KR100478710B1 - Method of manufacturing soft magnetic powder and inductor using the same - Google Patents

Method of manufacturing soft magnetic powder and inductor using the same Download PDF

Info

Publication number
KR100478710B1
KR100478710B1 KR10-2002-0020103A KR20020020103A KR100478710B1 KR 100478710 B1 KR100478710 B1 KR 100478710B1 KR 20020020103 A KR20020020103 A KR 20020020103A KR 100478710 B1 KR100478710 B1 KR 100478710B1
Authority
KR
South Korea
Prior art keywords
soft magnetic
magnetic powder
shape
controlled
binder
Prior art date
Application number
KR10-2002-0020103A
Other languages
Korean (ko)
Other versions
KR20030081738A (en
Inventor
김규진
박진영
Original Assignee
휴먼일렉스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴먼일렉스(주) filed Critical 휴먼일렉스(주)
Priority to KR10-2002-0020103A priority Critical patent/KR100478710B1/en
Priority to PCT/KR2003/000644 priority patent/WO2003088281A1/en
Priority to AU2003218817A priority patent/AU2003218817A1/en
Publication of KR20030081738A publication Critical patent/KR20030081738A/en
Application granted granted Critical
Publication of KR100478710B1 publication Critical patent/KR100478710B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 고주파 특성이 우수하며 700℃이하의 저온에서도 소성이 가능한 형상제어된 연자성 분말의 제조 및 이를 이용한 인덕터의 제조방법에 관한 것이다.The present invention relates to the production of shape-controlled soft magnetic powder having excellent high frequency characteristics and capable of firing even at low temperatures of 700 ° C. or lower, and a method of manufacturing an inductor using the same.

본 발명에 따른 형상제어 된 연자성 분말은 연자성 분말에 계면활성제를 첨가한 후 볼밀링 공정을 수행함으로써 제조되며, 상기와 같이 제조된 연자성 분말은 두께:직경의 비가 3내지 100으로 제어 되며, 본 발명에 따른 권선형 인덕터의 제조방법은 (a) 형상제어 된 연자성 분말에 바인더를 첨가하여 연자성 분말을 코팅하는 단계; (b) 코팅된 연자성 분말을 상온에서 성형하는 단계; (c) 성형된 연자성 분말을 열처리하는 단계; 및 (d) 동선을 권선하는 단계를 포함하고, 본 발명에 따른 칩형 인덕터의 제조방법은 (a) 형상제어 된 연자성 분말에 바인더를 첨가하여 연자성 분말을 코팅하는 단계; (b) 코팅된 연자성 분말을 사용하여 닥터브레이드 법에 의해 그린시트를 주조하는 단계; (c) 주조된 그린시트를 적층 하는 단계; (d) 적층된 시트 위에 내부전극을 인쇄한 후 다시 그린시트를 적층하는 단계; (e) 이를 소성하는 단계; 및 (f) 소성된 소결체에 외부전극을 형성하는 단계를 포함한다.The shape-controlled soft magnetic powder according to the present invention is prepared by adding a surfactant to the soft magnetic powder and then performing a ball milling process. The soft magnetic powder prepared as described above is controlled to have a thickness: diameter ratio of 3 to 100. The method of manufacturing the wound inductor according to the present invention comprises the steps of: (a) coating the soft magnetic powder by adding a binder to the shape controlled soft magnetic powder; (b) molding the coated soft magnetic powder at room temperature; (c) heat treating the molded soft magnetic powder; And (d) winding the copper wire, wherein the method of manufacturing a chip inductor according to the present invention comprises the steps of: (a) coating a soft magnetic powder by adding a binder to the shape controlled soft magnetic powder; (b) casting the green sheet by the doctor blade method using the coated soft magnetic powder; (c) laminating the cast green sheet; (d) printing the internal electrodes on the stacked sheets and then stacking the green sheets again; (e) calcining it; And (f) forming an external electrode on the fired sintered body.

따라서 본 발명에 의하면, 700℃이하의 저온에서도 소성이 가능하면서도 외부응력에 대한 전자기적 특성변화가 적고 우수한 고주파 특성을 갖는 형상제어 된 연자성 재료 및 이를 이용한 인덕터를 제조 할 수 있다.        Therefore, according to the present invention, it is possible to manufacture a shape-controlled soft magnetic material and an inductor using the same, which are capable of firing even at a low temperature of 700 ° C. or less, but have little change in electromagnetic properties to external stress, and have excellent high frequency characteristics.

Description

연자성 분말의 제조 및 이를 이용한 인덕터의 제조방법{Method of manufacturing soft magnetic powder and inductor using the same}Preparation of soft magnetic powder and method of manufacturing inductor using same {Method of manufacturing soft magnetic powder and inductor using the same}

본 발명은 칩인덕터(chip inductor), 칩비드(chip bead)와 같은 칩부품 또는 권선형 인덕터와 같은 전자파의 차폐부품 등에 사용되는 형상제어 된 고주파 연자성 재료 및 이를 이용한 고주파용 인덕터의 제조방법에 관한 것이다.The present invention relates to a shape-controlled high frequency soft magnetic material used for a chip component such as a chip inductor, a chip bead, or a shielding component of electromagnetic waves such as a wound inductor, and a method for manufacturing a high frequency inductor using the same. It is about.

오늘날 전자, 통신기기의 눈부신 발전은 전자부품의 소형화, 박막화 및 실장성 개량 등이 밑거름이 되어 새로운 산업구조를 구축하고 있는데, 이러한 산업구조의 발전은 이전에는 무시할 수 있었던 문제, 즉 환경 및 통신장애 등을 유발함으로써 사회적 문제를 발생시키는 양면성을 갖게 되었다. 특히 무선통신기기 및 멀티환경의 일반 상용화로 인하여 악화된 전자기 환경에 관한 각국의 전자기 장애 규제(FCC, CISPR, VDE, MIL 등)가 강화됨에 따라 전자파 장애제거(EMI/EMC)소자에 대한 개발이 요구되고, 그 부품수요의 급증과 함께 기능의 복잡화, 고집적화 및 고효율화 측면으로 기술이 발전되고 있다. 이 가운데 전자파 장애제거 또는 전력용과 같은 전자부품 등의 자기소자로 응용되는 연자성재료의 적용범위도 자기특성별, 주파수 대역별로 세분화되었으며, 그 제조방법도 종래의 분말야금학적인 제조방법을 벗어나 적층식 부품 제조쪽으로 연구가 활발히 진행되고 있으며, 오늘날 세라믹 전자부품 제조분야에 소형칩(chip)부품 제조기술로서 정착하게 되었다.Today, the remarkable development of electronic and communication devices is based on the miniaturization of electronic components, thinning of film, and the improvement of mountability, and the construction of new industrial structure is developed. By causing the back has become a two-sided problem that causes social problems. In particular, the development of electromagnetic interference elimination (EMI / EMC) devices has been intensified due to the strengthening of electromagnetic interference regulations (FCC, CISPR, VDE, MIL, etc.) in each country regarding the electromagnetic environment worsened by the general commercialization of wireless communication devices and multi-environment. As the demand for parts increases, technology is being developed in terms of complexity, high integration, and high efficiency. Among them, the application range of soft magnetic materials applied to magnetic elements such as electromagnetic components such as electromagnetic interference elimination or electric power is also subdivided by magnetic characteristics and frequency bands, and the manufacturing method is different from the conventional powder metallurgy manufacturing method. Research is being actively conducted toward component manufacturing, and today, it has become a small chip component manufacturing technology in the ceramic electronic component manufacturing field.

일반적으로 칩인덕터, 칩비드, 칩어레이(chip array), 칩 LC필터(chip LC filter) 및 칩트랜스(chip trans) 등과 같은 소형 칩부품에 사용되는 연자성재료는 높은 인덕턴스(inductance)를 필요로 하고 있으며, 주로 사용되고 있는 연자성재료로는 망간-아연(Mn-Zn) 페라이트, 니켈(Ni) 페라이트, 니켈-아연(Ni-Zn) 페라이트 또는 니켈-구리-아연(Ni-Cu-Zn) 페라이트 등을 들 수 있다. Mn-Zn 페라이트의 경우 투자율이 높고, 전력손실이 매우 적어 전원용 트랜스 코아(trans core), 전력라인(power line)용 필터 등의 자심재료로 사용되지만 고주파 특성이 낮기 때문에 1 MHz 이상의 주파수 대역에서는 적용하기 곤란한 단점이 있다. 현재 이 같은 고주파 대역에서 사용하기 위한 자심재료로는 Ni 페라이트, Ni-Zn 페라이트 또는 Ni-Cu-Zn 페라이트 등이 적용되고 있다.In general, soft magnetic materials used in small chip components such as chip inductors, chip beads, chip arrays, chip LC filters, and chip transs require high inductance. The main soft magnetic materials used are manganese-zinc (Mn-Zn) ferrite, nickel (Ni) ferrite, nickel-zinc (Ni-Zn) ferrite or nickel-copper-zinc (Ni-Cu-Zn) ferrite. Etc. can be mentioned. Mn-Zn ferrite is used for magnetic core materials such as trans core for power supply and power line filter because of high permeability and very low power loss. There is a disadvantage that is difficult to do. Currently, magnetic ferrite materials for use in such high frequency bands include Ni ferrite, Ni-Zn ferrite, or Ni-Cu-Zn ferrite.

한편 상기 연자성재료를 사용하여 소형칩부품을 제조시의 종래의 방법을 살펴보면, 소성공정의 경우 약 1,000내지 1,200 ℃ 정도에서 1∼5시간 정도로 열처리가 행해진다. 그러나, 칩인덕터나 칩비드필터 등의 전자부품의 내부전극은 보통 수은(Ag)전극을 사용하는데, 상기와 같은 소성온도는 내부전극인 수은의 용융점(960℃)을 넘고 있어 매우 높은 온도조건일 뿐만 아니라 제조된 부품들은 고주파에서 손실이 매우 크다는 단점을 가지고 있기 때문에 요구하는 인덕턴스를 구현하기 매우 어려운 취약성이 있다. 따라서 연자성체의 소성온도를 낮추기 위해 일반적으로 자심재료의 입도를 0.01∼0.5 ㎛ 까지 미분쇄하여 입자의 에너지 준위를 기저상태(준전위상태)로 만들고, 소성시 입자간의 물질이동면을 증가시킴으로써 소결을 촉진시켜 저온소성을 도모하는 방법이 행해지고 있다. 그러나, 상기 미분쇄 공정을 통한 제조방법은 설비의 고가와 제조공정의 복잡화로 인하여 제품의 가격상승을 동반하게 된다.On the other hand, in the conventional method of manufacturing a small chip component using the soft magnetic material, in the firing process, the heat treatment is performed for about 1 to 5 hours at about 1,000 to 1,200 ℃. However, internal electrodes of electronic components such as chip inductors and chip bead filters usually use mercury (Ag) electrodes. The firing temperature is higher than the melting point (960 ° C) of mercury, an internal electrode. In addition, manufactured parts have the disadvantage of very high loss at high frequencies, which makes it very difficult to achieve the required inductance. Therefore, in order to lower the firing temperature of the soft magnetic material, in general, the particle size of the magnetic core material is pulverized to 0.01-0.5 μm to make the energy level of the particles in the ground state (quasi-potential state), and during sintering, the sintering is performed by increasing the material movement surface between the particles. The method of accelerating and achieving low temperature baking is performed. However, the manufacturing method through the pulverization process is accompanied by a price increase of the product due to the high cost of the equipment and the complexity of the manufacturing process.

또 다른 예로써 산화아연+비스무스옥사이드(ZnO+Bi2O3)을 주성분으로 하는 저온화합물을 이용하여 소성을 도모하는 방법(일본공개특허 소59-67119호), 그리고 산화붕소(B2O3)와 같은 성분을 이용하는 방법(일본공개특허 소64-45771호) 및 비스무스옥사이드(Bi2O3), 바나듐펜토옥사이드(V2O5)또는 산화납(PbO)과 같은 플럭스를 첨가제로 사용하여 입자의 계면확산을 유도함으로써 소성하는 방법이 알려져 있고 상용화되어 있다. 그러나 저융점 화합물을 첨가하는 방법들은 고주파 특성을 향상시키는 코발트(Co)성분의 거동을 방해하여 소성의 효과를 감소시킨다. 또한 소성과정에서 모재인 연자성재료의 소결진행온도보다 낮은 온도대역에서 첨가물들이 액상으로 존재하고 이들이 연자성체의 입계에 확산되어 소결을 촉진시키는 메카니즘으로 구동하기 때문에 오히려 부분적인 첨가제의 편석현상으로 인해 인덕턴스의 저감 및 손실을 가져옴과 동시에 내부전극인 수은과 상호 반응하거나 수은전극에 확산되어 칩인덕터의 전자기적 특성(인덕턴스, Q-factor)을 열화시킴에 따라 제품의 신뢰성에 큰 영향을 미치는 문제점이 있다.As another example, a method of promoting firing using a low temperature compound mainly composed of zinc oxide + bismuth oxide (ZnO + Bi 2 O 3 ) (Japanese Patent Laid-Open No. 59-67119), and boron oxide (B 2 O 3) ) And fluxes such as bismuth oxide (Bi 2 O 3 ), vanadium pentoxide (V 2 O 5 ) or lead oxide (PbO) as additives. A method of firing by inducing interfacial diffusion of particles is known and commercialized. However, methods of adding a low melting point compound interfere with the behavior of the cobalt (Co) component that improves high frequency characteristics, thereby reducing the effect of firing. In addition, since additives exist in the liquid phase in the temperature range lower than the sintering progress temperature of the soft magnetic material, which is the base material, and they act as a mechanism for promoting sintering by diffusing at the grain boundaries of the soft magnetic material, In addition to the reduction and loss of inductance, the product reacts with mercury, an internal electrode, or diffuses into the mercury electrode to deteriorate the electromagnetic characteristics (inductance, Q-factor) of the chip inductor. have.

본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 고주파 특성이 매우 우수한 형상제어된 연자성분말을 제공하는 데 목적이 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a shape-controlled soft component powder having excellent high frequency characteristics.

본 발명의 다른 목적은 (a) 형상제어 된 연자성 분말에 바인더를 첨가하여 연자성 분말을 코팅하는 단계; (b) 코팅된 연자성 분말을 상온에서 성형하는 단계; (c) 성형된 연자성 분말을 열처리하는 단계; 및 (d) 동선을 권선하는 단계를 포함하는 권선형 인덕터의 제조방법을 제공하는 것이다.Another object of the present invention is to (a) coating the soft magnetic powder by adding a binder to the shape-controlled soft magnetic powder; (b) molding the coated soft magnetic powder at room temperature; (c) heat treating the molded soft magnetic powder; And (d) winding the copper wire.

본 발명의 또다른 목적은 (a) 형상제어 된 연자성 분말에 바인더를 첨가하여 연자성 분말을 코팅하는 단계; (b) 코팅된 연자성 분말을 사용하여 닥터브레이드 법에 의해 그린시트를 주조하는 단계; (c) 주조된 그린시트를 적층 하는 단계; (d) 적층된 시트 위에 내부전극을 인쇄한 후 다시 그린시트를 적층하는 단계; (e) 이를 소성하는 단계; 및 (f) 소성된 소결체에 외부전극을 형성하는 단계를 포함하는 칩형 인덕터의 제조방법을 제공하는 것이다.      Still another object of the present invention is to (a) coating the soft magnetic powder by adding a binder to the shape-controlled soft magnetic powder; (b) casting the green sheet by the doctor blade method using the coated soft magnetic powder; (c) laminating the cast green sheet; (d) printing the internal electrodes on the stacked sheets and then stacking the green sheets again; (e) calcining it; And (f) forming an external electrode on the calcined sintered body.

상기와 같은 목적을 달성하기 위하여 먼저 본 발명에 따른 형상제어된 연자성 재료는 순철(Fe), 코발트(Co), 나노결정(Finemet), Permalloy, 비정질 등의 각종 연자성분말에 계면활성제를 첨가한 후 볼밀링 공정을 수행함으로써 수득되며, Aspect Ratio(두께: 직경의 비)가 3내지 100으로 제어 된다.In order to achieve the above object, first, the shape-controlled soft magnetic material according to the present invention is added with a surfactant to various soft powders such as pure iron (Fe), cobalt (Co), nanocrystals (Finemet), Permalloy, amorphous, etc. It is then obtained by performing a ball milling process, the Aspect Ratio (thickness: ratio of diameter) is controlled to 3 to 100.

또한 본 발명에 따른 권선형 인덕터의 제조방법은 (a) 형상제어 된 연자성 분말에 바인더를 총 0.2∼3wt% 범위에서 첨가하여 연자성 분말을 코팅하는 단계; (b) 코팅된 연자성 분말을 상온에서 성형하는 단계; (c) 성형된 연자성 분말을 50∼700℃의 온도에서 열처리하는 단계; 및 (d) 동선을 권선하는 단계를 포함하여 구성되며, 저온 소성용 권선형 인덕터의 제조방법을 제공한다.   In addition, the method of manufacturing a wound inductor according to the present invention comprises the steps of: (a) coating the soft magnetic powder by adding a binder to the shape-controlled soft magnetic powder in a total range of 0.2 ~ 3wt%; (b) molding the coated soft magnetic powder at room temperature; (c) heat-treating the shaped soft magnetic powder at a temperature of 50 to 700 ° C .; And (d) winding the copper wire, and provides a manufacturing method of the winding type inductor for low temperature firing.

또한 본 발명에 따른 칩형 인덕터의 제조방법은 (a) 형상제어 된 연자성 분말에 바인더를 첨가하여 연자성 분말을 코팅하는 단계; (b) 코팅된 연자성 분말을 사용하여 닥터브레이드 법에 의해 그린시트를 주조하는 단계; (c) 주조된 그린시트를 적층 하는 단계; (d) 적층된 시트 위에 알루미늄,전도성 폴리머 등의 내부전극을 인쇄한 후 다시 그린시트를 적층하는 단계; (e) 이를 50∼700 ℃범위의 온도에서 소성하는 단계; 및 (f) 소성된 소결체에 외부전극을 형성하는 단계를 포함하여 구성된다.       In addition, the method of manufacturing a chip-type inductor according to the present invention comprises the steps of: (a) coating the soft magnetic powder by adding a binder to the shape-controlled soft magnetic powder; (b) casting the green sheet by the doctor blade method using the coated soft magnetic powder; (c) laminating the cast green sheet; (d) printing the internal electrodes such as aluminum and conductive polymer on the stacked sheets, and then stacking the green sheets again; (e) calcining it at a temperature in the range from 50 to 700 ° C .; And (f) forming an external electrode on the fired sintered body.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

일반적으로 자성재료는 그 조직, 조성 및 형상에 따라 주파수 대역에 따라 특성이 달리 나타난다. In general, magnetic materials have different characteristics according to their frequency, depending on their structure, composition, and shape.

본 발명은 10 kHz∼수백 MHz의 고주파 대역에서 우수한 전자기적 특성을 나타내는 형상제어 된 각종 자성분말(결정, 나노결정, 비정질 등)을 이용한다. 형상제어 되었을 때, 목적하는 우수한 고주파특성을 나타내는 분말로는 순철(Fe), 코발트(Co)계, 퍼말로이(permalloy)계, 나노결정(Finemet :Fe-Si-Nb-B-Cu계 등) 및 각종 비정질 자성 분말이 사용 가능하다. 바람직한 연자성분말로는 Fe80Ni20, Fe50 Ni50, Fe(pure), Co(pure), Fe84.1Si10.1Al5.8, Fe49Co49 V2, Fe91.7Si5.3B3(비정질분말), Co83.9Fe5.34Si8.53B2.4 (비정질분말), Fe83.37Si 7.7Nb5.66B1.98Cu1.29(나노결정분말) 등 이다.The present invention utilizes a variety of shape-controlled magnetic powders (crystals, nanocrystals, amorphous, etc.) exhibiting excellent electromagnetic properties in the high frequency band of 10 kHz to several hundred MHz. When the shape is controlled, powders exhibiting excellent high frequency characteristics are pure iron (Fe), cobalt (Co), permalloy, and nanocrystals (Finemet: Fe-Si-Nb-B-Cu). And various amorphous magnetic powders can be used. Preferred soft powders include Fe 80 Ni 20, Fe 50 Ni 50, Fe (pure), Co (pure), Fe 84.1 Si 10.1 Al 5.8, Fe 49 Co 49 V 2, Fe 91.7 Si 5.3 B 3 (amorphous powder), Co 83.9 Fe 5.34 Si 8.53 B 2.4 (amorphous powder), Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder).

본 발명의 형상제어 된 연자성분말을 제조하기 위해 수행하는 볼밀링공정은 크롬 코팅볼이나 철볼을 사용하여 분말의 형상을 제어하는 것으로서, 볼의 강도 및 무게를 정하여 공정을 행하는데 공정시 분말의 뭉쳐짐을 최대한 피해야 하며, 또한 분말의 파단(fracture)도 피할 수 있는 적정시간 동안 공정을 행하여 분말의 형상을 제어한다[J. D.James, B. Wilshire and D. Cleaver, Powder Metall. 33(3),247(1990)]. 본 발명에 따른 볼밀링공정은 5시간 동안 행하는 것이 바람직하다.     The ball milling process performed to manufacture the shape-controlled soft powder of the present invention is to control the shape of the powder using a chromium coated ball or iron ball, to determine the strength and weight of the ball to perform the process of the powder Agglomeration should be avoided as much as possible, and the shape of the powder is controlled by performing the process for an appropriate time to avoid the fracture of the powder [J. D. James, B. Wilshire and D. Cleaver, Powder Metall. 33 (3), 247 (1990)]. The ball milling process according to the present invention is preferably carried out for 5 hours.

또한 본 발명은 볼밀링과정 중 자성분말의 agglomerate(뭉침)을 방지하기 위하여 계면활성제를 첨가하며, stearic acid가 가장 바람직하다.      In addition, the present invention adds a surfactant to prevent agglomerate (agglomeration) of the magnetic powder during the ball milling process, stearic acid is most preferred.

계면활성제의 양은 총질량의 0.1∼2.0wt%로 제한하는 것이 바람직하다. 상기에서 '총질량'이란, 제조되는 연자성분말과 계면활성제의 총질량을 의미하며, 기타 유기용매등의 질량은 포함되지 않는다. 본 발명에 따라 제조된 형상제어 된 연자성분말은 Aspect ratio(두께: 직경의 비)가 3내지 100의 범위로 조절된다. The amount of the surfactant is preferably limited to 0.1 to 2.0 wt% of the total mass. "Gross mass" means the total mass of the soft powder component and surfactant manufactured, and does not include the mass of other organic solvents. Shape-controlled softening powder powder produced according to the present invention is adjusted to the aspect ratio (thickness: ratio of diameter) in the range of 3 to 100.

형상제어 된 연자성분말을 제조 한 후 필요에 따라 200내지 400℃의 온도에서 열처리하여 계면활성제를 제거한다.      After manufacturing the shape-controlled soft powder, remove the surfactant by heat treatment at a temperature of 200 ~ 400 ℃ as needed.

상기의 형상제어된 연자성분말을 저온소성용 내부전극(알루미늄, 전도성폴리머 등)과 혼합하여 소자를 제작하면 소성온도를 종래의 고온의 공정온도(850∼1,350℃)에서 700℃이하로 하향화가 가능한 공정상의 이점이 있다.  When the device is fabricated by mixing the shape-controlled soft magnetic powder with low-temperature firing internal electrodes (aluminum, conductive polymers, etc.), the firing temperature is lowered to 700 ° C or less from the conventional high temperature process temperature (850-1,350 ° C). There are possible process advantages.

본 발명의 권선형 인덕터의 제조방법에 있어서 사용되는 바인더는 폴리이미드(polyimide)계와 페놀(phenol)계의 열경화성 수지가 바람직하다.       The binder used in the method of manufacturing the wound inductor of the present invention is preferably a polyimide-based or phenol-based thermosetting resin.

상기의 폴리이미드 등의 바인더는 연자성 소재의 주성분과 반응하여도 전자기적 특성의 열화를 최소화할 수 있고 특히, 소자를 제작하였을 때 자성층에 있어 전기저항을 증가시켜 고주파화가 가능하도록 하는 등의 장점이 있다. 또한 형상제어된 연자성분말에 첨가되는 바인더에 의해서 고주파(∼수GHz)에서 우수한 품질계수(Q)값을 얻을 수 있는 반면 인덕턴스는 낮아질 수 있는데, 이런 특성을 이용하면 칩의 용도에 따라 적절한 자기특성을 갖는 칩을 얻을 수 있다.    The binder such as polyimide can minimize the deterioration of the electromagnetic characteristics even when reacting with the main component of the soft magnetic material, and in particular, when the device is manufactured, the electrical resistance is increased in the magnetic layer to enable high frequency. There is this. In addition, high quality coefficient (Q) value can be obtained at high frequency (~ few GHz) by the binder added to the shape-controlled soft powder, while the inductance can be lowered. A chip having the characteristics can be obtained.

바인더의 양은 총질량의 0.2∼3.0wt%로 제한하는 것이 바람직하다. 0.2wt% 이하에서는 접합강도가 약하여 연자성 분말의 벌크화가 곤란하며, 한편 바인더의 양이 너무 많으면 분말 입자간의 접합강도는 강해지지만 성형체 중에 분말의 양이 적게 되어 연자기 특성이 저하되기 때문이다. 상기에서 '총 질량'이란, 제조되는 형상제어된 연자성분말과 바인더의 총질량을 의미하며, 기타유기용매 등의 질량은 포함되지 않는다.The amount of the binder is preferably limited to 0.2 to 3.0 wt% of the total mass. It is because when the amount of binder is too low, the bulking of the soft magnetic powder is difficult at 0.2 wt% or less. On the other hand, when the amount of the binder is too large, the bonding strength between the powder particles becomes strong, but the amount of powder in the molded body decreases, leading to deterioration of the soft magnetic properties. As used herein, the term "total mass" means the total mass of the shape-controlled soft powder and the binder to be produced, and does not include the mass of other organic solvents.

성형 후 50내지 700℃에서 0.1∼1시간 동안 열처리를 수행하여 기계적인 강도를 부여하며, 승온과정은 분당 10℃이내로 수행하는 것이 바람직하다.      After molding, heat treatment is performed at 50 to 700 ° C. for 0.1 to 1 hour to impart mechanical strength, and the temperature increase process is preferably performed within 10 ° C. per minute.

본 발명에 따르면 자기적 특성이 우수하고 품질계수가 적어도 100 이상, 그 피크역이 약 10 MHz이상이며 인덕턴스가 적어도 1.7 이상 되는 고주파 특성이 양호한 권선형 인덕터를 기존보다도 훨씬 저온에서 제조할 수 있다. According to the present invention, a wound inductor having good magnetic properties, having a high quality factor having a quality factor of at least 100, a peak range of at least about 10 MHz, and an inductance of at least 1.7 can be manufactured at a much lower temperature than before.

본 발명의 칩형 인덕터의 제조방법에 있어서 사용되는 바인더는 폴리비닐부틸(PVB), 메틸렌클로라이드(MC), 오레익산, 폴리에틸렌글리콜(PEG), 톨루엔, 마니톨 또는 폴리이미드 등의 유기고분자 중에서 선택된 한 종 이상을 사용하는 것이 바람직하다.     The binder used in the manufacturing method of the chip type inductor of the present invention is one selected from organic polymers such as polyvinyl butyl (PVB), methylene chloride (MC), oleic acid, polyethylene glycol (PEG), toluene, mannitol or polyimide. It is preferable to use species or more.

연자성분말과 바인더의 혼합비는 wt%기준으로 1:1 내지 1:1.4 가 바람직하다.      The mixing ratio of the soft magnetic powder and the binder is preferably 1: 1 to 1: 1.4 on a wt% basis.

사용되는 내부전극은 알루미늄, 수은, polypyrrole, polyacelylene 또는 polyphenylene 중에서 선택된 한 종 이상을 사용하는 것이 바람직하다. 소성 단계의 소성온도는 50내지 700℃에서 수행하는 것이 바람직하다.      The internal electrode used is preferably at least one selected from aluminum, mercury, polypyrrole, polyacelylene or polyphenylene. The firing temperature of the firing step is preferably carried out at 50 to 700 ℃.

본 발명에 따르면 기존의 칩인덕터의 소성온도보다 훨씬 낮은 700℃(전도성폴리머의 경우 300℃ 이하)이하에서도 칩인덕터를 제조하는 것이 가능하다.   According to the present invention, it is possible to manufacture chip inductors even below 700 ° C (300 ° C or less in the case of conductive polymers) which is much lower than the firing temperature of conventional chip inductors.

이하 실시예를 통하여 본 발명을 구체적으로 예시하겠으나, 본 발명이 그에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not limited thereto.

<실시예 1> 형상제어 된 연자성 분말의 제조Example 1 Preparation of Shape Controlled Soft Magnetic Powder

연자성분말인 Fe80Ni20에 stearic acid를 0.5wt% 첨가하여 볼밀링을 수행하였다.Ball milling was performed by adding 0.5 wt% of stearic acid to the soft powder Fe 80 Ni 20 .

볼밀링은 5시간동안 행하여 분말의 형상을 제어하였다. 형상제어 된 분말은 그 Aspect ratio(두께:직경의 비)가 5로 조절되었다. 이렇게 형상제어 된 분말은 약 300℃의 온도에서 열처리하여 stearic acid를 제거하였다.(실시예1-A)Ball milling was performed for 5 hours to control the shape of the powder. The shape-controlled powder had an aspect ratio of 5 (thickness: diameter ratio). This shape-controlled powder was heat treated at a temperature of about 300 ℃ to remove stearic acid. (Example 1-A)

상기의 공정에 따라 하기 표1의 조건으로 실시하여 실시예1-B 내지 실시예1-I에 따른 형상제어 된 분말을 제조하였다.According to the above process was carried out under the conditions of Table 1 to prepare a shape-controlled powder according to Example 1-B to Example 1-I.

[표 1]TABLE 1

구 분division 연자성분말* (화학조성:wt%)Soft Magnetic Powder * Stearic acid(wt%)Stearic acid (wt%) 볼밀링시간(H)Ball milling time (H) AspectratioAspectratio Stearic acid제거 온도(℃)Stearic acid removal temperature (℃) 실시예1-AExample 1-A Fe80Ni20 Fe 80 Ni 20 0.50.5 55 55 300300 실시예1-BExample 1-B Fe50Ni50 Fe 50 Ni 50 0.50.5 55 55 300300 실시예1-CExample 1-C Fe(pure)Fe (pure) 0.50.5 55 55 300300 실시예1-DExample 1-D Co(pure)Co (pure) 0.50.5 55 55 300300 실시예1-EExample 1-E Fe84.1Si10.1Al5.8 Fe 84.1 Si 10.1 Al 5.8 0.50.5 55 55 300300 실시예1-FExample 1-F Fe49Co49V2 Fe 49 Co 49 V 2 0.50.5 55 55 300300 실시예1-GExample 1-G Fe91.7Si5.3B3(비정질분말)Fe 91.7 Si 5.3 B 3 (amorphous powder) 0.50.5 2020 55 300300 실시예1-HExample 1-H Co83.9Fe5.34Si8.53B2.4 (비정질분말)Co 83.9 Fe 5.34 Si 8.53 B 2.4 (Amorphous Powder) 0.50.5 2020 55 300300 실시예1-IExample 1-I Fe83.37Si7.7Nb5.66B1.98Cu1.29 (나노결정분말)Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder) 0.50.5 2020 55 300300

* 형상제어된 연자성분말[Aspect ratio(두께:직경의 비) = 3∼100]* Shape-controlled soft-component powder [Aspect ratio (thickness: diameter ratio) = 3-100]

<실시예 2> 형상제어 된 연자성 분말을 이용한 권선형 인덕터의 제조Example 2 Fabrication of Winding Inductor Using Shape-Controlled Soft Magnetic Powders

상기 실시예 1-A에 따라 제조된 향상제어 된 연자성 분말(Fe80Ni20)에 0.5wt%의 폴리이미드 바인더를 첨가하여 혼합한 후 건조한 다음, 외경 9.65mm, 내경 4.78mm, 높이 3.68mm의 토로이달 코아로 성형하고, 자기적 특성의 발현을 위하여 열처리하였다. 열처리온도는 약 700℃이며, 승온속도는 10℃/분으로 하였으며, 1시간정도 열처리온도를 유지한 후 상온으로 냉각하였다. 이때 냉각속도는 10℃/분의 속도로 하였다. 이와 같이 열처리하여 완성된 재료에 직경 0.55mm의 에나멜 동선을 20회 권선 하였다.(실시예 2-A)0.5 wt% polyimide binder was added to the improved controlled soft magnetic powder (Fe 80 Ni 20 ) prepared according to Example 1-A, mixed and dried, followed by 9.65 mm in outer diameter, 4.78 mm in inner diameter and 3.68 mm in height. It was molded into a toroidal core of and heat-treated for the expression of magnetic properties. The heat treatment temperature is about 700 ℃, the temperature increase rate was 10 ℃ / min, and the temperature was maintained at room temperature after maintaining the heat treatment temperature for about 1 hour. At this time, the cooling rate was 10 ° C / min. The enamelled copper wire with a diameter of 0.55 mm was wound 20 times on the material thus obtained by heat treatment. (Example 2-A)

상기 실시예2-A의 공정에 따라 하기 표2의 조건으로 실시하여 실시예2-B 내지 실시예2-I에 따른 권선형 인덕터를 제조하였다.According to the process of Example 2-A was carried out under the conditions of Table 2 to prepare a wound-type inductor according to Example 2-B to Example 2-I.

[표2][Table 2]

구 분division 사용 연자성 분말Used soft magnetic powder 바인더 종류Binder type 바인더(wt%)Binder (wt%) 성형 후 열처리온도(℃)Heat treatment temperature after molding (℃) 실시예2-AExample 2-A 실시예1-A에 따라 제조된 형상제어 된 연자성분말 (Fe80Ni20)Shape controlled soft magnetic powder prepared according to Example 1-A (Fe 80 Ni 20 ) 폴리이미드Polyimide 0.50.5 700700 실시예2-BExample 2-B 실시예1-B에 따라 제조된 형상제어 된 연자성분말(Fe50Ni50)Shape controlled soft magnetic powder prepared according to Example 1-B (Fe 50 Ni 50 ) 페놀phenol 0.50.5 700700 실시예2-CExample 2-C 실시예1-C에 따라 제조된 형상제어 된 연자성분말[Fe(pure)]Shape-controlled soft powders [Fe (pure)] prepared according to Example 1-C 폴리이미드Polyimide 0.50.5 300300 실시예2-DExample 2-D 실시예1-D에 따라 제조된 형상제어 된 연자성분말[Co(pure)]Shape-controlled soft powders prepared according to Example 1-D [Co (pure)] 폴리이미드Polyimide 0.50.5 500500 실시예2-EExample 2-E 실시예1-E에 따라 제조된 형상제어 된 연자성분말(Fe84.1Si10.1Al5.8)Shape-controlled soft powders prepared according to Example 1-E (Fe 84.1 Si 10.1 Al 5.8 ) 폴리이미드Polyimide 0.50.5 750750 실시예2-FExample 2-F 실시예1-F에 따라 제조된 형상제어 된 연자성분말(Fe49Co49V2)Shape controlled soft magnetic powder prepared according to Example 1-F (Fe 49 Co 49 V 2 ) 폴리이미드Polyimide 0.50.5 900900 실시예2-GExample 2-G 실시예1-G에 따라 제조된 형상제어 된 연자성분말[Fe91.7Si5.3B3(비정질분말)]Shape controlled soft magnetic powder prepared according to Example 1-G [Fe 91.7 Si 5.3 B 3 (amorphous powder)] 페놀phenol 1.01.0 350350 실시예2-HExample 2-H 실시예1-H에 따라 제조된 형상제어 된 연자성분말[Co83.9Fe5.34Si8.53B2.4(비정질분말)]Shape-controlled soft magnetic powder prepared according to Example 1-H [Co 83.9 Fe 5.34 Si 8.53 B 2.4 (Amorphous Powder)] 폴리이미드Polyimide 1.01.0 400400 실시예2-IExample 2-I 실시예1-I에 따라 제조된 형상제어 된 연자성분말[Fe83.37Si7.7Nb5.66B1.98Cu1.29 (나노결정분말)]Shape controlled soft magnetic powder prepared according to Example 1-I [Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder)] 폴리이미드Polyimide 1.01.0 620620

<비교예 1> 종래의 연자성 분말을 이용한 권선형 인덕터의 제조Comparative Example 1 Fabrication of Winding Inductor Using Conventional Soft Magnetic Powders

입수한 구형 순철분말을 볼밀링 수행과정 없이 즉, 형상제어를 하지 않고 분말을 원상태 그대로 사용한 것을 제외하고는 상기 실시예 2-C와 동일한 방법으로 권선형 인덕터를 제조하였다.(비교예1-A)A wound inductor was manufactured in the same manner as in Example 2-C, except that the obtained spherical pure iron powder was used without the ball milling process, that is, without the shape control and the powder was used as it was. )

입수한 구형 Fe80Ni20 분말을 볼밀링 수행과정 없이 즉, 형상제어를 하지 않고 분말을 원상태 그대로 사용한 것을 제외하고는 상기 실시예 2-A와 동일한 방법으로 권선형 인덕터를 제조하였다.(비교예1-B)A wound inductor was manufactured in the same manner as in Example 2-A, except that the obtained spherical Fe 80 Ni 20 powder was used without the ball milling process, that is, without the shape control and the powder was used as it was. 1-B)

<시험예 1><Test Example 1>

상기 실시예 2 및 상기 비교예 1에 따라 제조된 권선형인덕터를 10 kHz-수백 MHz의 주파수 대역에서 임피던스 분석기(HP 4194A)를 이용하여 인덕턴스를 측정하고, 그 결과를 하기 표 3에 나타내었다.The inductance of the wound inductor manufactured according to Example 2 and Comparative Example 1 was measured using an impedance analyzer (HP 4194A) in the frequency band of 10 kHz to several hundred MHz, and the results are shown in Table 3 below.

[표3]Table 3

구분division 인덕턴스(μH)Inductance (μH) 10 kHz10 kHz 1 MHz1 MHz 실시예2-AExample 2-A 2.62.6 2.52.5 실시예2-BExample 2-B 2.12.1 2.02.0 실시예2-CExample 2-C 1.71.7 1.51.5 실시예2-DExample 2-D 3.13.1 2.92.9 실시예2-EExample 2-E 2.22.2 2.02.0 실시예2-FExample 2-F 2.92.9 2.92.9 실시예2-GExample 2-G 2.22.2 2.22.2 실시예2-HExample 2-H 4.14.1 4.14.1 실시예2-IExample 2-I 3.43.4 3.43.4 비교예1-AComparative Example 1-A 5.25.2 0.40.4 비교예1-BComparative Example 1-B 9.19.1 0.80.8

상기 표3에서 알수 있는 바와 같이, 본 발명의 실시예 2의 경우 소성 완료된 연자성 소결체의 인덕턴스 값이 10 kHz-1 MHz에서의 범위에서 거의 변화가 없었으며, 인덕턴스값도 1.7μH 이상이 었다. 특히 실시예 2-H와 2-I의 경우에는 인덕턴스 값이 3μH 이상을 나타내었으며, 이는 비정질상 및 나노결정상에 기인하는 것으로 판단된다.As can be seen in Table 3, in Example 2 of the present invention, the inductance value of the calcined soft magnetic sintered body was hardly changed in the range of 10 kHz-1 MHz, and the inductance value was 1.7 μH or more. In particular, in Examples 2-H and 2-I, the inductance value was 3 μH or more, which is believed to be due to the amorphous phase and the nanocrystalline phase.

반면, 비교예 1과 같이 형상제어를 하지 않은 분말을 사용하여 권선형 인덕터를 제조한 경우 저주파 영역(10 kHz)에서는 더 높은 인덕턴스 값을 보이지만 고주파 영역으로 갈수록 인덕턴스 값이 급격히 감소하여 1 MHz에서는 훨씬 낮은 인덕턴스 값을 보였다. 따라서 형상제어 한 분말을 사용한 경우 그 형상자기이방성 등에 의하여 소자의 고주파 특성이 크게 개선되는 것을 알 수 있다.On the other hand, when the winding type inductor was manufactured using the powder without the shape control as in Comparative Example 1, the inductance value was higher in the low frequency region (10 kHz), but the inductance value rapidly decreased toward the high frequency region, which was much higher at 1 MHz. Low inductance value was shown. Therefore, when the shape-controlled powder is used, it can be seen that the high frequency characteristics of the device are greatly improved by the shape magnetic anisotropy.

<실시예 3> 형상제어된 연자성 분말을 이용한 칩인덕터의 제조 1Example 3 Fabrication of Chip Inductor Using Shape-Controlled Soft Magnetic Powders

상기 실시예 1-A와 같이 제조된 형상제어 된 연자성 분말( Fe80Ni20)을 건조 한 후 폴리비닐부틸(PVB) 바인더를 1:1∼1:1.4(연자성분말:바인더, wt%비)로 첨가한 후, 닥터브레이드법에 의해 두께 100 ㎛의 그린시트(green sheet)를 주조하였다.After drying the shape-controlled soft magnetic powder (Fe 80 Ni 20 ) prepared as in Example 1-A, the polyvinyl butyl (PVB) binder was 1: 1 to 1: 1.4 (soft component powder: binder, wt% B), a green sheet having a thickness of 100 µm was cast by a doctor blade method.

주조된 그린시트를 5층 정도 적층하고, 적층된 시트위에 전도성 폴리머인 polypyrrole을 원료로 하는 내부전극을 인쇄하고, 다시 그린시트를 적층하여 소성하였다. 이때 소성은 650℃에서 2시간 실시하였다. 이렇게 소성된 소결체에 외부전극을 형성하여 칩인덕터를 제조하였다.(실시예3-A)About 5 layers of the cast green sheets were laminated, and internal electrodes made of polypyrrole, a conductive polymer, were printed on the laminated sheets, and the green sheets were laminated and fired. At this time, baking was performed at 650 degreeC for 2 hours. An external electrode was formed on the sintered body thus fired to manufacture a chip inductor. (Example 3-A)

상기 실시예 3-A의 공정에 따라 하기 표4의 조건으로 실시하여 실시예 3-B 내지 실시예 3-I에 따른 칩인덕터를 제조하였다.The chip inductors according to Example 3-B to Example 3-I were prepared under the conditions of Table 4 according to the process of Example 3-A.

[표4]Table 4

구분division 사용 연자성분말Softener Ingredients Used 바인더의 종류Kind of binder 바인더의 양 (wt%)Amount of binder (wt%) 소성온도(℃)Firing temperature (℃) 실시예3-AExample 3-A 실시예1-A에 따라 제조된 형상제어 된 연자성분말 (Fe80Ni20)Shape controlled soft magnetic powder prepared according to Example 1-A (Fe 80 Ni 20 ) PVBPVB 5252 650650 실시예3-BExample 3-B 실시예1-B에 따라 제조된 형상제어 된 연자성분말(Fe50Ni50)Shape controlled soft magnetic powder prepared according to Example 1-B (Fe 50 Ni 50 ) 마니톨Mannitol 5252 650650 실시예3-CExample 3-C 실시예1-C에 따라 제조된 형상제어 된 연자성분말[Fe(pure)]Shape-controlled soft powders [Fe (pure)] prepared according to Example 1-C PVB와 마니톨혼합(wt% 1:1)PVB and Mannitol Mix (wt% 1: 1) 5252 300300 실시예3-DExample 3-D 실시예1-D에 따라 제조된 형상제어 된 연자성분말[Co(pure)]Shape-controlled soft powders prepared according to Example 1-D [Co (pure)] PVBPVB 5252 650650 실시예3-EExample 3-E 실시예1-E에 따라 제조된 형상제어 된 연자성분말(Fe84.1Si10.1Al5.8)Shape-controlled soft powders prepared according to Example 1-E (Fe 84.1 Si 10.1 Al 5.8 ) 마니톨Mannitol 5252 300300 실시예3-FExample 3-F 실시예1-F에 따라 제조된 형상제어 된 연자성분말(Fe49Co49V2)Shape controlled soft magnetic powder prepared according to Example 1-F (Fe 49 Co 49 V 2 ) PVB와 마니톨혼합(wt% 1:1)PVB and Mannitol Mix (wt% 1: 1) 5252 650650 실시예3-GExample 3-G 실시예1-G에 따라 제조된 형상제어 된 연자성분말[Fe91.7Si5.3B3(비정질분말)]Shape controlled soft magnetic powder prepared according to Example 1-G [Fe 91.7 Si 5.3 B 3 (amorphous powder)] PVBPVB 5252 300300 실시예3-HExample 3-H 실시예1-H에 따라 제조된 형상제어 된 연자성분말[Co83.9Fe5.34Si8.53B2.4(비정질분말)]Shape-controlled soft magnetic powder prepared according to Example 1-H [Co 83.9 Fe 5.34 Si 8.53 B 2.4 (Amorphous Powder)] 마니톨 Mannitol 5252 650650 실시예3-IExample 3-I 실시예1-I에 따라 제조된 형상제어 된 연자성분말[Fe83.37Si7.7Nb5.66B1.98Cu1.29 (나노결정분말)]Shape controlled soft magnetic powder prepared according to Example 1-I [Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder)] PVBPVB 5252 300300

<비교예 2> 종래의 연자성 분말을 이용한 칩 인덕터의 제조Comparative Example 2 Fabrication of Chip Inductor Using Conventional Soft Magnetic Powders

입수한 구형 순철분말을 볼밀링 수행과정 없이 즉, 형상제어를 하지 않고 분말을 원상태 그대로 사용한 것을 제외하고는 상기 실시예 3-C와 동일한 방법으로 칩 인덕터를 제조하였다.(비교예2-A)A chip inductor was manufactured in the same manner as in Example 3-C, except that the obtained spherical pure iron powder was used without the ball milling process, that is, without the shape control, and the powder was used as it was.

입수한 구형 Fe80Ni20 분말을 볼밀링 수행과정 없이 즉, 형상제어를 하지 않고 분말을 원상태 그대로 사용한 것을 제외하고는 상기 실시예 3-A와 동일한 방법으로 칩 인덕터를 제조하였다.(비교예2-B)A chip inductor was manufactured in the same manner as in Example 3-A, except that the obtained spherical Fe 80 Ni 20 powder was used as it was without ball milling, that is, without shape control. -B)

<시험예 2><Test Example 2>

상기 실시예 3 및 상기 비교예 2에 따라 제조된 칩인덕터의 전자기적 특성을 임피던스 분석기(HP 4194A)를 이용하여 측정하고, 그 결과를 하기 표 5에 나타내었다.The electromagnetic characteristics of the chip inductors manufactured according to Example 3 and Comparative Example 2 were measured using an impedance analyzer (HP 4194A), and the results are shown in Table 5 below.

[표5]Table 5

구분division 인덕턴스(nH)Inductance (nH) 품질계수 피크(Q)Quality Factor Peak (Q) 실시예3-AExample 3-A 210210 4545 실시예3-BExample 3-B 150150 3535 실시예3-CExample 3-C 140140 3939 실시예3-DExample 3-D 171171 5757 실시예3-EExample 3-E 164164 5454 실시예3-FExample 3-F 220220 5959 실시예3-GExample 3-G 250250 6161 실시예3-HExample 3-H 272272 6464 실시예3-IExample 3-I 263263 5959 비교예2-AComparative Example 2-A 7676 1212 비교예2-BComparative Example 2-B 8282 1717

상기 표 4 및 표5에 나타낸 바와 같이, 본 발명의 실시예 3의 경우 기존의 칩인덕터의 소성온도인 1400-800℃와는 달리 내부전극재에 따라, 특히 polypyrrole을 사용한 경우에는 그 소성온도를 300℃이하로 조절하는 것이 가능하였다. 또한 소성 완료된 연자성 소결체의 인덕턴스 값도 140 nH이상, 고주파에서의 품질계수(Q)값도 약 39 이상을 나타내어 기존의 칩 인덕터에 비해 전혀 떨어지지 않는 전자기적 특성을 나타내었다. 또한 소성 후의 손실도 감소되는 특성을 나타내고 있음을 알 수 있다.As shown in Table 4 and Table 5, in the case of Example 3 of the present invention, unlike the firing temperature of the conventional chip inductor 1400-800 ℃ according to the internal electrode material, in particular in the case of using polypyrrole the firing temperature is 300 It was possible to control below ℃. In addition, the inductance value of the calcined soft magnetic sintered body was 140 nH or more and the quality factor (Q) value of the high frequency was about 39 or more. It can also be seen that the loss after firing also shows a characteristic of decreasing.

<실시예 4> 형상제어된 연자성 분말을 이용한 칩인덕터의 제조 2Example 4 Fabrication of Chip Inductor Using Shape-Controlled Soft Magnetic Powders

상기 표 3에서 우수한 고주파 특성을 나타내는 상기 실시예1-A에 따라 제조된 형상제어된 분말(Fe80Ni20)을 사용하고, 내부전극제를 Al을 사용 한 것을 제외하고는 상기 실시예3-A와 동일한방법으로 칩 인덕터를 제조하였다(실시예4-A)Except for using the shape-controlled powder (Fe 80 Ni 20 ) prepared according to Example 1-A exhibiting excellent high-frequency characteristics in Table 3 and using Al as the internal electrode agent A chip inductor was manufactured in the same manner as A (Example 4-A).

상기 표 3에서 우수한 고주파 특성을 나타내는 상기 실시예1-I에 따라 제조된 형상제어된 분말[Fe83.37Si7.7Nb5.66B1.98Cu1.29(나노결정분말)]을 사용하여 하기 표6의 조건에 따라 상기 실시예4-A와 동일한 방법으로 실시하여 실시예 4-B내지 실시예4-F에 따른 칩 인덕터를 제조하였다.According to the conditions of the following Table 6 using the shape-controlled powder [Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder)] prepared according to Example 1-I showing excellent high frequency characteristics in Table 3 above. The chip inductor according to Example 4-B to Example 4-F was manufactured in the same manner as in Example 4-A.

[표6]Table 6

구분division 사용분말Powder used 내부 전극재Internal electrode material 소성온도(℃)Firing temperature (℃) 실시예4-AExample 4-A 실시예1-A에 따라 제조된 형상제어 된 연자성분말 (Fe80Ni20)Shape controlled soft magnetic powder prepared according to Example 1-A (Fe 80 Ni 20 ) AlAl 650650 실시예4-BExample 4-B 실시예1-A에 따라 제조된 형상제어 된 연자성분말 (Fe80Ni20)Shape controlled soft magnetic powder prepared according to Example 1-A (Fe 80 Ni 20 ) polypyrrolepolypyrrole 200200 실시예4-CExample 4-C 실시예1-I에 따라 제조된 형상제어 된 연자성분말[Fe83.37Si7.7Nb5.66B1.98Cu1.29 (나노결정분말)]Shape controlled soft magnetic powder prepared according to Example 1-I [Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder)] AlAl 650650 실시예4-DExample 4-D 실시예1-I에 따라 제조된 형상제어 된 연자성분말[Fe83.37Si7.7Nb5.66B1.98Cu1.29 (나노결정분말)]Shape controlled soft magnetic powder prepared according to Example 1-I [Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder)] polypyrrolepolypyrrole 200200 실시예4-EExample 4-E 실시예1-I에 따라 제조된 형상제어 된 연자성분말[Fe83.37Si7.7Nb5.66B1.98Cu1.29 (나노결정분말)]Shape controlled soft magnetic powder prepared according to Example 1-I [Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder)] polyacelylenepolyacelylene 200200 실시예4-FExample 4-F 실시예1-I에 따라 제조된 형상제어 된 연자성분말[Fe83.37Si7.7Nb5.66B1.98Cu1.29 (나노결정분말)]Shape controlled soft magnetic powder prepared according to Example 1-I [Fe 83.37 Si 7.7 Nb 5.66 B 1.98 Cu 1.29 (nanocrystalline powder)] polyphenylenepolyphenylene 200200

<비교예 3> 종래의 연자성 분말[(Fe2O3)49.5(NiO)10.1-(ZnO) 31.35(CuO)8.85]을 이용한 칩 인덕터의 제조<Comparative Example 3> conventional soft magnetic powder [(Fe 2 O 3) 49.5 (NiO) 10.1 - (ZnO) 31.35 (CuO) 8.85] Preparation of a chip inductor using the

기존의 페라이트 소재인 (Fe2O3)49.5(NiO)10.1-(ZnO)31.35 (CuO)8.85를 볼밀링 수행과정 없이 즉, 형상제어를 하지 않고 분말을 원상태 그대로 사용하고, 내부전극제로서는 수은을 사용하며 소성온도를 1000℃로 한 것을 제외하고는 상기 실시예 3-A와 동일한 방법으로 칩 인덕터를 제조하였다.Conventional ferrite material, (Fe 2 O 3) 49.5 ( NiO) 10.1 - (ZnO) 31.35 (CuO) using the powder for without ball milling the course of 8.85 that is, without the formation control its original position as it is, as the inner electrode the mercury Chip inductor was manufactured in the same manner as in Example 3-A, except that the firing temperature was set to 1000 ° C.

<시험예 3><Test Example 3>

상기 실시예 4 및 상기 비교예 3에 따라 제조된 칩 인덕터의 전자기적 특성을 임피던스 분석기(HP 4194A)를 이용하여 측정하고, 그 결과를 하기 표 7에 나타내었다.The electromagnetic characteristics of the chip inductors manufactured according to Example 4 and Comparative Example 3 were measured using an impedance analyzer (HP 4194A), and the results are shown in Table 7 below.

[표7]Table 7

구분division 인덕턴스(nH)Inductance (nH) Q피크Q peak 실시예4-AExample 4-A 221221 4747 실시예4-BExample 4-B 210210 4545 실시예4-CExample 4-C 271271 6161 실시예4-DExample 4-D 263263 5959 실시예4-EExample 4-E 257257 5353 실시예4-FExample 4-F 250250 5151 비교예3Comparative Example 3 240240 5959

상기 표 7에서와 같이 본 발명은 각종 전도성 폴리머 및 알루미늄 등을 내부전극재로 사용하여도 기존의 수은을 내부전극으로 사용한 페라이트 칩인덕터(비교예 3)와 비교하여 특성의 저하가 거의 없었다. 본 발명의 장점인 저온소성을 위해서는 새로운 전극재인 알루미늄 및 전도성폴리머를 내부전극으로 이용하는 것이 바람직하며, 특히 내부전극재로 polypyrrole을 사용한 경우에는 각종 전도성 폴리머 중 가장 우수한 고주파 특성을 얻을 수 있어 가장 바람직한 내부전극용 폴리머로 판단된다.As shown in Table 7, in the present invention, even when various conductive polymers and aluminum were used as internal electrode materials, there was almost no deterioration in characteristics compared to the conventional ferrite chip inductors (Comparative Example 3) using mercury as internal electrodes. For low temperature firing, which is an advantage of the present invention, it is preferable to use a new electrode material, aluminum and a conductive polymer, as the inner electrode, and in particular, when polypyrrole is used as the inner electrode material, it is possible to obtain the best high frequency characteristics among various conductive polymers. It is judged that it is a polymer for electrodes.

상술한 바와 같이, 본 발명에 따르면 고주파특성이 우수한 연자성재료를 저온에서도 충분히 제조할 수 있으며, 본 발명은 기존 연자성 제조설비를 그대로 사용할 수 있으므로 고가의 제조설비 투자가 필요 없고 관리의 어려움이 없으며, 더불어 공정의 단순화 및 공정온도의 하락 등에 의한 공정 비용의 감소로 인하여 저가격의 칩 인덕터용 연자성재료를 제공할 수 있다.As described above, according to the present invention, a soft magnetic material having excellent high frequency characteristics can be sufficiently produced even at low temperature, and the present invention can use the existing soft magnetic manufacturing equipment as it is, thus eliminating the need for expensive manufacturing equipment investment and managing difficulties. In addition, it is possible to provide a low-cost soft magnetic material for the chip inductor due to the reduction of the process cost due to the simplification of the process and the decrease of the process temperature.

또한 700℃이하의 저온에서도 소성이 가능하면서도 외부응력에 대한 전자기적 특성변화가 적고 우수한 고주파 특성을 갖는 형상제어 된 연자성 재료 및 이를 이용한 인덕터를 제조 할 수 있다.     In addition, it is possible to manufacture shape controlled soft magnetic materials and inductors using them, which can be fired at low temperature below 700 ℃ but have little change in electromagnetic characteristics against external stress and have excellent high frequency characteristics.

Claims (14)

1) 연자성 분말에 계면활성제를 첨가하고 볼밀링 공정을 수행하여 두께:직경의 비가 3 내지 100으로 형상 제어된 연자성 분말을 제조하는 단계;1) adding a surfactant to the soft magnetic powder and performing a ball milling process to produce a soft magnetic powder having a shape-controlled thickness to diameter ratio of 3 to 100; 2) 상기 형상 제어된 연자성 분말에 바인더를 첨가하여 연자성 분말을 코팅하고 이를 상온에서 성형하는 단계;2) coating the soft magnetic powder by adding a binder to the shape controlled soft magnetic powder and molding the same at room temperature; 3) 상기 성형된 연자성 분말에 저온소성용 내부전극을 첨가하고 이를 50 내지 700℃의 온도에서 열처리하는 단계; 및3) adding a low-temperature baking internal electrode to the molded soft magnetic powder and heat-treating it at a temperature of 50 to 700 ℃; And 4) 상기 열처리된 재료에 동선을 권선하는 단계;를 포함하여 이루어지는 권선형 인덕터의 제조방법.4) winding a copper wire on the heat-treated material. 제 1항에 있어서,The method of claim 1, 1-1) 상기 제조된 연자성 분말을 200 내지 400℃의 온도에서 열처리하여 상기 계면활성제를 제거하는 단계를 더 포함하는 권선형 인덕터의 제조방법.1-1) The method of manufacturing the wound inductor further comprising the step of removing the surfactant by heat-treating the prepared soft magnetic powder at a temperature of 200 to 400 ℃. 제 1항에 있어서,The method of claim 1, 상기 연자성 분말이 순철(Fe), 코발트(Co)계, 퍼말로이(permalloy)계, 나노결정 또는 비정질 자성 분말 중 선택된 한 종 이상인 권선형 인덕터의 제조방법.The soft magnetic powder is at least one selected from pure iron (Fe), cobalt (Co) -based, permalloy-based, nanocrystalline or amorphous magnetic powder. 삭제delete 삭제delete 삭제delete 제 1항에 있어서,The method of claim 1, 상기 바인더가 폴리이미드계 바인더 또는 페놀계 바인더 중 선택된 어느 한 종 이상인 권선형 인덕터의 제조방법.The binder is a polyimide-based binder or a phenol-based binder manufacturing method of the winding inductor of any one or more selected. 제 1항 또는 제 7항에 있어서,The method according to claim 1 or 7, 상기 바인더의 양이 총질량의 0.2 내지 3wt%인 권선형 인덕터의 제조방법.The amount of the binder is 0.2 to 3wt% of the wire-type inductor manufacturing method of the total mass. 제 1항에 있어서,The method of claim 1, 상기 3)단계에서 열처리 온도의 승온과정이 분당 10 ℃이내로 수행되는 권선형 인덕터의 제조방법.The method of manufacturing a wound inductor in which the step of increasing the heat treatment temperature in step 3) is performed within 10 ° C. per minute. 1) 연자성 분말에 계면활성제를 첨가하고 볼밀링 공정을 수행하여 두께:직경의 비가 3 내지 100으로 형상 제어된 연자성 분말을 제조하는 단계;1) adding a surfactant to the soft magnetic powder and performing a ball milling process to produce a soft magnetic powder having a shape-controlled thickness to diameter ratio of 3 to 100; 2) 상기 형상 제어된 연자성 분말에 바인더를 첨가하여 연자성 분말을 코팅하는 단계;2) coating the soft magnetic powder by adding a binder to the shape controlled soft magnetic powder; 3) 상기 코팅된 연자성 분말을 사용하여 닥터브레이드법에 의해 그린시트를 주조하는 단계;3) casting the green sheet by the doctor blade method using the coated soft magnetic powder; 4) 상기 주조된 그린시트를 적층하고 그 위에 내부전극을 인쇄하는 단계;4) laminating the cast green sheet and printing an internal electrode thereon; 5) 상기 내부전극이 인쇄된 그린시트 위에 그린시트를 다시 적층하고 이를 50 내지 700℃ 사이의 온도에서 소성하는 단계; 및5) re- laminating the green sheet on the green sheet printed with the internal electrode and firing it at a temperature between 50 and 700 ° C .; And 6) 상기 5)단계에서 소성된 소결체에 외부전극을 형성하는 단계;를 포함하여 이루어지는 칩형 인덕터의 제조방법.6) forming an external electrode on the sintered body fired in step 5). 제 10항에 있어서,The method of claim 10, 상기 바인더가 폴리비닐부틸, 마니톨, 메틸렌클로라이드, 오레익산, 폴리에틸렌글리콜, 톨루엔 또는 폴리이미드 중 선택된 한 종 이상인 칩형 인덕터의 제조방법.And said binder is at least one selected from polyvinylbutyl, mannitol, methylene chloride, oleic acid, polyethylene glycol, toluene or polyimide. 제 10항 또는 제 11항에 있어서,The method according to claim 10 or 11, wherein 상기 바인더가 연자성 분말 대비 wt%기준으로 1:1 내지 1:1.4로 첨가되는 칩형 인덕터의 제조방법.The binder is a method of manufacturing a chip-type inductor is added in a 1: 1 to 1: 1.4 by wt% relative to the soft magnetic powder. 제 10항에 있어서,The method of claim 10, 상기 내부전극이 알루미늄, 수은, polypyrrole, polyacelylene 또는 polyphenylene 중에서 선택된 한 종 이상인 칩형 인덕터의 제조방법.The internal electrode is a method of manufacturing a chip-type inductor of at least one selected from aluminum, mercury, polypyrrole, polyacelylene or polyphenylene. 삭제delete
KR10-2002-0020103A 2002-04-12 2002-04-12 Method of manufacturing soft magnetic powder and inductor using the same KR100478710B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2002-0020103A KR100478710B1 (en) 2002-04-12 2002-04-12 Method of manufacturing soft magnetic powder and inductor using the same
PCT/KR2003/000644 WO2003088281A1 (en) 2002-04-12 2003-03-31 Method of manufacturing soft magnetic powder and inductor using the same
AU2003218817A AU2003218817A1 (en) 2002-04-12 2003-03-31 Method of manufacturing soft magnetic powder and inductor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0020103A KR100478710B1 (en) 2002-04-12 2002-04-12 Method of manufacturing soft magnetic powder and inductor using the same

Publications (2)

Publication Number Publication Date
KR20030081738A KR20030081738A (en) 2003-10-22
KR100478710B1 true KR100478710B1 (en) 2005-03-24

Family

ID=29244726

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0020103A KR100478710B1 (en) 2002-04-12 2002-04-12 Method of manufacturing soft magnetic powder and inductor using the same

Country Status (3)

Country Link
KR (1) KR100478710B1 (en)
AU (1) AU2003218817A1 (en)
WO (1) WO2003088281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982639B1 (en) * 2008-03-11 2010-09-16 (주)창성 Multilayered chip power inductor using the magnetic sheet with soft magnetic metal powder

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10024824A1 (en) 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Inductive component and method for its production
DE10134056B8 (en) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
EP1724792A1 (en) 2005-05-20 2006-11-22 Imphy Alloys Verfahren zur Herstellung eines Bandes aus nanocrystallinem Material sowie eine Vorrichtung zur Herstellung eines von diesem Band ausgehenden Wickelkernes
DE102006028389A1 (en) 2006-06-19 2007-12-27 Vacuumschmelze Gmbh & Co. Kg Magnetic core, formed from a combination of a powder nanocrystalline or amorphous particle and a press additive and portion of other particle surfaces is smooth section or fracture surface without deformations
GB2454822B (en) 2006-07-12 2010-12-29 Vacuumschmelze Gmbh & Co Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
US8941457B2 (en) 2006-09-12 2015-01-27 Cooper Technologies Company Miniature power inductor and methods of manufacture
US8378777B2 (en) 2008-07-29 2013-02-19 Cooper Technologies Company Magnetic electrical device
US8466764B2 (en) 2006-09-12 2013-06-18 Cooper Technologies Company Low profile layered coil and cores for magnetic components
US8310332B2 (en) 2008-10-08 2012-11-13 Cooper Technologies Company High current amorphous powder core inductor
US9589716B2 (en) 2006-09-12 2017-03-07 Cooper Technologies Company Laminated magnetic component and manufacture with soft magnetic powder polymer composite sheets
US7791445B2 (en) 2006-09-12 2010-09-07 Cooper Technologies Company Low profile layered coil and cores for magnetic components
KR100835886B1 (en) * 2007-03-20 2008-06-09 주식회사 동부하이텍 Method of manufacturing high current smd inductor by using new type inner coil
KR100835558B1 (en) * 2007-03-20 2008-06-05 주식회사 동부하이텍 Method of coating and granulating a powder by spray dryer process, and method of manufacturing one-body smd inductor thereby
DE102007034925A1 (en) 2007-07-24 2009-01-29 Vacuumschmelze Gmbh & Co. Kg Method for producing magnetic cores, magnetic core and inductive component with a magnetic core
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US9558881B2 (en) 2008-07-11 2017-01-31 Cooper Technologies Company High current power inductor
US8279037B2 (en) 2008-07-11 2012-10-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US8659379B2 (en) 2008-07-11 2014-02-25 Cooper Technologies Company Magnetic components and methods of manufacturing the same
US9859043B2 (en) 2008-07-11 2018-01-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same
JP6511069B2 (en) 2014-03-31 2019-05-15 エーエスエムエル ネザーランズ ビー.ブイ. Undulator
WO2019023395A1 (en) 2017-07-25 2019-01-31 Magnomer Llc Methods and compositions for magnetizable plastics
CN112466647A (en) * 2020-11-26 2021-03-09 成都慧磁电子材料有限公司 Production process of high-permeability Fe-Si-Al soft magnetic alloy flake powder
CN113450988B (en) * 2021-05-18 2023-07-21 深圳市华控科技集团有限公司 Soft magnetic powder raw material lamination treatment method for high-permeability inductor
CN116631764B (en) * 2023-07-24 2023-10-27 通友微电(四川)有限公司 Method for preparing inorganic coated soft magnetic powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653064A (en) * 1992-04-24 1994-02-25 Tdk Corp Manufacture of anisotropic ferrite magnet, anisotropic ferrite magnet, and hexagonal ferrite grain and manufacture thereof
JPH0734182A (en) * 1993-07-13 1995-02-03 Tdk Corp Production of ferrous soft magnetic sintered compact and ferrous soft magnetic sintered compact obtained by the same
WO1998036428A1 (en) * 1997-02-14 1998-08-20 Sumitomo Special Metals Co., Ltd. Thin plate magnet having microcrystalline structure
JP2001076919A (en) * 1999-07-07 2001-03-23 Tdk Corp Ferrite magnet and manufacture thereof
JP2001076918A (en) * 1999-08-31 2001-03-23 Sumitomo Special Metals Co Ltd Magnet powder and manufacture thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100222757B1 (en) * 1996-11-30 1999-10-01 이형도 A soft magnetic material for inductor and a method for manufacturing therewith
KR100222756B1 (en) * 1996-11-30 1999-10-01 이형도 A high-frequency soft magnetic material for low fired and a method for manufacturing inductor
JPH11273980A (en) * 1998-03-19 1999-10-08 Tokin Corp Method for manufacturing inductor
KR100349003B1 (en) * 1999-03-09 2002-08-17 티디케이가부시기가이샤 Method for the Preparation of Soft Magnetic Ferrite Powder and Method for the Production of Laminated Chip Inductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653064A (en) * 1992-04-24 1994-02-25 Tdk Corp Manufacture of anisotropic ferrite magnet, anisotropic ferrite magnet, and hexagonal ferrite grain and manufacture thereof
JPH0734182A (en) * 1993-07-13 1995-02-03 Tdk Corp Production of ferrous soft magnetic sintered compact and ferrous soft magnetic sintered compact obtained by the same
WO1998036428A1 (en) * 1997-02-14 1998-08-20 Sumitomo Special Metals Co., Ltd. Thin plate magnet having microcrystalline structure
JP2001076919A (en) * 1999-07-07 2001-03-23 Tdk Corp Ferrite magnet and manufacture thereof
JP2001076918A (en) * 1999-08-31 2001-03-23 Sumitomo Special Metals Co Ltd Magnet powder and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982639B1 (en) * 2008-03-11 2010-09-16 (주)창성 Multilayered chip power inductor using the magnetic sheet with soft magnetic metal powder

Also Published As

Publication number Publication date
KR20030081738A (en) 2003-10-22
AU2003218817A1 (en) 2003-10-27
WO2003088281A1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
KR100478710B1 (en) Method of manufacturing soft magnetic powder and inductor using the same
KR100222757B1 (en) A soft magnetic material for inductor and a method for manufacturing therewith
KR101210772B1 (en) Hexagonal ferrite, and antenna and communication equipment using the same
JP3693398B2 (en) Ceramic magnetic material and high frequency circuit component using the same
KR100222756B1 (en) A high-frequency soft magnetic material for low fired and a method for manufacturing inductor
KR101830329B1 (en) Power Inductor
KR20170141605A (en) Soft magnetic metal powder, soft magnetic metal fired body, and coil type electronic device
JP2012244064A (en) Ferrite core and electronic component
JP3492802B2 (en) Low loss ferrite material
EP0724549B1 (en) Magnetodielectric ceramic composite material, method of manufacturing same, application, and a multifunctional component
CN115028443B (en) Laminated ferrite inductance material and preparation method thereof
JPH0630297B2 (en) Ferrite sintered body and chip parts
KR20160014936A (en) Composite magnetic powder and chip coil component using thereof
US6558566B2 (en) Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components
CN1193960C (en) Low-temp sintered material
WO2024093990A1 (en) Magnetic material and multilayer inductor comprising said material
JP7059314B2 (en) Soft magnetic metal powder
KR100302071B1 (en) Method for preparing soft magnetic ferrite
JPH0374811A (en) Ferrite magnetic material
JPH08148338A (en) Multilayer chip inductor and production thereof
TW202423876A (en) Magnetic material and multi-layer inductor including the same
JP6245966B2 (en) Soft magnetic materials for inductors
JP3364267B2 (en) Chip antenna
JPH09205031A (en) Production of multilayered inductance element
JP4830259B2 (en) Manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120315

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee