EP2697399B1 - Alloy, magnet core and process for producing a strip made of an alloy - Google Patents

Alloy, magnet core and process for producing a strip made of an alloy Download PDF

Info

Publication number
EP2697399B1
EP2697399B1 EP12720963.3A EP12720963A EP2697399B1 EP 2697399 B1 EP2697399 B1 EP 2697399B1 EP 12720963 A EP12720963 A EP 12720963A EP 2697399 B1 EP2697399 B1 EP 2697399B1
Authority
EP
European Patent Office
Prior art keywords
alloy
tape
permeability
less
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12720963.3A
Other languages
German (de)
French (fr)
Other versions
EP2697399A1 (en
Inventor
Giselher Herzer
Christian Polak
Viktoria BUDINSKY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP2697399A1 publication Critical patent/EP2697399A1/en
Application granted granted Critical
Publication of EP2697399B1 publication Critical patent/EP2697399B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Definitions

  • the present invention relates to an alloy, in particular a soft magnetic alloy suitable for use as a magnetic core, a magnetic core and a method for producing an alloy strip.
  • Nanocrystalline alloys based on a composition Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z can be used as a magnetic core in various applications.
  • the US 7,583,173 discloses a wound magnetic core used inter alia in a current transformer consisting of (Fe 1-a Ni a ) 100-xyzabc Cu x Si y B z Nb ⁇ M ' ⁇ M'' ⁇ where a ⁇ 0.3 , 0.6 ⁇ x ⁇ 1.5, 10 ⁇ y ⁇ 17, 5 ⁇ z ⁇ 14, 2 ⁇ ⁇ ⁇ 6, ⁇ ⁇ 7, ⁇ ⁇ 8, M 'at least one of V, Cr, Al and Zn and M "is at least one of C, Ge, P, Ga, Sb, In, and Be.
  • the EP 0 271 657 A2 also discloses alloys with a summary on this basis.
  • the EP 1 045 402 discloses an amorphous alloy in the form of a strip 25 mm wide and 18 ⁇ m thick.
  • the tape is heat treated under tension and has a grain size of less than 50 nm, the remanence ratio is less than 10%.
  • alloys also in the form of tapes, can be used as a magnetic core in various components, such as power transformers, current transformers, and storage chokes.
  • the lowest possible production costs are generally desirable.
  • the cost reduction should have as little or no effect on the operation of the magnetic core.
  • the object is therefore to provide an alloy which is suitable for use as a magnetic core, which can be produced more cheaply. Another object is to select the alloys so that the size and / or weight of the magnetic core can be reduced compared to a conventional magnetic core.
  • an alloy which consists of Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z and up to 1 atom% of impurities.
  • M is one or more of Mo
  • Ta or Zr T is one or more of V
  • Z is one or more of C, P or Ge and 0 at% ⁇ a ⁇ 1.5 Atom%, 0 atom% ⁇ b ⁇ 2 atom%, 0 atom% ⁇ (b + c) ⁇ 2 atom%, 0 atom% ⁇ d ⁇ 5 atom%, 10 atom% ⁇ x ⁇ 18 atom%, 5 atom% ⁇ y ⁇ 11 at% and 0 at% ⁇ z ⁇ 2 at%.
  • the alloy is further formed in the form of a band and has a nanocrystalline structure in which at least 50% by volume of the grains have an average size of less than 100 nm.
  • the alloy also has a hysteresis loop with a central linear part, a remanence ratio, J r / J s , ⁇ 0.1, and a ratio of coercive force, H c , to anisotropic field strength, H a , ⁇ 10%.
  • the alloy thus has a composition with a niobium content of less than 2 atomic percent.
  • This has the advantage that the raw material costs are lower compared to a composition with a higher niobium content, since niobium is a relatively expensive element.
  • the lower limit of the silicon content and the upper limit of the boron content of the alloy are determined so that the alloy can be made in the form of a strip under tension in a continuous furnace, thereby achieving the above-mentioned magnetic properties. Consequently, with this manufacturing method, the alloy, despite the lower niobium content, can also have the desired soft magnetic properties for magnetic core applications.
  • the shape as a band not only makes it possible to manufacture the alloy under tension in a continuous furnace, but also to manufacture a magnetic core having any number of windings. Consequently, the size and magnetic properties of the magnetic core can be easily adjusted by appropriate selection of the windings to the application. Due to the nanocrystalline structure with a particle size of less than 100 nm in at least 50% by volume of the alloy, a low saturation magnetostriction is achieved at high saturation polarization.
  • the heat treatment under tensile stress, with suitable alloy selection results in a magnetic hysteresis loop with a central linear part, a remanence ratio of less than 0.1 and a coercive field strength of less than 10% of the anisotropy field.
  • the central part of the hysteresis loop is defined as the part of the hysteresis loop that lies between the anisotropy field strength points that characterize the transition to saturation.
  • ⁇ J on or ⁇ J ab designate the standard deviation of the magnetization from a compensation straight line by the ascending or descending branch of the hysteresis loop between magnetization values of ⁇ 75% of the saturation polarization J s .
  • This alloy is thus particularly suitable for a magnetic core, which has a reduced size and a smaller weight at lower raw material costs and at the same time the desired soft magnetic properties for use as a magnetic core.
  • the remanence ratio of the alloy is less than 0.05.
  • the hysteresis loop of the alloy is thus even more linear or flatter.
  • the ratio of coercive force to anisotropic field strength is less than 5%. Also is in this embodiment, the hysteresis loop even more linear, so that the Ummagnetmaschineshnee are even lower.
  • Such relatively low permeabilities are advantageous for current transformers, power transmitters, storage chokes, and other applications in which the magnetic core should not become ferromagnetically saturated so that the inductance does not suffer when high electrical currents flow through windings around the magnetic core.
  • Suitable permeability ranges result from the specific requirements of the respective application. Suitable ranges are 1500 to 3000, 200 to 1500 and 50 to 200. For example, for DC-DC current transformers, a permeability ⁇ of about 1500 to about 3000 is advantageous, while for power transmitters a permeability range of about 200 to 1500 and for storage chokes rather a permeability range of about 50 to 200 is particularly suitable.
  • the alloy may have a saturation magnetostriction of less than 5 ppm in magnitude. Alloys with a saturation magnetostriction below these limits have particularly good soft magnetic properties even with internal stress, especially when the permeability is not significantly greater than 500. For higher permeabilities it is advantageous to select alloys with smaller values of saturation magnetostriction.
  • the alloy may also have a saturation magnetostriction of less than 2 ppm, preferably less than 1 ppm. Alloys with a saturation magnetostriction below these limits have particularly good soft magnetic properties even with internal stress, in particular if the permeability ⁇ is greater than 500 or greater than 1000.
  • the alloy comprises niobium and / or copper, where 0 ⁇ a ⁇ 0.5 and 0 ⁇ b ⁇ 0.5.
  • the silicon content and / or the boron content is further defined such that the alloy has 14 atom% ⁇ x ⁇ 17 atom% and / or 5.5 atom% ⁇ y ⁇ 8 atom%.
  • the alloy has the shape of a band.
  • This band may have a thickness of 10 microns to 50 microns. This thickness makes it possible to wind a magnetic core with a large number of windings, which at the same time has a small outer diameter.
  • At least 70% by volume of the grains have an average size of less than 50 nm. This allows a further increase in the magnetic properties.
  • the alloy is heat-treated in the form of a ribbon under tension to produce the desired magnetic properties.
  • the alloy ie the finished heat-treated strip, is thus also characterized by a structure which originated by this manufacturing process.
  • the crystallites have an average size of about 20-25 nm and a remanent elongation in the tape longitudinal direction between about 0.02% and 0.5%, which is proportional to the tensile stress applied during the heat treatment. For example, a heat treatment under a tensile stress of 100 MPa results in an elongation of about 0.1%.
  • the crystalline grains may have an elongation of at least 0.02% in a preferred direction.
  • the magnetic core may be in the form of a wound tape, wherein to form the magnetic core, depending on the application, the tape may be wound in a plane or as a solenoid about an axis.
  • the band of the magnetic core may be coated with an insulating layer to electrically insulate the windings of the magnetic core from each other.
  • the layer may be, for example, a polymer layer or a ceramic layer.
  • the tape may be coated with the insulating layer before and / or after winding into a magnetic core.
  • the magnetic core according to one of the preceding embodiments can be used in various components.
  • a power transformer, a current transformer, and a storage reactor having a magnetic core according to one of these embodiments are also provided.
  • a method for producing a tape which comprises : an amorphous alloy tape having a composition consisting of Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z and up to 1 Atom% impurities, where M is one or more of the elements Mo, Ta or Zr, T one or more of the elements V, Mn, Cr, Co or Ni and Z one or more of the elements C, P or Ge and 0 atom% ⁇ a ⁇ 1.5 atom%, 0 atom% ⁇ b ⁇ 2 atom%, 0 atom% ⁇ (b + c) ⁇ 2 atom%, 0 atom% ⁇ d ⁇ 5 atom%, 10 atom% ⁇ x ⁇ 18 atom %, 5 atom% ⁇ y ⁇ 11 atom% and 0 atom% ⁇ z ⁇ 2 atom%.
  • This tape is heat-treated under tension in a continuous furnace at a temperature T a , where 450
  • This composition can be prepared with a heat treatment between 450 ° C and 750 ° C under tension with suitable magnetic properties for use as a magnetic core.
  • the heat treatment results in the formation of a nanocrystalline microstructure in which at least 50% by volume of the grains have an average size smaller than 100 nm.
  • this composition having less than 2 atomic percent of niobium can be prepared by this method to have a hysteresis loop with a central linear part, a remanence ratio, J r / J s , ⁇ 0.1, and a coercive force ratio, H c , to anisotropic field strength, H a , ⁇ 10%.
  • the strip is heat treated in the pass. Consequently, the belt is pulled through the continuous furnace at a speed s.
  • This speed s can be adjusted so that a residence time of the strip in a temperature zone of the continuous furnace with the temperature within 5% of the temperature T a is between 2 seconds and 2 minutes.
  • the time to heat the tape to the temperature T a is of a comparable order of magnitude as the duration of the heat treatment itself. The same applies to the duration of the subsequent cooling.
  • This residence time leads in this tempering temperature range to the desired structure and the desired magnetic properties.
  • the tape is pulled through the continuous furnace under a tension of between 5 and 160 MPa. In another embodiment, the tape is pulled through the continuous furnace under a tensile stress of 20 MPa to 500 MPa. It is also possible to pull the tape through the oven with a higher tension up to about 800 MPa without tearing it. This range of tensile stress is suitable for achieving the desired magnetic properties in the above-mentioned compositions.
  • the value of the permeability ⁇ achieved is inversely proportional to the tensile stress ⁇ a applied during the heat treatment.
  • a tensile stress ⁇ a is required during the heat treatment which satisfies the relationship ⁇ a ⁇ ⁇ / ⁇ .
  • has a value of ⁇ ⁇ 48,000 MPa.
  • has a value of, for example, ⁇ ⁇ 36,000 MPa.
  • values in the range ⁇ ⁇ 30000 MPa to ⁇ ⁇ 70000 MPa can be used for the alloys according to the invention and the corresponding heat treatment process.
  • the exact value of ⁇ depends on the composition, the tempering temperature and to some extent on the tempering time.
  • the tensile stress that leads to the desired magnetic properties may therefore be dependent on the composition of the alloy and on the tempering temperature as well as the tempering time.
  • the tensile stress ⁇ a required for a given permeability ⁇ is determined from the permeability ⁇ test of a test annealing under a tensile stress ⁇ test according to the relationship ⁇ a ⁇ ⁇ TEST ⁇ TEST / ⁇ selected.
  • the desired magnetic properties may also be dependent on the tempering temperature T a and consequently set by the selection of the tempering temperature.
  • the temperature T a is selected depending on the niobium content b according to the relationship (T x1 + 50 ° C) ⁇ T a ⁇ (T x2 + 30 ° C).
  • T x1 and T x2 correspond to the crystallization temperatures defined by the maximum of the heat of transformation, which are determined by means of thermal standard methods such as DSC (differential scanning calometry) at a heating rate of 10 K / min.
  • a desired value of the permeability or anisotropic field strength, as well as a permitted deviation range is predetermined.
  • magnetic properties of the belt are continuously measured when leaving the continuous furnace.
  • the tension on the belt is adjusted accordingly to bring the measured values of the magnetic properties back within the allowable deviation ranges.
  • FIG. 1 shows a diagram of hysteresis loops of nanocrystalline alloys in the form of a band.
  • the bands have a composition of Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 .
  • FIG. 1 shows that with decreasing Nb content the hysteresis loops become non-linear. This nonlinear hysteresis loop is undesirable in some magnetic core applications because the core loss losses are increased.
  • Table 1 shows the nonlinearity factors NL of the hysteresis loops shown in Figs. 1 and 2 for various heat treatments and various Nb contents.
  • Table 1 shows the nonlinearity factor of nanocrystalline Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 after heat treatment in the magnetic field for 0.5 h at a temperature of 540 ° C and after a heat treatment under tensile stress of 100 MPa for 4 s at 600 ° C for different Nb contents.
  • FIG. 3 shows a graph of the remanence ratio J r / J s heat-treated samples as a function of Nb content.
  • FIG. 3 shows FIG. 3 the remanence ratio of nanocrystalline Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 after heat treatment in the magnetic field of 0.5 h at temperatures of 480 ° C to 540 ° C and after a heat treatment under tensile stress of 4 s at temperatures between 520 ° C and 700 ° C as a function of Nb content.
  • linear loops with a remanence ratio smaller than 0.1 and a nonlinearity factor smaller than 3% are reliably achieved only for Nb contents greater than 2 at%.
  • linear loops having a remanence ratio less than 0.1 and a non-linearity factor less than 3% can be reliably achieved for Nb contents less than 2 at% and even for compositions without niobium.
  • Tables 1 to 6 and the FIGS. 2 to 12 show that low remanence ratio linear loops can be achieved with compositions having a niobium content of less than 2 atomic% when the heat treatment is under a belt lengthwise mechanical tension. These compositions have the advantage that raw material costs are reduced since niobium is a relatively expensive element.
  • FIG. 2 shows a diagram of hysteresis loops of bands after heat treatment in the run with an effective tempering time of 4s at a temperature of 600 ° C and under a tensile stress of about 100 MPa.
  • the time is defined at which the band passes through the temperature zone at which the temperature within 5% corresponds to the tempering temperature given here.
  • the time to heat the tape to the tempering temperature is comparable to the duration of the heat treatment itself. The same applies to the duration of the subsequent cooling.
  • FIG. 2 shows that for Nb contents less than 2 at%, hysteresis loops with a central linear part and a small remanence ratio can be obtained.
  • the composition with Nb 3at% is a comparative example and the compositions with Nb ⁇ 2at% are examples according to the invention.
  • the arrow shows by way of example the definition of the anisotropy field strength H a .
  • FIG. 3 is a graph of a remanent ratio comparison for such tension tempered samples as shown in FIG. 3 are shown with filled diamonds, and for magnetic field annealed samples shown with open circle symbols as a function of Nb content. Alloys with Nb contents below 2 at% have a small remanence ratio of less than 0.05 only when heat-treated under tension. However, when these compositions are annealed under a magnetic field, the remanence ratio is significantly higher, so that these alloys are not suitable for some magnetic core applications. Even for the alloy Fe 77 Cu 1 Si 15.5 B 6.5, ie without addition of Nb, a substantially linear loop with a remanence ratio of less than 0.05 results when heat-treated under a tensile stress.
  • FIG. 4 shows a plot of the saturation polarization of alloys with a composition of Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 as a function of the Nb content.
  • the alloys with reduced Nb content have a significantly increased saturation polarization. This can be beneficial in a corresponding weight and Reduced manufacturing costs of the magnetic core can be implemented. Thus, in addition to reduced raw material costs, a further advantage results since the device having the magnetic core can be made smaller.
  • FIG. 5 shows a diagram of saturation magnetostriction ⁇ s , anisotropy field H a , coercive force H c , remanence ratio J r / J s and nonlinearity factor NL of a composition Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 after heat treatment of about 4 seconds duration under a tensile stress of approx. 50 MPa as a function of the tempering temperature.
  • the anisotropy field H a corresponds to the field in which the linear part of the hysteresis loop passes into saturation, which in the FIG. 2 is shown.
  • tempering temperatures between which the desired properties can be achieved, are in the range of about 535 ° C to 670 ° C, which is highlighted hatched in the figure.
  • the hatched area shows the area in which linear loops with small saturation magnetostriction, high anisotropy field and small remanence ratio result. This is also the area in which the alloys have particularly linear loops.
  • the most suitable tempering temperature between 535 ° C and 670 ° C.
  • These temperature limits are largely independent of the magnitude of the tensile stress. However, they depend on the duration of the heat treatment and the Nb content. For example, they decrease with decreasing Nb content or with prolonged heat treatment off, as in the FIG. 6 and Table 2.
  • FIG. 6 shows the starting behavior of a niobium-free alloy variant, in which the optimal tempering temperatures in the range of about 500 ° C to 570 ° C, ie significantly lower than the composition of FIG. 5 lie.
  • the optimum tempering temperatures according to the invention here are in the range of about 500 ° C to 570 ° C. This yields, as indicated schematically by the inset, a flat linear hysteresis loop with a remanence ratio of less than 0.1.
  • FIG. 7 shows the crystallization behavior measured by differential scanning calometry (DSC) at a heating rate of 10 K / min using the example of the alloy Fe 77 Cu 1 Si 15.5 B 6.5 .
  • DSC differential scanning calometry
  • FIG. 8 shows the X-ray diffraction diagrams for the alloy Fe 77 Cu 1 Si 15.5 B 6.5 in the amorphous initial state and after heat treatment under tension at different tempering temperatures corresponding to the different crystallization stages defined by T x1 and T x2 .
  • FIG. 8 shows FIG. 8 the X-ray diffraction pattern after a heat treatment under tension for 4s at 515 ° C, ie in the starting area, where magnetic properties according to the invention are achieved, and at 680 ° C, ie in the unfavorable starting area where no linear hysteresis loops with a small remanence ratio can be achieved more.
  • boride phases crystallize out of the residual amorphous matrix, which adversely affect the magnetic properties and lead to a non-linear loop with a high remanence ratio and high coercive force.
  • Table 2 shows further examples, as well as supplementary data in the form of the differential scanning calorimetry (DSC) at 10K / min measured crystallization temperatures T x1 , which corresponds to the crystallization of bcc-FeSi, and T x2 , which corresponds to the crystallization of borides ,
  • the suitable tempering temperature is approximately between T x1 and T x2 and leads to a structure of nanocrystalline grains with a mean grain size less than 50 nm, which in an amorphous Embedded matrix, and the desired magnetic properties.
  • T x1 and T x2 and the tempering temperatures T a depend on the heating rate and the duration of the heat treatment. Therefore, with a heat treatment time of less than 10 seconds, the optimum tempering temperatures at higher temperatures than the differential scanning calorimetry (DSC) at 10K / min measured crystallization temperatures T x1 and T x2 of Table 2. Accordingly, for longer tempering times, for example, 10 min up to 60 minutes, the optimum tempering temperatures T a typically 50 ° C to 100 ° C lower than the values of T a listed in Table 2 for a heat treatment time of a few seconds.
  • DSC differential scanning calorimetry
  • the tempering temperatures T a depending on the composition and duration of the heat treatment according to the doctrine of FIG. 5 and optionally adjusted according to the crystallization temperatures measured in the DSC according to Table 2.
  • Table 3 shows the influence of tempering time on the example of the alloy composition Fe 76 Cu 1 Nb 1.5 Si 13.5 B 8 .
  • T a is between the limit temperatures discussed with reference to Table 2.
  • the crystallization temperatures measured at a heating rate of 10 K / min correspond approximately to the optimum starting range for an isothermal heat treatment of a few minutes duration.
  • FIG. 9 shows the dependence of the permeability, the anisotropy field, the coercive field strength, the remanence ratio and the nonlinearity factor on the tensile stress applied during the heat treatment.
  • FIG. 9 shows a diagram of the permeability, the anisotropy field, the coercive field strength, the remanence ratio and the nonlinearity factor of nanocrystalline Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 after heat treatment for 4 seconds at 613 ° C under the specified tensile stress ⁇ a . In all cases, this resulted in a remanence ratio of typically less than J r / J s ⁇ 0.04 and a nonlinearity factor of less than 2%.
  • Table 4 shows another example of the dependence of permeability, anisotropy field, coercive force, remanence ratio and non-linearity factor on the tensile stress applied during the heat treatment.
  • the table shows the permeability, anisotropy field, coercivity, remanence ratio and nonlinearity factor of nanocrystalline Fe 76 Cu 0.5 Nb 1.5 Si 15.5 B 6.5 after heat treatment for 4 seconds at 605 ° C under the given tensile stress ⁇ a . In all cases, this resulted in a remanence ratio of typically less than J r / J s ⁇ 0.1 and a nonlinearity factor of less than 3%.
  • FIG. 9 and Table 4 show that the anisotropic field strength H a and the permeability ⁇ can be adjusted in a targeted manner by adjusting the tensile stress ⁇ a .
  • denotes a material parameter which may depend primarily on the alloy composition, but also on the tempering temperature and tempering time.
  • Typical values are in the range of ⁇ ⁇ 30,000 MPa to ⁇ ⁇ 70,000 MPa.
  • results for the example in FIG. 9 a value of ⁇ ⁇ 48000 MPa and for the example in Table 3 a value of ⁇ ⁇ 36000 MPa.
  • the composition can exert an influence on the magnetic properties in certain heat treatments.
  • the heat treatment and in particular the tensile stress can be adjusted.
  • Table 5 shows examples of the alloy, which were approximately 4 seconds heat-treated under a tension of 50 MPa at an optimum for the respective composition tempering temperature T A, and a Comparative Example having a composition with a niobium content of above 2 atomic%.
  • the remaining examples, numbered 1 to 10, represent compositions according to the invention having an Nb content of less than 2 at%.
  • FIG. 10 shows in addition the optimum tempering temperatures and the crystallization temperatures of the alloy examples 1 to 10. In particular shows FIG. 10 the lower and upper optimum tempering temperatures T a1 and T a2 for a tempering time of 4 s as a function of the crystallization temperatures T x1 and T x2 measured in the DSC at 10 K / min.
  • Table 6 therefore shows other examples of alloys in which the Cu content was varied systematically and a heat treatment of about 7 seconds duration was carried out at 600 ° C under a tensile stress of about 15 MPa. Specifically, in Table 6, the element Fe was gradually replaced by Cu, with the remaining alloying components remaining unchanged.
  • Table 6 shows no significant influence of the Cu content on the magnetic properties for Cu contents below 1.5at%. However, the addition of Cu promotes the Embrittlement tendency of the strips during production. In particular, alloys with Cu contents greater than 1.5at% (such as the alloy no. 15 from Table 6) already in the production state a strong embrittlement, so that a 20 .mu.m thick band of alloy Fe 74.5 Cu 2 Nb 1.5 Si 15.5 B 6.5 at a bending diameter of about 1 mm can break.
  • Such a brittle belt can not be caught or wound up directly during the casting process due to the high production line speeds (25-30 m / s) after leaving the cooling roller or only with great difficulty during the casting process. This makes the tape production uneconomical. Also, such break even at the beginning of brittle bands in the heat treatment to an increased extent, especially before they enter the zone of elevated temperature. With such a break, the heat treatment process is interrupted and the tape must be threaded through the oven again.
  • alloys with a Cu content of less than 1.5at% can be bent to a bending diameter of twice the strip thickness, ie typically less than 0.06 mm, without breaking. This allows the tape to be rewound directly during casting. Furthermore, the heat treatment of such initially ductile bands is much easier. Alloys with a Cu content of less than 1.5 at% become embrittled only after the heat treatment, but only after they have left the furnace and are cooled again. The probability of a ligament tear during the heat treatment is thus significantly lower. Also, in most cases, belt transport through the oven can continue despite demolition. All in all, ductile tapes can thus be produced more easily and thus more economically, as well as heat-treated at first.
  • compositions shown in Tables 5 and 6 are nominal at% compositions which, within an accuracy of typically ⁇ 0.5 at%, are consistent with the individual element concentrations found in the chemical analysis.
  • the silicon content and the boron content also exert an influence on the magnetic properties of this type of nanocrystalline alloy with a niobium content of less than 2 atomic% when made under tensile stress.
  • FIG. 11 shows a plot of the course of coercive force H c and remanence ratio J r / J s of both alloys after heat treatment under a tensile stress of about 50 MPa as a function of the tempering temperature T a .
  • the coercive field strength H c and the remanence ratio J r / J s of the alloy Fe 80 Si 11 B 9 according to the invention is represented by filled circle symbols and the comparative composition Fe 78.5 Si 10 B 11.5 shown by open triangular symbols, after a heat treatment of 4 seconds duration at the tempering temperature T a under a tensile stress of about 50 MPa.
  • FIG. 12 shows a diagram of hysteresis loops of the two alloys after heat treatment for 4s at about 565 ° C under tensile stresses of 50 MPa (dashed line) and 220 MPa (solid line).
  • the hysteresis loop of the alloy Fe 80 Si 11 B 9 according to the invention is shown on the left and that of the comparative composition Fe 78.5 Si 10 B 11.5 is shown on the right.
  • composition of the invention Fe 80 Si 11 B 9 after heat treatment between about 530 ° C and 570 ° C, a linear magnetization loop with a small remanence ratio J r / J s ⁇ 0.1 and a low coercive force, which is well below 100 A / m and ultimately only a few percent of the anisotropic field strength H a .
  • the composition Fe 78.5 Si 10 B 11.5 has a high remanence ratio throughout the entire heat treatment range. Even the lowest values of the remanence ratio, which are achieved at tempering temperatures between 540 ° C and 570 ° C, are still around J r / J s ⁇ 0.5 (see. Fig. 11 ). Furthermore, at these lowest values of J r / J s, an unfavorably high coercive field strength of approximately H c ⁇ 800-1000 A / m results. As a result, loses the central part of the magnetization loop to linearity and the strong split of the hysteresis loop leads to disadvantageous high Ummagnetmaschineswen (see. Fig. 12 ).
  • the upper limit of the Si content and the lower limit of the boron content are also examined. While the alloy composition Fe 75 Cu 0.5 Nb 1.5 Si 17.5 B 5.5 (see Alloy No. 5 of Table 5) could be easily prepared as an amorphous ductile tape and had desirable properties after heat treatment, the alloy composition had Fe 75 Cu 0.5 Nb 1.5 Si 18 B 5 after heat treatment only borderline magnetic properties and the alloy composition Fe 75 Cu 0.5 Nb 1.5 Si 18.5 B 4.5 could no longer be produced as a ductile amorphous band.
  • Table 7 shows the saturation magnetostriction constant ⁇ s of various alloy compositions measured in the state of manufacture and after a heat treatment of 4 seconds under a tension of 50 MPa at the indicated tempering temperature T a .
  • an annealing temperature was selected which is not more than 50 ° C. away from the maximum possible tempering temperature T a2 , since in this way particularly small values of the magnetostriction are obtained for a given composition (cf. FIG. 5 ), which are ultimately determined by the alloy composition.
  • the effect of the Si content of the alloy is shown.
  • Table 7 shows in addition to FIG. 5 in that, after heat treatment under tensile stress, a significant reduction of the saturation magnetostriction results, which can lead to reproducible magnetic properties. In particular, little or no influence of mechanical stresses on the hysteresis loop results with small magnetostriction. Such mechanical stresses can occur when the heat-treated tape is wound into a magnetic core, or when the magnetic core is embedded in a trough or plastic mass or subsequently provided with wire turns for further protection. From this it is possible to derive particularly advantageous compositions, namely those with a small magnetostriction.
  • alloys with a permeability greater than 500, or greater than 1000 have a comparatively low dependence on mechanical stresses when the saturation magnetostriction is less than 2 ppm or less than 1 ppm in absolute terms.
  • the alloy may also have a saturation magnetostriction of less than 5 ppm in magnitude. Alloys with a saturation magnetostriction below these limits still have good soft magnetic properties even at internal stress, when the permeability is less than 500.
  • the value of the saturation magnetostriction may still slightly depend on the tensile stress ⁇ a applied during the heat treatment. For example, for alloy Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 at a heat treatment of 4s at 610 ° C the following values are obtained: ⁇ s ⁇ 1 ppm at ⁇ a ⁇ 50 MPa, ⁇ s ⁇ 0.7 ppm ⁇ a ⁇ 260 MPa and ⁇ s ⁇ 0.3 ppm at ⁇ a ⁇ 500 MPa This corresponds to a small decrease the magnetostriction of ⁇ s ⁇ -0.15 ppm / 100 MPa. The other alloy compositions show similar behavior.
  • FIG. 13 shows a schematic view of a device 1, which is suitable to produce the alloy with a composition according to one of the preceding embodiments in the form of a band.
  • the apparatus 1 comprises a continuous furnace 2 with a temperature zone 3, this temperature zone being set so that the temperature in the furnace in this zone is within 5 ° C. of the tempering temperature T a .
  • the device 1 further comprises a coil 4, on which the amorphous alloy 5 is wound, and a take-up spool 6, on which the heat-treated belt 7 is received.
  • the tape is drawn at a speed s from the spool 4, through the continuous oven 2 to the take-up spool 6.
  • the belt 7 is in the direction of the device 9 to the device 10 under a tensile stress ⁇ a .
  • the apparatus 1 further comprises an apparatus 8 for continuously measuring the magnetic properties of the belt 6 after it has been heat treated and drawn out of the continuous furnace 2.
  • the belt 7 is no longer under tension.
  • the measured magnetic properties can be used to set the tensile stress ⁇ a under which the belt 7 is pulled through the continuous furnace 2. This is with the arrows 9 and 10 in the FIG. 13 shown schematically.

Description

Die vorliegende Erfindung betrifft eine Legierung, insbesondere eine weich magnetische Legierung, die zur Anwendung als Magnetkern geeignet ist, einen Magnetkern und ein Verfahren zum Herstellen eines Bandes aus einer Legierung. Nanokristalline Legierungen auf Basis einer Zusammensetzung Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz können als Magnetkern bei verschiedenen Anwendungen eingesetzt werden. Die US 7,583,173 offenbart einen gewickelten Magnetkern, der unter anderem bei einem Stromtransformator verwendet wird, der aus (Fe1-aNia)100-x-y-z-a-b-cCuxSiyBzNbαM'βM''γbesteht, wobei a ≤ 0,3, 0,6 ≤ x ≤ 1,5, 10 ≤ y ≤ 17, 5 ≤ z ≤ 14, 2 ≤ α ≤ 6, β ≤ 7, γ ≤ 8, M' mindestens eines der Elemente V, Cr, Al und Zn und M'' mindestens eines der Elemente C, Ge, P, Ga, Sb, In und Be ist.The present invention relates to an alloy, in particular a soft magnetic alloy suitable for use as a magnetic core, a magnetic core and a method for producing an alloy strip. Nanocrystalline alloys based on a composition Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z can be used as a magnetic core in various applications. The US 7,583,173 discloses a wound magnetic core used inter alia in a current transformer consisting of (Fe 1-a Ni a ) 100-xyzabc Cu x Si y B z Nb α M ' β M'' γ where a ≤0.3 , 0.6 ≤ x ≤ 1.5, 10 ≤ y ≤ 17, 5 ≤ z ≤ 14, 2 ≤ α ≤ 6, β ≤ 7, γ ≤ 8, M 'at least one of V, Cr, Al and Zn and M "is at least one of C, Ge, P, Ga, Sb, In, and Be.

Die EP 0 271 657 A2 offenbart ebenfalls Legierungen mit einer Zusammenfassung auf dieser Basis.The EP 0 271 657 A2 also discloses alloys with a summary on this basis.

Die EP 1 045 402 offenbart eine amorphe Legierung in Gestalt eines Bandes mit 25 mm Breite und 18 µm Dicke. Das Band wird unter Zugspannung wärmebehandelt und hat eine Korngröße von weniger als 50 nm, das Remanenzverhältnis beträgt dabei weniger als 10%.The EP 1 045 402 discloses an amorphous alloy in the form of a strip 25 mm wide and 18 μm thick. The tape is heat treated under tension and has a grain size of less than 50 nm, the remanence ratio is less than 10%.

Diese Legierungen, auch in Form von Bändern, können als Magnetkern bei verschiedenen Bauteilen, wie zum Beispiel Leistungstransformatoren, Stromtransformatoren und Speicherdrosseln, verwendet werden.These alloys, also in the form of tapes, can be used as a magnetic core in various components, such as power transformers, current transformers, and storage chokes.

Bei Anwendungen für Magnetkerne sind generell möglichst geringe Herstellkosten wünschenswert. Die Kostenreduktion soll dabei jedoch möglichst keine oder nur geringe Auswirkungen auf die Funktionsweise des Magnetkernes haben.For magnetic core applications, the lowest possible production costs are generally desirable. However, the cost reduction should have as little or no effect on the operation of the magnetic core.

Bei manchen Anwendungen von Magnetkernen ist eine weitere Verkleinerung der Größe und des Gewichts des Magnetkerns wünschenswert, so dass die Größe und das Gewicht des Bauteils selbst weiter reduziert werden kann. Gleichzeitig ist jedoch keine Erhöhung der Herstellungskosten des Magnetkerns gewünscht.In some applications of magnetic cores, further reduction of the size and weight of the magnetic core is desirable so that the size and weight of the component itself can be further reduced. At the same time, however, no increase in the manufacturing cost of the magnetic core is desired.

Aufgabe ist es daher, eine Legierung bereitzustellen, die für die Anwendung als Magnetkern geeignet ist, welcher kostengünstiger hergestellt werden kann. Eine weitere Aufgabe ist es dabei die Legierungen so auszuwählen, dass die Größe und/oder das Gewicht des Magnetkernes gegenüber einem herkömmlichen Magnetkern reduziert werden kann.The object is therefore to provide an alloy which is suitable for use as a magnetic core, which can be produced more cheaply. Another object is to select the alloys so that the size and / or weight of the magnetic core can be reduced compared to a conventional magnetic core.

Gelöst ist dies durch die Gegenstände der unabhängigen Ansprüche. Weitere Weiterbildungen sind Gegenstand der jeweiligen abhängigen Ansprüche.This is solved by the subject matters of the independent claims. Further developments are the subject of the respective dependent claims.

Erfindungsgemäß wird eine Legierung angegeben, die aus Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz und bis zu 1 Atom% Verunreinigungen besteht. M ist eines oder mehrere der Elemente Mo, Ta oder Zr, T eines oder mehrere der Elemente V, Mn, Cr, Co oder Ni, Z eines oder mehrere der Elemente C, P oder Ge und 0 Atom% ≤ a < 1,5 Atom%, 0 Atom% ≤ b < 2 Atom%, 0 Atom% ≤ (b+c) < 2 Atom%, 0 Atom% ≤ d < 5 Atom%, 10 Atom% < x < 18 Atom%, 5 Atom% < y < 11 Atom% und 0 Atom% ≤ z < 2 Atom%. Die Legierung ist ferner in Gestalt eines Bandes ausgebildet und weist ein nanokristallines Gefüge auf, bei dem zumindest 50 Vol% der Körner eine mittlere Größe von kleiner als 100 nm aufweisen. Die Legierung weist auch eine Hystereseschleife mit einem zentralen linearen Teil, ein Remanenzverhältnis, Jr/Js, < 0,1, und ein Verhältnis von Koerzitivfeldstärke, Hc, zu Anisotropiefeldstärke, Ha, < 10% auf. According to the invention, an alloy is specified which consists of Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z and up to 1 atom% of impurities. M is one or more of Mo, Ta or Zr, T is one or more of V, Mn, Cr, Co or Ni, Z is one or more of C, P or Ge and 0 at% ≤ a <1.5 Atom%, 0 atom% ≦ b <2 atom%, 0 atom% ≦ (b + c) <2 atom%, 0 atom% ≦ d <5 atom%, 10 atom% <x <18 atom%, 5 atom% <y <11 at% and 0 at% <z <2 at%. The alloy is further formed in the form of a band and has a nanocrystalline structure in which at least 50% by volume of the grains have an average size of less than 100 nm. The alloy also has a hysteresis loop with a central linear part, a remanence ratio, J r / J s , <0.1, and a ratio of coercive force, H c , to anisotropic field strength, H a , <10%.

Die Legierung weist somit eine Zusammensetzung mit einem Niobgehalt von weniger als 2 Atomprozent auf. Dies hat den Vorteil, dass die Rohstoffkosten gegenüber einer Zusammensetzung mit einem höheren Niobgehalt niedriger sind, da Niob ein relativ teures Element ist. Ferner ist die Untergrenze des Siliziumgehalts und die Obergrenze des Borgehalts der Legierung so festgelegt, dass die Legierung in Gestalt eines Bandes unter einer Zugspannung in einem Durchlaufofen hergestellt werden kann, wobei die oben genannten magnetischen Eigenschaften erreicht werden. Folglich kann mit diesem Herstellungsverfahren die Legierung trotz des niedrigeren Niobgehalts auch die gewünschten weichmagnetischen Eigenschaften für Magnetkernanwendungen aufweisen.The alloy thus has a composition with a niobium content of less than 2 atomic percent. This has the advantage that the raw material costs are lower compared to a composition with a higher niobium content, since niobium is a relatively expensive element. Further, the lower limit of the silicon content and the upper limit of the boron content of the alloy are determined so that the alloy can be made in the form of a strip under tension in a continuous furnace, thereby achieving the above-mentioned magnetic properties. Consequently, with this manufacturing method, the alloy, despite the lower niobium content, can also have the desired soft magnetic properties for magnetic core applications.

Die Gestalt als Band ermöglicht nicht nur das Herstellen der Legierung unter Zugspannung in einem Durchlaufofen, sondern auch das Herstellen eines Magnetkerns mit einer beliebigen Anzahl von Wicklungen. Folglich kann die Größe und die magnetischen Eigenschaften des Magnetkerns durch eine entsprechende Auswahl der Wicklungen an die Anwendung einfach angepasst werden. Durch das nanokristalline Gefüge mit einer Korngröße von weniger als 100 nm in mindestens 50 Volumenprozent der Legierung wird eine niedrige Sättigungsmagnetostriktion bei hoher Sättigungspolarisation erreicht. Durch die Wärmebehandlung unter Zugspannung resultiert bei geeigneter Legierungsauswahl eine magnetische Hystereseschleife mit einem zentralen linearen Teil, einem Remanenzverhältnis von weniger als 0,1 und eine Koerzitivfeldstärke von weniger als 10% des Anisotropiefeldes. Damit verknüpft sind niedrige Ummagnetisierungsverluste und eine im linearen, zentralen Teil der Hystereseschleife in weiten Grenzen vom angelegten Magnetfeld bzw. der Vormagnetisierung unabhängige Permeabilität, die bei Magnetkernen für Anwendungen wie Stromwandler, Leistungsüberträgern und Speicherdrosseln gewünscht sind.The shape as a band not only makes it possible to manufacture the alloy under tension in a continuous furnace, but also to manufacture a magnetic core having any number of windings. Consequently, the size and magnetic properties of the magnetic core can be easily adjusted by appropriate selection of the windings to the application. Due to the nanocrystalline structure with a particle size of less than 100 nm in at least 50% by volume of the alloy, a low saturation magnetostriction is achieved at high saturation polarization. The heat treatment under tensile stress, with suitable alloy selection, results in a magnetic hysteresis loop with a central linear part, a remanence ratio of less than 0.1 and a coercive field strength of less than 10% of the anisotropy field. Linked to this are low re-magnetization losses and permeability, which is independent of the applied magnetic field or bias in the linear, central part of the hysteresis loop, which are desired in magnetic cores for applications such as current transformers, power transmitters and storage chokes.

Hierin ist der zentrale Teil der Hystereseschleife definiert, als der Teil der Hystereseschleife, der sich zwischen den Anisotropiefeldstärkepunkten liegt, die den Übergang in die Sättigung kennzeichnen. Ein linearer Teil dieses zentralen Teils der Hystereseschleife wird hierin durch einen Nichtlinearitätsfaktor NL von weniger als 3% definiert, wobei der Nichtlinearitätsfaktor wie folgt errechnet wird: NL in % = 100 δ J auf + δ J ab / 2 J s

Figure imgb0001
Herein, the central part of the hysteresis loop is defined as the part of the hysteresis loop that lies between the anisotropy field strength points that characterize the transition to saturation. A linear part of this central part of the hysteresis loop is defined herein by a nonlinearity factor NL of less than 3%, the nonlinearity factor being calculated as follows: NL in % = 100 δ J on + δ J from / 2 J s
Figure imgb0001

Dabei bezeichnen δJ auf bzw. δJ ab die Standardabweichung der Magnetisierung von einer Ausgleichsgeraden durch den auf- bzw. absteigenden Ast der Hystereseschleife zwischen Magnetisierungswerten von ±75% der Sättigungspolarisation J s.In this case, δJ on or δJ ab designate the standard deviation of the magnetization from a compensation straight line by the ascending or descending branch of the hysteresis loop between magnetization values of ± 75% of the saturation polarization J s .

Diese Legierung ist somit besonders für einen Magnetkern geeignet, der eine reduzierte Größe und ein kleineres Gewicht bei niedrigeren Rohstoffkosten und gleichzeitig die gewünschten weichmagnetischen Eigenschaften für die Anwendung als Magnetkern aufweist.This alloy is thus particularly suitable for a magnetic core, which has a reduced size and a smaller weight at lower raw material costs and at the same time the desired soft magnetic properties for use as a magnetic core.

In einem Ausführungsbeispiel beträgt das Remanenzverhältnis der Legierung weniger als 0,05. Die Hystereseschleife der Legierung ist somit noch linearer bzw. flacher. In einem weiteren Ausführungsbeispiel beträgt das Verhältnis von Koerzitivfeldstärke zu Anisotropiefeldstärke weniger als 5%. Auch ist in diesem Ausführungsbeispiel die Hystereseschleife noch linearer, so dass die Ummagnetisierungsverluste noch niedriger sind.In one embodiment, the remanence ratio of the alloy is less than 0.05. The hysteresis loop of the alloy is thus even more linear or flatter. In another embodiment, the ratio of coercive force to anisotropic field strength is less than 5%. Also is In this embodiment, the hysteresis loop even more linear, so that the Ummagnetisierungsverluste are even lower.

In einem Ausführungsbeispiel weist die Legierung ferner eine Permeabilität µ von 40 bis 3000 oder 80 bis 1500auf. In einem anderen Ausführungsbeispiel weist die Legierung eine Permeabilität zwischen etwa 200 und 9000 auf. In diesen und weiteren Beispielen wird die Permeabilität primär durch Wahl der Zugspannung bei der Wärmebehandlung bestimmt. Die Zugspannung kann dabei bis zu etwa 800 MPa betragen, ohne dass das Band reißt. Man kann somit mit einer vorgegebenen Zusammensetzung, ein Band mit einer Permeabilität innerhalb des gesamten Permeabilitätsbereichs von µ = 40 bis etwa µ = 10000 abdecken. Besonders lineare Schleifen ergeben sich dabei im Bereich niedriger Permeabilitäten, d.h. in etwa µ = 40 bis 3000.In one embodiment, the alloy further has a permeability μ of 40 to 3000 or 80 to 1500. In another embodiment, the alloy has a permeability between about 200 and 9000. In these and other examples, the permeability is determined primarily by the choice of tensile stress in the heat treatment. The tensile stress can be up to about 800 MPa without the band breaking. Thus, with a given composition, it is possible to cover a band having a permeability within the entire permeability range from μ = 40 to about μ = 10000. Especially linear loops result in the range of low permeabilities, i. in about μ = 40 to 3000.

Solch relativ niedrige Permeabilitäten sind vorteilhaft für Stromtransformatoren, Leistungsüberträger, Speicherdrosseln und weitere Anwendungen, bei dem der Magnetkern nicht ferromagnetisch gesättigt werden sollte, damit die Induktivität keine Einbußen erleidet, wenn hohe elektrische Ströme durch Wicklungen um den Magnetkern fließen.Such relatively low permeabilities are advantageous for current transformers, power transmitters, storage chokes, and other applications in which the magnetic core should not become ferromagnetically saturated so that the inductance does not suffer when high electrical currents flow through windings around the magnetic core.

Jeweils geeignete Permeabilitätsbereiche ergeben sich aus den spezifischen Anforderungen der jeweiligen Anwendung. Geeignete Bereich sind 1500 bis 3000, 200 bis 1500 und 50 bis 200. So ist beispielsweise für gleichstromtolerante Stromwandler eine Permeabilität µ von etwa 1500 bis etwa 3000 vorteilhaft, während für Leistungsüberträger ein Permeabilitätsbereich von etwa 200 bis 1500 und für Speicherdrosseln eher ein Permeabilitätsbereich von etwa 50 bis 200 besonders geeignet ist.Suitable permeability ranges result from the specific requirements of the respective application. Suitable ranges are 1500 to 3000, 200 to 1500 and 50 to 200. For example, for DC-DC current transformers, a permeability μ of about 1500 to about 3000 is advantageous, while for power transmitters a permeability range of about 200 to 1500 and for storage chokes rather a permeability range of about 50 to 200 is particularly suitable.

Je niedriger die Permeabilität, desto höher können die elektrischen Ströme durch die Wicklungen des Magnetkerns sein, ohne das Material zu sättigen. Ebenso können bei gleicher Permeabilität diese Ströme umso höher sein, je höher die Sättigungspolarisation, J s, des Materials ist. Andererseits nimmt die Induktivität des Magnetkernes mit der Permeabilität und der Baugröße zu. Um Magnetkerne mit gleichzeitig hoher Induktivität und hoher Stromtoleranz zu bauen ist es daher vorteilhaft Legierungen mit höherer Sättigungspolarisation einzusetzen. In einem Ausführungsbeispiel wird durch Reduktion des Niob-Gehaltes beispielsweise die Sättigungspolarisation von J s = 1.21 T auf J s = 1.34 T, d.h. um mehr als 10% erhöht. Dies kann letztlich dazu ausgenutzt werden ohne Einbußen die Baugröße und das Gewicht des Kernes zu reduzieren.The lower the permeability, the higher the electrical currents through the windings of the magnetic core can be without saturating the material. Likewise, with the same permeability, these currents can be higher, the higher the saturation polarization, J s , of the material. On the other hand, the inductance of the magnetic core increases with the permeability and the size. In order to build magnetic cores with simultaneously high inductance and high current tolerance, it is therefore advantageous to use alloys with higher saturation polarization. For example, in one embodiment, by reducing the niobium content, the saturation polarization of J s = 1.21 T is increased to J s = 1.34 T, ie, more than 10%. This can ultimately be exploited without sacrificing the size and weight of the core to reduce.

Die Legierung kann eine Sättigungsmagnetostriktion von betragsmäßig kleiner als 5 ppm aufweisen. Legierungen mit einer Sättigungsmagnetostriktion unterhalb dieser Grenzwerte weisen besonders gute weichmagnetische Eigenschaften auch bei interner Spannung auf, besonders dann wenn die Permeabilität nicht wesentlich größer als 500 ist. Für höhere Permeabilitäten ist es vorteilhaft Legierungen mit kleineren Werten der Sättigungsmagnetostriktion auszuwählen.The alloy may have a saturation magnetostriction of less than 5 ppm in magnitude. Alloys with a saturation magnetostriction below these limits have particularly good soft magnetic properties even with internal stress, especially when the permeability is not significantly greater than 500. For higher permeabilities it is advantageous to select alloys with smaller values of saturation magnetostriction.

Die Legierung kann ferner eine Sättigungsmagnetostriktion von betragsmäßig kleiner als 2 ppm, vorzugsweise kleiner als 1 ppm aufweisen. Legierungen mit einer Sättigungsmagnetostriktion unterhalb dieser Grenzwerte weisen besonders gute weichmagnetische Eigenschaften auch bei interner Spannung auf, insbesondere wenn die Permeabilität µ größer 500 bzw. größer 1000 ist. In einem Ausführungsbeispiel ist die Legierung Niobfrei, d.h. b = 0. Dieses Ausführungsbeispiel hat den Vorteil, dass die Rohstoffkosten noch weiter reduziert sind, da das Element Niob vollständig weggelassen ist.The alloy may also have a saturation magnetostriction of less than 2 ppm, preferably less than 1 ppm. Alloys with a saturation magnetostriction below these limits have particularly good soft magnetic properties even with internal stress, in particular if the permeability μ is greater than 500 or greater than 1000. In one embodiment, the alloy is niobium-free, ie, b = 0. This embodiment has the advantage that the raw material costs are even further reduced since the element niobium is completely omitted.

In einem weiteren Ausführungsbeispiel ist die Legierung Kupferfrei, d.h. a = 0. In einem weiteren Ausführungsbeispiel ist die Legierung Niob und Kupfer frei, d.h. a = 0 und b = 0.In another embodiment, the alloy is copper-free, i. a = 0. In another embodiment, the alloy is niobium and copper free, i. a = 0 and b = 0.

In weiteren Ausführungsbeispielen weist die Legierung Niob und/oder Kupfer auf, wobei 0 < a ≤ 0,5 und 0 < b ≤ 0,5 ist.In further embodiments, the alloy comprises niobium and / or copper, where 0 <a ≦ 0.5 and 0 <b ≦ 0.5.

In weiteren Ausführungsbeispielen ist der Siliziumgehalt und/oder der Borgehalt weiter definiert, so dass die Legierung 14 Atom% < x < 17 Atom% und/oder 5,5 Atom% < y < 8 Atom% aufweist.In further embodiments, the silicon content and / or the boron content is further defined such that the alloy has 14 atom% <x <17 atom% and / or 5.5 atom% <y <8 atom%.

Wie oben bereits erwähnt, weist die Legierung die Gestalt eines Bandes auf. Dieses Band kann eine Dicke von 10 µm bis 50 µm aufweisen. Diese Dicke ermöglicht das Wickeln eines Magnetkerns mit einer hohen Anzahl an Wicklungen, der gleichzeitig einen kleinen Außendurchmesser aufweist.As already mentioned above, the alloy has the shape of a band. This band may have a thickness of 10 microns to 50 microns. This thickness makes it possible to wind a magnetic core with a large number of windings, which at the same time has a small outer diameter.

In einem weiteren Ausführungsbeispiel weisen mindestens 70 Volumenprozente der Körner eine mittlere Größe kleiner 50 nm auf. Dies ermöglicht eine weitere Steigerung der magnetischen Eigenschaften.In a further embodiment, at least 70% by volume of the grains have an average size of less than 50 nm. This allows a further increase in the magnetic properties.

Die Legierung wird in Gestalt eines Bandes unter Zugspannung wärmebehandelt, um die gewünschten magnetischen Eigenschaften zu erzeugen. Die Legierung, d.h. das fertige wärmebehandelte Band, ist somit auch durch ein Gefüge gekennzeichnet, das durch dieses Herstellungsverfahren entstanden ist. In einem Ausführungsbeispiel weisen die Kristallite eine mittlere Größe von etwa 20-25 nm und eine remanente Dehnung in Bandlängsrichtung zwischen etwa 0.02% und 0.5% auf, welche proportional zu der bei der Wärmebehandlung angelegten Zugspannung ist. Zum Beispiel führt eine Wärmebehandlung unter einer Zugspannung von 100 MPa zu eine Dehnung von etwa 0.1%.The alloy is heat-treated in the form of a ribbon under tension to produce the desired magnetic properties. The alloy, ie the finished heat-treated strip, is thus also characterized by a structure which originated by this manufacturing process. In one embodiment, the crystallites have an average size of about 20-25 nm and a remanent elongation in the tape longitudinal direction between about 0.02% and 0.5%, which is proportional to the tensile stress applied during the heat treatment. For example, a heat treatment under a tensile stress of 100 MPa results in an elongation of about 0.1%.

Die kristallinen Körner können eine Dehnung von mindestens 0.02% in eine Vorzugsrichtung aufweisen.The crystalline grains may have an elongation of at least 0.02% in a preferred direction.

Ein Magnetkern aus einer Legierung nach einem der vorherstehenden Ausführungsbeispiele wird auch angegeben. Der Magnetkern kann die Gestalt eines gewickelten Bandes aufweisen, wobei zum Bilden des Magnetkerns, abhängig von der Anwendung, das Band in einer Ebene oder als Solenoid um eine Achse gewickelt werden kann.An alloy magnetic core according to any one of the above embodiments is also given. The magnetic core may be in the form of a wound tape, wherein to form the magnetic core, depending on the application, the tape may be wound in a plane or as a solenoid about an axis.

Das Band des Magnetkerns kann mit einer Isolierschicht beschichtet sein, um die Wicklungen des Magnetkerns voneinander elektrisch zu isolieren. Die Schicht kann zum Beispiel eine Polymerschicht oder eine keramische Schicht sein. Das Band kann vor und/oder nach dem Wickeln zu einem Magnetkern mit der Isolierschicht beschichtet werden.The band of the magnetic core may be coated with an insulating layer to electrically insulate the windings of the magnetic core from each other. The layer may be, for example, a polymer layer or a ceramic layer. The tape may be coated with the insulating layer before and / or after winding into a magnetic core.

Wie bereits erwähnt, kann der Magnetkern nach einem der vorherstehenden Ausführungsbeispiele bei verschiedenen Bauteilen verwendet werden. Es wird auch ein Leistungstransformator, ein Stromtransformator und eine Speicherdrossel mit einem Magnetkern nach einem dieser Ausführungsbeispiele angegeben.As already mentioned, the magnetic core according to one of the preceding embodiments can be used in various components. There is also provided a power transformer, a current transformer, and a storage reactor having a magnetic core according to one of these embodiments.

Ein Verfahren zum Herstellen eines Bandes wird auch angegeben, das Folgendes aufweist: Ein Band aus einer amorphen Legierung mit einer Zusammensetzung wird bereitgestellt, die aus Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz und bis zu 1 Atom% Verunreinigungen besteht, wobei M eines oder mehrere der Elemente Mo, Ta oder Zr, T eines oder mehrere der Elemente V, Mn, Cr, Co oder Ni und Z eines oder mehrere der Elemente C, P oder Ge und 0 Atom% ≤ a < 1,5 Atom%, 0 Atom% ≤ b < 2 Atom%, 0 Atom% ≤ (b+c) < 2 Atom%, 0 Atom% ≤ d < 5 Atom%, 10 Atom% < x < 18 Atom%, 5 Atom% < y < 11 Atom% und 0 Atom% ≤ z < 2 Atom% ist. Dieses Band wird unter Zugspannung in einem Durchlaufofen bei einer Temperatur Ta wärmebehandelt, wobei 450°C ≤ Ta ≤ 750°C beträgt.A method for producing a tape is also disclosed which comprises : an amorphous alloy tape having a composition consisting of Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z and up to 1 Atom% impurities, where M is one or more of the elements Mo, Ta or Zr, T one or more of the elements V, Mn, Cr, Co or Ni and Z one or more of the elements C, P or Ge and 0 atom% ≤ a <1.5 atom%, 0 atom% ≦ b <2 atom%, 0 atom% ≦ (b + c) <2 atom%, 0 atom% ≦ d <5 atom%, 10 atom% <x <18 atom %, 5 atom% <y <11 atom% and 0 atom% ≦ z <2 atom%. This tape is heat-treated under tension in a continuous furnace at a temperature T a , where 450 ° C ≤ Ta ≤ 750 ° C.

Diese Zusammensetzung lässt sich mit einer Wärmbehandlung zwischen 450°C und 750°C unter Zugspannung mit geeigneten magnetischen Eigenschaften für die Anwendung als Magnetkern herstellen. Die Wärmebehandlung führt zum Bilden eines nanokristallinen Gefüges, bei dem zumindest 50 Volumenprozent der Körner eine mittlere Größe kleiner als 100 nm aufweisen. Insbesondere kann diese Zusammensetzung mit weniger als 2 Atomprozent Niob mit diesem Verfahren so hergestellt werden, dass sie eine Hystereseschleife mit einem zentralen linearen Teil, ein Remanenzverhältnis, Jr/Js, < 0,1, und ein Verhältnis von Koerzitivfeldstärke, Hc, zu Anisotropiefeldstärke, Ha, < 10% aufweist.This composition can be prepared with a heat treatment between 450 ° C and 750 ° C under tension with suitable magnetic properties for use as a magnetic core. The heat treatment results in the formation of a nanocrystalline microstructure in which at least 50% by volume of the grains have an average size smaller than 100 nm. In particular, this composition having less than 2 atomic percent of niobium can be prepared by this method to have a hysteresis loop with a central linear part, a remanence ratio, J r / J s , <0.1, and a coercive force ratio, H c , to anisotropic field strength, H a , <10%.

Das Band wird im Durchlauf wärmebehandelt. Folglich wird das Band mit einer Geschwindigkeit s durch den Durchlaufofen gezogen. Diese Geschwindigkeit s kann so eingestellt werden, dass eine Verweildauer des Bandes in einer Temperaturzone des Durchlaufofens mit der Temperatur, die innerhalb 5% der Temperatur Ta liegt, zwischen 2 Sekunden und 2 Minuten liegt. Dabei liegt die Zeitdauer um das Band auf die Temperatur Ta aufzuwärmen in vergleichbarer Größenordnung wie die Dauer der Wärmebehandlung selbst. Entsprechendes gilt für die Zeitdauer der anschließenden Abkühlung. Diese Verweildauer führt bei diesem Anlasstemperaturbereich zu dem gewünschten Gefüge und den gewünschten magnetischen Eigenschaften.The strip is heat treated in the pass. Consequently, the belt is pulled through the continuous furnace at a speed s. This speed s can be adjusted so that a residence time of the strip in a temperature zone of the continuous furnace with the temperature within 5% of the temperature T a is between 2 seconds and 2 minutes. In this case, the time to heat the tape to the temperature T a is of a comparable order of magnitude as the duration of the heat treatment itself. The same applies to the duration of the subsequent cooling. This residence time leads in this tempering temperature range to the desired structure and the desired magnetic properties.

In einem Ausführungsbeispiel wird das Band unter einer Zugspannung zwischen 5 und 160 MPa durch den Durchlaufofen gezogen. In einem weiteren Ausführungsbeispiel wird das Band unter einer Zugspannung von 20 MPa bis 500 MPa durch den Durchlaufofen gezogen. Es ist ferner möglich das Band auch mit einer höheren Zugspannung bis zu etwa 800 MPa durch den Ofen zu ziehen, ohne daß es reißt. Dieser Bereich der Zugspannung ist geeignet, die gewünschten magnetischen Eigenschaften bei den oben genannten Zusammensetzungen zu erzielen.In one embodiment, the tape is pulled through the continuous furnace under a tension of between 5 and 160 MPa. In another embodiment, the tape is pulled through the continuous furnace under a tensile stress of 20 MPa to 500 MPa. It is also possible to pull the tape through the oven with a higher tension up to about 800 MPa without tearing it. This range of tensile stress is suitable for achieving the desired magnetic properties in the above-mentioned compositions.

Der Wert der erzielten Permeabilität µ ist umgekehrt proportional zu der bei der Wärmebehandlung angelegten Zugspannung σa Um einen vorbestimmten Wert der relativen Permeabilität µ zu erzielen ist somit während der Wärmebehandlung eine Zugspannung σa erforderlich, welche der Beziehung σa ≈ α/µ genügt. In einem Ausführungsbeispiel hat dabei α einen Wert von α ≈ 48000 MPa. In einem anderen Ausführungsbeispiel hat α einen Wert von beispielsweise α ≈ 36000 MPa. So können Werte im Bereich α ≈ 30000 MPa bis α ≈ 70000 MPa für die erfindungsgemäßen Legierungen und den entsprechenden Wärmebehandlungsprozess verwendet werden. Der genaue Wert von α hängt im Einzelfall von der Zusammensetzung, der Anlasstemperatur und in gewissem Umfang von der Anlasszeit ab.The value of the permeability μ achieved is inversely proportional to the tensile stress σ a applied during the heat treatment. In order to achieve a predetermined value of the relative permeability μ, a tensile stress σ a is required during the heat treatment which satisfies the relationship σ a ≈ α / μ. In one embodiment, α has a value of α ≈ 48,000 MPa. In another embodiment, α has a value of, for example, α ≈ 36,000 MPa. Thus, values in the range α ≈ 30000 MPa to α ≈ 70000 MPa can be used for the alloys according to the invention and the corresponding heat treatment process. The exact value of α depends on the composition, the tempering temperature and to some extent on the tempering time.

Die Zugspannung, die zu den gewünschten magnetischen Eigenschaften führt, kann also abhängig von der Zusammensetzung der Legierung und von der Anlasstemperatur als auch der Anlasszeit sein. In einem Ausführungsbeispiel wird die für eine vorgegebene Permeabilität µ erforderliche Zugspannung σa aus der Permeabilität µTest einer Testglühung unter einer Zugspannung σTest gemäß der Beziehung σ a σ TEST μ TEST / μ

Figure imgb0002

ausgewählt.The tensile stress that leads to the desired magnetic properties may therefore be dependent on the composition of the alloy and on the tempering temperature as well as the tempering time. In one exemplary embodiment, the tensile stress σ a required for a given permeability μ is determined from the permeability μ test of a test annealing under a tensile stress σ test according to the relationship σ a σ TEST μ TEST / μ
Figure imgb0002

selected.

Die gewünschten magnetischen Eigenschaften können auch abhängig von der Anlasstemperatur Ta sein und folglich durch die Auswahl der Anlasstemperatur eingestellt werden. In einem Ausführungsbeispiel wird die Temperatur Ta abhängig von dem Niobgehalt b gemäß der Beziehung (Tx1 + 50°C) ≤ Ta ≤ (Tx2 + 30°C) ausgewählt. Dabei entsprechen Tx1 und Tx2 den durch das Maximum der Umwandlungswärme definierten Kristallisationstemperaturen, welche mittels thermischer Standardmethoden wie z.B. DSC (differential scanning calometry) bei einer Aufheizrate von 10 K/min bestimmt werden.The desired magnetic properties may also be dependent on the tempering temperature T a and consequently set by the selection of the tempering temperature. In one embodiment, the temperature T a is selected depending on the niobium content b according to the relationship (T x1 + 50 ° C) ≦ T a ≦ (T x2 + 30 ° C). In this case, T x1 and T x2 correspond to the crystallization temperatures defined by the maximum of the heat of transformation, which are determined by means of thermal standard methods such as DSC (differential scanning calometry) at a heating rate of 10 K / min.

In einem weiteren Ausführungsbeispiel wird ein gewünschter Wert der Permeabilität oder Anisotropiefeldstärke, sowie ein erlaubter Abweichungsbereich vorbestimmt. Um diesen Wert über die Länge des Bandes erreichen zu können, werden magnetische Eigenschaften des Bandes beim Verlassen des Durchlaufofens laufend gemessen. Wenn Abweichungen von den erlaubten Abweichungsbereichen der magnetischen Eigenschaften festgestellt werden, wird die Zugspannung an dem Band entsprechend eingestellt, um die gemessenen Werte der magnetischen Eigenschaften wieder innerhalb der erlaubten Abweichungsbereiche zu bringen. Dieses Ausführungsbeispiel verringert die Abweichungen der magnetischen Eigenschaften über die Länge des Bandes, so dass die magnetischen Eigenschaften innerhalb eines Magnetkerns homogener sind und/oder die magnetischen Eigenschaften mehrerer Magnetkerne, die aus einem einzigen Band hergestellt sind, weniger abweichen. Somit kann die Gleichmäßigkeit der weichmagnetischen Eigenschaften der Magnetkerne, insbesondere bei kommerzieller Herstellung, verbessert werden.In a further embodiment, a desired value of the permeability or anisotropic field strength, as well as a permitted deviation range is predetermined. In order to achieve this value over the length of the belt, magnetic properties of the belt are continuously measured when leaving the continuous furnace. When deviations are detected from the allowed deviation ranges of the magnetic properties, the tension on the belt is adjusted accordingly to bring the measured values of the magnetic properties back within the allowable deviation ranges. This embodiment reduces the deviations of the magnetic properties over the length of the tape, so that the magnetic properties within a magnetic core are more homogeneous and / or the magnetic properties of a plurality of magnetic cores made of a single tape deviate less. Thus, the uniformity of the soft magnetic properties of the magnetic cores, especially in commercial production, can be improved.

Ausführungsbeispiele werden nun anhand der folgenden Beispiele, Tabellen und Zeichnungen näher erläutert.

Figur 1
zeigt ein Diagramm von Hystereseschleifen von Vergleichsbeispielen nanokristallinem Fe77-xCu1NbxSi15.5B6.5 mit unterschiedlichem Niobgehalt nach Wärmebehandlung in einem Magnetfeld quer zur Bandrichtung,
Figur 2
zeigt ein Diagramm von Hystereseschleifen von nanokristallinem Fe77-xCu1NbxSi15.5B6.5 nach Wärmebehandlung unter einer Zugspannung längs der Bandrichtung für unterschiedliche Niobgehalte,
Figur 3
zeigt ein Diagramm des Remanenzverhältnisses von nanokristallinem Fe77-xCu1NbxSi15.5B6.5 nach Wärmebehandlung im Magnetfeld und nach Wärmebehandlung unter Zugspannung als Funktion des Nb-Gehaltes,
Figur 4
zeigt ein Diagramm der Sättigungspolarisation von Fe77-xCu1NbxSi15.5B6.5 als Funktion des Nb-Gehaltes,
Figur 5
zeigt ein Diagramm von Sättigungsmagnetostriktion λ s, Anisotropiefeld H a, Koerzitivfeldstärke H c, Remanenzverhältnis J r/J s und Nichtlinearitätsfaktor NL von Fe75.5Cu1Nb1.5Si15.5B6.5 nach Wärmebehandlung unter einer Zugspannung bei unterschiedlichen Anlasstemperaturen,
Figur 6
zeigt ein Diagramm von Remanenzverhältnis J t/J s und Koerzitivfeldstärke H c der Legierung Fe77Cu1Si15.5B6.5 nach Wärmebehandlung unter einer Zugspannung,
Figur 7
zeigt das mittels Differential Scanning Calometry mit einer Aufheizrate von 10 K/min gemessene Kristallisationsverhalten der Legierung Fe77Cu1Si15.5B6.5 und die Definition der Kristallisationstemperaturen T x1 und T x2,
Figur 8
zeigt die Röntgenbeugungsdiagramme für die Legierung Fe77Cu1Si15.5B6.5 im amorphen Ausgangszustand und nach Wärmebehandlung unter Zug bei verschiedenen Anlasstemperaturen entsprechend unterschiedlichen Kristallisationsstufen.
Figur 9
zeigt ein Diagramm von Permeabilität µ, Anisotropiefeld H a, Koerzitivfeldstärke H c, Remanenzverhältnis J r/J s und Nichtlinearitätsfaktor NL von nanokristallinem Fe75.5Cu1Nb1.5Si15.5B6.5 nach Wärmebehandlung unter der angegebenen Zugspannung σ a,
Figur 10
zeigt die untere und obere optimale Anlasstemperatur T a1 und T a2 für verschiedene Legierungszusammensetzungen als Funktion Kristallisationstemperaturen T x1 und T x2.
Figur 11
zeigt ein Diagramm von Koerzitivfeldstärke H c und Remanenzverhältnis J r/J s der Legierung Fe80Si11B9 und eine Vergleichszusammensetzung Fe78.5Si10B11.5 nach einer Wärmebehandlung unter einer Zugspannung,
Figur 12
zeigt ein Diagramm von Hystereseschleifen einer Legierung Fe80Si11B9 und eine Vergleichszusammensetzung Fe78.5Si10B11.5 nach Wärmebehandlung unter unterschiedlichen Zugspannungen, und
Figur 13
zeigt eine schematische Ansicht eines Durchlaufofens.
Tabelle 1
zeigt den Nichtlinearitätsfaktor NL für verschiedene Nb-Gehalte der Legierung Fe77-xCu1NbxSi15.5B6.5 nach Wärmebehandlung im Magnetfeld (Vergleichsbeispiel)und nach Wärmebehandlung unter einer mechanischen Zugspannung (erfindungsgemäßes Verfahren),
Tabelle 2
zeigt gemessene Kristallisationstemperaturen und geeignete Anlasstemperaturen T a für Anlasszeiten von etwa 2s bis 10s für verschiedene Nb-Gehalte der Legierung Fe77-xCu1NbxSi15.5B6.5,
Tabelle 3
zeigt magnetische Eigenschaften einer Legierung Fe76Cu1Nb1.5Si13.5B8 nach Wärmebehandlung im Durchlauf bei 610°C unter einer Zugspannung von ca. 120 MPa als Funktion der Anlasszeit t a,
Tabelle 4
zeigt magnetische Eigenschaften einer Legierung Fe76Cu0.5Nb1.5Si15.5B6.5 nach Wärmebehandlung mit der angegebenen Zugspannung σ a,
Tabelle 5
zeigt im Herstellzustand gemessene Sättigungspolarisation J s, nach Wärmebehandlung bei unterschiedlichen Anlasstemperaturen T a gemessene Werte von Nichtlinearität NL, Remanenzverhältnis J r/J s, Koerzitivfeldstärke H c, Anisotropiefeldstärke H a und relative Permeabilität µ verschiedener Legierungszusammensetzungen,
Tabelle 6
zeigt im Herstellzustand gemessene Sättigungspolarisation J s, nach Wärmebehandlung gemessene Werte von Nichtlinearität NL, Remanenzverhältnis J r/J s, Koerzitivfeldstärke H c, Anisotropiefeldstärke H a und relative Permeabilität µ verschiedener Legierungszusammensetzungen, und
Tabelle 7
zeigt die Sättigungsmagnetostriktion λ s verschiedener Legierungszusammensetzungen gemessen im Herstellzustand und nach Wärmebehandlung unter Zug bei der angegebenen Anlasstemperatur T a.
Embodiments will now be explained in more detail with reference to the following examples, tables and drawings.
FIG. 1
shows a diagram of hysteresis loops of comparative examples of nanocrystalline Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 with different niobium content after heat treatment in a magnetic field transverse to the ribbon direction,
FIG. 2
shows a diagram of hysteresis loops of nanocrystalline Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 after heat treatment under a tensile stress along the ribbon direction for different niobium contents,
FIG. 3
shows a graph of the remanence ratio of nanocrystalline Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 after heat treatment in the magnetic field and after heat treatment under tensile stress as a function of the Nb content,
FIG. 4
shows a diagram of the saturation polarization of Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 as a function of the Nb content,
FIG. 5
shows a plot of saturation magnetostriction λ s , anisotropy field H a , coercive force H c , remanence ratio J r / J s and nonlinearity factor NL of Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 after heat treatment under tensile stress at different tempering temperatures,
FIG. 6
shows a diagram of remanence ratio J t / J s and coercive force H c of the alloy Fe 77 Cu 1 Si 15.5 B 6.5 after heat treatment under a tensile stress,
FIG. 7
shows the crystallization behavior of the alloy Fe 77 Cu 1 Si 15.5 B 6.5 measured by differential scanning calometry at a heating rate of 10 K / min and the definition of the crystallization temperatures T x1 and T x2 ,
FIG. 8
shows the X-ray diffraction diagrams for the alloy Fe 77 Cu 1 Si 15.5 B 6.5 in the amorphous initial state and after heat treatment under tension at different tempering temperatures corresponding to different crystallization stages.
FIG. 9
shows a diagram of permeability μ , anisotropy field H a , coercive force H c , remanence ratio J r / J s and nonlinearity factor NL of nanocrystalline Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 after heat treatment under the specified tensile stress σ a ,
FIG. 10
shows the lower and upper optimum tempering temperatures T a1 and T a2 for various alloy compositions as a function of crystallization temperatures T x1 and T x2 .
FIG. 11
shows a diagram of coercive force H c and remanence ratio J r / J s of the alloy Fe 80 Si 11 B 9 and a comparative composition Fe 78.5 Si 10 B 11.5 after a heat treatment under a tensile stress,
FIG. 12
shows a diagram of hysteresis loops of an alloy Fe 80 Si 11 B 9 and a comparative composition Fe 78.5 Si 10 B 11.5 after heat treatment under different tensile stresses, and
FIG. 13
shows a schematic view of a continuous furnace.
Table 1
shows the nonlinearity factor NL for various Nb contents of the alloy Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 after heat treatment in the magnetic field (comparative example) and after heat treatment under a mechanical tensile stress (method according to the invention),
Table 2
shows measured crystallization temperatures and suitable tempering temperatures T a for tempering times of about 2s to 10s for different Nb contents of the alloy Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 ,
Table 3
shows magnetic properties of an alloy Fe 76 Cu 1 Nb 1.5 Si 13.5 B 8 after heat treatment in the pass at 610 ° C under a tensile stress of about 120 MPa as a function of the tempering time t a ,
Table 4
shows magnetic properties of an alloy Fe 76 Cu 0.5 Nb 1.5 Si 15.5 B 6.5 after heat treatment with the specified tensile stress σ a ,
Table 5
shows saturation polarization J s measured in the production state, values of non-linearity NL, remanence ratio J r / J s , coercive field strength H c , anisotropic field strength H a and relative permeability μ of different alloy compositions measured after heat treatment at different tempering temperatures T a .
Table 6
shows saturation polarization J s measured in the manufacturing state, values of non-linearity NL, remanence ratio J r / J s , coercive force H c , anisotropic field strength H a and relative permeability μ of various alloy compositions measured after heat treatment
Table 7
shows the saturation magnetostriction λ s of various alloy compositions measured in the state of manufacture and after heat treatment under tension at the specified tempering temperature T a .

Figur 1 zeigt ein Diagramm von Hystereseschleifen von nanokristallinen Legierungen in Gestalt eines Bandes. FIG. 1 shows a diagram of hysteresis loops of nanocrystalline alloys in the form of a band.

Die Untersuchungen wurden beispielhaft an 6 mm und 10 mm breiten und typischerweise 17 µm bis 25 µm dicken Metallbändern durchgeführt. Der erfinderische Gedanke ist jedoch nicht auf diese Abmessungen beschränkt.The investigations were carried out by way of example on 6 mm and 10 mm wide and typically 17 μm to 25 μm thick metal strips. However, the inventive idea is not limited to these dimensions.

Die Bänder weisen eine Zusammensetzung von Fe77-xCu1NbxSi15.5B6.5 auf. Die Hystereseschleifen sind nach Wärmebehandlung im Magnetfeld gemessen, wobei eine Wärmebehandlung von 0.5h bei 540°C in einem Magnetfeld von H = 200 kA/m quer zur Bandrichtung durchgeführt wird. Figur 1 zeigt, dass mit abnehmendem Nb-Gehalt die Hystereseschleifen nichtlinearer werden. Diese nichtlineare Hystereseschleife ist bei manchen Magnetkernanwendungen nicht gewünscht, da die Ummagnetisierungsverluste erhöht sind.The bands have a composition of Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 . The hysteresis loops are measured after heat treatment in the magnetic field, wherein a heat treatment of 0.5 h at 540 ° C in a magnetic field of H = 200 kA / m is performed transversely to the belt direction. FIG. 1 shows that with decreasing Nb content the hysteresis loops become non-linear. This nonlinear hysteresis loop is undesirable in some magnetic core applications because the core loss losses are increased.

Tabelle 1 zeigt die Nichtlinearitätsfaktoren NL der in den Figuren 1 und 2 dargestellten Hystereseschleifen für verschiedene Wärmebehandlungen und verschiedene Nb-Gehalte. Insbesondere zeigt Tabelle 1 den Nichtlinearitätsfaktor von nanokristallinem Fe77-xCu1NbxSi15.5B6.5 nach Wärmebehandlung im Magnetfeld für 0.5h bei einer Temperatur von 540°C und nach einer Wärmebehandlung unter Zugspannung von 100 MPa für 4s bei 600°C für verschiedene Nb-Gehalte.Table 1 shows the nonlinearity factors NL of the hysteresis loops shown in Figs. 1 and 2 for various heat treatments and various Nb contents. In particular, Table 1 shows the nonlinearity factor of nanocrystalline Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 after heat treatment in the magnetic field for 0.5 h at a temperature of 540 ° C and after a heat treatment under tensile stress of 100 MPa for 4 s at 600 ° C for different Nb contents.

Figur 3 zeigt ein Diagramm vom Remanenzverhältnis J r/J s wärmebehandelter Proben als Funktion des Nb-Gehaltes. Insbesondere zeigt Figur 3 das Remanenzverhältnis von nanokristallinem Fe77-xCu1NbxSi15.5B6.5 nach Wärmebehandlung im Magnetfeld von 0.5h bei Temperaturen von 480°C bis 540°C und nach einer Wärmebehandlung unter Zugspannung von 4s bei Temperaturen zwischen 520°C und 700°C als Funktion des Nb-Gehaltes. FIG. 3 shows a graph of the remanence ratio J r / J s heat-treated samples as a function of Nb content. In particular shows FIG. 3 the remanence ratio of nanocrystalline Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 after heat treatment in the magnetic field of 0.5 h at temperatures of 480 ° C to 540 ° C and after a heat treatment under tensile stress of 4 s at temperatures between 520 ° C and 700 ° C as a function of Nb content.

Für eine Wärmebehandlung im Magnetfeld, die mit offenen Kreissymbolen in der Figur 3 dargestellt ist, werden besonders lineare Schleifen mit einem Remanenzverhältnis kleiner als 0.1 und einem Nichtlinearitätsfaktor kleiner als 3% zuverlässig nur für Nb-Gehalte größer als 2 at% erreicht. Im Gegensatz dazu können für eine Wärmebehandlung unter einer Zugspannung lineare Schleifen mit einem Remanenzverhältnis kleiner als 0.1 und einem Nichtlinearitätsfaktor kleiner als 3% zuverlässig für Nb-Gehalte kleiner als 2 at% und sogar für Zusammensetzungen ohne Niob erreicht werden.For a heat treatment in the magnetic field, with open circular symbols in the FIG. 3 is shown, especially linear loops with a remanence ratio smaller than 0.1 and a nonlinearity factor smaller than 3% are reliably achieved only for Nb contents greater than 2 at%. In contrast to For example, for a heat treatment under tensile stress, linear loops having a remanence ratio less than 0.1 and a non-linearity factor less than 3% can be reliably achieved for Nb contents less than 2 at% and even for compositions without niobium.

Aus den Ergebnissen der Figuren 1 und 3 kann entnommen werden, dass ein Mindest-Nb-Gehalt von vorzugsweise größer als 2 at% gefordert wird, um ein Band mit geeigneten magnetischen Eigenschaften für Magnetkernanwendung herzustellen, wenn die Wärmebehandlung in einem Magnetfeld durchgeführt wird.From the results of FIGS. 1 and 3 It can be seen that a minimum Nb content of preferably greater than 2 at% is required to produce a tape having suitable magnetic properties for magnetic core application when the heat treatment is performed in a magnetic field.

Die Tabellen 1 bis 6 und die Figuren 2 bis 12 zeigen, dass lineare Schleifen mit kleinem Remanenzverhältnis bei Zusammensetzungen mit einem Niobgehalt von weniger als 2 Atom% erreicht werden können, wenn die Wärmebehandlung unter einer mechanischen Zugspannung in Bandlängsrichtung erfolgt. Diese Zusammensetzungen haben den Vorteil, dass die Rohstoffkosten reduziert sind, da Niob ein relativ teures Element ist.Tables 1 to 6 and the FIGS. 2 to 12 show that low remanence ratio linear loops can be achieved with compositions having a niobium content of less than 2 atomic% when the heat treatment is under a belt lengthwise mechanical tension. These compositions have the advantage that raw material costs are reduced since niobium is a relatively expensive element.

Figur 2 zeigt ein Diagramm von Hystereseschleifen von Bändern nach Wärmebehandlung im Durchlauf mit einer effektiven Anlasszeit von 4s bei einer Temperatur von 600°C und unter einer Zugspannung von etwa 100 MPa. FIG. 2 shows a diagram of hysteresis loops of bands after heat treatment in the run with an effective tempering time of 4s at a temperature of 600 ° C and under a tensile stress of about 100 MPa.

Als Anlasszeit im Durchlauf wird hierein diejenige Zeit definiert, bei welcher das Band die Temperaturzone durchläuft, bei welcher die Temperatur innerhalb 5% der hier angegebenen Anlasstemperatur entspricht. Dabei liegt die Zeitdauer um das Band auf die Anlasstemperatur aufzuwärmen in vergleichbarer Größenordnung wie die Dauer der Wärmebehandlung selbst. Entsprechendes gilt für die Zeitdauer der anschließenden Abkühlung.As starting time in the run, the time is defined at which the band passes through the temperature zone at which the temperature within 5% corresponds to the tempering temperature given here. In this case, the time to heat the tape to the tempering temperature is comparable to the duration of the heat treatment itself. The same applies to the duration of the subsequent cooling.

Figur 2 zeigt, dass für Nb-Gehalte kleiner 2 at% Hystereseschleifen mit einem zentralen linearem Teil und kleinem Remanenzverhältnis erhalten werden können. Die Zusammensetzung mit Nb 3at% ist ein Vergleichsbeispiel und die Zusammensetzungen mit Nb < 2at% sind erfindungsgemäße Beispiele. Der Pfeil zeigt exemplarisch die Definition der Anisotropiefeldstärke H a. FIG. 2 shows that for Nb contents less than 2 at%, hysteresis loops with a central linear part and a small remanence ratio can be obtained. The composition with Nb 3at% is a comparative example and the compositions with Nb <2at% are examples according to the invention. The arrow shows by way of example the definition of the anisotropy field strength H a .

Figur 3 zeigt ein Diagramm eines Vergleichs des Remanenzverhältnisses für solch zugspannungsgetemperte Proben, die in der Figur 3 mit gefüllten Rauten dargestellt sind, und für magnetfeldgetemperte Proben, die mit offenen Kreissymbolen gezeigt sind, als Funktion des Nb-Gehaltes. Legierungen mit Nb-Gehalten unter 2 at% weisen ein kleines Remanenzverhältnis von weniger als 0,05 auf, nur wenn sie unter Zugspannung wärmebehandelt werden. Wenn diese Zusammensetzungen unter einem Magnetfeld getempert werden, ist jedoch das Remanenzverhältnis deutlich höher, so dass diese Legierungen für manche Magnetkernanwendungen nicht geeignet sind. Selbst für die Legierung Fe77Cu1Si15.5B6.5 d.h. ohne Nb-Zusatz, ergibt sich noch eine weitgehend lineare Schleife mit einem Remanenzverhältnis von weniger als 0,05, wenn sie unter einer Zugspannung wärmebehandelt wird. FIG. 3 FIG. 3 is a graph of a remanent ratio comparison for such tension tempered samples as shown in FIG FIG. 3 are shown with filled diamonds, and for magnetic field annealed samples shown with open circle symbols as a function of Nb content. Alloys with Nb contents below 2 at% have a small remanence ratio of less than 0.05 only when heat-treated under tension. However, when these compositions are annealed under a magnetic field, the remanence ratio is significantly higher, so that these alloys are not suitable for some magnetic core applications. Even for the alloy Fe 77 Cu 1 Si 15.5 B 6.5, ie without addition of Nb, a substantially linear loop with a remanence ratio of less than 0.05 results when heat-treated under a tensile stress.

Figur 4 zeigt ein Diagramm von der Sättigungspolarisation von Legierungen mit einer Zusammensetzung von Fe77-xCu1NbxSi15.5B6.5 als Funktion des Nb-Gehaltes. Die Legierungen mit reduziertem Nb-Gehalt weisen eine deutlich erhöhte Sättigungspolarisation auf. Dies kann vorteilhaft in eine entsprechende Gewichts- und Herstellungskostenreduktion des Magnetkerns umgesetzt werden. Somit ergibt sich zusätzlich zu verminderten Rohstoffkosten ein weiterer Vorteil, da die Magnetkern aufweisende Vorrichtung kleiner gebaut werden kann. FIG. 4 shows a plot of the saturation polarization of alloys with a composition of Fe 77-x Cu 1 Nb x Si 15.5 B 6.5 as a function of the Nb content. The alloys with reduced Nb content have a significantly increased saturation polarization. This can be beneficial in a corresponding weight and Reduced manufacturing costs of the magnetic core can be implemented. Thus, in addition to reduced raw material costs, a further advantage results since the device having the magnetic core can be made smaller.

Figur 5 zeigt ein Diagramm von Sättigungsmagnetostriktion λ s, Anisotropiefeld H a, Koerzitivfeldstärke H c, Remanenzverhältnis J r/J s und Nichtlinearitätsfaktor NL von einer Zusammensetzung Fe75.5Cu1Nb1.5Si15.5B6.5 nach Wärmebehandlung von ca. 4 Sekunden Dauer unter einer Zugspannung von ca. 50 MPa als Funktion der Anlasstemperatur. Das Anisotropiefeld H a entspricht dabei demjenigen Feld bei dem der lineare Teil der Hystereseschleife in die Sättigung übergeht, der in der Figur 2 dargestellt ist. FIG. 5 shows a diagram of saturation magnetostriction λ s , anisotropy field H a , coercive force H c , remanence ratio J r / J s and nonlinearity factor NL of a composition Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 after heat treatment of about 4 seconds duration under a tensile stress of approx. 50 MPa as a function of the tempering temperature. The anisotropy field H a corresponds to the field in which the linear part of the hysteresis loop passes into saturation, which in the FIG. 2 is shown.

Die Anlasstemperaturen, zwischen denen die gewünschten Eigenschaften erreicht werden können, liegen im Bereich von ca. 535°C bis 670°C, welcher in der Abbildung schraffiert hervorgehoben ist.The tempering temperatures, between which the desired properties can be achieved, are in the range of about 535 ° C to 670 ° C, which is highlighted hatched in the figure.

Der schraffierte Bereich zeigt den Bereich in welchem sich lineare Schleifen mit kleiner Sättigungsmagnetostriktion, hohem Anisotropiefeld und kleinem Remanenzverhältnis ergeben. Dies ist auch der Bereich, in dem die Legierungen besonders lineare Schleifen aufweisen. Im Ausführungsbeispiel der Figur 5 liegt somit die geeignetste Anlasstemperatur zwischen 535°C und 670°C.The hatched area shows the area in which linear loops with small saturation magnetostriction, high anisotropy field and small remanence ratio result. This is also the area in which the alloys have particularly linear loops. In the embodiment of FIG. 5 Thus, the most suitable tempering temperature between 535 ° C and 670 ° C.

Diese Temperaturgrenzen sind weitgehend unabhängig von der Größe der Zugspannung. Sie hängen jedoch von der Dauer der Wärmebehandlung und dem Nb-Gehalt ab. So nehmen sie beispielsweise mit sinkendem Nb-Gehalt bzw. mit länger andauernder Wärmebehandlung ab, wie in der Figur 6 und der Tabelle 2 dargestellt.These temperature limits are largely independent of the magnitude of the tensile stress. However, they depend on the duration of the heat treatment and the Nb content. For example, they decrease with decreasing Nb content or with prolonged heat treatment off, as in the FIG. 6 and Table 2.

Figur 6 zeigt hierzu das Anlassverhalten einer Niob-freien Legierungsvariante, bei welcher die optimalen Anlasstemperaturen im Bereich von ungefähr 500°C bis 570°C, also deutlich niedriger als die Zusammensetzung der Figur 5 liegen. Insbesondere zeigt Figur 6 ein Diagramm vom Remanenzverhältnis J t/J s und der Koerzitivfeldstärke H c der Legierung Fe77Cu1Si15.5B6.5 nach Wärmebehandlung für 4 Sekunden bei T a = 613°C unter einer Zugspannung von ca. 50 MPa. Die optimalen erfindungsgemäßen Anlasstemperaturen liegen hier im Bereich von ca. 500°C bis 570°C. Hier ergibt sich, wie durch das Inset schematisch angedeutet, eine flache lineare Hystereseschleife mit einem Remanenzverhältnis kleiner 0.1. FIG. 6 shows the starting behavior of a niobium-free alloy variant, in which the optimal tempering temperatures in the range of about 500 ° C to 570 ° C, ie significantly lower than the composition of FIG. 5 lie. In particular shows FIG. 6 a diagram of the remanence ratio J t / J s and the coercive force H c of the alloy Fe 77 Cu 1 Si 15.5 B 6.5 after heat treatment for 4 seconds at T a = 613 ° C under a tensile stress of about 50 MPa. The optimum tempering temperatures according to the invention here are in the range of about 500 ° C to 570 ° C. This yields, as indicated schematically by the inset, a flat linear hysteresis loop with a remanence ratio of less than 0.1.

Figur 7 zeigt das mittels Differential Scanning Calometry (DSC) mit einer Aufheizrate von 10 K/min gemessene Kristallisationsverhalten am Beispiel der Legierung Fe77Cu1Si15.5B6.5. Man erkennt zwei Kristallisationsstufen welche durch die Kristallisationstemperaturen T x1 und T x2 charakterisiert werden. Der in der DSC Messung durch T x1 und T x2 eingrenzte Temperaturbereich entspricht dabei dem Bereich optimaler Anlasstemperaturen welcher entsprechend Figur 6 für die Legierung zwischen 500°C und 570°C liegt. FIG. 7 shows the crystallization behavior measured by differential scanning calometry (DSC) at a heating rate of 10 K / min using the example of the alloy Fe 77 Cu 1 Si 15.5 B 6.5 . One recognizes two crystallization stages which are characterized by the crystallization temperatures T x1 and T x2 . The temperature range limited by T x 1 and T x2 in the DSC measurement corresponds to the range of optimum tempering temperatures which corresponds to this FIG. 6 for the alloy is between 500 ° C and 570 ° C.

Figur 8 zeigt die Röntgenbeugungsdiagramme für die Legierung Fe77Cu1Si15.5B6.5 im amorphen Ausgangszustand und nach Wärmebehandlung unter Zug bei verschiedenen Anlasstemperaturen entsprechend den durch T x1 und T x2 definierten unterschiedlichen Kristallisationsstufen. Insbesondere zeigt Figur 8 das Röntgenbeugungsdiagramm nach einer Wärmebehandlung unter Zug für 4s bei 515°C, also im Anlassbereich, wo erfindungsgemäße Magneteigenschaften erreicht werden, und bei 680°C, also im ungünstigen Anlassbereich wo keine linearen Hystereseschleifen mit kleinem Remanenzverhältnis mehr erzielt werden können. FIG. 8 shows the X-ray diffraction diagrams for the alloy Fe 77 Cu 1 Si 15.5 B 6.5 in the amorphous initial state and after heat treatment under tension at different tempering temperatures corresponding to the different crystallization stages defined by T x1 and T x2 . In particular shows FIG. 8 the X-ray diffraction pattern after a heat treatment under tension for 4s at 515 ° C, ie in the starting area, where magnetic properties according to the invention are achieved, and at 680 ° C, ie in the unfavorable starting area where no linear hysteresis loops with a small remanence ratio can be achieved more.

Aus der Analyse der Beugungsmaxima folgt, dass bei Anlasstemperaturen, wo sich lineare Hystereseschleifen mit kleinem Remanenzverhältnis ergeben, sich als kristalline Phase im wesentlichen nur kubische Fe-Si Kristallite bilden, welche in eine amorphe Minoritätsmatrix eingebettet sind. Im Fall der Legierung Fe77Cu1Si15.5B6.5 liegt die mittlere Größe dieser Kristallite etwa im Bereich 38-44 nm. Führt man eine analoge Analyse mit der Legierungszusammensetzung Fe75.5Cu1Nb1.5Si15.5B6.5 durch so erhält man bei den entsprechenden optimalen Anlasstemperaturen eine mittlere Kristallitgröße im Bereich 20-25 nm.From the analysis of the diffraction maxima, it follows that at tempering temperatures where linear hysteresis loops with a small remanence ratio result, essentially only cubic Fe-Si crystallites form, which are embedded in an amorphous minority matrix, as the crystalline phase. In the case of the alloy Fe 77 Cu 1 Si 15.5 B 6.5 , the average size of these crystallites is approximately in the range 38-44 nm. If an analogous analysis is carried out with the alloy composition Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 corresponding optimal tempering temperatures an average crystallite size in the range 20-25 nm.

In der zweiten Stufe der Kristallisation kristallisieren aus der amorphen Restmatrix Boridphasen, welche die Magneteigenschaften ungünstig beeinflussen und zu einer nichtlinearen Schleife, mit hohem Remanenzverhältnis und hoher Koerzitivfeldstärke führen.In the second stage of crystallization, boride phases crystallize out of the residual amorphous matrix, which adversely affect the magnetic properties and lead to a non-linear loop with a high remanence ratio and high coercive force.

In Tabelle 2 sind weitere Beispiele, sowie ergänzende Daten in Form der mittels Differential Scanning Calorimetry (DSC) bei 10K/min gemessenen Kristallisationstemperaturen T x1, die der Kristallisation von bcc-FeSi entspricht, und T x2, die der Kristallisation von Boriden entspricht, dargestellt. Die geeignete Anlasstemperatur liegt ungefähr zwischen T x1 und T x2 und führt zu einem Gefüge von nanokristallinen Körnern mit einer mittleren Korngröße kleiner 50 nm, die in einer amorphen Matrix eingebettet sind, und den gewünschten magnetischen Eigenschaften.Table 2 shows further examples, as well as supplementary data in the form of the differential scanning calorimetry (DSC) at 10K / min measured crystallization temperatures T x1 , which corresponds to the crystallization of bcc-FeSi, and T x2 , which corresponds to the crystallization of borides , The suitable tempering temperature is approximately between T x1 and T x2 and leads to a structure of nanocrystalline grains with a mean grain size less than 50 nm, which in an amorphous Embedded matrix, and the desired magnetic properties.

Allerdings hängen T x1 und T x2 bzw. die Anlasstemperaturen T a von der Aufheizrate und der Dauer der Wärmebehandlung ab. Deshalb liegen bei einer Wärmebehandlungsdauer von kleiner als 10 Sekunden die optimalen Anlasstemperaturen bei höheren Temperaturen als die mittels Differential Scanning Calorimetry (DSC) bei 10K/min gemessenen Kristallisationstemperaturen T x1 und T x2 der Tabelle 2. Entsprechend liegen für längere Anlasszeiten von zum Beispiel 10 min bis 60 min Dauer die optimalen Anlasstemperaturen T a typischerweise 50°C bis 100°C niedriger als die in Tabelle 2 aufgelisteten Werte von T a für eine Wärmebehandlungsdauer von wenigen Sekunden.However, T x1 and T x2 and the tempering temperatures T a depend on the heating rate and the duration of the heat treatment. Therefore, with a heat treatment time of less than 10 seconds, the optimum tempering temperatures at higher temperatures than the differential scanning calorimetry (DSC) at 10K / min measured crystallization temperatures T x1 and T x2 of Table 2. Accordingly, for longer tempering times, for example, 10 min up to 60 minutes, the optimum tempering temperatures T a typically 50 ° C to 100 ° C lower than the values of T a listed in Table 2 for a heat treatment time of a few seconds.

Entsprechend können die Anlasstemperaturen T a je nach Zusammensetzung und Dauer der Wärmebehandlung nach der Lehre von Figur 5 und anhand der im DSC gemessenen Kristallisationstemperaturen nach der Tabelle 2 gegebenenfalls angepasst werden.Accordingly, the tempering temperatures T a depending on the composition and duration of the heat treatment according to the doctrine of FIG. 5 and optionally adjusted according to the crystallization temperatures measured in the DSC according to Table 2.

Tabelle 3 zeigt den Einfluss der Anlasszeit am Beispiel der Legierungszusammensetzung Fe76Cu1Nb1.5Si13.5B8. Für Anlasszeiten im Bereich weniger Sekunden bis weniger Minuten wird kaum ein signifikanter Einfluss auf die resultierenden Magneteigenschaften aufgezeigt. Dies gilt solange die Anlasstemperatur T a zwischen den anhand von Tabelle 2 diskutierten Grenztemperaturen liegt. Letztere betragen im vorliegenden Ausführungsbeispiel T x1 = 489°C und T x2 = 630°C aus der DSC-Messung bei 10 K/min bzw. T a1 = 540°C und T a2 = 640°C für eine Wärmebehandlung von 4 s Dauer.Table 3 shows the influence of tempering time on the example of the alloy composition Fe 76 Cu 1 Nb 1.5 Si 13.5 B 8 . For tempering times in the range of a few seconds to a few minutes hardly a significant influence on the resulting magnetic properties is shown. This applies as long as the tempering temperature T a is between the limit temperatures discussed with reference to Table 2. The latter amount in the present embodiment T x1 = 489 ° C and T x2 = 630 ° C from the DSC measurement at 10 K / min or T a1 = 540 ° C and T a2 = 640 ° C for a heat treatment of 4 s duration ,

Die Anlasstemperatur beträgt im vorliegenden Ausführungsbeispiel T a = 610°C und liegt somit zwischen den unteren und oberen Werten beider Definitionen von Grenztemperaturen. Die bei einer Aufheizrate von 10 K/min gemessenen Kristallisationstemperaturen entsprechen in etwa dem optimalen Anlassbereich für eine isotherme Wärmebehandlung von einigen Minuten Dauer.The tempering temperature in the present embodiment is T a = 610 ° C and thus lies between the lower and upper values of both definitions of limit temperatures. The crystallization temperatures measured at a heating rate of 10 K / min correspond approximately to the optimum starting range for an isothermal heat treatment of a few minutes duration.

Figur 9 zeigt die Abhängigkeit der Permeabilität, des Anisotropiefeldes, der Koerzitivfeldstärke, des Remanenzverhältnisses und des Nichtlinearitätsfaktors von der bei der Wärmebehandlung angelegten Zugspannung. Insbesondere zeigt die Figur 9 ein Diagramm der Permeabilität, des Anisotropiefeldes, der Koerzitivfeldstärke, des Remanenzverhältnisses und des Nichtlinearitätsfaktors von nanokristallinem
Fe75.5Cu1Nb1.5Si15.5B6.5 nach Wärmebehandlung für 4 Sekunden bei 613°C unter der angegebenen Zugspannung σ a. In allen Fällen ergab sich hierbei ein Remanenzverhältnis von typischerweise weniger als J r/J s < 0.04 und ein Nichtlinearitätsfaktor kleiner als 2%.
FIG. 9 shows the dependence of the permeability, the anisotropy field, the coercive field strength, the remanence ratio and the nonlinearity factor on the tensile stress applied during the heat treatment. In particular, FIG. 9 shows a diagram of the permeability, the anisotropy field, the coercive field strength, the remanence ratio and the nonlinearity factor of nanocrystalline
Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 after heat treatment for 4 seconds at 613 ° C under the specified tensile stress σ a . In all cases, this resulted in a remanence ratio of typically less than J r / J s <0.04 and a nonlinearity factor of less than 2%.

Tabelle 4 zeigt ein weiteres Beispiel für die Abhängigkeit der Permeabilität, des Anisotropiefeldes, der Koerzitivfeldstärke, des Remanenzverhältnisses und des Nichtlinearitätsfaktors von der bei der Wärmebehandlung angelegten Zugspannung. Insbesondere zeigt die Tabelle die Permeabilität, das Anisotropiefeldes, die Koerzitivfeldstärke, das Remanenzverhältnis und den Nichtlinearitätsfaktors von nanokristallinem Fe76Cu0.5Nb1.5Si15.5B6.5 nach Wärmebehandlung für 4 Sekunden bei 605°C unter der angegebenen Zugspannung σ a. In allen Fällen ergab sich hierbei ein Remanenzverhältnis von typischerweise weniger als J r/J s < 0.1 und ein Nichtlinearitätsfaktor kleiner als 3%.Table 4 shows another example of the dependence of permeability, anisotropy field, coercive force, remanence ratio and non-linearity factor on the tensile stress applied during the heat treatment. In particular, the table shows the permeability, anisotropy field, coercivity, remanence ratio and nonlinearity factor of nanocrystalline Fe 76 Cu 0.5 Nb 1.5 Si 15.5 B 6.5 after heat treatment for 4 seconds at 605 ° C under the given tensile stress σ a . In all cases, this resulted in a remanence ratio of typically less than J r / J s <0.1 and a nonlinearity factor of less than 3%.

Figur 9 und Tabelle 4 zeigen, dass die Anisotropiefeldstärke H a und die Permeabilität µ durch Anpassen der Zugspannung σ a gezielt eingestellt werden können. Um einen vorbestimmten Wert der Anisotropiefeldstärke H a bzw. Permeabilität µ zu erzielen ist bei der Wärmebehandlung eine Zugspannung σ aα µ0Ha/Js bzw. σ aα/µ erforderlich, wobei µ0 = (4π 10-7 Vs/(Am)) die magnetische Feldkonstante bezeichnet. Dabei bezeichnet α einen Materialparameter der primär von der Legierungszusammensetzung, aber auch von der Anlasstemperatur und der Anlasszeit abhängen kann. Typische Werte liegen im Bereich α ≈ 30000 MPa bis α ≈ 70000 MPa. Insbesondere ergibt sich für das Beispiel in Figur 9 ein Wert von α ≈ 48000 MPa und für das Beispiel in Tabelle 3 ein Wert von α ≈ 36000 MPa. FIG. 9 and Table 4 show that the anisotropic field strength H a and the permeability μ can be adjusted in a targeted manner by adjusting the tensile stress σ a . In order to achieve a predetermined value of the anisotropic field strength H a or permeability μ , a tensile stress σ aα μ 0 H a / J s or σ aα / μ is required during the heat treatment, where μ 0 = ( 10 -7 Vs / (Am)) denotes the magnetic field constant. Here, α denotes a material parameter which may depend primarily on the alloy composition, but also on the tempering temperature and tempering time. Typical values are in the range of α ≈ 30,000 MPa to α ≈ 70,000 MPa. In particular, results for the example in FIG. 9 a value of α ≈ 48000 MPa and for the example in Table 3 a value of α ≈ 36000 MPa.

Die Ausführungsbeispiele in Figur 9 und Tabelle 3 machen ferner deutlich, dass sich um so linearere Schleifen erreichen lassen, je kleiner die eingestellte Permeabilität ist. So ergeben sich für Permeabilitäten kleiner als etwa µ = 3000 besonders lineare Schleifen mit einer Nichtlinearität kleiner als 2% und einem Remanenzverhältnis J r/J s<0.05.The embodiments in FIG. 9 and Table 3 also show that the smaller the set permeability, the more linear the loops can be achieved. Thus, for permeabilities less than about μ = 3000, particularly linear loops with a nonlinearity of less than 2% and a remanence ratio J r / J s <0.05 result.

Die Bänder der vorherstehenden Ausführungsbeispiele weisen einer Legierung mit der Zusammensetzung
Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz auf, wobei

Cu
0≤ a < 1.5,
Nb
0 ≤ b < 2,
  • M eines oder mehrere der Elemente Mo, Ta, oder Zr mit 0 ≤ b+c
  • < 2 ist,
  • T eines oder mehrere der Elemente V, Mn, Cr, Co oder Ni mit 0 ≤ d < 5 ist,
Si
10 < x < 18
B
5 < y < 11
Z eines oder mehrere der Elemente C, P oder Ge mit 0 ≤ z < 2,
wobei die Legierung bis zu 1 Atom% Verunreinigungen aufweisen kann. Typische Verunreinigungen sind C, P, S, Ti, Mn, Cr, Mo, Ni, und Ta.The bands of the preceding embodiments comprise an alloy having the composition
Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z where
Cu
0≤a <1.5,
Nb
0 ≤ b <2,
  • M one or more of the elements Mo, Ta, or Zr with 0 ≤ b + c
  • <2 is,
  • T is one or more of the elements V, Mn, Cr, Co or Ni with 0 ≦ d <5,
Si
10 <x <18
B
5 <y <11
Z is one or more of the elements C, P or Ge with 0 ≦ z <2,
wherein the alloy may have up to 1 atom% impurities. Typical impurities are C, P, S, Ti, Mn, Cr, Mo, Ni, and Ta.

Die Zusammensetzung kann einen Einfluss auf die magnetischen Eigenschaften bei bestimmten Wärmebehandlungen ausüben. Um die gewünschten magnetischen Eigenschaften bei einer Zusammensetzung zu erreichen, kann die Wärmebehandlung und insbesondere die Zugspannung eingestellt werden.The composition can exert an influence on the magnetic properties in certain heat treatments. In order to achieve the desired magnetic properties in a composition, the heat treatment and in particular the tensile stress can be adjusted.

Tabelle 5 zeigt Legierungsbeispiele, welche etwa 4 Sekunden lang unter einer Zugspannung um 50 MPa bei einer für die jeweilige Zusammensetzung optimalen Anlasstemperatur T a wärmebehandelt wurden, und ein Vergleichsbeispiel mit einer Zusammensetzung mit einem Niobgehalt von oberhalb 2 Atom%. Die übrigen, mit 1 bis 10 durchnummerierten Beispiele stellen erfindungsgemäße Zusammensetzungen mit einem Nb-Gehalt kleiner 2 at% dar. Figur 10 zeigt ergänzend die optimalen Anlasstemperaturen und die Kristallisationstemperaturen der Legierungsbeispiele 1 bis 10. Insbesondere zeigt Figur 10 die untere und obere optimale Anlasstemperatur T a1 und T a2 für eine Anlasszeit von 4s als Funktion der im DSC bei 10 K/min gemessenen Kristallisationstemperaturen T x1 und T x2.Table 5 shows examples of the alloy, which were approximately 4 seconds heat-treated under a tension of 50 MPa at an optimum for the respective composition tempering temperature T A, and a Comparative Example having a composition with a niobium content of above 2 atomic%. The remaining examples, numbered 1 to 10, represent compositions according to the invention having an Nb content of less than 2 at%. FIG. 10 shows in addition the optimum tempering temperatures and the crystallization temperatures of the alloy examples 1 to 10. In particular shows FIG. 10 the lower and upper optimum tempering temperatures T a1 and T a2 for a tempering time of 4 s as a function of the crystallization temperatures T x1 and T x2 measured in the DSC at 10 K / min.

Diese Beispiele belegen, dass für erfindungsgemäße Legierungen die Zusammensetzung innerhalb bestimmter Grenzen variiert werden kann. Dabei können innerhalb der vorhin aufgezeigten Grenzen (1) anstelle von Nb weitere Elemente wie Mo, Ta und/oder Zr (2) anstelle von Eisen andere Übergangsmetalle wie V, Mn, Cr, Co und oder Ni bzw. (3) Elemente wie C, P und/oder Ge hinzulegiert werden, ohne dass sich die Eigenschaften nennenswert ändern. Um dies zu untermauern wurde als weiteres Ausführungsbeispiel die Legierungszusammensetzung

  • Fe71.5Co2.5Ni0.5Cr0.5V0.5Mn0.2Cu0.7Nb0.5Mo0.5Ta0.4Si15.5B6.5C0.2
in 20 µm Banddicke und 10 mm Bandbreite hergestellt. Die Legierung weist eine Sättigungspolarisation von J s = 1.25 T auf und reagiert auf Wärmebehandlung unter Zugspannung ähnlich wie z.B. die Legierungsbeispielen 2 - 5 aus Tabelle 3. So ergibt sich bei einer etwa 4 s dauernden Wärmebehandlung bei 600°C unter einer Zugspannung von 50 MPa ein Nichtlinearitätsfaktor von 0.4%, ein Remanenzverhältnis J r/J s = 0.01, eine Koerzitivfeldstärke von H c = 6 A/m, ein Anisotropiefeld von H a = 855 A/m und ein Permeabilitätswert von µ = 1160.These examples show that for alloys according to the invention the composition can be varied within certain limits. Within the previously indicated limits (1) instead of Nb further elements such as Mo, Ta and / or Zr (2) instead of iron other transition metals such as V, Mn, Cr, Co and or Ni or (3) elements such as C, P and / or Ge can be added without the properties change significantly. To substantiate this, as another embodiment, the alloy composition
  • Fe 71.5 Co 2.5 Ni 0.5 Cr 0.5 V 0.5 Mn 0.2 Cu 0.7 Nb 0.5 Mo 0.5 Ta 0.4 Si 15.5 B 6.5 C 0.2
manufactured in 20 μm strip thickness and 10 mm strip width. The alloy has a saturation polarization of J s = 1.25 T and reacts to heat treatment under tensile stress similar to, for example, the alloy examples 2-5 in Table 3. Thus results in a heat treatment of about 4 s at 600 ° C under a tensile stress of 50 MPa a non-linearity factor of 0.4%, a remanence ratio J r / J s = 0.01, a coercive field strength of H c = 6 A / m, an anisotropy field of H a = 855 A / m and a permeability value of μ = 1160.

Aus Tabelle 5 geht hervor, dass sich auch ohne Cu-Zusatz wünschenswerte Magneteigenschaften ergeben.From Table 5 shows that even without addition of Cu desirable magnetic properties.

Tabelle 6 zeigt deshalb weitere Legierungsbeispiele bei welchen systematisch der Cu-Gehalt variiert wurde und eine Wärmebehandlung von etwa 7 Sekunden Dauer bei 600°C unter einer Zugspannung von etwa 15 MPa durchgeführt wurde. Insbesondere wurde in Tabelle 6 das Element Fe schrittweise durch Cu ersetzt, wobei die übrigen Legierungsbestandteile unverändert blieben.Table 6 therefore shows other examples of alloys in which the Cu content was varied systematically and a heat treatment of about 7 seconds duration was carried out at 600 ° C under a tensile stress of about 15 MPa. Specifically, in Table 6, the element Fe was gradually replaced by Cu, with the remaining alloying components remaining unchanged.

Aus Tabelle 6 ist für Cu-Gehalte unterhalb 1.5at% kein signifikanter Einfluss des Cu-Gehaltes auf die magnetischen Eigenschaften zu erkennen. Allerdings fördert der Zusatz von Cu die Versprödungsneigung der Bänder bei der Herstellung. Insbesondere zeigen Legierungen mit Cu-Gehalten größer als 1.5at% (wie z.B. die Legierung Nr. 15 aus Tabelle 6) bereits im Herstellzustand eine starke Versprödung, so dass ein 20µm dickes Band der Legierung Fe74.5Cu2Nb1.5Si15.5B6.5 bei einem Biegedurchmesser von etwa 1 mm brechen kann.Table 6 shows no significant influence of the Cu content on the magnetic properties for Cu contents below 1.5at%. However, the addition of Cu promotes the Embrittlement tendency of the strips during production. In particular, alloys with Cu contents greater than 1.5at% (such as the alloy no. 15 from Table 6) already in the production state a strong embrittlement, so that a 20 .mu.m thick band of alloy Fe 74.5 Cu 2 Nb 1.5 Si 15.5 B 6.5 at a bending diameter of about 1 mm can break.

Ein derart sprödes Band kann aufgrund der hohen Bandgeschwindigkeiten bei der Herstellung (25-30 m/s) nach Verlassen der Kühlwalze nicht oder nur mit hohen Schwierigkeiten während des Gießprozesses gefangen und direkt aufgewickelt werden. Dies macht die Bandherstellung unwirtschaftlich. Auch reißen solche, bereits von Anfang an spröden Bänder bei der Wärmebehandlung in erhöhtem Maße, insbesondere auch bevor sie in die Zone mit erhöhter Temperatur eintreten. Bei solch einem Abriss wird der Wärmebehandlungsprozess unterbrochen und das Band muss erneut durch den Ofen gefädelt werden.Such a brittle belt can not be caught or wound up directly during the casting process due to the high production line speeds (25-30 m / s) after leaving the cooling roller or only with great difficulty during the casting process. This makes the tape production uneconomical. Also, such break even at the beginning of brittle bands in the heat treatment to an increased extent, especially before they enter the zone of elevated temperature. With such a break, the heat treatment process is interrupted and the tape must be threaded through the oven again.

Hingegen lassen sich Legierungen mit einem Cu-Gehalt kleiner 1.5at% auf einen Biegedurchmesser von zweimal der Banddicke, also typischerweise kleiner 0.06 mm knicken, ohne dass sie brechen. Dies gestattet, das Band beim Gießen direkt aufzuhaspeln. Ferner ist die Wärmebehandlung solcher anfangs duktiler Bänder wesentlich einfacher. Legierungen mit einem Cu-Gehalt kleiner als 1.5 at% verspröden erst durch die Wärmebehandlung, aber erst nach dem sie den Ofen verlassen haben und wieder abgekühlt sind. Die Wahrscheinlichkeit für einen Bandriss während der Wärmebehandlung ist somit deutlich geringer. Auch kann in den meisten Fällen der Bandtransport durch den Ofen trotz Abriss weiterlaufen. Insgesamt lassen sich somit anfangs duktile Bänder problemloser und somit wirtschaftlicher herstellen, als auch wärmebehandeln.On the other hand, alloys with a Cu content of less than 1.5at% can be bent to a bending diameter of twice the strip thickness, ie typically less than 0.06 mm, without breaking. This allows the tape to be rewound directly during casting. Furthermore, the heat treatment of such initially ductile bands is much easier. Alloys with a Cu content of less than 1.5 at% become embrittled only after the heat treatment, but only after they have left the furnace and are cooled again. The probability of a ligament tear during the heat treatment is thus significantly lower. Also, in most cases, belt transport through the oven can continue despite demolition. All in all, ductile tapes can thus be produced more easily and thus more economically, as well as heat-treated at first.

Bei den in Tabelle 5 und 6, gezeigten Zusammensetzungen handelt es sich um nominale Zusammensetzungen in at%, welche im Rahmen einer Genauigkeit von typischerweise ±0.5 at% mit den in der chemischen Analyse gefundenen Konzentrationen der einzelnen Elementen übereinstimmt.The compositions shown in Tables 5 and 6 are nominal at% compositions which, within an accuracy of typically ± 0.5 at%, are consistent with the individual element concentrations found in the chemical analysis.

Der Siliziumgehalt und der Borgehalt üben auch einen Einfluss auf die magnetischen Eigenschaften dieser Art von nanokristalliner Legierung mit einem Niobgehalt von weniger als 2 Atom%, wenn sie unter Zugspannung hergestellt ist, aus.The silicon content and the boron content also exert an influence on the magnetic properties of this type of nanocrystalline alloy with a niobium content of less than 2 atomic% when made under tensile stress.

Die Beispiele aus den Tabellen 3 bis 6 weisen die folgende gewünschte Kombination von Eigenschaften auf, also eine im zentralen Teil lineare Magnetisierungsschleife mit einem Remanenzverhältnis J r/J s < 0.1 und einer kleinen Koerzitivfeldstärke H c welche typischerweise nur wenige Prozente der Anisotropiefeldstärke H a beträgt.The examples from Tables 3 to 6 have the following desired combination of properties, ie a linear magnetization loop in the central part with a remanence ratio J r / J s <0.1 and a small coercive force H c which is typically only a few percent of the anisotropic field strength H a ,

Die Figuren 11 und 12 vergleichen die magnetischen Eigenschaften der Zusammensetzungen Fe80Si11B9 und Fe78.5Si10B11.5. Figur 11 zeigt ein Diagramm vom Verlauf von Koerzitivfeldstärke H c und Remanenzverhältnis J r/J s beider Legierungen nach Wärmebehandlung unter einer Zugspannung von etwa 50 MPa als Funktion der Anlasstemperatur T a. Die Koerzitivfeldstärke H c und das Remanenzverhältnis J r/J s der erfindungsgemäßen Legierung Fe80Si11B9 wird durch gefüllte Kreissymbole dargestellt und der Vergleichszusammensetzung Fe78.5Si10B11.5 durch offene Dreiecksymbole dargestellt, nach einer Wärmebehandlung von 4 Sekunden Dauer bei der Anlasstemperatur T a unter einer Zugspannung von etwa 50 MPa.The Figures 11 and 12 compare the magnetic properties of the compositions Fe 80 Si 11 B 9 and Fe 78.5 Si 10 B 11.5 . FIG. 11 shows a plot of the course of coercive force H c and remanence ratio J r / J s of both alloys after heat treatment under a tensile stress of about 50 MPa as a function of the tempering temperature T a . The coercive field strength H c and the remanence ratio J r / J s of the alloy Fe 80 Si 11 B 9 according to the invention is represented by filled circle symbols and the comparative composition Fe 78.5 Si 10 B 11.5 shown by open triangular symbols, after a heat treatment of 4 seconds duration at the tempering temperature T a under a tensile stress of about 50 MPa.

Figur 12 zeigt ein Diagramm von Hystereseschleifen der beiden Legierungen nach Wärmebehandlung für 4s bei etwa 565°C unter Zugspannungen von 50 MPa (gestrichelte Linie) bzw. 220 MPa (durchgezogene Linie). Die Hystereseschleife der erfindungsgemäßen Legierung Fe80Si11B9 ist links und die der Vergleichszusammensetzung Fe78.5Si10B11.5 ist rechts dargestellt. FIG. 12 shows a diagram of hysteresis loops of the two alloys after heat treatment for 4s at about 565 ° C under tensile stresses of 50 MPa (dashed line) and 220 MPa (solid line). The hysteresis loop of the alloy Fe 80 Si 11 B 9 according to the invention is shown on the left and that of the comparative composition Fe 78.5 Si 10 B 11.5 is shown on the right.

Obwohl sich die in den Figuren 11 und 12 gezeigten Legierungen in ihrer chemischen Zusammensetzung nur relativ geringfügig unterscheiden, ergeben sich so große Unterschiede in den magnetischen Eigenschaften beider Legierungen.Although in the Figures 11 and 12 The alloys shown differ only slightly in their chemical composition, resulting in such large differences in the magnetic properties of both alloys.

So weist die erfindungsgemäße Zusammensetzung Fe80Si11B9 nach Wärmebehandlung zwischen etwa 530°C und 570°C eine lineare Magnetisierungsschleife mit einem kleinen Remanenzverhältnis J r/J s < 0.1 und einer geringen Koerzitivfeldstärke auf, welche deutlich unter 100 A/m liegt und letztlich nur wenige Prozente der Anisotropiefeldstärke H a beträgt.Thus, the composition of the invention Fe 80 Si 11 B 9 after heat treatment between about 530 ° C and 570 ° C, a linear magnetization loop with a small remanence ratio J r / J s <0.1 and a low coercive force, which is well below 100 A / m and ultimately only a few percent of the anisotropic field strength H a .

Hingegen weist die Zusammensetzung Fe78.5Si10B11.5 im gesamten Wärmebehandlungsbereich ein hohes Remanenzverhältnis auf. Selbst die niedrigsten Werte des Remanenzverhältnisses, welche bei Anlasstemperaturen zwischen 540°C und 570°C erreicht werden, betragen noch um J r/J s ≈ 0.5 (vgl. Fig. 11). Ferner ergibt sich bei diesen niedrigsten Werten von J r/J s eine ungünstig hohe Koerzitivfeldstärke von etwa H c ≈ 800 - 1000 A/m. Dadurch verliert der zentrale Teil der Magnetisierungsschleife an Linearität und die starke Aufspaltung der Hystereseschleife führt zu nachteilhaften hohen Ummagnetisierungsverlusten (vgl. Fig. 12). By contrast , the composition Fe 78.5 Si 10 B 11.5 has a high remanence ratio throughout the entire heat treatment range. Even the lowest values of the remanence ratio, which are achieved at tempering temperatures between 540 ° C and 570 ° C, are still around J r / J s ≈ 0.5 (see. Fig. 11 ). Furthermore, at these lowest values of J r / J s, an unfavorably high coercive field strength of approximately H c ≈ 800-1000 A / m results. As a result, loses the central part of the magnetization loop to linearity and the strong split of the hysteresis loop leads to disadvantageous high Ummagnetisierungsverlusten (see. Fig. 12 ).

Diese Ausführungsbeispiele zeigen, dass sich bei Legierungszusammensetzungen mit einem Si-Gehalt von mehr als 10 at% und einem B-Gehalt von weniger als 11 at% nach Wärmebehandlung unter Zugspannung, eine flache, weitgehend lineare Hystereseschleife mit einem Remanenzverhältnis J r/J s < 0.1 und einer geringen Koerzitivfeldstärke ergibt, welche deutlich unter 100 A/m liegt und nicht mehr als 10% des Anisotropiefeldes beträgt. Bei einem niedrigerem Siliziumgehalt und einem höheren Borgehalt als bei diesen Grenzwerten, sind die gewünschten magnetischen Eigenschafen bei dieser Wärmebehandlung unter Zugspannung nicht erreicht.These embodiments show that for alloy compositions having a Si content of greater than 10 at% and a B content of less than 11 at% after heat treatment under tensile stress, a flat, substantially linear hysteresis loop with a remanence ratio J r / J s < 0.1 and a low coercive field strength, which is well below 100 A / m and not more than 10% of the anisotropy field. With a lower silicon content and a higher boron content than these limits, the desired magnetic properties are not achieved in this tensile stress treatment.

Die Obergrenze für den Si-Gehalt und die Untergrenze für den Bor-Gehalt werden auch untersucht. Während die Legierungszusammensetzung Fe75Cu0.5Nb1.5Si17.5B5.5 (siehe Legierung Nr. 5 aus Tabelle 5) problemlos als amorphes, duktiles Band herstellbar war und nach Wärmebehandlung wünschenswerte Eigenschaften aufwies, wies die Legierungszusammensetzung Fe75Cu0.5Nb1.5Si18B5 nach Wärmebehandlung nur noch grenzwertige Magneteigenschaften auf und die Legierungszusammensetzung Fe75Cu0.5Nb1.5Si18.5B4.5 ließ sich nicht mehr als duktiles amorphes Band herstellen.The upper limit of the Si content and the lower limit of the boron content are also examined. While the alloy composition Fe 75 Cu 0.5 Nb 1.5 Si 17.5 B 5.5 (see Alloy No. 5 of Table 5) could be easily prepared as an amorphous ductile tape and had desirable properties after heat treatment, the alloy composition had Fe 75 Cu 0.5 Nb 1.5 Si 18 B 5 after heat treatment only borderline magnetic properties and the alloy composition Fe 75 Cu 0.5 Nb 1.5 Si 18.5 B 4.5 could no longer be produced as a ductile amorphous band.

Diese Ausführungsbeispiele zeigen, dass sich bei Legierungszusammensetzungen mit einem Si-Gehalt von weniger als 18 at% und einem B-Gehalt von mehr als 5 at% nach Wärmebehandlung unter Zugspannung, eine flache, weitgehend lineare Hystereseschleife mit einem Remanenzverhältnis J r/J s < 0.1 und einer geringen Koerzitivfeldstärke ergibt, welche deutlich unter 100 A/m liegt und nicht mehr als 10% des Anisotropiefeldes beträgt. Bei einem höheren Siliziumgehalt als 18 at% und einem kleineren Borgehalt als 5at%, sind die gewünschten magnetischen Eigenschafen bei dieser Wärmebehandlung unter Zugspannung nicht erreicht bzw. lässt sich kein amorphes und duktiles Band mehr herstellen.These embodiments show that for alloy compositions having a Si content of less than 18 at% and a B content of more than 5 at% after heat treatment under tensile stress, a flat, substantially linear hysteresis loop with a remanence ratio J r / J s < 0.1 and a low coercive field strength, which is well below 100 A / m and not more than 10% of the anisotropy field. At a silicon content higher than 18 at% and a boron content lower than 5at%, the desired magnetic properties in this tensile heat treatment are not reaches or can no longer produce an amorphous and ductile band.

Tabelle 7 zeigt die Sättigungsmagnetostriktionskonstante λ s verschiedener Legierungszusammensetzungen gemessen im Herstellzustand und nach 4s Wärmebehandlung unter einem Zug von 50 MPa bei der angegebenen Anlasstemperatur T a. Insbesondere wurde eine Anlasstemperatur gewählt, welche nicht mehr als 50°C von der maximal möglichen Anlasstemperatur T a2 entfernt ist, da man so für eine gegebene Zusammensetzung besonders kleine Werte der Magnetostriktion erhält (vergleiche Figur 5), welche letztlich durch die Legierungszusammensetzung bestimmt werden. Der Effekt der Si-Gehalt der Legierung wird gezeigt.Table 7 shows the saturation magnetostriction constant λ s of various alloy compositions measured in the state of manufacture and after a heat treatment of 4 seconds under a tension of 50 MPa at the indicated tempering temperature T a . In particular, an annealing temperature was selected which is not more than 50 ° C. away from the maximum possible tempering temperature T a2 , since in this way particularly small values of the magnetostriction are obtained for a given composition (cf. FIG. 5 ), which are ultimately determined by the alloy composition. The effect of the Si content of the alloy is shown.

Tabelle 7 belegt ergänzend zu Figur 5, dass sich nach Wärmbehandlung unter Zugspannung eine deutliche Absenkung der Sättigungsmagnetostriktion ergibt, was zu reproduzierbareren Magneteigenschaften führen kann. Insbesondere ergibt sich bei kleiner Magnetostriktion kein oder nur ein geringer Einfluss mechanischer Spannungen auf die Hystereseschleife. Solche mechanische Spannungen können auftreten, wenn das wärmebehandelte Band zu einem Magnetkern gewickelt wird oder wenn der Magnetkern in der weiteren Verarbeitung zu seinem Schutz in einen Trog oder in eine Kunststoffmasse eingebettet oder anschließend mit Windungen aus Draht versehen wird. Hieraus können besonders vorteilhafte Zusammensetzungen, nämlich solche mit kleiner Magnetostriktion abgeleitet werden.Table 7 shows in addition to FIG. 5 in that, after heat treatment under tensile stress, a significant reduction of the saturation magnetostriction results, which can lead to reproducible magnetic properties. In particular, little or no influence of mechanical stresses on the hysteresis loop results with small magnetostriction. Such mechanical stresses can occur when the heat-treated tape is wound into a magnetic core, or when the magnetic core is embedded in a trough or plastic mass or subsequently provided with wire turns for further protection. From this it is possible to derive particularly advantageous compositions, namely those with a small magnetostriction.

Wie durch die Beispiele aus Tabelle 7 belegt wird, lassen sich besonders vorteilhafte Magnetostriktionswerte von betragsmäßig kleiner als 5 ppm erreichen, wenn der Si Gehalt größer als 13 at% ist und die Wärmebehandlungstemperatur nicht mehr als 50°C unterhalb der oberen Grenze T a2 des optimalen Anlassbereichs liegt. Noch kleinere Werte der Sättigungsmagnetostriktion, welche betragsmäßig kleiner als 2 ppm lassen sich erreichen, wenn der Si Gehalt größer als 14 at% und kleiner als 18 at% ist und die Wärmebehandlungstemperatur nicht mehr als 50°C unterhalb der oberen Grenze T a2 des optimalen Anlassbereichs liegt. Noch kleinere Werte der Sättigungsmagnetostriktion, welche betragsmäßig kleiner als 1 ppm lassen sich erreichen, wenn der Si Gehalt größer als 15 at% und ist und die Wärmebehandlungstemperatur nicht mehr als 50°C unterhalb der oberen Grenze T a2 des optimalen Anlassbereichs liegt.As evidenced by the examples of Table 7, particularly advantageous magnetostriction values of less than 5 ppm can be achieved if the Si content is greater than 13 at% and the heat treatment temperature is not more than 50 ° C is below the upper limit T a2 of the optimal starting range. Even smaller values of the saturation magnetostriction, which are smaller than 2 ppm in absolute value, can be achieved if the Si content is greater than 14 at% and less than 18 at%, and the heat treatment temperature is not more than 50 ° C. below the upper limit T a2 of the optimum tempering range lies. Even smaller values of the saturation magnetostriction, which are smaller than 1 ppm in absolute terms, can be achieved if the Si content is greater than 15 at% and and the heat treatment temperature is not more than 50 ° C. below the upper limit T a2 of the optimum tempering range.

Ein betragsmäßig kleiner Wert der Magnetostriktion ist um so wichtiger, je höher die Permeabilität ist. So weisen Legierungen mit einer Permeabilität größer 500, bzw. größer als 1000 eine vergleichbar geringe Abhängigkeit von mechanischen Spannungen auf, wenn die Sättigungsmagnetostriktion betragsmäßig kleiner 2 ppm bzw. kleiner als 1 ppm ist.A small amount of magnetostriction is the more important the higher the permeability. Thus, alloys with a permeability greater than 500, or greater than 1000 have a comparatively low dependence on mechanical stresses when the saturation magnetostriction is less than 2 ppm or less than 1 ppm in absolute terms.

Die Legierung kann auch eine Sättigungsmagnetostriktion von betragsmäßig kleiner als 5 ppm aufweisen. Legierungen mit einer Sättigungsmagnetostriktion unterhalb dieser Grenzwerte weisen noch gute weichmagnetische Eigenschaften auch bei interner Spannung auf, wenn die Permeabilität kleiner 500 ist.The alloy may also have a saturation magnetostriction of less than 5 ppm in magnitude. Alloys with a saturation magnetostriction below these limits still have good soft magnetic properties even at internal stress, when the permeability is less than 500.

Der Wert der Sättigungsmagnetostriktion kann noch geringfügig von der während der Wärmebehandlung angelegten Zugspannung σ a abhängen. So ergeben beispielsweise sich für Legierung Fe75.5Cu1Nb1.5Si15.5B6.5 bei einer Wärmebehandlung von 4s bei 610°C in Abhängigkeit der Anlasszugspannung folgende Werte: λ s ≈ 1 ppm bei σ a ≈ 50 MPa, λ s ≈ 0.7 ppm bei σ a ≈ 260 MPa und λ s ≈ 0.3 ppm bei σ a ≈ 500 MPa Dies entspricht einer geringen Abnahme der Magnetostriktion von Δλs ≈ -0.15 ppm/100 MPa. Die anderen Legierungszusammensetzungen zeigen ein vergleichbares Verhalten.The value of the saturation magnetostriction may still slightly depend on the tensile stress σ a applied during the heat treatment. For example, for alloy Fe 75.5 Cu 1 Nb 1.5 Si 15.5 B 6.5 at a heat treatment of 4s at 610 ° C the following values are obtained: λ s ≈ 1 ppm at σ a ≈ 50 MPa, λ s ≈ 0.7 ppm σ a ≈ 260 MPa and λ s ≈ 0.3 ppm at σ a ≈ 500 MPa This corresponds to a small decrease the magnetostriction of Δλ s ≈ -0.15 ppm / 100 MPa. The other alloy compositions show similar behavior.

Figur 13 zeigt eine schematische Ansicht einer Vorrichtung 1, die geeignet ist, die Legierung mit einer Zusammensetzung nach einem der vorherstehenden Ausführungsbeispiele in Gestalt eines Bandes herzustellen. Die Vorrichtung 1 weist einen Durchlaufofen 2 mit einer Temperaturzone 3 auf, wobei diese Temperaturzone so eingestellt ist, dass die Temperatur im Ofen in dieser Zone innerhalb 5°C von der Anlasstemperatur Ta ist. Die Vorrichtung 1 weist ferner eine Spule 4, auf der die amorphe Legierung 5 aufgewickelt ist, und eine Aufnahmespule 6, auf der das wärmebehandelte Band 7 aufgenommen wird. Das Band wird mit einer Geschwindigkeit s von der Spule 4, durch den Durchlaufofen 2 bis zur Aufnahmespule 6 gezogen. Dabei steht das Band 7 in Laufrichtung von der Vorrichtung 9 bis zur Vorrichtung 10 unter einer Zugspannung σa. FIG. 13 shows a schematic view of a device 1, which is suitable to produce the alloy with a composition according to one of the preceding embodiments in the form of a band. The apparatus 1 comprises a continuous furnace 2 with a temperature zone 3, this temperature zone being set so that the temperature in the furnace in this zone is within 5 ° C. of the tempering temperature T a . The device 1 further comprises a coil 4, on which the amorphous alloy 5 is wound, and a take-up spool 6, on which the heat-treated belt 7 is received. The tape is drawn at a speed s from the spool 4, through the continuous oven 2 to the take-up spool 6. In this case, the belt 7 is in the direction of the device 9 to the device 10 under a tensile stress σ a .

Die Vorrichtung 1 weist ferner eine Vorrichtung 8 zum laufenden Messen der magnetischen Eigenschaften des Bandes 6, nachdem es wärmebehandelt ist und aus dem Durchlaufofen 2 gezogen ist, auf. Im Bereich dieser Vorrichtung 8 steht das Band 7 nicht mehr unter Zugspannung. Die gemessenen magnetischen Eigenschaften können verwendet werden, um die Zugspannung σa, unter der das Band 7 durch den Durchlaufofen 2 gezogen wird, einzustellen. Dies ist mit den Pfeilen 9 und 10 in der Figur 13 schematisch dargestellt. Durch dieses Messen der magnetischen Eigenschaften und das laufende Einstellen der Zugspannung kann die Gleichmäßigkeit der magnetischen Eigenschaften über die Länge des Bandes verbessert werden.The apparatus 1 further comprises an apparatus 8 for continuously measuring the magnetic properties of the belt 6 after it has been heat treated and drawn out of the continuous furnace 2. In the area of this device 8, the belt 7 is no longer under tension. The measured magnetic properties can be used to set the tensile stress σa under which the belt 7 is pulled through the continuous furnace 2. This is with the arrows 9 and 10 in the FIG. 13 shown schematically. By measuring the magnetic properties and continuously adjusting the tensile stress, the uniformity of the magnetic properties over the length of the tape can be improved.

Claims (15)

  1. Alloy, consisting of
    Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz and up to 1at% impurities, M being one or more of the elements Mo, Ta or Zr, T being one or more of the elements V, Mn, Cr, Co or Ni, Z being one or more of the elements C, P or Ge, 0at% ≤ a < 1.5at%, 0at% ≤ b < 2at%, 0at% ≤ (b+c) < 2at%, 0at% ≤ d < 5at%, 10at% < x < 18at%, 5at% < y < 11at% and 0at% ≤ z < 2at%,
    is configured in tape form,
    comprising a nanocrystalline structure in which at least 50%vol of the grains have an average size of less than 100 nm,
    a hysteresis loop with a central linear part,
    a remanence ratio Jr/Js < 0.1 and
    a ratio of coercive field strength Hc to anisotropic field strength Ha of < 10%,
    wherein the tape is producible by heat treatment under tensile stress in a continuous furnace at a temperature Ta , wherein 450°C ≤ Ta ≤ 750°C, and pulling through the continuous furnace at a speed s such that the period of time which the tape spends in a temperature zone of the continuous furnace with a temperatur T a is between 2 seconds and 2 minutes.
  2. Alloy according to claim 1, wherein the remanence ratio Jr/Js is < 0.05 and/or the ratio of coercive field strength to anisotropic field strength is < 5% and/or the alloy further comprises a permeability µ of between 40 and 3000 and/or further comprises a saturation magnetostriction of less than 2 ppm, preferably less than 1 ppm and/or the alloy comprises a permeability of less than 500 and a saturation magnetostriction of less than 5 ppm.
  3. Alloy according to claim 1 or claim 2, wherein b < 0.5 and/or a < 0.5 and/or 14at% < x < 17at% and 5.5at% < y < 8at% and/or the tape commprises a thickness of 10 µm to 50 µm.
  4. Alloy according to one of claims 1 to 3, wherein at least 70% of the grains comprise an average size of less than 50 nm and/or the crystalline grains comprise an elongation of at least 0.02% in a preferred direction.
  5. Magnetic core made of an alloy according to one of claims 1 to 4.
  6. Magnetic core according to claim 5, having the form of a wound tape.
  7. Magnetic core according to claim 5 or 6, wherein the tape is coated with an insulating layer.
  8. DC-tolerant current transformer comprising a magnetic core according to one of claims 5 to 7 comprising a permeability of between 1500 and 3000.
  9. Power transformer comprising a magnetic core according to one of claims 5 to 7, comprising a permeability of between 200 and 1500.
  10. Storage choke comprising a magnetic core according to one of claims 5 to 7, comprising a permeability of between 50 and 200.
  11. Process for producing a tape comprising the following:
    providing a tape made of an amorphous alloy with a composition consisting of Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz and up to 1at% impurities, M being one or more of the elements Mo, Ta and Zr, T being one or more of the elements V, Mn, Cr, Co or Ni, Z being one or more of the elements C, P or Ge, 0at% being ≤ a < 1.5at%, 0at% ≤ b < 2 Atom%, 0at% ≤ (b+c) < 2at%, 0at% ≤ d < 5at%, 10at% < x < 18at%, 5at% < y < 11at% and 0at% ≤ z < 2at%,
    heat treating the tape under tensile stress in a continuous furnace at a temperature Ta , wherein 450°C ≤ Ta ≤ 750°C,
    wherein the tape is pulled through the continuous furnace at a speed s such that the period of time which the tape spends in a temperature zone of the continuous furnace with the temperatur Ta is between 2 seconds and 2 minutes.
  12. Process according to claim 11, wherein the tape is pulled through the continuous furnace under a tensile stress of 5 MPa 800 MPa.
  13. Process according to claim 11 or claim 12, the tensile stress σa is selected dependent on composition according to the ratio σa ≈ σTestµTest/µ, µ being the desired permeability and µTest being the permeability achieved at a test stress σTest.
  14. Process according to one of claims 11 to 13, wherein the temperature Ta is selected dependent on the niobium content b according to the ratio (Tx1 + 50°C) ≤ Ta ≤ (Tx2 + 30°C).
  15. Process according to one of claims 11 to 24, wherein
    a desired permeability or anisotropic field value, a maximum remanence ratio Jr/Js value of less than 0.1, a maximum values of the ratio of coercive field strength to anisotropic field strength H c /Ha of less than 10% and a permitted deviation range for each of these values is predetermined,
    magnetic properties of the tape are continuously measured as it leaves the continuous furnace, and
    if deviations from the permitted magnetic properties deviation are observed, the tensile stress at the tape is adjusted accordingly to bring the measured magnetic property values back within the permitted deviation range.
EP12720963.3A 2011-04-15 2012-04-05 Alloy, magnet core and process for producing a strip made of an alloy Active EP2697399B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011002114A DE102011002114A1 (en) 2011-04-15 2011-04-15 Alloy, magnetic core and method of making an alloy strip
PCT/IB2012/051682 WO2012140550A1 (en) 2011-04-15 2012-04-05 Alloy, magnet core and process for producing a strip made of an alloy

Publications (2)

Publication Number Publication Date
EP2697399A1 EP2697399A1 (en) 2014-02-19
EP2697399B1 true EP2697399B1 (en) 2015-03-25

Family

ID=46085100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12720963.3A Active EP2697399B1 (en) 2011-04-15 2012-04-05 Alloy, magnet core and process for producing a strip made of an alloy

Country Status (6)

Country Link
EP (1) EP2697399B1 (en)
JP (1) JP6040429B2 (en)
KR (1) KR101911569B1 (en)
CN (1) CN103502481B (en)
DE (1) DE102011002114A1 (en)
WO (1) WO2012140550A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321669A (en) * 2014-06-13 2016-02-10 三星电机株式会社 Core and coil component having the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2958116B1 (en) * 2013-02-15 2020-01-01 Hitachi Metals, Ltd. Production method of an annular magnetic core using iron-based nanocrystalline soft-magnetic alloy
CN107076479B (en) * 2014-07-10 2021-05-07 埃内斯托·科罗涅西 Apparatus and method for generating and transferring heating and cooling power
US11230754B2 (en) 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
JP6226093B1 (en) * 2017-01-30 2017-11-08 Tdk株式会社 Soft magnetic alloys and magnetic parts
US20200216926A1 (en) * 2017-07-04 2020-07-09 Hitachi Metals, Ltd. Amorphous alloy ribbon and method for manufacturing same
DE102019105215A1 (en) * 2019-03-01 2020-09-03 Vacuumschmelze Gmbh & Co. Kg Alloy and method of making a magnetic core
DE102019123500A1 (en) * 2019-09-03 2021-03-04 Vacuumschmelze Gmbh & Co. Kg Metal tape, method for producing an amorphous metal tape and method for producing a nanocrystalline metal tape

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053333A (en) * 1974-09-20 1977-10-11 University Of Pennsylvania Enhancing magnetic properties of amorphous alloys by annealing under stress
JPS5834162A (en) * 1981-08-21 1983-02-28 Nippon Steel Corp Manufacture of amorphous alloy having high magnetic aging resistance and its thin strip
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
US4881989A (en) 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
JPH0845723A (en) * 1994-08-01 1996-02-16 Hitachi Metals Ltd Nano-crystalline alloy thin band of excellent insulating property and nano-crystalline alloy magnetic core as well as insulating film forming method of nano-crystalline alloy thin band
JPH0867911A (en) * 1994-08-30 1996-03-12 Hitachi Metals Ltd Method for heat-treating nano-crystalline magnetic alloy
JP4437563B2 (en) * 1997-09-05 2010-03-24 日立金属株式会社 Magnetic alloy with excellent surface properties and magnetic core using the same
EP1045402B1 (en) * 1999-04-15 2011-08-31 Hitachi Metals, Ltd. Soft magnetic alloy strip, manufacturing method and use thereof
JP3594123B2 (en) 1999-04-15 2004-11-24 日立金属株式会社 Alloy ribbon, member using the same, and method of manufacturing the same
JP5342745B2 (en) * 2003-04-02 2013-11-13 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Iron core and its manufacture and use
CN1252754C (en) * 2003-12-19 2006-04-19 华东师范大学 Method for preparing vertical anisotropic iron base soft magnetic film
FR2877486B1 (en) 2004-10-29 2007-03-30 Imphy Alloys Sa NANOCRYSTALLINE TORE FOR CURRENT SENSOR, SINGLE AND DOUBLE FLOOR ENERGY METERS AND CURRENT PROBES INCORPORATING SAME
EP1724792A1 (en) * 2005-05-20 2006-11-22 Imphy Alloys Verfahren zur Herstellung eines Bandes aus nanocrystallinem Material sowie eine Vorrichtung zur Herstellung eines von diesem Band ausgehenden Wickelkernes
JP2008196006A (en) * 2007-02-13 2008-08-28 Hitachi Metals Ltd Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
CN101373653A (en) * 2008-06-05 2009-02-25 南京大学 Low Nb nano amorphous and minicrystal soft magnetic material and preparing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321669A (en) * 2014-06-13 2016-02-10 三星电机株式会社 Core and coil component having the same

Also Published As

Publication number Publication date
JP6040429B2 (en) 2016-12-07
DE102011002114A9 (en) 2013-01-17
KR101911569B1 (en) 2018-12-19
WO2012140550A1 (en) 2012-10-18
CN103502481B (en) 2016-02-17
DE102011002114A1 (en) 2012-10-18
CN103502481A (en) 2014-01-08
JP2014516386A (en) 2014-07-10
KR20140014188A (en) 2014-02-05
EP2697399A1 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
EP2697399B1 (en) Alloy, magnet core and process for producing a strip made of an alloy
EP0021101B1 (en) Amorphous soft magnetic alloy
DE112007002939B4 (en) Amorphous alloy composition
EP1407462B1 (en) Method for producing nanocrystalline magnet cores, and device for carrying out said method
DE102012109744A1 (en) Alloy, magnetic core and method of making an alloy strip
EP2612942B1 (en) Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
DE102012218656A1 (en) Magnetic core, in particular for a current transformer, and method for its production
DE112010000836T5 (en) A soft magnetic alloy ribbon and manufacturing method therefor, and a soft magnetic alloy ribbon magnetic device
DE69916743T2 (en) Electric steel sheet and its manufacturing process
DE102012218657A1 (en) Magnetic core, method and apparatus for its manufacture and use of such a magnetic core
DE3442009A1 (en) AMORPHOUS ALLOY TAPE WITH LARGE THICKNESS AND METHOD FOR THE PRODUCTION THEREOF
DE2806052A1 (en) THERMALLY STABLE AMORPHIC MAGNETIC ALLOY
DE19712526A1 (en) Soft magnetic amorphous iron@ alloy
DE4209144A1 (en) SOFT MAGNETIC ALLOY, METHOD FOR THEIR PRODUCTION AND MAGNETIC CORE
EP0885445B1 (en) Process for manufacturing tape wound core strips and inductive component with a tape wound core
DE10320350B3 (en) Soft magnetic iron-based alloy used as a material for magnetic bearings and rotors, e.g. in electric motors and in aircraft construction contains alloying additions of cobalt, vanadium and zirconium
WO2013156010A1 (en) Method and device for producing soft magnetic strip material for strip ring cores
AT394581B (en) METHOD FOR PRODUCING A NI-FE ALLOY SHEET WITH EXCELLENT DC-MAGNETIC AND AC-MAGNETIC PROPERTIES
WO2001000895A1 (en) Iron-cobalt alloy with a low coercitive field intensity and method for the production of semi-finished products made of an iron-cobalt alloy
WO2023020945A1 (en) Alloy and method for producing a nanocrystalline metal strip
DE102015211487B4 (en) METHOD FOR PRODUCING A NANOCRYSTALLINE MAGNETIC CORE
EP1320110B1 (en) Production process for nanocristalline toroidal cores
WO2020078529A1 (en) Method for producing an no electric strip of intermediate thickness
DE102009043539A9 (en) Magnetic strip, sensor comprising a magnetic strip and method of making a magnetic strip
DE3107754A1 (en) Process for manufacturing toroidal magnetic strip-wound cores for residual-current-operated circuit-breakers, and use of said cores

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012002648

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0001260000

Ipc: H01F0041020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141217

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 1/153 20060101ALI20141208BHEP

Ipc: C21D 1/26 20060101ALI20141208BHEP

Ipc: C21D 8/12 20060101ALI20141208BHEP

Ipc: C22C 38/02 20060101ALI20141208BHEP

Ipc: C21D 1/04 20060101ALI20141208BHEP

Ipc: C22C 45/02 20060101ALI20141208BHEP

Ipc: H01F 41/02 20060101AFI20141208BHEP

Ipc: C22C 38/12 20060101ALI20141208BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002648

Country of ref document: DE

Effective date: 20150507

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 718289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150727

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002648

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012002648

Country of ref document: DE

Representative=s name: WESTPHAL, MUSSGNUG & PARTNER PATENTANWAELTE MI, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150526

26N No opposition filed

Effective date: 20160105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150405

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 718289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 12