiedenen Zonen mit unterschiedlichen Temperaturen und unterschiedlichen Atmosphären geteilt werden kann.The US 2,960,744 discloses a tunnel kiln for producing ferrites of ceramic materials, wherein the tunnel kiln may be divided into different zones having different temperatures and different atmospheres.

Aufgabe der vorliegenden Erfindung ist es daher ein neues Verfahren zur Herstellung von Ringbandkernen bereitzustellen, bei denen das eingangs erwähnte Problem der parabelartigen Streuung und sonstiger insbesondere exothermiebedingter Verschlechterungen von Magnetkennwerten vermieden werden kann, und das besonders wirtschaftlich arbeitet.It is therefore an object of the present invention to provide a novel process for the production of toroidal cores in which the problem of parabolic scattering and other, in particular exothermic, deteriorations of magnetic characteristics mentioned at the outset can be avoided, and which works particularly economically.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren zur Herstellung von Ringbandkernen der eingangs genannten Art gelöst, bei dem die fertig gewickelten amorphen Ringbandkerne ungestapelt im Durchlauf zu nanokristallinen Ringbandkernen wärmebehandelt werden.According to the invention this object is achieved by a method for the production of toroidal cores of the type mentioned, in which the finished wound amorphous toroidal cores are heat treated unstacked in the flow to nanocrystalline toroidal cores.

Durch die Vereinzelung der Ringbandkerne wird eine identische magnetostatische Bedingung für jeden einzelnen Ringbandkern herbeigeführt. Die Folge dieser für jeden einzelnen Ringbandkern identischen magnetostatischen Kristallisationsbedingung ergibt die Beseitigung des in den Figuren 1a und 1b gezeigten "Parabeleffektes" und damit eine Beschränkung der Streuungen auf legierungsspezifische, geometrische und/oder thermische Ursachen. Die Wärmebehandlung der ungestapelten amorphen Ringbandkerne wird auf Wärmesenken durchgeführt, die eine hohe Wärmekapazität und eine hohe Wärmeleitfähigkeit aufweisen, was ebenfalls schon aus der JP 03 146 615 A2 bekannt ist. Dabei kommen als Material für die Wärmesenken insbesondere ein Metall oder eine metallische Legierung in Betracht. Insbesondere die Metalle Kupfer, Silber sowie wärmeleitfähiger Stahl haben sich als besonders geeignet erwiesen.By separating the toroidal cores an identical magnetostatic condition for each ring core ring is brought about. The consequence of this magnetostatic crystallization condition, which is identical for each individual annular band core, results in the elimination of the magnetostatic crystallization condition FIGS. 1a and 1b shown "parabolic effect" and thus a limitation of the scattering on alloy-specific, geometric and / or thermal causes. The heat treatment of the unstacked amorphous toroidal cores is performed on heat sinks, which have a high heat capacity and a high thermal conductivity, which also already from the JP 03 146 615 A2 is known. In particular, a metal or a metallic alloy may be considered as the material for the heat sinks. In particular, the metals copper, silver and thermally conductive steel have proved to be particularly suitable.

Es ist jedoch auch möglich die Wärmebehandlung auf einer Wärmesenke aus Keramik durchzuführen. Des Weiteren ist auch eine Ausgestaltung der vorliegenden Erfindung denkbar, bei dem die Wärme zu behandelnden amorphen Ringbandkerne in ein Formbett aus Keramikpulver oder Metallpulver, vorzugsweise Kupferpulver eingebracht sind.However, it is also possible to perform the heat treatment on a ceramic heat sink. Furthermore, an embodiment of the present invention is conceivable in which the heat to be treated amorphous toroidal cores are introduced into a mold bed of ceramic powder or metal powder, preferably copper powder.

Als Keramikmaterialien, sowohl für eine massive Keramikplatte bzw. für ein Keramikpulverbett, haben sich insbesondere Magnesiumoxid, Aluminiumoxid und Aluminiumnitrid als besonders geeignet erwiesen.As ceramic materials, both for a solid ceramic plate or for a ceramic powder bed, in particular magnesium oxide, aluminum oxide and aluminum nitride have been found to be particularly suitable.

Die Wärmebehandlung zur Kristallisation wird in einem Temperaturintervall von ca. 450°C bis ca. 620°C vorgenommen, wobei die Wärmebehandlung ein Temperaturfenster von 450°C bis 500°C durchläuft und dabei mit einer Aufheizrate von 0,1 K/min bis ca. 20 K/min durchlaufen wird.The heat treatment for crystallization is carried out in a temperature range of about 450 ° C to about 620 ° C, wherein the heat treatment passes through a temperature window of 450 ° C to 500 ° C and thereby with a heating rate of 0.1 K / min to approx 20 cycles per minute.

Die Erfindung wird vorzugsweise mit einem Ofen durchgeführt, wobei der Ofen ein Ofengehäuse, das zumindest eine Glühzone und eine Heizquelle aufweist, Mittel zur Beschickung der Glühzone mit ungestapelten amorphen Magnetkernen aufweist, Mittel zur Beförderung der ungestapelten amorphen Magnetkerne durch die Glühzone aufweist und Mittel zur Entnahme der ungestapelten wärmebehandelten nanokristallinen Magnetkerne aus der Glühzone aufweist.The invention is preferably carried out with an oven, the oven having a furnace housing having at least one annealing zone and a heating source, means for charging the annealing zone with unstacked amorphous magnetic cores, means for conveying the unstacked amorphous magnetic cores through the annealing zone and means for removal the unstacked heat-treated nanocrystalline magnetic cores from the annealing zone.

Vorzugsweise wird die Glühzone eines solchen Ofens mit einem Schutzgas beaufschlagt.Preferably, the annealing zone of such a furnace is subjected to a protective gas.

In einer ersten Ausführungsform der vorliegenden Erfindung weist dabei das Ofengehäuse die Gestalt eines Turmofens auf, bei dem die Glühzone vertikal verläuft. Die Mittel zur Beförderung der ungestapelten amorphen Magnetkerne durch die vertikal verlaufende Glühzone sind dabei vorzugsweise ein vertikal verlaufendes Förderband.In a first embodiment of the present invention, in this case, the furnace housing in the form of a tower furnace, in which the annealing zone extends vertically. The means for conveying the unstacked amorphous magnetic cores through the vertically extending annealing zone are preferably a vertically extending conveyor belt.

Das vertikal verlaufende Förderband weist dabei senkrecht zur Förderbandfläche stehende Auflagen aus einem Material mit hoher Wärmekapazität, d. h. also entweder aus den eingangs beschriebenen Metallen oder den eingangs beschriebenen Keramiken auf, die eine hohe Wärmekapazität und hohe Wärmeleitfähigkeit aufweisen. Die Ringbandkerne liegen dabei auf den Auflagen auf.The vertically extending conveyor belt in this case has perpendicular to the conveyor belt stationary supports made of a material with high heat capacity, ie either from the metals described above or the ceramics described above, which have a high heat capacity and high thermal conductivity exhibit. The toroidal cores rest on the supports.

Die vertikal verlaufende Glühzone ist dabei vorzugsweise in mehrere separate Heizzonen unterteilt, die mit separaten Heizregelungen versehen sind.The vertically extending annealing zone is preferably divided into several separate heating zones, which are provided with separate heating controls.

In einer alternativen Ausführungsform des erfindungsgemäßen Ofens weist dieser die Gestalt eines Turmofens auf, bei dem die Glühzone horizontal verläuft. Dabei ist die horizontal verlaufende Glühzone wiederum in mehrere separate Heizzonen unterteilt, die mit separaten Heizregelungen versehen sind. Als Mittel zur Beförderung der ungestapelten amorphen Ringbandkerne durch die horizontal verlaufende Glühzone ist dann zumindest eine, vorzugsweise aber mehrere, sich um die Turmofenachse drehende Auflageplatten vorgesehen.In an alternative embodiment of the furnace according to the invention, this has the shape of a tower furnace, in which the annealing zone extends horizontally. Here, the horizontally extending annealing zone is again divided into several separate heating zones, which are provided with separate heating controls. As a means for conveying the unstacked amorphous toroidal cores through the horizontally extending annealing zone, at least one, but preferably a plurality, of support plates rotating about the turret axis is provided.

Die Auflageplatten wiederum bestehen ganz oder teilweise aus einem Material mit hoher Wärmekapazität und hoher Wärmeleitfähigkeit, auf den die Magnetkerne aufliegen. Hierbei kommen insbesondere metallische Platten in Betracht, die aus den eingangs erwähnten Metallen, d. h. also Kupfer, Silber oder wärmeleitfähiger Stahl, bestehen.The support plates in turn consist entirely or partially of a material with high heat capacity and high thermal conductivity, on which rest the magnetic cores. In this case, in particular metallic plates come into consideration, which consist of the metals mentioned above, d. H. So copper, silver or thermally conductive steel exist.

In einer dritten alternativen Ausführungsform des erfindungsgemäßen Ofens weist dieser ein Ofengehäuse auf, das die Gestalt eines horizontalen Durchlaufofens aufweist, bei dem die Glühzone wiederum horizontal verläuft. Diese Ausführungsform ist besonders bevorzugt, weil ein solcher Ofen relativ einfach herzustellen ist.In a third alternative embodiment of the furnace according to the invention, this has a furnace housing which has the shape of a horizontal continuous furnace, in which the annealing zone in turn extends horizontally. This embodiment is particularly preferred because such a furnace is relatively easy to manufacture.

Dabei sind als Mittel zur Beförderung der ungestapelten amorphen Ringbandkerne durch die horizontal verlaufende Glühzone ein Förderband vorgesehen, wobei das Förderband wiederum mit Auflagen versehen ist, die aus einem Material mit hoher Wärmekapazität und hoher Wärmeleitfähigkeit bestehen, auf denen die Ringbandkerne aufliegen. Hierbei kommen wiederum die eingangs diskutierten metallischen und/oder keramischen Materialien in Betracht.In this case, as a means for conveying the unstacked amorphous toroidal cores through the horizontally extending annealing zone, a conveyor belt is provided, wherein the conveyor belt is in turn provided with pads consisting of a material with high heat capacity and high thermal conductivity, on which rest the toroidal cores. Come here again the metallic and / or ceramic materials discussed at the outset.

Typischerweise ist auch hier wiederum die horizontal verlaufende Glühzone in mehrere separate Heizzonen unterteilt, die mit separaten Heizregelungen versehen sind.Typically, again, the horizontally extending annealing zone is divided into several separate heating zones, which are provided with separate heating controls.

In einer Weiterentwicklung der vorliegenden Erfindung läßt sich die zur Erzeugung von flachen Hystereseschleifen erforderlicher magnetische Querfeldbehandlung ebenfalls direkt und gleichzeitig im Durchlauf erzeugen. Dazu wird zumindest ein Teil des vom Ofengehäuse umschlossenen Durchlaufkanals zwischen den beiden Polschuhen eines magnetischen Jochs geführt, so daß die durchlaufenden Magnetkerne in axialer Richtung mit einem homogenen Magnetfeld beaufschlagt werden, wodurch sich in ihnen eine uniaxiale Anisotropie quer zur Richtung des gewickelten Bandes ausbildet. Die Feldstärke des Joches muß dabei so hoch sein, daß die Magnetkerne während der Wärmebehandlung in axialer Richtung zumindest teilweise aufgesättigt sind.In a further development of the present invention, the transverse magnetic field treatment required for the generation of flat hysteresis loops can also be generated directly and simultaneously in the pass. For this purpose, at least a portion of the enclosed by the furnace housing flow channel between the two pole pieces of a magnetic yoke, so that the continuous magnetic cores are acted upon in the axial direction with a homogeneous magnetic field, thereby forming in them a uniaxial anisotropy transverse to the direction of the wound tape. The field strength of the yoke must be so high that the magnetic cores are at least partially saturated during the heat treatment in the axial direction.

Die Hystereseschleifen werden dabei umso flacher und linearer, je größer der Anteil der Länge des Ofenkanals ist, über den das Joch gelegt ist.The hysteresis loops become all the flatter and more linear, the greater the proportion of the length of the furnace channel over which the yoke is laid.

Bei allen drei alternativen Ausgestaltungen des erfindungsgemäßen Ofens weisen die separaten Heizzonen eine erste Aufheizzone, eine Kristallisationszone, eine zweite Aufheizzone und eine Reifungszone auf.In all three alternative embodiments of the furnace according to the invention, the separate heating zones have a first heating zone, a crystallization zone, a second heating zone and a maturing zone.

Die Erfindung ist im folgenden anhand der Zeichnung beispielsweise veranschaulicht. Dabei zeigen:

Figur 2
den Einfluß des Ringbandkerngewichts auf die Permeabilität (50 Hz) von ohne Wärmesenke durchlaufgeglühten Ringbandkernen,
Figur 3
den Einfluß von verschieden dicken Wärmesenken auf das exothermische Kristallisationsverhalten von durchlaufgeglühten Ringbandkernen,
Figur 4
den Einfluß von verschiedenen Dicken von Wärmesenken auf die Maximalpermeabilität von durchlaufgeglühten Ringbandkernen unterschiedlicher Geometrie und unterschiedlicher Ringbandkernmasse,
Figur 5
den Einfluß des Ringbandkerngewichts auf die Permeabilität (50 Hz) nach einer Durchlaufglühung auf einer 10 mm dicken Kupfer-Wärmesenke,
Figur 6
die Stirnflächen von zwei Vergleichsringbandkernen nach einer Durchlaufglühung ohne Wärmesenke und mit Wärmesenke,
Figur.7
schematisch im Querschnitt einen erfindungsgemäßen Turmofen mit vertikal laufendem Förderband,
Figur 8
einen erfindungsgemäßen mehrstöckigen Karusellofen,
Figur 9
einen erfindungsgemäßen Durchlaufofen mit horizontal verlaufendem Förderband und
Figur 10
eine Querfelderzeugung mittels eines Jochs über dem Ofenkanal.
The invention is illustrated below with reference to the drawing, for example. Showing:
FIG. 2
the influence of the toroidal core weight on the permeability (50 Hz) of toroidal cores annealed without heat sink,
FIG. 3
the influence of different thicknesses of heat sinks on the exothermic crystallization behavior of continuous annealed toroidal cores,
FIG. 4
the influence of different thicknesses of heat sinks on the maximum permeability of continuously annealed ring band cores of different geometry and different ring band core mass,
FIG. 5
the influence of the toroidal core weight on the permeability (50 Hz) after a continuous annealing on a 10 mm thick copper heat sink,
FIG. 6
the end faces of two comparative ring cores after a continuous annealing without heat sink and heat sink,
Figur.7
schematically in cross-section a tower furnace according to the invention with vertically running conveyor belt,
FIG. 8
a multi-storey carousel furnace according to the invention,
FIG. 9
a continuous furnace according to the invention with horizontal conveyor belt and
FIG. 10
a transverse field generation by means of a yoke above the furnace channel.

Insbesondere zur Herstellung von sogenannten runden Hystereseschleifen werden Glühverfahren benötigt, die die Entstehung und Reifung von einem ultrafeinen nanokristallinen Gefüge unter möglichst feldfreien und thermisch exakten Bedingungen erlaubt. Wie eingangs erwähnt, wird nach dem Stand der Technik normalerweise die Glühung in sogenannten Retortenöfen ausgeführt, in denen die Magnetkerne übereinander gestapelt eingefahren werden.In particular, for the production of so-called round hysteresis loops annealing processes are needed, which allows the formation and maturation of an ultrafine nanocrystalline structure under as field-free and thermally exact conditions. As mentioned above, according to the prior art, the annealing is usually carried out in so-called retort furnaces, in which the magnetic cores are retracted stacked.

Der entscheidende Nachteil dieses Verfahrens ist, daß durch schwache Streufelder wie z. B. dem magnetischen Feld der Erde oder ähnlichen Streufeldern eine Positionsabhängigkeit der magnetischen Kennwerte im Magnetkernstapel induziert wird. Dies kann man als Antenneneffekt bezeichnen. Während an den Stapelrändern tatsächlich runde Hystereseschleifen mit einer hohen Permeabilität und einem intrinsisch bedingten hohen Remanenzverhältnis von mehr als 60% vorliegen, liegen in der Stapelmitte jedoch mehr oder weniger ausgeprägte flache Hystereseschleifen mit niedrigeren Permeabilitäten und Remanenzverhältnissen vor. Dies wurde eingangs in den Figuren 1a und 1b gezeigt.The key disadvantage of this method is that weak by stray fields such. B. the magnetic field of the earth or similar stray fields, a position dependence of the magnetic characteristics in the magnetic core stack is induced. This can be called an antenna effect. While there are indeed round hysteresis loops with a high permeability and an intrinsically caused high remanence ratio of more than 60% at the stack edges, more or less pronounced flat hysteresis loops with lower permeabilities and remanence ratios are present in the stack center. This was initially in the FIGS. 1a and 1b shown.

Entsprechend verläuft die Verteilungskurve für die magnetischen Kennwerte eines Fertigungsloses breit, stetig und fällt zu hohen Werten hin monoton ab. Wie eingangs erwähnt hängt der genaue Verlauf von der jeweils verwendeten weichmagnetischen.Legierung, der Magnetkerngeometrie und der Stapelhöhe ab.Accordingly, the distribution curve for the magnetic characteristics of a production lot is wide, continuous and decreases monotonically to high values. As mentioned above, the exact course depends on the respectively used soft magnetic alloy, the magnetic core geometry and the stack height.

Neben der magnetostatisch bedingten Parabelbildung besitzt die Stapelglühung in Retortenöfen den weiteren Nachteil, daß mit zunehmendem Magnetkerngewicht die exotherme Wärme des Kristallisationsprozesses nur unvollständig an die Umgebung abgegeben werden kann. Die Folge ist eine Überhitzung der gestapelten Magnetkerne, die zu niedrigeren Permeabilitäten und zu hohen Koerzitivfeldstärken führen kann. Zur Umgehung dieser Probleme muß im Bereich der einsetzenden Kristallisation, d. h. also ab ca. 450°C sehr langsam aufgeheizt werden, was unwirtschaftlich ist. Typische Aufheizraten liegen dort bei 0,1 bis 0,2 K/min, wodurch alleine das Durchfahren des Bereiches bis 490°C bis zu 7 Stunden betragen kann.In addition to the magnetostatically caused parabolic formation, the batch annealing in retort furnaces has the further disadvantage that with increasing magnetic core weight, the exothermic heat of the crystallization process can only be released incompletely to the environment. The result is overheating of the stacked magnetic cores, which can lead to lower permeabilities and to high coercivities. To circumvent these problems must be in the field of onset of crystallization, d. H. So from about 450 ° C to be heated very slowly, which is uneconomical. Typical heating rates are there at 0.1 to 0.2 K / min, which alone the passage through the range up to 490 ° C can be up to 7 hours.

Die einzige wirtschaftlich realisierbare großtechnische Alternative zur Stapelglühung im Retortenofen liegt in einer Glühung gemäß der vorliegenden Erfindung im Durchlauf. Durch die Vereinzelung der Magnetkerne durch das Durchlaufverfahren werden identische magnetostatische Bedingungen für jeden einzelnen Magnetkern geschaffen. Die Folge ist die Beseitigung der oben beschriebenen Parabeleffekte, die die Streuungen auf legierungspezifische, kerntechnologische und thermische Ursachen.The only economically viable large-scale alternative to batch annealing in the retort furnace is in a glow in accordance with the present invention in the run. By separating the magnetic cores by the continuous process identical magnetostatic conditions are created for each individual magnetic core. The consequence is the elimination of the above-described parabolic effects, which are the dispersions on alloy-specific, nuclear-technological and thermal causes.

Während die beiden ersten Faktoren gut kontrollierbar sind, kann die für Durchlaufglühungen typische schnelle Aufheizrate selbst bei vereinzelten Magnetkernen zu einer exothermen Wärmeentwicklung führen, die gemäß der Figur 2 eine mit dem Kerngewicht zunehmende Schädigung der Magneteigenschaften verursacht. Die Figur 2 zeigt den Einfluß des Magnetkerngewichts auf die Magnetwerte (µ 10µ max) wenn die Magnetkerne ohne eine Wärmesenke direkt im Durchlauf wärmebehandelt werden.While the first two factors are well controllable, the fast heating rate typical of continuous annealing can result in exothermic heat generation, even with isolated magnetic cores, which is consistent with the FIG. 2 causing an increase in core weight increasing damage to the magnetic properties. The FIG. 2 shows the influence of the magnetic core weight on the magnet values ( μ 10μ max ) when the magnetic cores are heat-treated directly without a heat sink.

Da eine verzögerte Aufheizung zu einer unwirtschaftlichen Vervielfachung der Länge der Durchlaufstrecke führen würde, kann dieses Problem durch die Einführung wärmeabsorbierender Unterlagen (Wärmesenken) aus gut wärmeleitenden Metallen oder durch metallische oder keramische Pulverbetten gelöst werden. Als besonders geeignet haben sich Kupferplatten bewiesen, da diese eine hohe spezifische Wärmekapazität und eine sehr gute Wärmeleitfähigkeit besitzen. Dadurch kann den Magnetkernen die exotherm erzeugte Kristallisationswärme stirnseitig entzogen werden. Darüber hinaus reduzieren derartige Wärmesenken die Aufheizrate, wodurch die exotherme Übertemperatur weiter eingeschränkt werden kann. Dies wird durch die Figur 3 veranschaulicht. Die Figur 3 zeigt den Einfluß unterschiedlich dicker Kupfer-Wärmesenken auf das Exothermieverhalten in Ringbandkernen, die Abmessung von ungefähr 21 x 11,5 x 25 mm aufwiesen.Since a delayed heating would lead to an uneconomical multiplication of the length of the passage, this problem can be solved by the introduction of heat-absorbing underlays (heat sinks) of highly thermally conductive metals or by metallic or ceramic powder beds. Copper plates have proven to be particularly suitable since they have a high specific heat capacity and a very good thermal conductivity. As a result, the exothermic heat of crystallization can be removed from the front side of the magnetic cores. In addition, such heat sinks reduce the heating rate, which further limits the exothermic over temperature. This is done by the FIG. 3 illustrated. The FIG. 3 shows the influence of different thicknesses of copper heat sinks on the exothermic behavior in toroidal cores having dimensions of approximately 21 x 11.5 x 25 mm.

Da die Rate des Temperaturausgleichs von der Temperaturdifferenz zwischen Magnetkern und Wärmesenke abhängt, ist deren Wärmekapazität über die Dicke an die Masse und Höhe des Magnetkerns anzupassen.Since the rate of temperature compensation depends on the temperature difference between the magnetic core and the heat sink, its thermal capacity across the thickness of the mass and height of the magnetic core is adjusted.

Die Figur 4 zeigt den Einfluß der Dicke der Wärmesenken auf die Maximalpermeabilität von Ringbandkernen unterschiedlicher Geometrien bzw. Magnetkernmassen. Während nach der Figur 4 bei Magnetkernen mit kleinem Kerngewicht und/oder kleiner Magnetkernhöhe bereits eine 4 mm dicke Kupfer-Wärmesenke zu guten magnetischen Kennwerten führt, benötigen schwerere bzw. höhere Magnetkerne dickere Wärmesenken mit einer höheren Wärmekapazität. Es hat sich dabei als empirische Faustregel ergeben, daß die Plattendicke d ≥ 0,4 x der Kernhöhe h sein sollte.The FIG. 4 shows the influence of the thickness of the heat sinks on the maximum permeability of toroidal cores of different geometries or magnetic core masses. While after the FIG. 4 With magnetic cores with a low core weight and / or a small magnetic core height, a 4 mm thick copper heat sink already leads to good magnetic characteristics, heavier or higher magnetic cores require thicker heat sinks with a higher heat capacity. It has proved to be an empirical rule of thumb that the plate thickness should be d ≥ 0.4 x the core height h.

Wie aus der Figur 5 hervorgeht, lassen sich unter Berücksichtigung dieser Regel über einen weiten Gewichtsbereich hinweg hervorragende magnetische Kennwerte (µ max (50 Hz) > 500.000; µ 1 > 100.000) erzielen.Like from the FIG. 5 As a result, excellent magnetic characteristics ( μ max (50 Hz)>500,000; μ 1 > 100,000) can be achieved over a wide weight range, taking this rule into account.

Das Absenken der magnetischen Eigenschaften bei Durchlaufglühungen ohne Wärmesenken ist meist mit lamellenförmigen Verwerfungen und Knicken der Bandlagen verbunden, was aus der Figur 6 hervorgeht. Die Figur 6 zeigt die Stirnflächen von zwei Ringbandkernen der Abmessungen 50 x 40 x 25 mm3 nach einer Durchlaufglühung ohne Wärmesenke (linker Kern) und auf einer 10 mm starken Kupfer-Wärmesenke (rechter Kern). Bei rechten Kern traten an der Stirnseite praktisch keine Verwerfungen mehr auf. Beim linken Magnetkern hingegen liegt die Maximalpermeabilität bei µ max = 127.000, wo hingegen sie beim rechten Magnetkern ungefähr 620.000 betrug.The lowering of the magnetic properties in continuous annealing without heat sinks is usually associated with lamellar distortions and buckling of the band layers, resulting from the FIG. 6 evident. The FIG. 6 shows the faces of two ring cores of dimensions 50 x 40 x 25 mm 3 after a continuous annealing without heat sink (left core) and on a 10 mm thick copper heat sink (right core). In the case of the right core, virtually no further faults occurred on the front side. In the case of the left magnetic core, on the other hand, the maximum permeability is μ max = 127,000, whereas it was approximately 620,000 for the right magnetic core.

Es hat sich gezeigt, daß nur dann, wenn mehr als ca. 85% der Stirnflächen eines Kerns verwerfungsfrei sind, auch gute magnetische Kennwerte erreicht werden können.It has been shown that only when more than about 85% of the end faces of a core are free of warpage, good magnetic characteristics can be achieved.

Die Figur 7 zeigt schematisch eine erste Ausführungsform der vorliegenden Erfindung, einen sogenannten Turmofen. Der Turmofen weist dabei ein Ofengehäuse auf, bei dem die Glühzone vertikal verläuft. Die ungestapelten amorphen Magnetkerne werden dabei durch eine vertikal verlaufende Glühzone durch ein vertikal verlaufendes Förderband gefördert.The FIG. 7 schematically shows a first embodiment of the present invention, a so-called tower furnace. The tower furnace in this case has a furnace housing in which the annealing zone is vertical. The unstacked amorphous magnetic cores be promoted by a vertically extending annealing zone by a vertically extending conveyor belt.

Das vertikal verlaufende Förderband weist dabei senkrecht zur Förderbandfläche stehende Wärmesenken aus einem Material mit hoher Wärmekapazität, vorzugsweise Kupfer, auf. Die Ringbandkerne liegen dabei mit ihren Stirnflächen auf den Auflagen auf. Die vertikal verlaufende Glühzone ist dabei in mehrere separate Heizungen unterteilt, die mit separaten Heizregelungen versehen sind.The vertically extending conveyor belt has perpendicular to the conveyor belt surface standing heat sinks made of a material with high heat capacity, preferably copper on. The toroidal cores lie with their faces on the pads. The vertically extending annealing zone is divided into several separate heaters, which are provided with separate heating controls.

In der Figur 8 ist eine weitere Ausführungsform der vorliegenden Erfindung veranschaulicht. Auch hier ist wiederum die Gestalt des Ofens die eines Turmofens, bei dem die Glühzone jedoch horizontal verläuft. Dabei ist die horizontal verlaufende Glühzone wiederum in mehrere separate Heizzonen unterteilt, die mit separaten Heizregelungen versehen sind. Als Mittel zur Beförderung der ungestapelten amorphen Ringbandkerne durch die horizontal verlaufende Glühzone ist wiederum eine, vorzugsweise aber mehrere sich um die Turmofenachse drehende Auflagenplatten vorgesehen, die als Wärmesenken dienen.In the FIG. 8 another embodiment of the present invention is illustrated. Again, the shape of the furnace is that of a tower furnace, in which the annealing zone, however, is horizontal. Here, the horizontally extending annealing zone is again divided into several separate heating zones, which are provided with separate heating controls. As a means for transporting the unstacked amorphous toroidal cores through the horizontally extending annealing zone is again one, but preferably a plurality of rotating around the tower kiln axis bearing plates provided, which serve as heat sinks.

Die Auflageplatten wiederum bestehen ganz oder teilweise aus einem Material mit hoher Wärmekapazität und hoher Wärmeleitfähigkeit, auf dem die Magnetkerne mit ihren Stirnflächen aufliegen.The support plates in turn are wholly or partly made of a material with high heat capacity and high thermal conductivity, on which rest the magnetic cores with their faces.

Die Figur 9 schließlich zeigt eine dritte besonders bevorzugte alternative Ausführungsform der vorliegenden Erfindung, bei der das Ofengehäuse die Gestalt eines horizontalen Durchlaufofens aufweist. Dabei verläuft die Glühzone wiederum horizontal. Diese Ausführungsform ist besonders bevorzugt, weil ein solcher Ofen im Gegensatz zu den beiden oben genannten Öfen mit weniger Aufwand herzustellen ist.The FIG. 9 Finally, FIG. 3 shows a third particularly preferred alternative embodiment of the present invention, in which the furnace housing has the shape of a horizontal continuous furnace. The annealing zone again runs horizontally. This embodiment is particularly preferred because, unlike the two ovens mentioned above, such an oven can be manufactured with less effort.

Dabei werden die Ringbandkerne durch die horizontal verlaufende Glühzone über ein Förderband gefördert, wobei das Förderband vorzugsweise wiederum mit Auflagen versehen ist, die als Wärmesenken dienen. Besonders bevorzugt sind hier wiederum Kupferplatten. In einer alternativen Ausgestaltung des Transportes werden Platten als Wärmesenken genommen, die auf Rollen durch das Ofengehäuse gleiten.The annular band cores are conveyed through the horizontally extending annealing zone via a conveyor belt, wherein the conveyor belt is preferably again provided with pads that serve as heat sinks. Again, copper plates are particularly preferred here. In an alternative embodiment of the transport plates are taken as heat sinks, which slide on rollers through the oven housing.

Wie aus der Figur 9 hervorgeht, ist die horizontal verlaufende Glühzone wiederum in mehrere separate Heizzonen unterteilt, die mit separaten Heizregelungen versehen sind.Like from the FIG. 9 shows, the horizontally extending annealing zone is again divided into several separate heating zones, which are provided with separate heating controls.

Bei einer speziellen Ausführungsform des in Figur 9 gezeigten Durchlaufofens läßt sich die zur Erzeugung einer flachen Hystereseschleife erforderliche magnetische Querfeldbehandlung direkt im Durchlauf durchführen. Die dazu erforderliche Vorrichtung ist in der Figur 10 gezeigt. Hierzu wird zumindest ein Teil des Durchlaufkanals des Ofens zwischen den Polschuhen eines Jochs geführt, so daß die durchlaufenden Magnetkerne in axialer Richtung mit einem homogenen Magnetfeld beaufschlagt werden, wodurch sich in ihnen eine uniaxiale Anisotropie quer zur Richtung des gewickelten Bandes ausbildet. Die Feldstärke des Joches muß dabei so hoch sein, daß die Magnetkerne während der Wärmebehandlung in axialer Richtung zumindest teilweise aufgesättigt sind.In a specific embodiment of the in FIG. 9 shown continuous furnace, the required for generating a flat hysteresis loop magnetic cross-field treatment can be carried out directly in the run. The device required for this is in the FIG. 10 shown. For this purpose, at least a part of the passage channel of the furnace between the pole pieces of a yoke is guided so that the continuous magnetic cores are acted upon in the axial direction with a homogeneous magnetic field, thereby forming in them a uniaxial anisotropy transverse to the direction of the wound strip. The field strength of the yoke must be so high that the magnetic cores are at least partially saturated during the heat treatment in the axial direction.

Die Hystereseschleifen werden dabei umso flacher und linearer, je größer der Anteil der Länge des Ofenkanals ist, über den das Joch gelegt ist.The hysteresis loops become all the flatter and more linear, the greater the proportion of the length of the furnace channel over which the yoke is laid.

Mit dieser Maßnahme wurden folgende Ergebnisse erzeilt:

  • Bei einer Feldstärke von 0,3 T, die zwischen den Polschuhen des Joches, das entlang der gesamten Heizstrecke wirksam war, wurden Magnetkerne mit den Abmessungen 21mm x 11,5mm x 25 mm mit der Zusammensetzung FebalCu1,0Si15,62B6,85Nb2,98 erzeugt, die Permeabilitätswerte von ca.µ = 23.000 (f= 50 Hz) aufwiesen. Das Remanenzverhältnis wurde infolge der axialen Feldeinwirkung auf 5,6% reduziert.
This measure resulted in the following results:
  • With a field strength of 0.3 T, which was effective between the pole shoes of the yoke, which was effective along the entire heating section, were magnetic cores with the dimensions 21mm x 11.5mm x 25 mm with the composition Fe bal Cu 1.0 Si 15.62 B 6.85 Nb 2.98 produced, the permeability values of about μ = 23,000 (f = 50 Hz) had. The remanence ratio was reduced to 5.6% due to the axial field effect.

Bei Belegung von nur der halben Heizstrecke blieb die uniaxiale Anisotropie schwächer und die Hystereseschleife wurde weniger flach.With only half the heating distance, the uniaxial anisotropy remained weaker and the hysteresis loop became less flat.

Bei der Temperung ohne magnetisches Joch lag das Remanenzverhältnis im Vergleich dazu um oder oberhalb von 50% und der Permeabilitätsverlauf in Abhängigkeit von der Feldstärke entsprach dem von runden Hystereseschleifen.In tempering without a magnetic yoke, the remanence ratio was around or above 50% in comparison and the permeability course as a function of the field strength corresponded to that of round hysteresis loops.

Mit dem erfindungsgemäßen Verfahren und den Vorrichtungen lassen sich ein großtechnischer Fertigungsweg beschreiten, indem zunächst alle anfallenden Magnetkerne im Durchlauf kristallisiert werden. Je nach dem ob die geforderten Hystereschleifen nun rund, flach oder rechteckig sein sollen, werden diese Magnetkerne anschließend entweder sofort endverarbeitet, d. h. in Gehäuse gefaßt, in einem magnetischen Längsfeld auf eine rechteckige Hystereschleife oder in einem magnetischen Querfeld auf eine flache Hystereseschleife umgetempert und erst dann Endverarbeitet.With the method and the devices according to the invention, a large-scale production path can be tread by first crystallizing all the resulting magnetic cores in the passage. Depending on whether the required hysteresis should be round, flat or rectangular, these magnetic cores are then either immediately end-processed, d. H. taken in housing, remixed in a longitudinal magnetic field on a rectangular Hystereschleife or in a magnetic transverse field on a flat hysteresis loop and only then finished.

Im Gegensatz zu den herkömmlichen Verfahren lassen sich die Kerne wesentlich schneller und in einer wesentlich wirtschaftlicheren Art und Weise herstellen.In contrast to the conventional methods, the cores can be produced much faster and in a much more economical manner.

Claims (22)

  1. Method for producing magnet cores consisting of a magnetically soft iron-based alloy, wherein at least 50% of the alloy structure are represented by finely crystalline particles with an average particle size of 100 nm or less, the method comprising the following steps: a) the provision of an alloy melt; b) the production of an amorphous alloy strip from the alloy melt using rapid solidification technology; c) the winding of the amorphous strip to produce amorphous magnet cores; d) the continuous heat treatment of the unstacked amorphous magnet cores to produce nanocrystalline magnet cores, characterised in that the heat treatment of the unstacked amorphous magnet cores is performed on heat sinks having a high thermal capacity and a high thermal conductivity.
  2. Method according to claim 1, characterised in that a metal, a metallic alloy or a metal powder is provided as a material for the heat sinks.
  3. Method according to claim 2, characterised in that copper, silver or a thermally conductive steel is provided as a metal or metal powder.
  4. Method according to claim 1, characterised in that a ceramic material is provided as a material for the heat sinks.
  5. Method according to claim 1, characterised in that a ceramic powder is provided as a material for the heat sinks.
  6. Method according to claim 4 or 5, characterised in that magnesium oxide, aluminium oxide or aluminium nitride is provided as a ceramic material or ceramic powder.
  7. Method according to any of claims 1 to 6, characterised in that the heat treatment is performed in a temperature range of approximately 450°C to 620°C.
  8. Method according to claim 7, characterised in that a temperature window of 450°C to 500°C is passed through in the heat treatment.
  9. Method according to claim 8, characterised in that the temperature window is passed through at a heating rate of 0.1 K/min to approximately 20 K/min.
  10. Furnace for carrying out the method according to any of claims 1 to 9, comprising: A) a furnace housing having at least one annealing zone and a heat source; B) means for feeding the annealing zone with unstacked amorphous magnet cores; C) means for conveying the unstacked amorphous magnet cores through the annealing zone; and D) means for removing the unstacked heat-treated nanocrystalline magnet cores from the annealing zone, characterised in that the means for conveying the magnet cores comprise heat sinks having a high thermal capacity and a high thermal conductivity for the heat treatment of the unstacked amorphous magnet cores.
  11. Furnace according to claim 10, characterised in that there are further provided: E) means for admitting an inert gas to the annealing zone.
  12. Furnace according to claim 10 or 11, characterised in that the furnace housing has the form of a tower furnace in which the annealing zone extends vertically.
  13. Furnace according to claim 12, characterised in that a vertically running conveyor belt is provided as means for conveying the unstacked amorphous magnet cores through the vertically oriented annealing zone.
  14. Furnace according to claim 13, characterised in that the vertically running conveyor belt is provided with supports, which extend perpendicularly to the conveyor belt surface and are made of a material having a high thermal capacity and a high thermal conductivity, and on which the magnet cores lie.
  15. Furnace according to claim 14, characterised in that supports mounted on rollers are provided as means for conveying the unstacked amorphous magnet cores through the vertically oriented annealing zone.
  16. Furnace according to claim 15, characterised in that the supports on which the magnet cores lie are made of a material having a high thermal capacity and a high thermal conductivity.
  17. Furnace according to any of claims 12 to 16, characterised in that the vertically oriented annealing zone is divided into several separate heating zones provided with separate heating controls.
  18. Furnace according to claim 10 or 11, characterised in that the furnace housing has the shape of a horizontal continuous furnace in which the annealing zone extends horizontally.
  19. Furnace according to claim 23, characterised in that a conveyor belt is provided as means for conveying the unstacked amorphous magnet cores through the horizontally oriented annealing zone.
  20. Furnace according to claim 24, characterised in that the conveyor belt is provided with supports on which the magnet cores lie, which are made of a material having a high thermal capacity and a high thermal conductivity.
  21. Furnace according to claim 13 or 17, characterised in that the separate heating zones comprise a first heating-up zone, a crystallisation zone, a second heating-up zone and an ageing zone.
  22. Furnace according to any of claims 10 to 21, characterised in that, for adjusting the uniaxial anisotropy, the pole shoes of a magnetic yoke are at least partially placed above the continuous passage encompassed by the furnace housing.
EP02745429.7A 2001-07-13 2002-07-11 Method for producing nanocrystalline magnet cores, and device for carrying out said method Expired - Lifetime EP1407462B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10134056 2001-07-13
DE10134056.7A DE10134056B8 (en) 2001-07-13 2001-07-13 Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
PCT/EP2002/007755 WO2003007316A2 (en) 2001-07-13 2002-07-11 Method for producing nanocrystalline magnet cores, and device for carrying out said method

Publications (2)

Publication Number Publication Date
EP1407462A2 EP1407462A2 (en) 2004-04-14
EP1407462B1 true EP1407462B1 (en) 2017-09-06

Family

ID=7691644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02745429.7A Expired - Lifetime EP1407462B1 (en) 2001-07-13 2002-07-11 Method for producing nanocrystalline magnet cores, and device for carrying out said method

Country Status (6)

Country Link
US (2) US7563331B2 (en)
EP (1) EP1407462B1 (en)
JP (1) JP2004535075A (en)
CN (1) CN100380539C (en)
DE (1) DE10134056B8 (en)
WO (1) WO2003007316A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134056B8 (en) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
CN100378875C (en) * 2003-04-02 2008-04-02 真空融化两合公司 Magnet core, method for the production of such a magnet core, uses of such a magnet core especially in current transformers and current-compensated inductors, and alloys and bands used for producing s
DE102004024337A1 (en) * 2004-05-17 2005-12-22 Vacuumschmelze Gmbh & Co. Kg Process for producing nanocrystalline current transformer cores, magnetic cores produced by this process, and current transformers with same
DE102005034486A1 (en) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
CN100389212C (en) * 2006-03-19 2008-05-21 江西大有科技有限公司 Process and device for heat treatment of amorphous nano-crystalline alloy iron core
EP1918407B1 (en) * 2006-10-30 2008-12-24 Vacuumschmelze GmbH & Co. KG Iron-cobalt based soft magnetic alloy and method for its manufacture
CN1971781B (en) * 2006-11-03 2010-12-22 北京航空航天大学 Preparing method of block amorphous ring type magnetic core
DE102007034532A1 (en) 2007-07-24 2009-02-05 Vacuumschmelze Gmbh & Co. Kg Magnetic core, process for its production and residual current circuit breaker
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
CN101572182B (en) * 2009-02-27 2011-04-13 南京国电环保设备有限公司 Ultracrystalline transformer core manufacturing method and special mould therefor
EP2416329B1 (en) * 2010-08-06 2016-04-06 Vaccumschmelze Gmbh & Co. KG Magnetic core for low-frequency applications and manufacturing process of a magnetic core for low-frequency applications
ITCS20110028A1 (en) * 2011-10-03 2013-04-04 Renzo Alberto Di AIR DISTRIBUTION SYSTEM FOR VEHICLE INTERIOR
DE102013103268B4 (en) * 2013-04-02 2016-06-02 Vacuumschmelze Gmbh & Co. Kg Shielding foil and method for producing a shielding foil
KR101470513B1 (en) * 2013-07-17 2014-12-08 주식회사 아모그린텍 Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
JP6553390B2 (en) * 2015-04-03 2019-07-31 株式会社東光高岳 Method of manufacturing nanocrystalline soft magnetic alloy core and heat treatment apparatus
CN104962706A (en) * 2015-07-07 2015-10-07 长兴县大云电炉制造有限公司 Electromagnetic induction furnace for carrying out heat treatment on amorphous and nanocrystalline materials
WO2017086145A1 (en) * 2015-11-17 2017-05-26 アルプス電気株式会社 Production method of molded body containing magnetic material, and molded body produced by said production method
CN107245673B (en) * 2017-06-15 2018-12-07 河北工业大学 Iron-based amorphous nanometer crystalline thin strip magnet and its preparation method and application method
US10763715B2 (en) 2017-12-27 2020-09-01 Rolls Royce North American Technologies, Inc. Nano-crystalline coating for magnet retention in a rotor assembly
US11406711B2 (en) * 2018-04-20 2022-08-09 UNandUP, LLC. System and method for conveyance of therapeutic agents using a configurable magnetic field
JP7192511B2 (en) * 2019-01-10 2022-12-20 トヨタ自動車株式会社 Manufacturing method of alloy ribbon
JP7088057B2 (en) 2019-02-06 2022-06-21 トヨタ自動車株式会社 How to manufacture alloy strips
JP7234809B2 (en) 2019-06-06 2023-03-08 トヨタ自動車株式会社 Method for manufacturing alloy strip
US11688551B2 (en) * 2020-01-24 2023-06-27 Toyota Jidosha Kabushiki Kaisha Method for producing metal foils

Family Cites Families (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502063C (en) 1927-09-16 1930-07-10 August Zopp Transformer with a leafed iron core
DE694374C (en) * 1939-02-04 1940-07-31 Brown Boveri & Cie Akt Ges Process for the continuous operation of a single-channel rotary hearth furnace provided with a glow and heat exchange zone
US2225730A (en) 1939-08-15 1940-12-24 Percy A E Armstrong Corrosion resistant steel article comprising silicon and columbium
US2926008A (en) * 1956-04-12 1960-02-23 Foundry Equipment Company Vertical oven
GB833446A (en) 1956-05-23 1960-04-27 Kanthal Ab Improved iron, chromium, aluminium alloys
DE1740491U (en) 1956-12-20 1957-02-28 Vakuumschmelze A G RING-SHAPED HOLLOW MAGNETIC CORE.
US2960744A (en) 1957-10-08 1960-11-22 Gen Electric Equilibrium atmosphere tunnel kilns for ferrite manufacture
US3255512A (en) 1962-08-17 1966-06-14 Trident Engineering Associates Molding a ferromagnetic casing upon an electrical component
US3502462A (en) 1965-11-29 1970-03-24 United States Steel Corp Nickel,cobalt,chromium steel
DE1564643A1 (en) 1966-07-02 1970-01-08 Siemens Ag Ring-shaped coil core for electromagnets, choke coils and the like.
US3337373A (en) 1966-08-19 1967-08-22 Westinghouse Electric Corp Doubly oriented cube-on-face magnetic sheet containing chromium
US3401035A (en) 1967-12-07 1968-09-10 Crucible Steel Co America Free-machining stainless steels
US3634072A (en) 1970-05-21 1972-01-11 Carpenter Technology Corp Magnetic alloy
DE2045015A1 (en) 1970-09-11 1972-03-16 Siemens Ag Energy supply system, especially for aircraft, with an asynchronous generator driven by an engine with variable speed
SU338550A1 (en) 1970-10-05 1972-05-15 А. Б. Альтман, П. А. Гладышев, И. Д. Растанаев, Н. М. Шамрай METAL AND CERAMIC MAGNETIC SOFT MATERIAL
US3624568A (en) 1970-10-26 1971-11-30 Bell Telephone Labor Inc Magnetically actuated switching devices
GB1358084A (en) 1970-12-11 1974-06-26 Ibm Multi-gap magnetic transducers and methods of making them
US3977919A (en) 1973-09-28 1976-08-31 Westinghouse Electric Corporation Method of producing doubly oriented cobalt iron alloys
JPS5180998A (en) 1975-01-14 1976-07-15 Fuji Photo Film Co Ltd
JPS5192097A (en) 1975-02-10 1976-08-12
US4076525A (en) 1976-07-29 1978-02-28 General Dynamics Corporation High strength fracture resistant weldable steels
US4120704A (en) 1977-04-21 1978-10-17 The Arnold Engineering Company Magnetic alloy and processing therefor
JPS546808A (en) 1977-06-20 1979-01-19 Toshiba Corp Magnetic alloy of iron-chromium-cobalt base
US4160066A (en) 1977-10-11 1979-07-03 Teledyne Industries, Inc. Age-hardenable weld deposit
JPS587702B2 (en) 1977-12-27 1983-02-10 三菱製鋼株式会社 Fe-Cr-Co magnet alloy
DE2816173C2 (en) * 1978-04-14 1982-07-29 Vacuumschmelze Gmbh, 6450 Hanau Method of manufacturing tape cores
US4201837A (en) 1978-11-16 1980-05-06 General Electric Company Bonded amorphous metal electromagnetic components
DE2924280A1 (en) 1979-06-15 1981-01-08 Vacuumschmelze Gmbh AMORPHE SOFT MAGNETIC ALLOY
JPS57164935A (en) * 1981-04-04 1982-10-09 Nippon Steel Corp Unidirectionally inclined heating method for metallic strip or metallic plate
JPS599157A (en) * 1982-07-08 1984-01-18 Sony Corp Heat treatment of amorphous magnetic alloy
SU1062298A1 (en) 1982-07-28 1983-12-23 Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Им.И.П.Бардина Magnetically soft alloy
JPS5958813A (en) * 1982-09-29 1984-04-04 Toshiba Corp Manufacture of amorphous metal core
US4601765A (en) 1983-05-05 1986-07-22 General Electric Company Powdered iron core magnetic devices
DE3427716C1 (en) 1984-07-27 1985-11-14 Daimler-Benz Ag, 7000 Stuttgart Rotary hearth furnace in ring design for heat treatment of workpieces
EP0216457A1 (en) 1985-09-18 1987-04-01 Kawasaki Steel Corporation Method of producing two-phase separation type Fe-Cr-Co series permanent magnets
JPS6293342A (en) 1985-10-17 1987-04-28 Daido Steel Co Ltd Soft magnetic material
CH668331A5 (en) 1985-11-11 1988-12-15 Studer Willi Ag Magnetic head core mfr. from stack of laminations - involves linear machining of patterns from adhesively bonded and rolled sandwich of permeable and non-permeable layers
DE3542257A1 (en) 1985-11-29 1987-06-04 Standard Elektrik Lorenz Ag Device for tempering in a magnetic field
DE3611527A1 (en) 1986-04-05 1987-10-08 Vacuumschmelze Gmbh METHOD FOR OBTAINING A FLAT MAGNETIZING LOOP IN AMORPHOUS CORES BY A HEAT TREATMENT
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
JPH0777167B2 (en) * 1987-07-14 1995-08-16 日立金属株式会社 Magnetic core parts
DE3876529T2 (en) 1987-07-31 1993-06-24 Tdk Corp MAGNETIC SOFT IRON POWDER FOR SHAPING MAGNETIC SHIELDING, CONNECTION AND METHOD FOR PRODUCING IT.
KR910009974B1 (en) 1988-01-14 1991-12-07 알프스 덴기 가부시기가이샤 High saturated magnetic flux density alloy
JP2698369B2 (en) 1988-03-23 1998-01-19 日立金属株式会社 Low frequency transformer alloy and low frequency transformer using the same
JP2710949B2 (en) 1988-03-30 1998-02-10 日立金属株式会社 Manufacturing method of ultra-microcrystalline soft magnetic alloy
JPH0215143A (en) 1988-06-30 1990-01-18 Aichi Steel Works Ltd Soft magnetic stainless steel for cold forging
DE3824075A1 (en) 1988-07-15 1990-01-18 Vacuumschmelze Gmbh COMPOSITE BODY FOR GENERATING VOLTAGE PULSES
DE3911480A1 (en) 1989-04-08 1990-10-11 Vacuumschmelze Gmbh USE OF A FINE CRYSTALLINE IRON BASE ALLOY AS A MAGNETIC MATERIAL FOR FAULT CURRENT CIRCUIT BREAKERS
US4994122A (en) 1989-07-13 1991-02-19 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
US5091024A (en) 1989-07-13 1992-02-25 Carpenter Technology Corporation Corrosion resistant, magnetic alloy article
JPH03146615A (en) * 1989-11-02 1991-06-21 Toshiba Corp Production of fe-base soft-magnetic alloy
US5151137A (en) * 1989-11-17 1992-09-29 Hitachi Metals Ltd. Soft magnetic alloy with ultrafine crystal grains and method of producing same
EP0435680B1 (en) 1989-12-28 1995-04-05 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy, method of producing same and magnetic core made of same
JPH03223444A (en) 1990-01-26 1991-10-02 Alps Electric Co Ltd High saturation magnetic flux density alloy
US5268044A (en) 1990-02-06 1993-12-07 Carpenter Technology Corporation High strength, high fracture toughness alloy
CA2040741C (en) 1990-04-24 2000-02-08 Kiyonori Suzuki Fe based soft magnetic alloy, magnetic materials containing same, and magnetic apparatus using the magnetic materials
JPH0559498A (en) 1990-12-28 1993-03-09 Toyota Motor Corp Ferritic heat resistant cast steel and its manufacture
EP0527233B1 (en) * 1991-03-04 1997-06-04 Mitsui Petrochemical Industries, Ltd. Method of manufacturing magnetic core by heat-treating the same
ES2071361T3 (en) 1991-03-06 1995-06-16 Siemens Ag PROCEDURE FOR THE MANUFACTURE OF A WHITE MAGNETIC MATERIAL, WHICH CONTAINS FAITH, WITH HIGH MAGNETIZATION OF SATURATION AND STRUCTURE OF ULTRAFINE GRAIN.
FR2674674B1 (en) 1991-03-27 1993-10-22 Merlin Gerin HOMOPOLAR TRANSFORMER WITH MAGNETIC CIRCUIT INSENSITIVE TO MECHANICAL CONSTRAINTS, AND MANUFACTURING METHOD THEREOF.
JP2975142B2 (en) * 1991-03-29 1999-11-10 株式会社日立製作所 Amorphous iron core manufacturing method and apparatus
US5622768A (en) 1992-01-13 1997-04-22 Kabushiki Kaishi Toshiba Magnetic core
DE4210748C1 (en) 1992-04-01 1993-12-16 Vacuumschmelze Gmbh Current transformers for pulse current sensitive residual current circuit breakers, residual current circuit breakers with such a current transformer, and method for heat treatment of the iron alloy strip for its magnetic core
US5534081A (en) 1993-05-11 1996-07-09 Honda Giken Kogyo Kabushiki Kaisha Fuel injector component
JP3688732B2 (en) 1993-06-29 2005-08-31 株式会社東芝 Planar magnetic element and amorphous magnetic thin film
JP3233313B2 (en) 1993-07-21 2001-11-26 日立金属株式会社 Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
DE69408916T2 (en) 1993-07-30 1998-11-12 Hitachi Metals Ltd Magnetic core for pulse transmitters and pulse transmitters
AUPM644394A0 (en) 1994-06-24 1994-07-21 Electro Research International Pty Ltd Bulk metallic glass motor and transformer parts and method of manufacture
US5611871A (en) 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability
US5594397A (en) 1994-09-02 1997-01-14 Tdk Corporation Electronic filtering part using a material with microwave absorbing properties
US5817191A (en) 1994-11-29 1998-10-06 Vacuumschmelze Gmbh Iron-based soft magnetic alloy containing cobalt for use as a solenoid core
DE4442420A1 (en) 1994-11-29 1996-05-30 Vacuumschmelze Gmbh Soft magnetic iron-based alloy with cobalt for magnetic circuits or excitation circuits
DE4444482A1 (en) 1994-12-14 1996-06-27 Bosch Gmbh Robert Soft magnetic material
US5714017A (en) 1995-05-02 1998-02-03 Sumitomo Metal Industries, Ltd. Magnetic steel sheet having excellent magnetic characteristics and blanking performance
US5501747A (en) 1995-05-12 1996-03-26 Crs Holdings, Inc. High strength iron-cobalt-vanadium alloy article
DE29514508U1 (en) 1995-09-09 1995-11-02 Vacuumschmelze Gmbh Sheet package for magnetic cores for use in inductive components with a longitudinal opening
DE19608891A1 (en) 1996-03-07 1997-09-11 Vacuumschmelze Gmbh Toroidal choke for radio interference suppression of semiconductor circuits using the phase control method
DE19635257C1 (en) * 1996-08-30 1998-03-12 Franz Hillingrathner Compact orbital heat treatment furnace
EP0927479B1 (en) 1996-09-17 2002-04-10 Vacuumschmelze GmbH Pulse transformer for line interfaces operating according to the echo compensation principle
FR2755292B1 (en) * 1996-10-25 1998-11-20 Mecagis PROCESS FOR MANUFACTURING A MAGNETIC CORE IN NANOCRYSTALLINE SOFT MAGNETIC MATERIAL
FR2756966B1 (en) * 1996-12-11 1998-12-31 Mecagis METHOD FOR MANUFACTURING A MAGNETIC COMPONENT MADE OF SOFT MAGNETIC ALLOY IRON BASED HAVING A NANOCRYSTALLINE STRUCTURE
DE19653428C1 (en) 1996-12-20 1998-03-26 Vacuumschmelze Gmbh Producing amorphous ferromagnetic cobalt alloy strip for wound cores
DE19802349B4 (en) 1997-01-23 2010-04-15 Alps Electric Co., Ltd. Soft magnetic amorphous alloy, high hardness amorphous alloy and their use
US5769974A (en) 1997-02-03 1998-06-23 Crs Holdings, Inc. Process for improving magnetic performance in a free-machining ferritic stainless steel
US5741374A (en) 1997-05-14 1998-04-21 Crs Holdings, Inc. High strength, ductile, Co-Fe-C soft magnetic alloy
US5914088A (en) 1997-08-21 1999-06-22 Vijai Electricals Limited Apparatus for continuously annealing amorphous alloy cores with closed magnetic path
TW455631B (en) 1997-08-28 2001-09-21 Alps Electric Co Ltd Bulky magnetic core and laminated magnetic core
DE19741364C2 (en) 1997-09-19 2000-05-25 Vacuumschmelze Gmbh Method and device for producing packages for magnetic cores consisting of sheet metal lamellae
JPH11102827A (en) 1997-09-26 1999-04-13 Hitachi Metals Ltd Saturable reactor core and magnetic amplifier mode high output switching regulator using the same, and computer using the same
IL128067A (en) 1998-02-05 2001-10-31 Imphy Ugine Precision Iron-cobalt alloy
DE19818198A1 (en) 1998-04-23 1999-10-28 Bosch Gmbh Robert Producing rotor or stator from sheet metal blank
JP4755340B2 (en) 1998-09-17 2011-08-24 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Current transformer with DC current tolerance
US6462456B1 (en) * 1998-11-06 2002-10-08 Honeywell International Inc. Bulk amorphous metal magnetic components for electric motors
US6507262B1 (en) 1998-11-13 2003-01-14 Vacuumschmelze Gmbh Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
JP2000182845A (en) 1998-12-21 2000-06-30 Hitachi Ferrite Electronics Ltd Composite core
DE19860691A1 (en) 1998-12-29 2000-03-09 Vacuumschmelze Gmbh Magnet paste for production of flat magnets comprises a carrier paste with embedded particles made of a soft-magnetic alloy
DE19907542C2 (en) 1999-02-22 2003-07-31 Vacuumschmelze Gmbh Flat magnetic core
DE19908374B4 (en) 1999-02-26 2004-11-18 Magnequench Gmbh Particle composite material made of a thermoplastic plastic matrix with embedded soft magnetic material, method for producing such a composite body, and its use
JP2000277357A (en) * 1999-03-23 2000-10-06 Hitachi Metals Ltd Saturatable magnetic core and power supply apparatus using the same
EP1045402B1 (en) * 1999-04-15 2011-08-31 Hitachi Metals, Ltd. Soft magnetic alloy strip, manufacturing method and use thereof
US6181509B1 (en) 1999-04-23 2001-01-30 International Business Machines Corporation Low sulfur outgassing free machining stainless steel disk drive components
DE19928764B4 (en) 1999-06-23 2005-03-17 Vacuumschmelze Gmbh Low coercivity iron-cobalt alloy and process for producing iron-cobalt alloy semi-finished product
JP2001068324A (en) 1999-08-30 2001-03-16 Hitachi Ferrite Electronics Ltd Powder molding core
JP3617426B2 (en) 1999-09-16 2005-02-02 株式会社村田製作所 Inductor and manufacturing method thereof
US6594157B2 (en) 2000-03-21 2003-07-15 Alps Electric Co., Ltd. Low-loss magnetic powder core, and switching power supply, active filter, filter, and amplifying device using the same
FR2808806B1 (en) 2000-05-12 2002-08-30 Imphy Ugine Precision IRON-COBALT ALLOY, IN PARTICULAR FOR A MOBILE CORE OF ELECTROMAGNETIC ACTUATOR, AND ITS MANUFACTURING METHOD
DE10024824A1 (en) 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Inductive component and method for its production
DE10031923A1 (en) 2000-06-30 2002-01-17 Bosch Gmbh Robert Soft magnetic material with a heterogeneous structure and process for its production
DE10045705A1 (en) 2000-09-15 2002-04-04 Vacuumschmelze Gmbh & Co Kg Magnetic core for a transducer regulator and use of transducer regulators as well as method for producing magnetic cores for transducer regulators
CZ20031263A3 (en) 2000-10-10 2003-09-17 Crs Holdings, Inc. Magnetically soft Co-Mn-Fe alloys
US6737784B2 (en) 2000-10-16 2004-05-18 Scott M. Lindquist Laminated amorphous metal component for an electric machine
US6416879B1 (en) * 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
US6685882B2 (en) 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
JP4023138B2 (en) 2001-02-07 2007-12-19 日立金属株式会社 Compound containing iron-based rare earth alloy powder and iron-based rare earth alloy powder, and permanent magnet using the same
JP3593986B2 (en) 2001-02-19 2004-11-24 株式会社村田製作所 Coil component and method of manufacturing the same
JP4284004B2 (en) 2001-03-21 2009-06-24 株式会社神戸製鋼所 Powder for high-strength dust core, manufacturing method for high-strength dust core
JP2002294408A (en) 2001-03-30 2002-10-09 Nippon Steel Corp Iron-based vibration damping alloy and manufacturing method therefor
DE10119982A1 (en) 2001-04-24 2002-10-31 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
US6668444B2 (en) * 2001-04-25 2003-12-30 Metglas, Inc. Method for manufacturing a wound, multi-cored amorphous metal transformer core
DE10128004A1 (en) 2001-06-08 2002-12-19 Vacuumschmelze Gmbh Wound inductive device has soft magnetic core of ferromagnetic powder composite of amorphous or nanocrystalline ferromagnetic alloy powder, ferromagnetic dielectric powder and polymer
US6616125B2 (en) 2001-06-14 2003-09-09 Crs Holdings, Inc. Corrosion resistant magnetic alloy an article made therefrom and a method of using same
DE10134056B8 (en) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
JP3748055B2 (en) 2001-08-07 2006-02-22 信越化学工業株式会社 Iron alloy plate material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit
DE10211511B4 (en) 2002-03-12 2004-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for joining planar laminates arranged one above the other to form laminate packages or laminate components by laser beam welding
DE10216098A1 (en) 2002-04-12 2003-10-23 Bosch Gmbh Robert Rotor for electrical machine, especially motor, has lamella with at least one fixing element made in one piece with lamella, and permanent magnet held between two fixing elements of one or more lamellas
KR100478710B1 (en) 2002-04-12 2005-03-24 휴먼일렉스(주) Method of manufacturing soft magnetic powder and inductor using the same
DE10320350B3 (en) 2003-05-07 2004-09-30 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium
EP1503486B1 (en) 2003-07-29 2009-09-09 Fanuc Ltd Motor and motor manufacturing apparatus
JP2006193779A (en) 2005-01-13 2006-07-27 Hitachi Metals Ltd Soft magnetic material
JP2006322057A (en) 2005-05-20 2006-11-30 Daido Steel Co Ltd Soft magnetic material
DE102005034486A1 (en) 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
JP4764134B2 (en) 2005-10-21 2011-08-31 日本グラスファイバー工業株式会社 Conductive nonwoven fabric
US8029627B2 (en) 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
US20070176025A1 (en) 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
EP1918407B1 (en) 2006-10-30 2008-12-24 Vacuumschmelze GmbH & Co. KG Iron-cobalt based soft magnetic alloy and method for its manufacture
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20100018610A1 (en) 2010-01-28
US7964043B2 (en) 2011-06-21
WO2003007316A3 (en) 2003-06-05
EP1407462A2 (en) 2004-04-14
CN1505822A (en) 2004-06-16
US20040112468A1 (en) 2004-06-17
DE10134056A1 (en) 2003-01-30
CN100380539C (en) 2008-04-09
WO2003007316A2 (en) 2003-01-23
DE10134056B4 (en) 2014-01-30
US7563331B2 (en) 2009-07-21
DE10134056B8 (en) 2014-05-28
JP2004535075A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
EP1407462B1 (en) Method for producing nanocrystalline magnet cores, and device for carrying out said method
EP2697399B1 (en) Alloy, magnet core and process for producing a strip made of an alloy
EP2277180B1 (en) Method for producing metal-based materials for magnetic cooling or heat pumps
DE69934387T2 (en) Rare earth / iron / boron based permanent magnet and process for its production
DE112012003472B4 (en) Process for the manufacture of rare earth magnets
WO2005114682A1 (en) Current transformer core and method for producing a current transformer core
EP1918407B1 (en) Iron-cobalt based soft magnetic alloy and method for its manufacture
DE102012109744A1 (en) Alloy, magnetic core and method of making an alloy strip
DE102011052614A1 (en) An article for a magnetic heat exchange and a method for producing a working component for the magnetic heat exchange
DE112010000836T5 (en) A soft magnetic alloy ribbon and manufacturing method therefor, and a soft magnetic alloy ribbon magnetic device
DE112016003044T5 (en) SOFT MAGNETIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
DE1054002B (en) Process for the production of an iron, manganese, zinc ferrite
DE112015001405T5 (en) A method of manufacturing an R-T-B based sintered magnet
DE102018200817A1 (en) Extremely heat-resistant rare-earth permanent magnet material, its production method and magnet containing the same
EP3730286A1 (en) Laminated core and method for producing high permeability soft magnetic alloy
DE102016105105A1 (en) PERMANENT MAGNET
DE4209144A1 (en) SOFT MAGNETIC ALLOY, METHOD FOR THEIR PRODUCTION AND MAGNETIC CORE
DE112010000778T5 (en) Process for making a NdFeBGa magnet and NdFeBGa magnetic material
KR101905411B1 (en) Method for manufacturing Fe based soft magnetic alloy
DE102015111897A1 (en) Method for producing a rare earth magnet
WO2001000895A1 (en) Iron-cobalt alloy with a low coercitive field intensity and method for the production of semi-finished products made of an iron-cobalt alloy
DE69928381T2 (en) METHOD OF MANUFACTURING MANGAN ZINC FERRITE CORE AND MANGAN ZINC FERRITE CORE
DE112018007346T5 (en) Alloys, magnetic materials, bonded magnets and methods of making the same
DE112020000679T5 (en) Winded magnetic core, alloy core, and method of manufacturing a wound magnetic core
EP0468317B1 (en) Method for the preparation of magnetic material based an the Sm-Fe-N substance system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20090924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170222

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50216251

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50216251

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

26N No opposition filed

Effective date: 20180607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190725

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200928

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50216251

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201