EP1395616B1 - Complexes de carbene de metaux de transition du groupe 8 utilises comme catalyseurs de metathese d'olefines enantioselective - Google Patents

Complexes de carbene de metaux de transition du groupe 8 utilises comme catalyseurs de metathese d'olefines enantioselective Download PDF

Info

Publication number
EP1395616B1
EP1395616B1 EP02762142.4A EP02762142A EP1395616B1 EP 1395616 B1 EP1395616 B1 EP 1395616B1 EP 02762142 A EP02762142 A EP 02762142A EP 1395616 B1 EP1395616 B1 EP 1395616B1
Authority
EP
European Patent Office
Prior art keywords
group
substituted
complex
hydrocarbyl
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02762142.4A
Other languages
German (de)
English (en)
Other versions
EP1395616A4 (fr
EP1395616A2 (fr
Inventor
Robert H. Grubbs
Donald W. Ward
Thomas J. Seiders
Steven D. Goldberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23089326&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1395616(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Publication of EP1395616A2 publication Critical patent/EP1395616A2/fr
Publication of EP1395616A4 publication Critical patent/EP1395616A4/fr
Application granted granted Critical
Publication of EP1395616B1 publication Critical patent/EP1395616B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds

Definitions

  • This invention relates generally to method for carrying out an olefin metathesis reaction using a chiral Group 8 transition metal complex as a catalyst. More particularly, the invention relates to methods for carrying out enantioselective reactions using the aforementioned catalyst. The invention also relates to the catalyst itself.
  • M is a Group 8 transition metal such as ruthenium or osmium
  • X and X' are anionic ligands
  • L and L' are neutral electron donors
  • metathesis catalysts have been prepared with phosphine ligands, e.g., tricyclohexylphosphine or tricyclopentylphosphine, exemplified by the well-defined, metathesis-active ruthenium alkylidene complexes (II) and (III): wherein "Cy” is a cycloalkyl group such as cyclohexyl or cyclopentyl. See Grubbs et al., U.S. Patent No. 5,917,071 and Trnka et al., supra.
  • N-heterocyclic carbene ligands offer many advantages, including readily tunable steric bulk, vastly increased electron donor character, and compatibility with a variety of metal species.
  • replacement of one of the phosphine ligands in these complexes significantly improves thermal stability in solution.
  • the vast majority of research on these carbene ligands has focused on their generation and isolation, a feat finally accomplished by Arduengo and coworkers within the last ten years (see, e.g., Arduengo et al., Acc. Chem. Res. 32:913-921 (1999 )).
  • ruthenium complexes IVA, (IVB), (VA) and (VB):
  • Cy is as defined previously, Ph represents phenyl, "IMes” represents 1,3-dimesityl-imidazol-2-ylidene: and "IMesH 2 " represents 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene:
  • IMesH 2 represents 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene:
  • Other ruthenium-based olefin metathesis catalysts formed with N-heterocyclic carbene ligands are known.
  • transition metal carbene complexes particularly those containing a ligand having the 4,5-dihydroimidazol-2-ylidene structure such as in IMesH 2 . have been found to address a number of previously unsolved problems in olefin metathesis reactions, particularly cross-metathesis reactions.
  • Group 8-catalyzed olefin metathesis such as ring-closing metathesis
  • the molybdenum-based catalysts are limited since these systems lack extensive functional group tolerance and require rigorous exclusion of air and moisture.
  • chiral ruthenium carbene complexes of the invention exhibit high enantioselectivity, for example up to 90% ee in the ring-closing metathesis of achiral trienes. While chiral N-heterocyclic carbene ruthenium complexes have been reported previously ( Scholl et al., Org. Lett. 1:953-956 (1999 ) and Weskamp et al.,Angew. Chem. Int. Ed. 37:2490-2493 (1998 )), none report their use in asymmetric metathesis.
  • WO 00/71554 A2 generally concerns imidazolidine-based metal carbene methathesis catalysts. WO 00/71554 A2 does not, however, disclose any stereochemistry for the imidazolidine ligands, or the use of such chiral catalysts for asymmetric metathesis.
  • One aspect of the invention pertains to a chiral ruthenium carbene complex of the formula (VII): wherein:
  • Another aspect of the invention pertains to a method of controlling the enantioselectivity of an olefin metathesis reaction comprising catalyzing the reaction with a chiral ruthenium carbene complex as defined herein above.
  • the present invention is addressed to the aforementioned needs in the art, and provides a novel chiral ruthenium carbene complex and a novel process for using the chiral complexes to catalyze a variety of olefin metathesis reactions, including cross-metathesis reactions.
  • Such complexes are highly active catalysts of olefin metathesis reactions, including the cross-metathesis reactions described in detail herein.
  • the present complexes tolerate a greater diversity of functional groups and are more stable to air and moisture.
  • the present complexes allow an olefinic reactant to be substituted with a functional group without compromising the efficiency or selectivity of a metathesis reaction involving that olefin.
  • the present invention also allows the second reactant, i.e., the olefin metathesis partner, to be substituted with a functional group.
  • the functional group may or may not be a ligand for the metal complex; the present method is not limited in this regard.
  • the ruthenium carbene complexes of the invention find utility in effecting a variety of asymmetric metathesis reactions including, but not limited to, enantioselective ring-closing metathesis, asymmetric desymmetrization of meso -trienes, enantioselective cross-metathesis, enantioselective ring-opening/cross metathesis, enantioselective ring-opening/ring-closing metathesis, and kinetic resolution of racemic mixtures of chiral olefins.
  • a chiral ligand such as a 1,3-disubstituted-4,5-dihydro-(4,5-disubstituted)-imidazol-2-ylidene
  • a phosphine ligand in a bisphosphine-ligated ruthenium alkylidene complex provides for the generation of a series of novel chiral ruthenium olefin metathesis complexes. These complexes have been shown to exhibit high enantioselectivity in a variety of olefin metathesis reactions.
  • the complexes exhibit relatively high functional-group tolerance and relatively high stability in the presence of water, oxygen, ionic liquids, protic solvents, and a variety of common impurities.
  • This functional-group tolerance and enhanced stability allow for the effective transformation of substrates inaccessible with previously reported chiral molybdenum metathesis catalysts.
  • Alicyclic refers to an aliphatic cyclic moiety, which may or may not be bicyclic or polycyclic.
  • Alkenyl refers to a linear, branched or cyclic hydrocarbon group of about 2-20 carbon atoms containing at least one double bond, such as ethenyl, n -propenyl, isopropenyl, n -butenyl, isobutenyl, octenyl, decenyl, tetradecenyl, hexadecenyl, eicosenyl, tetracosenyl.
  • Preferred alkenyl groups herein contain about 2-12 carbon atoms.
  • lower alkenyl intends an alkenyl group of 2 to 6 carbon atoms
  • specific term “cycloalkenyl” intends a cyclic alkenyl group, preferably having about 5-8 carbon atoms.
  • substituted alkenyl refers to alkenyl substituted with one or more substituent groups
  • heteroatom-containing alkenyl and “heteroalkenyl” refer to alkenyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the terms “alkenyl” and “lower alkenyl” include linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkenyl and lower alkenyl, respectively.
  • Alkoxy intends an alkyl group bound through a single, terminal ether linkage; that is, an “alkoxy” group may be represented as -O-alkyl where alkyl is as defined above.
  • a "lower alkoxy” group intends an alkoxy group containing about 1-6 carbon atoms.
  • alkenyloxy and lower alkenyloxy respectively refer to an alkenyl and lower alkenyl group bound through a single, terminal ether linkage
  • alkynyloxy and “lower alkynyloxy” respectively refer to an alkynyl and lower alkynyl group bound through a single, terminal ether linkage.
  • Alkoxycarbonyl refers to the substituent -COOR, where R is an alkyl group as defined herein.
  • Alkyl refers to a linear, branched or cyclic saturated hydrocarbon group typically although not necessarily containing about 1-20 carbon atoms (C 1-20 alkyl), such as methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, t -butyl, octyl, decyl, as well as cycloalkyl groups such as cyclopentyl, and cyclohexyl.
  • alkyl groups herein contain about 1-12 carbon atoms and typically about 1-10 carbon atoms.
  • lower alkyl intends an alkyl group of about 1-6 carbon atoms
  • cycloalkyl intends a cyclic alkyl group, typically having about 4-8, preferably about 5-7, carbon atoms.
  • substituted alkyl refers to alkyl substituted with one or more substituent groups
  • heteroatom-containing alkyl and “heteroalkyl” refer to alkyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the terms “alkyl” and “lower alkyl” include linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkyl and lower alkyl, respectively.
  • Alkyldiketonate refers to an alkyl group as defined herein, having two ketone carbonyl groups. Typically the alkyl will have from 3-30 carbon atoms.
  • Alkylene refers to a difunctional linear, branched or cyclic alkyl group, where "alkyl” is as defined above.
  • Alkylsulfanyl refers to the group -S-R, where R is an alkyl group.
  • Alkylsulfinyl refers to the group -SO-R, where R is an alkyl group.
  • Alkylsulfonato refers to the group -S(O) 3 -R, where R is an alkyl group.
  • Alkylsulfonyl refers to the group -S(O) 2 -R, where R is an alkyl group.
  • Alkynyl refers to a linear or branched hydrocarbon group of 2 to 20 carbon atoms containing at least one triple bond, such as ethynyl or n -propynyl. Preferred alkynyl groups herein contain 2 to 12 carbon atoms.
  • the term “lower alkynyl” intends an alkynyl group of 2 to 6 carbon atoms.
  • substituted alkynyl refers to alkynyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkynyl” and “heteroalkynyl” refer to alkynyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the terms “alkynyl” and “lower alkynyl” include linear, branched, unsubstituted, substituted, and/or heteroatom-containing alkynyl and lower alkynyl, respectively.
  • Amino is used herein to refer to the group -NR'R", where each of R' and R" is independently selected from the group consisting of hydrogen and optionally substituted alkyl, alkenyl, alkynyl, aryl, aralkyl, alkaryl and heterocyclic.
  • Alkyl refers to an alkyl group with an aryl substituent
  • aralkylene refers to an alkylene group with an aryl substituent
  • alkaryl refers to an aryl group that has an alkyl substituent
  • alkarylene refers to an arylene group with an alkyl substituent
  • Aryl refers to an aromatic substituent containing a single aromatic ring or multiple aromatic rings that are fused together, directly linked, or indirectly linked (such that the different aromatic rings are bound to a common group such as a methylene or ethylene moiety).
  • Preferred aryl groups contain one aromatic ring or 2 to 4 fused or linked aromatic rings, e.g., phenyl, naphthyl, biphenyl.
  • Substituted aryl refers to an aryl moiety substituted with one or more substituent groups
  • heteroatom-containing aryl and “heteroaryl” refer to aryl in which at least one carbon atom is replaced with a heteroatom. Typically the heteroaryl will contain 1-2 heteroatoms and 3-19 carbon atoms.
  • the terms “aryl” and “aromatic” includes heteroaromatic, substituted aromatic, and substituted heteroaromatic species.
  • Aryldiketonate refers to an aryl group, as defined herein, having two ketone carbonyl groups.
  • Aryloxy refers to an aryl group bound through a single, terminal ether linkage.
  • An "aryloxy” group may be represented as -O-aryl, where aryl is as defined herein.
  • Arylsulfonato refers to the group the group -S(O) 3 -aryl, where aryl is as defined herein.
  • Carboxy refers to the group - COOH.
  • Carboxylate is intended to mean the group -COO - .
  • cyclic group is intended to refer to any aliphatic or aromatic structure, and may contain substituents and/or heteroatoms. Typically although not necessarily a cyclic group is a 4-2 membered ring, preferably a 5- to 8-membered ring.
  • “Functional groups” (also referred to as “Fn”) refer to groups such as halo, phosphonato, phosphoryl, phosphanyl, phosphino, sulfonato, sulfinyl, C 1-20 alkylsulfanyl, C 5-20 arylsulfanyl, C 1-20 alkylsulfonyl, C 5-20 arylsulfonyl, C 1-20 alkylsulfinyl, C 5-20 arylsulfinyl, sulfonamide, amino, amido, imino, nitro, nitroso, hydroxyl, C 1-20 alkoxy, C 2-20 alkenyloxy, C 2-20 alkynyloxy, C 5-20 aryloxy, C 1-20 carboxylato, C 2-20 alkylcarboxylato, C 5-20 arylcarboxylato, C 2-20 alkoxycarbonyl, C 5-20 aryloxycarbony
  • Functional groups can also be substituted with one or more moieties selected from the group consisting of C 1-10 alkyl, C 1-10 alkoxy, aryl, hydroxyl, sulfhydryl, -(CO)-H, halo, as well as other functional groups.
  • the term "functional group” is intended to include the functional group per se, as well as any linker group.
  • Halo and halogen are used in the conventional sense to refer to a chloro, bromo, fluoro or iodo substituent.
  • haloalkyl refers to an alkyl, alkenyl or alkynyl group, respectively, in which at least one of the hydrogen atoms in the group has been replaced with a halogen atom.
  • Heteroatom-containing as in a “heteroatom-containing hydrocarbyl group” refers to a hydrocarbon molecule or a hydrocarbyl molecular fragment in which one or more carbon atoms is replaced with an atom other than carbon, e.g., nitrogen, oxygen, sulfur, phosphorus or silicon, typically nitrogen, oxygen or sulfur.
  • heteroalkyl refers to an alkyl substituent that is heteroatom-containing
  • heterocyclic refers to a cyclic substituent that is heteroatom-containing
  • heteroaryl and heteroaromatic
  • a “heterocyclic” group or compound may or may not be aromatic, and further that “heterocycles” may be monocyclic, bicyclic, or polycyclic as described above with respect to the term “aryl.”
  • Hydrocarbyl refers to univalent hydrocarbyl radicals containing about 1-30 carbon atoms, preferably about 1-20 carbon atoms, most preferably about 1-12 carbon atoms, including linear, branched, cyclic, saturated and unsaturated species, such as alkyl groups, alkenyl groups, alkynyl groups, alicyclic groups, aryl groups, aralkyl groups, and alkaryl groups.
  • lower hydrocarbyl intends a hydrocarbyl group of about 1-6 carbon atoms
  • hydrocarbylene intends a divalent hydrocarbyl moiety containing about 1-30 carbon atoms, preferably about 1-20 carbon atoms, most preferably about 1-12 carbon atoms, including linear, branched, cyclic, saturated and unsaturated species.
  • lower hydrocarbylene intends a hydrocarbylene group of about 1-6 carbon atoms.
  • Substituted hydrocarbyl refers to hydrocarbyl substituted with one or more substituent groups
  • heteroatom-containing hydrocarbyl and “heterohydrocarbyl” refer to hydrocarbyl in which at least one carbon atom is replaced with a heteroatom
  • substituted hydrocarbylene refers to hydrocarbylene substituted with one or more substituent groups
  • heteroatom-containing hydrocarbylene and heterohydrocarbylene refer to hydrocarbylene in which at least one carbon atom is replaced with a heteroatom.
  • Optional or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not.
  • the phrase “optionally substituted” means that a non-hydrogen substituent may or may not be present on a given atom, and, thus, the description includes structures wherein a non-hydrogen substituent is present and structures wherein a non-hydrogen substituent is not present.
  • silyl is intended to mean a silyl group (-SiH 3 ) or derivative thereof.
  • the term silyl can thus be represented by the formula -SiR 3 , where each R group is independently H, alkyl, cycloalkyl, cycloheteroalkyl, aryl or heteroaryl.
  • Stepselective refers to a chemical reaction that preferentially results in one stereoisomer relative to a second stereoisomer, i.e., gives rise to a product in which the ratio of a desired stereoisomer to a less desired stereoisomer is greater than 1:1.
  • Substituted as in “substituted hydrocarbyl,” “substituted alkyl,” “substituted aryl,” as alluded to in some of the aforementioned definitions, is meant that in the hydrocarbyl, alkyl, aryl, or other moiety at least one hydrogen atom bound to a carbon atom is replaced with one or more non-hydrogen substituents.
  • substituents include, without limitation functional groups ("Fn") as defined above; and hydrocarbyl moieties such as C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 5-20 aryl, C 5-30 aralkyl, and C 5-30 alkaryl.
  • the aforementioned functional groups and hydrocarbyl moieties may, if a particular group permits, be further substituted with one or more additional functional groups or with one or more hydrocarbyl moieties such as those specifically enumerated above.
  • substituted appears prior to a list of possible substituted groups, it is intended that the term apply to every member of that group.
  • substituted alkyl, alkenyl and alkynyl is to be interpreted as “substituted alkyl, substituted alkenyl and substituted alkynyl.”
  • optionally substituted alkyl, alkenyl and alkynyl is to be interpreted as “optionally substituted alkyl, optionally substituted alkenyl and optionally substituted alkynyl.”
  • the ruthenium carbene complexes of the invention have the formula
  • X 1 and X 2 are independently selected from the group consisting of anionic ligands and polymers, or X 1 and X 2 may be taken together to form a cyclic group, typically although not necessarily a 5- to 8-membered ring.
  • X 1 and X 2 are independently selected from the group consisting of hydrogen, halo, C 1-20 alkyl, C 5-20 aryl, C 1-20 alkoxy, C 5-20 aryloxy, C 3-20 alkyldiketonate, C 5-20 aryldiketonate, C 2-20 alkoxycarbonyl, C 5-20 aryloxycarbonyl, C 2-20 acyl, C 1-20 alkylsulfonato, C 5-20 arylsulfonato, C 1-20 alkylsulfanyl, C 5-20 arylsulfanyl, C 1-20 alkylsulfinyl, and C 5-20 arylsulfinyl.
  • X 1 and X 2 are substituted with one or more moieties selected from the group consisting of C 1-20 alkyl, C 1-20 alkoxy, aryl, and halo, which may, in turn, with the exception of halo, be further substituted with one or more groups selected from halo, C 1-6 alkyl, C 1-6 alkoxy, and phenyl.
  • X 1 and X 2 are halo, benzoate, C 2-6 acyl, C 2-6 alkoxycarbonyl, C 1-6 alkyl, phenoxy, C 1-6 alkoxy, C 1-6 alkylsulfanyl, aryl, and C 1-6 alkylsulfonyl.
  • X 1 and X 2 are each halo, CF 3 CO 2 , CH 3 CO 2 , CFH 2 CO 2 , (CH 3 ) 3 CO, (CF 3 ) 2 (CH 3 )CO, (CF 3 )(CH 3 ) .2 CO, PhO, MeO, EtO, tosylate, mesylate, or trifluoromethanesulfonate.
  • X 1 and X 2 are each halo, preferably chloro.
  • the complex may also comprise (i.e., be bound to) a solid support, such as a polymeric substrate, i.e., at least one of X 1 and X 2 can be a polymer.
  • a polymeric substrate i.e., at least one of X 1 and X 2 can be a polymer.
  • Such a polymer will also comprise an appropriate linker, by which attachment to the remainder of the complex may be effected.
  • the polymer is at one of the R 5 and R 6 positions.
  • R 1 is selected from the group consisting of hydrogen, silyl, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and carboxyl. In a preferred embodiment, R 1 is hydrogen or C 5-20 aryl.
  • R 2 is selected from the group consisting of hydrogen, silyl, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl, or R 1 and R 2 may be taken together to form a cyclic group.
  • the R 2 substituent is selected from the group consisting of C 1-20 alkyl, C 2-20 alkenyl, and C 5-20 aryl. More preferably, R 2 is phenyl, vinyl, methyl, isopropyl, or t -butyl, optionally substituted with one or more moieties selected from the group consisting of C 1-6 alkyl, C 1-6 alkoxy, phenyl, and a functional group Fn.
  • R 2 is phenyl or vinyl substituted with one or more moieties selected from the group consisting of methyl, ethyl, chloro, bromo, iodo, fluoro, nitro, dimethylamino, methoxy, and phenyl.
  • R 1 and R 2 are taken together to form a cyclic group, which may be aliphatic or aromatic, and may contain substituents and/or heteroatoms. Generally, such a cyclic group will contain 4 to 12, preferably 5 to 8, ring atoms.
  • Y 1 and Y 2 are heteroatoms independently selected from the group consisting of N, O, S, and P. In a preferred embodiment, Y 1 and Y 2 are the same. In another preferred embodiment Y 1 and Y 2 are nitrogen.
  • the O and S heteroatoms are divalent, and therefore, it is understood that when either Y 1 and Y 2 is O or S, then the appended aryl group is absent.
  • R 20 and R 21 are independently selected from the group consisting of hydrogen, C 1-20 alkyl, substituted C 1-20 alkyl, perfluoronated C 1-20 alkyl (an alkyl chain that is saturated with fluorine atoms instead of hydrogen atoms), C 1-20 heteroalkyl, substituted C 1-20 heteroalkyl, C 1-20 alkoxy, C 5-20 aryl, substituted C 5-20 aryl, heteroaryl, C 5-30 aralkyl, C 5-30 alkaryl, and halo.
  • R 20 and R 21 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, hydroxyl, halo, phenyl, and lower alkyl-substituted phenyl (e.g. dimethylphenyl). In yet another embodiment, R 20 and R 21 are each methyl.
  • Such carbene ligands provide for complexes that are highly enantioselective metathesis catalysts.
  • the complex may also comprise a solid support, such as a polymeric substrate.
  • a polymeric substrate such as a polymeric substrate.
  • Such a polymer will also comprise an appropriate linker, by which attachment to the remainder of the complex may be effected.
  • R 5 and R 6 are independently selected from the group consisting of polymers, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups, optionally substituted with one or more moieties selected from the group consisting of C 1-20 alkyl, C 1-10 alkoxy, C 5-20 aryl, hydroxyl, sulfhydryl, -(CO)-H, halide, and functional groups.
  • R 5 and R 6 are independently selected from the group consisting of C 1-10 alkyl (e.g., t -butyl), C 5-20 aryl, cyclohexyl, mesityl, and lower alkyl substituted phenyl. Exemplary R 5 and R 6 are shown below:
  • R 5 and R 6 are linked together to form a substituted or unsubstituted, saturated or unsaturated ring structure, e.g. a C 4-12 alicyclic group or a C 5-6 aryl group, which may itself be substituted, e.g., with linked or fused alicyclic or aromatic groups, or with other substituents.
  • a substituted or unsubstituted, saturated or unsaturated ring structure e.g. a C 4-12 alicyclic group or a C 5-6 aryl group, which may itself be substituted, e.g., with linked or fused alicyclic or aromatic groups, or with other substituents.
  • the complex may also comprise a solid support, such as a polymeric substrate, i.e., at least one of R 5 and R 6 can be a polymer.
  • a polymeric substrate i.e., at least one of R 5 and R 6 can be a polymer.
  • Such a polymer will also comprise an appropriate linker, by which attachment to the remainder of the complex may be effected.
  • L is a neutral electron donor ligand, and may or may not be linked to R 2 , X 1 , and/or X 2 through a spacer moiety.
  • suitable L moieties include, without limitation, phosphine, sulfonated phosphine, phosphite, phosphinite, phosphonite, arsine, stibine, ether (including cyclic ethers), amino, amido, imino, sulfoxide, carboxy, nitrosyl, pyridyl, substituted pyridyl (e.g., halogenated pyridyl), imidazolyl, substituted imidazolyl (e.g., halogenated imidazolyl), pyrazinyl (e.g., substituted pyrazinyl), and thioether.
  • L is a phosphine of the formula PR'R"R'", where R', R", and R'" are each independently C 1-10 alkyl (particularly primary alkyl, secondary alkyl or cycloalkyl), C 5-20 aryl or a heteroatom-containing functional group.
  • R', R", and R'" are the same, for example, -P(cyclohexyl) 3 , -P(cyclopentyl) 3 , -P(isopropyl) 3 , -P(phenyl) 3 .
  • L is -P(phenyl) 2 (R) or-P(phenyl)(R) 2 , where R is C 1-20 alkyl, typically lower alkyl.
  • weaker ligands such as the nitrogen-containing heterocycles, which enhance catalytic activity presumably because of the requirement that the L ligand be lost for initiation to occur. Examples of complexes wherein L and R 2 are linked include the following:
  • any two or more of X 1 , X 2 , L, R 1 , R 2 , R 5 and R 6 of the complex can be taken together to form a chelating multidentate ligand, as described , for example, in Grubbs et al., U.S. Patent No. 5,312,940 .
  • bidentate ligands include, but are not limited to, bisphosphines, dialkoxides, alkyldiketonates, and aryldiketonates.
  • Specific examples include -P(Ph) 2 CH 2 CH 2 P(Ph) 2 -, -As(Ph) 2 CH 2 CH 2 As(Ph 2 )-, -P(Ph) 2 CH 2 CH 2 C(CF 3 ) 2 O-, binaphtholate dianions, pinacolate dianions, -P(CH 3 ) 2 (CH 2 ) 2 P(CH 3 ) 2 - and -OC(CH 3 ) 2 (CH 3 ) 2 CO-.
  • Preferred bidentate ligands are -P(Ph) 2 CH 2 CH 2 P(Ph) 2 - and -P(CH 3 ) 2 (CH 2 ) 2 P(CH 3 ) 2 -.
  • Tridentate ligands include, but are not limited to, (CH 3 ) 2 NCH 2 CH 2 P(Ph)CH 2 CH 2 N(CH 3 ) 2 .
  • Other preferred tridentate ligands are those in which any three of X 1 , X 2 , L, R 1 , R 2 , R 5 and R 6 (e.g.
  • X 1 , L, and any of R 5 and R 6 are taken together to be cyclopentadienyl, indenyl or fluorenyl, each optionally substituted with C 2-20 alkenyl, C 2-20 alkynyl, C 1-20 alkyl, C 5-20 aryl, C 1-20 alkoxy, C 2-20 alkenyloxy, C 2-20 alkynyloxy, C 5-20 aryloxy, C 2-20 alkoxycarbonyl, C 1-20 alkylsulfanyl, C 1-20 alkylsulfonyl, or C 1-20 alkylsulfinyl, each of which may be further substituted with C 1-6 alkyl, halo, C 1-6 alkoxy or with a phenyl group optionally substituted with halo, C 1-6 alkyl or C 1-6 alkoxy.
  • X 1 , L, and any one of R 5 and R 6 are taken together to be cyclopentadienyl, optionally substituted with vinyl, hydrogen, Me or Ph.
  • Tetradentate ligands include, but ate not limited to O 2 C(CH 2 ) 2 P(Ph)(CH 2 ) 2 P(Ph)(CH 2 ) 2 CO 2 , phthalocyanines, and porphyrins.
  • ruthenium carbene complex further comprises a second neutral electron donor ligand (L') attached to ruthenium.
  • Ligands containing bulky, electron-donating groups provide for very highly active olefin metathesis catalysts. Such catalysts are thus suitable to catalyze reactions for which other, less active catalysts are ineffective, and are also useful in enhancing the stereoselectivity of a catalyzed cross-metathesis reaction.
  • the catalyst useful in conjunction with the present methods is therefore the ruthenium carbene complex of the formula (VII):
  • X 1 and X 2 are independently selected from the group consisting of anionic ligands and polymers, or X 1 and X 2 may be taken together to form a cyclic group. Preferred X 1 and X 2 groups are identified above. X 1 and X 2 are most preferably halo.
  • R 1 is selected from the group consisting of hydrogen, silyl, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and carboxyl. Preferred R 1 groups are as identified above. R 1 is most preferably hydrogen.
  • R 2 is selected from the group consisting of hydrogen, silyl, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl or R 1 and R 2 may be taken together to form a cyclic group.
  • Preferred R 2 groups are as identified above.
  • R 2 is preferably C 5-20 aryl, most preferably phenyl.
  • Y 1 and Y 2 are heteroatoms independently selected from the group consisting of N, O, S, and P.
  • Preferred Y 1 and Y 2 groups are as identified above.
  • Y 1 and Y 2 are preferably the same, and most preferably nitrogen.
  • the O and S heteroatoms are divalent, and therefore, it is understood that when either Y 1 and Y 2 is O or S, then the appended aryl group is absent.
  • R 5 and R 6 are independently selected from the group consisting of polymers, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups, optionally substituted with one or more moieties selected from the group consisting of C 1-10 alkyl, C 1-10 alkoxy, C 5-20 aryl, hydroxyl, sulfhydryl, -(CO)-H, halo, and functional groups.
  • Preferred R 5 and R 6 groups are as identified above.
  • R 5 and R 6 are most preferably C 5-20 aryl groups.
  • R 20 and R 21 are independently selected from the group consisting of hydrogen, C 1-20 alkyl, substituted C 1-20 alkyl, perfluoronated C 1-20 alkyl, C 1-20 heteroalkyl, substituted C 1-20 heteroalkyl, C 1-20 alkoxy, C 5-20 aryl, substituted C 5-20 aryl, heteroaryl, C 5-30 aralkyl, C 5-30 alkaryl, and halo.
  • the R 20 and R 21 are preferably in the anti-position relative to R 5 and R 6 .
  • R 20 is an alkyl
  • R 21 is hydrogen.
  • R 20 and R 21 are alkyl groups.
  • L is a neutral electron donor ligand.
  • Preferred L groups are as identified above.
  • L is a phosphine having the formula PR'R"R"', where R', R", and R'" are each independently selected from the group consisting of C 1-10 alkyl and C 5-20 aryl.
  • L is selected from the group consisting of-P(cyclohexyl) 3 , -P(cyclopentyl) 3 , -P(isopropyl) 3 , -P(phenyl) 3 ,- P(phenyl) 2 (R) and-P(phenyl)(R) 2 , where R is alkyl.
  • Synthesis of the enatiomerically pure complexes of the invention begins with a compound such as a commercially available 1,2-diamine (1) such as (1 R, 2 R )-1,2-diaminocyclohexane or (1 R ,2 R )-diphenylethylenediamine, or similar diamines that are readily synthesized, such as di- t -butylethylenediamine, diadamantylethylenediamine, dimesitylethylenediamine, and so forth.
  • 1,2-diamine (1) such as (1 R, 2 R )-1,2-diaminocyclohexane or (1 R ,2 R )-diphenylethylenediamine, or similar diamines that are readily synthesized, such as di- t -butylethylenediamine, diadamantylethylenediamine, dimesitylethylenediamine, and so forth.
  • an N-aryl substituent can be introduced by reaction with an aryl halide through standard Pd-coupling reactions ( Wolfe et al., J. Org. Chem. 65:1144-1157 (2000 )).
  • an aldehyde or ketone can be condensed with the diamine and reduced in order to yield the desired product:
  • the resulting secondary amine is then condensed with a compound such as CH(Lg) 3 wherein Lg is a substituent displaceable by a nucleophile (e.g., triethyl orthoformate), and a salt having the formula X + Y - , such as an ammonium salt (e.g., ammonium tetrafluoroborate) to produce the corresponding imidazolium tetrafluoroborate salt (4) ( Saba et al., Tetrahedron Lett. 32:5031-5034 (1991 )):
  • a strong base such as sodium or potassium tert- butoxide or hexafluoro- ter t-butoxide, e.g., potassium hexafluoro- tert -butoxide
  • the chiral ruthenium carbene complexes of the invention find particular utility as catalysts in effecting a host of enantioselective organic transformations.
  • these complexes can be used to control the enantioselectivity of an olefin metathesis reaction by catalyzing the reaction with a chiral ruthenium carbene complex of the invention.
  • these complexes can be treated with MX reagents, where M is an alkali metal and X can be any negatively charged counterion (e.g., Br - or I - ) in order to effect higher relative rates of enantioselectivity.
  • reaction of the neutral complex with lithium bromide or sodium iodide generates the bromide and iodide analogs of the complex, resulting in catalysts that exhibit enhanced enantioselectivity relative to the chloro counterpart (reaction with MX reagents should lead to exchange of the chloride groups for X groups without any change in charge).
  • a meso-triene or achiral triene can undergo asymmetric ring-closing metathesis to afford optically-enriched substituted cyclic or heterocyclic olefins in a reaction catalyzed by the complex of the invention:
  • the complex of the invention may be used to treat a cyclic olefin substituted with two terminal olefin groups, to effect an enantioselective ring-opening/ring-closing metathesis reaction and thereby provide an optically enriched cyclic olefin:
  • the complex of the invention can effect the ring-opening/cross metathesis between a cyclic and an acyclic olefin to afford an optically enriched product:
  • the complex of the invention can effect a kinetic resolution via the enantioselective cross metathesis of a racemic mixture of a chiral olefin with another olefinic reactant, to afford an opticallyactive product and starting material:
  • the complex of the invention can also be used to effect kinetic resolutions through the enantioselective ring-closing of a racemic diene, affording partial conversion to an optically enriched sample of the starting material and an optically enriched cyclic olefin product:
  • the resulting diamines ( 3a, 3b, 3c, 4a, 4b, 4c ) are then condensed with triethyl orthoformate and ammonium tetrafluoroborate to produce the corresponding imidazolium tetrafluoroborate salts ( 5a, 5b, 5c, 6a, 6b, 6c ) ( Saba et al., Tetrahedron Lett. 32:5031-5034 (1991 )):
  • imidazolium salt ( 6b ) (0.200 g, 0.408 mmol) and potassium hexafluoro- t -butoxide (0.108 g, 0.490 mmol) were dissolved in tetrahydrofuran (4 mL), added to a solution of bis(tricyclohexylphosphine)-benzylidene ruthenium dichloride (0.403 g, 0.490 mmol) in toluene (10 mL), and transferred to a Schlenk flask. The flask was removed from the glove box and heated to 50°C under argon for 2 hours. The solution was cooled to ambient temperature and the volatiles were removed in vacuo.
  • Substrates ( 10 ), ( 11 ), and ( 12 ) monosubstituted central olefin with which the catalyst undergoes the initial metathesis reaction ( Ulman et al., Organometallics 17:2484-2489 (1998 )), and two di- or trisubstituted pendant olefins with which the stereochemically defining cyclization step occurs.
  • catalysts prepared from (1 R ,2 R )-diphenylethylenediamine ( 8a, 8b, 8c ) exhibit higher enantioselectivity (up to 23% ee) than those prepared from (1 R ,2 R )-1,2-diaminocyclohexane ( 7a, 7b, 7c ) ( ⁇ 9% ee).
  • the conditions were as follows: 2.5 mol % of catalyst, 55 mM substrate in CH 2 Cl 2 , 38°C.
  • conditions were: 5 mol % of catalyst, 100 mol % of halide salt, 55 mM substrate in THF, 38°C.
  • the halide ligand is bound trans to the L-type ligand.
  • the halides adopt a cis arrangement in the alkylidene-halide-olefin plane.
  • the olefin binds trans to the L-type ligand.
  • C is inconsistent with the observed stereochemical outcome of the desymmetrization of substrates 10,11 and 12.
  • geometry (B) cannot be discounted, geometry (A) appears to be most consistent with the observed ligand effects and stereochemical outcome of these reactions.
  • the unbound olefin occupies the distal position relative to the apical halide; this proposed steric interaction between the unbound olefin and apical halide is further consistent with the dramatic increase in enantioselectivity observed upon changing the halide from Cl - to Br - to I -. Further details on the stereochemical model can be found in Seiders, et al., Organic Letters 3(20):3225-3228 (2001 ).
  • Asymmetric cross metathesis provides a powerful means for the formation of stereogenic centers under catalytic and mild conditions starting form readily available olefinic starting materials.
  • the chiral ligand provides a steric bias that directs the face from which the incoming olefin will approach the catalyst after the substrate is already bound to the catalyst. The enantiomeric excess is then determined by the difference in the relative energies of the two possible cyclic transition states that lead to the cyclic products, not by the initial binding of the substrate.
  • the ligand In asymmetric olefin cross metathesis, the ligand not only needs to designate the face from which the cross partner will access the catalyst, but also needs to directly interact with the cross partner during the binding event such that one enantiomer (or one enantiotopic olefin in the case of a desymmetrization) will be preferred. This requires a greater degree of control in the olefin binding event.
  • the catalysts of the invention effectively impart the desired facial selectivity. It is proposed that inclusion of steric bulk at the meta position, opposite to the ortho group already present, will impart a greater steric influence on the binding of the chiral/prochiral substrates without interfering with the highly effective transmission of chirality from the backbone to the aniline derived aromatic groups.
  • the catalysts were prepared from commercially available and or readily synthesized starting materials, e.g., 1-bromo-2,5-diisopropylbenzene.
  • starting materials e.g., 1-bromo-2,5-diisopropylbenzene.
  • palladium mediated coupling of 1-bromo-2,5-diisopropylbenzene to (1 R ,2 R )-diphenyl ethylene diamines afforded the diarylated product in good yield.
  • Conversion to the tetrafluoroborate salt occurred without event.
  • excess of the chiral ligand was employed to ease in the purification.

Claims (23)

  1. Complexe de carbène de ruthénium chiral de la formule :
    Figure imgb0049
    dans laquelle :
    X1 et X2 sont indépendamment choisis dans le groupe constitué par les ligands anioniques et les polymères, ou bien X1 et X2 peuvent être pris ensemble pour former un groupe cyclique ;
    R1 est choisi dans le groupe constitué par l'hydrogène et les groupements silyle, hydrocarbyle, hydrocarbyle substitués, hydrocarbyle contenant des hétéroatomes, hydrocarbyle substitués contenant des hétéroatomes, et carboxyle ;
    R2 est choisi dans le groupe constitué par l'hydrogène et les groupements silyle, hydrocarbyle, hydrocarbyle substitués, hydrocarbyle contenant des hétéroatomes, et hydrocarbyle substitués contenant des hétéroatomes, ou bien R1 et R2 peuvent être pris ensemble pour former un groupe cyclique ;
    Y1 et Y2 sont des hétéroatomes indépendamment choisis dans le groupe constitué par N, O, S, et P, à condition que lorsque Y1 ou Y2 est O ou S, alors le groupe aryle attaché soit absent ;
    R5 et R6 sont indépendamment choisis dans le groupe constitué par les polymères, les groupements hydrocarbyle, hydrocarbyle substitués, hydrocarbyle contenant des hétéroatomes, hydrocarbyle substitués contenant des hétéroatomes, et les groupes fonctionnels, éventuellement substitués par un ou plusieurs groupements choisis dans le groupe constitué par les groupements alkyle en C1-10, alcoxy en C1-10, aryle en C5-20, hydroxyle, sulfhydryle, -(CO)-H, halogéno, et les groupes fonctionnels ; ou bien
    R5 et R6 sont liés pour former une structure cyclique substituée ou non substituée, saturée ou insaturée, qui peut elle-même être substituée ;
    R20 et R21 sont indépendamment choisis dans le groupe constitué par l'hydrogène et les groupements alkyle en C1-20, alkyle en C1-20 substitués, alkyle en C1-20 perfluorés, hétéroalkyle en C1-20, hétéroalkyle en C1-20 substitués, alcoxy en C1-20, aryle en C5-20, aryle en C5-20 substitués, hétéroaryle, aralkyle en C5-30, alkaryle en C5-30, et halogéno ; et
    L est un ligand donneur d'électrons neutre.
  2. Complexe de la revendication 1 dans lequel X1 et X2 sont indépendamment choisis dans le groupe constitué par les groupements halogéno, benzoate, acyle en C2-6, (alcoxy en C2-6)carbonyle, alkyle en C1-6, phénoxy, alcoxy en C1-6, (alkyl en C1-6)sulfanyle, aryle en C5-20, et (alkyl en C1-6)sulfonyle.
  3. Complexe de la revendication 2 dans lequel X1 et X2 sont indépendamment choisis dans le groupe constitué par les groupements halogéno, CF3CO2, CH3CO2, CFH2CO2, (CH3)3CO, (CF3)2(CH3)CO, (CF3)(CH3)2CO, PhO, MeO, EtO, tosylate, mésylate, et trifluorométhanesulfonate.
  4. Complexe de la revendication 3 dans lequel X1 et X2 sont des halogènes.
  5. Complexe de la revendication 1 dans lequel R1 est choisi dans le groupe constitué par l'hydrogène et les groupements aryle en C5-20.
  6. Complexe de la revendication 1 dans lequel R2 est un groupement aryle en C5-20.
  7. Complexe de la revendication 6 dans lequel R2 est un groupement phényle.
  8. Complexe de la revendication 1 dans lequel Y1 et Y2 représentent N.
  9. Complexe de la revendication 1 dans lequel R5 et R6 sont des groupements aryle en C5-20.
  10. Complexe de la revendication 1 dans lequel R20 est un groupement alkyle et R21 est un hydrogène.
  11. Complexe de la revendication 1 dans lequel R20 et R21 sont des groupements alkyle.
  12. Complexe de la revendication 1 dans lequel L est choisi dans le groupe constitué par les ligands phosphine, phosphine sulfonée, phosphite, phosphinite, phosphonite, arsine, stibine, éther, amino, amido, imino, sulfoxyde, carboxy, nitrosyle, pyridyle, pyridyle substitué, imidazolyle, imidazolyle substitué, pyrazinyle, et thioéther.
  13. Complexe de la revendication 12 dans lequel L est une phosphine ayant la formule PR'R"R"' où R', R" et R''' sont chacun indépendamment choisi dans le groupe constitué par un groupement alkyle en C1-10, un groupement aryle en C5-20, et un groupe fonctionnel contenant des hétéroatomes.
  14. Complexe de la revendication 13 dans lequel R', R" et R''' sont identiques.
  15. Complexe de la revendication 14 dans lequel L est choisi dans le groupe constitué par les ligands -P(cyclohexyle)3, -P(cyclopentyle)3, -P(isopropyle)3, et -P(phényle)3.
  16. Complexe de la revendication 13 dans lequel L est une phosphine ayant la formule -P(phényl)2(R) ou -P(phényl)(R)2, où R est un groupement alkyle en C1-20.
  17. Complexe de la revendication 1 dans lequel R5 et R6 sont liés pour former une structure cyclique substituée ou non substituée, saturée ou insaturée, qui est un groupe alicyclique en C4-12 ou un groupe aryle en C5-6, qui peut lui-même être substitué par des groupes alicycliques ou aromatiques liés ou fusionnés, ou par d'autres substituants.
  18. Procédé de contrôle de l'énantiosélectivité d'une réaction de métathèse d'oléfines comprenant la catalyse de la réaction avec un complexe de carbène de ruthénium chiral de la formule :
    Figure imgb0050
    dans laquelle :
    X1 et X2 sont indépendamment choisis dans le groupe constitué par les ligands anioniques et les polymères, ou bien X1 et X2 peuvent être pris ensemble pour former un groupe cyclique ;
    R1 est choisi dans le groupe constitué par l'hydrogène et les groupements silyle, hydrocarbyle, hydrocarbyle substitués, hydrocarbyle contenant des hétéroatomes, hydrocarbyle substitués contenant des hétéroatomes, et carboxyle ;
    R2 est choisi dans le groupe constitué par l'hydrogène et les groupements silyle, hydrocarbyle, hydrocarbyle substitués, hydrocarbyle contenant des hétéroatomes, et hydrocarbyle substitués contenant des hétéroatomes, ou bien R1 et R2 peuvent être pris ensemble pour former un groupe cyclique ;
    Y1 et Y2 sont des hétéroatomes indépendamment choisis dans le groupe constitué par N, O, S, et P, à condition que lorsque Y1 ou Y2 est O ou S, alors le groupe aryle attaché soit absent ;
    R5 et R6 sont indépendamment choisis dans le groupe constitué par les polymères, les groupements hydrocarbyle, hydrocarbyle substitués, hydrocarbyle contenant des hétéroatomes, hydrocarbyle substitués contenant des hétéroatomes, et les groupes fonctionnels, éventuellement substitués par un ou plusieurs groupements choisis dans le groupe constitué par les groupements alkyle en C1-10, alcoxy en C1-10, aryle en C5-20, hydroxyle, sulfhydryle, -(CO)-H, halogéno, et les groupes fonctionnels ; ou bien
    R5 et R6 sont liés pour former une structure cyclique substituée ou non substituée, saturée ou insaturée, qui peut elle-même être substituée ;
    R20 et R21 sont indépendamment choisis dans le groupe constitué par l'hydrogène et les groupements alkyle en C1-20, alkyle en C1-20 substitués, alkyle en C1-20 perfluorés, hétéroalkyle en C1-20, hétéroalkyle en C1-20 substitués, alcoxy en C1-20, aryle en C5-20, aryle en C5-20 substitués, hétéroaryle, aralkyle en C5-30, alkaryle en C5-30, et halogéno ; et
    L est un ligand donneur d'électrons neutre.
  19. Procédé de la revendication 18 dans lequel la réaction de métathèse d'oléfines est la désymétrisation de triènes achiraux.
  20. Procédé de la revendication 18 dans lequel la réaction de métathèse d'oléfines est la désymétrisation énantiosélective de triènes.
  21. Procédé de la revendication 18 dans lequel la réaction de métathèse d'oléfines est une métathèse de fermeture de cycle asymétrique.
  22. Procédé de la revendication 18 qui comprend en outre le traitement du complexe avec un réactif de la formule NaX, où X est un contre-ion chargé négativement.
  23. Procédé de la revendication 22 dans lequel X est choisi dans le groupe constitué par Br- et I-.
EP02762142.4A 2001-04-16 2002-04-16 Complexes de carbene de metaux de transition du groupe 8 utilises comme catalyseurs de metathese d'olefines enantioselective Expired - Lifetime EP1395616B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28421401P 2001-04-16 2001-04-16
US284214P 2001-04-16
PCT/US2002/012165 WO2002083742A2 (fr) 2001-04-16 2002-04-16 Complexes de carbene de metaux de transition du groupe 8 utilises comme catalyseurs de metathese d'olefines enantioselective

Publications (3)

Publication Number Publication Date
EP1395616A2 EP1395616A2 (fr) 2004-03-10
EP1395616A4 EP1395616A4 (fr) 2006-11-22
EP1395616B1 true EP1395616B1 (fr) 2019-05-22

Family

ID=23089326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02762142.4A Expired - Lifetime EP1395616B1 (fr) 2001-04-16 2002-04-16 Complexes de carbene de metaux de transition du groupe 8 utilises comme catalyseurs de metathese d'olefines enantioselective

Country Status (4)

Country Link
US (1) US7683180B2 (fr)
EP (1) EP1395616B1 (fr)
AU (1) AU2002307384A1 (fr)
WO (1) WO2002083742A2 (fr)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5817599A (en) * 1998-09-10 2000-04-03 University Of New Orleans Foundation Catalyst complex with carbene ligand
WO2003020775A1 (fr) * 2001-08-29 2003-03-13 California Institute Of Technology Polymerisation par metathese a ouverture de cycle des olefines pontees bicycliques et polycycliques contenant deux ou plusieurs heteroatomes
WO2004062763A2 (fr) * 2003-01-13 2004-07-29 Cargill, Incorporated Procede de production de produits chimiques industriels
US7094898B2 (en) * 2003-05-29 2006-08-22 University Of Ottawa Ruthenium compounds, their production and use
WO2004112951A2 (fr) * 2003-06-19 2004-12-29 University Of New Orleans Research & Technology Foundation, Inc. Preparation de catalyseurs a base de ruthenium pour la metathese d'olefines
US7960555B2 (en) * 2004-10-20 2011-06-14 University Of Massachusetts Substituted pyridine ligands and related water-soluble catalysts
WO2006045070A2 (fr) * 2004-10-20 2006-04-27 University Of Massachusetts Ligands de pyridine peg-substitues et catalyseurs solubles dans l'eau associes
JP5437628B2 (ja) 2005-06-06 2014-03-12 ダウ グローバル テクノロジーズ エルエルシー α,ω−官能基を有するオレフィンを調製する複分解法
SG169326A1 (en) 2005-12-16 2011-03-30 Materia Inc Organometallic ruthenium complexes and related methods for the preparation of tetra-substituted and other hindered olefins
WO2007081987A2 (fr) * 2006-01-10 2007-07-19 Elevance Renewable Sciences, Inc. Procédé de fabrication de produits de métathèse hydrogénés
DE102006008520A1 (de) * 2006-02-22 2007-08-23 Lanxess Deutschland Gmbh Neue Katalysator-Systeme und deren Verwendung für Metathese-Reaktionen
CN101563315B (zh) * 2006-07-12 2013-08-14 埃莱文斯可更新科学公司 环烯烃与种子油等的开环交叉复分解反应
WO2008010961A2 (fr) 2006-07-13 2008-01-24 Elevance Renewable Sciences, Inc. Synthèse d'alcènes à double liaison terminale à partir d'alcènes à double liaison interne et d'éthylène via la métathèse d'oléfines
CN102123979A (zh) * 2006-10-13 2011-07-13 埃莱文斯可更新科学公司 通过烯烃复分解由内烯烃合成末端烯烃的方法
CN101558027B (zh) 2006-10-13 2013-10-16 埃莱文斯可更新科学公司 通过复分解反应制备α,ω-二羧酸烯烃衍生物的方法
WO2008048520A2 (fr) 2006-10-13 2008-04-24 Elevance Renewable Sciences, Inc. Méthodes de production de composés organiques par métathèse et hydrocyanation
MX2010006659A (es) 2007-12-21 2010-07-05 Hoffmann La Roche Proceso para la preparacion de un macrociclo.
JP5619724B2 (ja) * 2008-04-09 2014-11-05 マテリア, インコーポレイテッド 置換された骨格を有するn−ヘテロ環状カルベンリガンドを有するルテニウムオレフィン複分解触媒
EP2210870A1 (fr) 2009-01-23 2010-07-28 Evonik Degussa GmbH Liaisons d'hydroxy-aldéhyde fonctionnelles
DE102009005951A1 (de) 2009-01-23 2010-07-29 Evonik Degussa Gmbh Aldehydfunktionale Verbindungen
AP2011006003A0 (en) * 2009-05-05 2011-12-31 Stepan Co Sulfonated internal olefin surfactant for enhancedoil recovery.
US9175231B2 (en) 2009-10-12 2015-11-03 Elevance Renewable Sciences, Inc. Methods of refining natural oils and methods of producing fuel compositions
US9222056B2 (en) 2009-10-12 2015-12-29 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US8735640B2 (en) 2009-10-12 2014-05-27 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel and specialty chemicals from natural oil feedstocks
US9169447B2 (en) 2009-10-12 2015-10-27 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
US9382502B2 (en) 2009-10-12 2016-07-05 Elevance Renewable Sciences, Inc. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks
US9365487B2 (en) 2009-10-12 2016-06-14 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
WO2011046872A2 (fr) 2009-10-12 2011-04-21 Elevance Renewable Sciences, Inc. Procédés de raffinage et de production de carburant à partir de charges d'huile naturelle
US9000246B2 (en) 2009-10-12 2015-04-07 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
WO2011059803A2 (fr) * 2009-10-29 2011-05-19 Board Of Regents, The University Of Texas System Ruthénium-alkylidènes contenant des diaminocarbènes acycliques pour obtenir de faibles rapports e/z dans une métathèse croisée
WO2011069134A2 (fr) 2009-12-03 2011-06-09 Materia, Inc. Catalyseurs supportés de métathèse d'oléfines
SG188274A1 (en) 2010-08-23 2013-04-30 Materia Inc Vartm flow modifications for low viscosity resin systems
KR20140047659A (ko) 2011-06-17 2014-04-22 마터리아 인코포레이티드 올레핀 복분해 조성물을 위한 접착 촉진제 및 겔-개질제
WO2013095945A1 (fr) 2011-12-19 2013-06-27 Biosynthetic Technologies, Llc Procédés de préparation d'huiles de base d'estolide et composés oligomères qui comprennent une métathèse croisée
US20150152283A1 (en) 2012-06-12 2015-06-04 Materia, Inc. Method and composition for improving adhesion of metathesis compositions to substrates
PL400162A1 (pl) * 2012-07-27 2014-02-03 Apeiron Synthesis Spólka Z Ograniczona Odpowiedzialnoscia Nowe kompleksy rutenu, ich zastosowanie w reakcjach metatezy oraz sposób prowadzenia reakcji metatezy
US9234985B2 (en) 2012-08-01 2016-01-12 California Institute Of Technology Birefringent polymer brush structures formed by surface initiated ring-opening metathesis polymerization
US9147844B2 (en) 2012-08-01 2015-09-29 California Institute Of Technology Solvent-free enyne metathesis polymerization
US9388098B2 (en) 2012-10-09 2016-07-12 Elevance Renewable Sciences, Inc. Methods of making high-weight esters, acids, and derivatives thereof
US9527982B2 (en) 2012-12-19 2016-12-27 Materia, Inc. Storage stable adhesion promoter compositions for cyclic olefin resin compositions
US9598531B2 (en) 2013-02-27 2017-03-21 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
WO2014134333A1 (fr) 2013-02-27 2014-09-04 Materia, Inc. Composition comprenant deux catalyseurs de métathèse d'oléfines de type carbène métallique
BR112015022516A2 (pt) 2013-03-15 2017-07-18 Materia Inc revestimento no molde de polímeros de romp
US9758445B2 (en) 2013-04-09 2017-09-12 Materia, Inc. Preparation of surfactants via cross-metathesis
BR112015025850B1 (pt) 2013-04-09 2021-11-03 Materia, Inc Método para produzir pelo menos um produto de metátese cruzada
CA2908383A1 (fr) 2013-04-09 2014-10-16 Materia, Inc. Preparation de tensioactifs par metathese croisee
MY173809A (en) 2013-06-24 2020-02-24 Materia Inc Thermal insulation
MY184011A (en) 2013-07-03 2021-03-17 Materia Inc Liquid molding compositions
US9890239B2 (en) 2013-09-04 2018-02-13 California Institute Of Technology Functionalized linear and cyclic polyolefins
JP6403783B2 (ja) 2013-09-30 2018-10-10 ザ リサーチ ファウンデイション フォー ザ ステイト ユニバーシティー オブ ニューヨーク 溶液から遷移金属を除去するためのシステム及び方法
EP3092204A4 (fr) 2014-01-10 2017-12-20 Materia, Inc. Procédé et composition pour améliorer l'adhérence de compositions de métathèse à des substrats
CA2940338C (fr) 2014-02-27 2023-02-21 Materia, Inc. Compositions de promoteur d'adherence pour compositions de resine d'olefine cyclique
JP6787907B2 (ja) 2015-02-12 2020-11-18 マテリア, インコーポレイテッド 機能性エラストマーを含む環式オレフィン樹脂組成物
CA2975259C (fr) 2015-02-14 2023-03-14 Materia, Inc. Polymeres obtenus par polymerisation par ouverture de cycle par metathese (romp) presentant une resistance amelioree aux fluides hydrocarbones
EP3081572A1 (fr) * 2015-04-16 2016-10-19 ARLANXEO Deutschland GmbH Catalyseurs complexes à base d'osmium, de ruthénium et d'or
CN105772094B (zh) * 2016-04-21 2018-07-20 上海化工研究院有限公司 一种手性氮杂环卡宾类催化剂及其应用
CN109982995B (zh) 2016-09-23 2022-09-30 优美科股份公司及两合公司 氨基酸和氨基酸衍生物的制备
CN112299996B (zh) * 2019-07-24 2022-06-10 中国科学院福建物质结构研究所 一种手性α-氘代酮的合成方法
CN112279765B (zh) * 2019-07-24 2022-06-10 中国科学院福建物质结构研究所 一种手性α-氟代酮化合物的制备方法
CN115427512A (zh) 2020-03-10 2022-12-02 埃克森美孚化学专利公司 包含线性烯烃二聚体或者其氢化变体的蜡组合物及其生产方法
CN115427513A (zh) 2020-03-10 2022-12-02 埃克森美孚化学专利公司 包含线性烯烃二聚体或者其氢化变体的蜡组合物及其生产方法
WO2021183330A1 (fr) 2020-03-10 2021-09-16 Exxonmobil Chemical Patents Inc. Compositions de cire comprenant des dimères d'oléfines linéaires hydrogénées ou partiellement hydrogénées et procédés de production correspondants

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253156A3 (fr) 1992-04-03 2004-01-07 California Institute Of Technology Composé ruthénium et osmium métal-carbène avec haute activité de la méthathèse d'oléfines, et leur préparation et utilisation
US5312940A (en) 1992-04-03 1994-05-17 California Institute Of Technology Ruthenium and osmium metal carbene complexes for olefin metathesis polymerization
DE4447066A1 (de) 1994-12-29 1996-07-04 Hoechst Ag Heterocyclische Carbene enthaltende Metallkomplexverbindungen
US5831108A (en) 1995-08-03 1998-11-03 California Institute Of Technology High metathesis activity ruthenium and osmium metal carbene complexes
DE19611629A1 (de) * 1996-03-25 1997-10-02 Hoechst Ag Heterocyclische Carbene enthaltende Metallkomplexe als Katalysatoren für C-C-Verknüpfungen
US5917071A (en) 1996-11-15 1999-06-29 California Institute Of Technology Synthesis of ruthenium or osmium metathesis catalysts
US6107420A (en) 1998-07-31 2000-08-22 California Institute Of Technology Thermally initiated polymerization of olefins using Ruthenium or osmium vinylidene complexes
US6696597B2 (en) * 1998-09-01 2004-02-24 Tilliechem, Inc. Metathesis syntheses of pheromones or their components
US6215019B1 (en) * 1998-09-01 2001-04-10 Tilliechem, Inc. Synthesis of 5-decenyl acetate and other pheromone components
AU5817599A (en) * 1998-09-10 2000-04-03 University Of New Orleans Foundation Catalyst complex with carbene ligand
EP1196455B1 (fr) 1999-02-05 2008-01-16 Materia, Inc. Agents d'adhesion actifs par metathese et procedes permettant d'ameliorer l'adhesion de polymeres aux surfaces
ATE303408T1 (de) * 1999-02-05 2005-09-15 Advanced Polymer Technologies Polyolefinzusammensetzungen mit verbesserter uv- und oxidationsbeständigkeit und verfahren zu deren herstellung sowie verwendung
DE60039166D1 (de) 1999-03-31 2008-07-24 California Inst Of Techn Mit triazolydin-liganden koordinierte rutheniummetall-alkyliden-komplexe die hohe olefin-metathese-aktivität aufweisen
AU777357B2 (en) * 1999-05-24 2004-10-14 California Institute Of Technology Imidazolidine-based metal carbene metathesis catalysts
JP4691867B2 (ja) * 1999-05-31 2011-06-01 日本ゼオン株式会社 環状オレフィンの開環重合体水素化物の製造方法
US6271315B1 (en) * 1999-06-17 2001-08-07 Wisconsin Alumni Research Foundation Methods for making multivalent arrays
US6291616B1 (en) 1999-06-17 2001-09-18 Wisconsin Alumni Research Foundation Methods and reagents for capping ruthenium or osmium carbene-catalyzed ROMP products
DE19963125A1 (de) * 1999-12-24 2001-06-28 Creavis Tech & Innovation Gmbh Verfahren zur Herstellung von doppelbindungshaltigen Polymeren durch ringöffnende Polymerisation
FR2806644B1 (fr) * 2000-03-23 2002-05-10 Inst Francais Du Petrole Composition catalytique et procede pour la catalyse de dimerisation, de codimerisation et d'oligomerisation des olefines
JP4131074B2 (ja) * 2000-03-24 2008-08-13 日本ゼオン株式会社 ルテニウム化合物の製造方法
US6521799B2 (en) 2000-05-04 2003-02-18 University Of Florida Metathesis of functionalized allylic olefins
DE60140455D1 (de) 2000-08-10 2009-12-24 Trustees Boston College Wiederverwendbare methathese-katalysatoren
US6774274B2 (en) 2000-12-04 2004-08-10 University Of New Orleans Research And Technology Foundation, Inc. Metal complexes for hydrogenation of unsaturated compounds
US6759537B2 (en) 2001-03-23 2004-07-06 California Institute Of Technology Hexacoordinated ruthenium or osmium metal carbene metathesis catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20030055262A1 (en) 2003-03-20
WO2002083742A2 (fr) 2002-10-24
EP1395616A4 (fr) 2006-11-22
US7683180B2 (en) 2010-03-23
WO2002083742A3 (fr) 2002-12-19
AU2002307384A1 (en) 2002-10-28
EP1395616A2 (fr) 2004-03-10

Similar Documents

Publication Publication Date Title
EP1395616B1 (fr) Complexes de carbene de metaux de transition du groupe 8 utilises comme catalyseurs de metathese d'olefines enantioselective
US6613910B2 (en) One-pot synthesis of group 8 transition metal carbene complexes useful as olefin metathesis catalysts
Focken et al. Synthesis of iridium complexes with new planar chiral chelating phosphinyl-imidazolylidene ligands and their application in asymmetric hydrogenation
Kudis et al. Enantioselective Allylic Substitution of Cyclic Substrates by Catalysis with Palladium Complexes of P, N‐Chelate Ligands with a Cymantrene Unit
EP1180107B1 (fr) Nouveaux complexes d'alkylidene de ruthenium coordonnes avec des ligands de triazolylidene qui presentent une activite de metathese d'olefines elevee
Yang et al. Palladium catalyzed asymmetric hydrophosphination of α, β-and α, β, γ, δ-unsaturated malonate esters–efficient control of reactivity, stereo-and regio-selectivity
EP2260047B1 (fr) Procédé de production de complexes ruthénium-carbène
CN102481557B (zh) 用于制备具有螯合性亚烷基配体的基于钌的复分解催化剂的方法
MXPA06012903A (es) Ligandos de fosfina cicloolefinica y su uso en catalisis.
Arena et al. Structural control in palladium (II)-catalyzed enantioselective allylic alkylation by new chiral phosphine-phosphite and pyridine-phosphite ligands
Vinokurov et al. Homo‐and Cross‐Olefin Metathesis Coupling of Vinylphosphane Oxides and Electron‐Poor Alkenes: Access to P‐Stereogenic Dienophiles
Li et al. Efficient access to a designed phosphapalladacycle catalyst via enantioselective catalytic asymmetric hydrophosphination
CN103408573B (zh) 硼酸衍生物及其制备方法和应用
Källström et al. Asymmetric hydrogenation of tri-substituted alkenes with Ir-NHC-thiazole complexes
Stenne et al. Enantioselective olefin metathesis
CN109364998B (zh) 一种用于烯烃复分解反应的催化剂及其制备和应用方法
EP2358470B1 (fr) Procédé d'élaboration de complexes cationiques de ruthénium
US7312349B2 (en) Diene-bis-aquo-rhodium(I) complexes, process for preparing them and their use
Michon et al. Chiral tetradentate amine and tridentate aminocarbene ligands: Synthesis, reactivity and X-ray structural characterizations
Endo et al. Cationic ruthenium alkylidene catalysts bearing phosphine ligands
EP2098531A1 (fr) Composé de phosphore axial asymétrique et son procédé de production
JP2008201760A (ja) 光学活性スピロ化合物及びその製造方法
EP2183259B1 (fr) Ligands à base de paracyclophane, préparation de ceux-ci et utilisation dans une catalyse
US20060161022A1 (en) Chiral ligands for application in asymmetric syntheses
EP1489106B1 (fr) Complexes arene-ruthenium immobilises sur polymeres, catalyseurs constitues par les complexes, et procedes de synthese organique utilisant ceux-ci

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031113

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20061025

17Q First examination report despatched

Effective date: 20090225

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181108

RIC1 Information provided on ipc code assigned before grant

Ipc: C07F 9/70 20060101ALI20030516BHEP

Ipc: C08F 4/06 20060101AFI20030516BHEP

Ipc: C07F 15/04 20060101ALI20030516BHEP

Ipc: C07F 15/00 20060101ALI20030516BHEP

Ipc: C07F 9/90 20060101ALI20030516BHEP

Ipc: C07F 15/06 20060101ALI20030516BHEP

Ipc: C07F 15/02 20060101ALI20030516BHEP

Ipc: C07F 17/02 20060101ALI20030516BHEP

Ipc: C08F 4/80 20060101ALI20030516BHEP

Ipc: C07F 9/94 20060101ALI20030516BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60249913

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1136007

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190823

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1136007

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60249913

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

26N No opposition filed

Effective date: 20200225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210324

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210323

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60249913

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220415