EP1387059B1 - Moteur à dix cylindres - Google Patents

Moteur à dix cylindres Download PDF

Info

Publication number
EP1387059B1
EP1387059B1 EP20030014997 EP03014997A EP1387059B1 EP 1387059 B1 EP1387059 B1 EP 1387059B1 EP 20030014997 EP20030014997 EP 20030014997 EP 03014997 A EP03014997 A EP 03014997A EP 1387059 B1 EP1387059 B1 EP 1387059B1
Authority
EP
European Patent Office
Prior art keywords
crank
cylinders
row
crankshaft
cranks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030014997
Other languages
German (de)
English (en)
Other versions
EP1387059A1 (fr
Inventor
Ulrich Dr. Gutzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1387059A1 publication Critical patent/EP1387059A1/fr
Application granted granted Critical
Publication of EP1387059B1 publication Critical patent/EP1387059B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement

Definitions

  • the invention relates to a 10-cylinder internal combustion engine with two in relation to a crankshaft V-shaped arranged cylinder banks of five cylinders arranged in series. Furthermore, the invention relates to a crankshaft suitable for such an engine.
  • Such 10-cylinder V-engines are well known in the art (see eg US-A-1 552 667 or DE-A-10218922 ), but find in the field of contemporary passenger cars only small spread, since at higher numbers of cylinders predominantly eight or twelve cylinders are selected. Due to the often limited in passenger cars space for the engine nowadays almost exclusively V-arrangements are used at higher cylinder numbers. Since such engines are used primarily in luxury vehicles, a quiet engine running plays a major role. There are therefore sought cylinder arrangements in which the free forces and moments of first and second order either by design very small and preferably to zero or can be compensated by the simplest possible measures.
  • V-12 arrangement with two cylinder banks in the form of two six-cylinder arrangements, since this design, the free forces and moments of first and second order to zero, additional compensation measures can therefore be omitted in principle.
  • V-8 arrangement free forces and / or moments depending on the V-Einschlußwinkel can not be completely avoided.
  • An exception to this is only V-8 arrangements with an inclusion angle ⁇ of 90 °, in which the mass moments of first and second order on the crankshaft are compensated.
  • the present invention seeks to provide a V-10 engine concept that allows a largely balanced mass effects with the least possible effort.
  • a 10-cylinder internal combustion engine according to claim 1 and a corresponding crank shaft is proposed according to claim 13, wherein for each cylinder bank on the crankshaft, which has a crank for each cylinder, an uneven pitch of the crank angle is provided such that for each cylinder bank Second order mass effects are at least almost completely balanced, further wherein the projected in a normal plane of the crankshaft crankshaft angle for both banks are the same, and finally the cranks for the two banks of cylinders are arranged on the crankshaft such that the negative-rotating portion of the first-order moments or the mass forces of first order at least almost completely disappears.
  • This engine concept enables a massless, free basic engine with selectable V-angle.
  • mass effects of second order d. H. the free forces and moments of second order already balanced over the respective cylinder bank.
  • the resulting first-order mass effects of the two series five-cylinder banks can be considered as positively and negatively circulating force and moment vectors of the first order.
  • at least a partial compensation of the first-order mass effect takes place via the two cylinder banks, in particular a compensation of the negative-circulating first-order inertial forces via the two cylinder banks.
  • Optionally remaining first-order inertial forces, in particular positive first-order inertial forces, or else first-order inertias, can be compensated by simple measures, for example by counterweights on the cranks or on the crankshaft.
  • cranks preferably takes place in such a way that the negative-circulating part of the first-order moments of inertia becomes zero, so that at most a compensation of the first order inertial forces would have to be carried out.
  • cranks in which the negatively circulating portion of the first-order mass forces becomes zero.
  • remaining mass effects of the first order can also be used specifically to reduce the mass effect of other engine components, for example the mass effects of the valve train.
  • the oscillating masses and / or the lift at the respective middle cylinders of the cylinder banks can be increased such that the first order free forces are balanced at each cylinder bank.
  • the Kröpfungswinkel for a cylinder bank are mirrored to the Kröpfungswinkeln the other cylinder bank with respect to the average Kröpfung.
  • the arrangement of the cranks for the second cylinder bank is computationally obtained from the arrangement of the cranks for the first cylinder bank, in which all the cranks of the second cylinder bank are first rotated by an offset angle to the cranks of the first cylinder bank and then at the second cylinder bank the angle for the first and fifth as well as the second and fourth turn reversed, ie mirrored in relation to the mean bend.
  • a disappearance of the negatively rotating portions of the free forces of the first order is preferably realized by the fact that the cranks of a cylinder bank are each rotated by the same displacement angle ⁇ relative to the respective corresponding offset on the other cylinder bank.
  • represents the V inclusion angle between the cylinder banks.
  • a negative-circulating first-order component can be selectively generated with which mass effects of other engine components, in particular mass action, can be completely compensated from the valve train for a given operating state.
  • a similar effect can be achieved by varying individual pitch angles ⁇ on one or both banks of cylinders with respect to second order mass effects to compensate for corresponding second order mass effects of other engine components.
  • an operating state for example a defined rotational speed, to compensate these other mass effects completely in the first order and at least partially in the second order.
  • the angle difference amounts to the average offset are the same size for every two cranks of a cylinder bank.
  • the cranks are chosen so that the angle differences to the average crank for the first and fifth crank and also for the second and fourth crank each with the same amount are equal on both banks, but differ in their sign.
  • the first-mentioned Kröpfungswinkelan proves to be favorable in particular in connection with a phase-shifted, non-mirrored arrangement of the Kröpfungswinkel for the two cylinder banks, since in this case the cranks are distributed for a cylinder bank relatively evenly around the circumference of the crankshaft, thus the distances between the cranks of a cylinder bank with each other little of an integral multiple of 72 degrees, d. H. a complete equal distribution, deviate.
  • a certain amount of negative circumferential residual moment of the first order due to a longitudinal offset of the cylinder banks, but for a lower positive circumferential moment is generated.
  • a 10-cylinder internal combustion engine (not shown in greater detail in the figures, but known in principle to a person skilled in the art). Its cylinders are arranged side by side in two cylinder banks V-shaped, the cylinder banks depending on the example include a V-angle ⁇ of 36 °, 72 °, 90 °, 144 ° or 108 °. However, it is readily possible to deviate from the angular sizes given here by way of example in a broad range.
  • crankshafts In the cylinders arranged pistons are connected via a respective crank mechanism with a crankshaft.
  • This crankshaft has a crank for each cylinder to which the respective crank mechanism attacks.
  • the exemplary embodiments now show various crankshafts which are optimized with regard to a balanced V-10 engine concept and which permit a substantial compensation of the mass effects in the first and second engine orders.
  • the embodiments is based on the consideration for each cylinder bank on the crankshaft an unequal pitch of the Kröpfungswinkel ⁇ provide that is already selected for each cylinder bank alone the mass effects of second order, that is, the free inertial forces and moments of second order almost or preferably are fully balanced.
  • the crank angle ⁇ projected into a normal plane of the crankshaft - without regard to the order of the cranks - are the same for both cylinder banks.
  • the offset angles ⁇ are always related here for both cylinder banks to the respectively physically first offset in the axial direction of the crankshaft.
  • cranks for the two cylinder banks are common to arrange the cranks for the two cylinder banks on the crankshaft so that the negative-rotating portion of the resulting first order inertial forces and / or first order moments disappears almost completely.
  • the negative-going portion of the first-order mass moments of the two banks of cylinders is made zero or at least offset by a mirroring of the offset angles with respect to the center and third turns for a cylinder bank and / or a phase shift by an offset angle ⁇ of the turns between the cylinder banks reduced to a negligible value.
  • the displacement angle ⁇ is here understood to mean the angle between the crank pin centers of the left and right cylinder banks viewed from the front in the clockwise direction of the crankshaft. With an offset of the crank stars of the two cylinder banks this is the same for all V-cylinder pairs.
  • V-10 with a confinement angle ⁇ of 72 ° can indeed achieve a negative-rotating mass moment of first order of 160 Nm and a positive rotating mass moment of first order of 515 Nm, but there are second-order moments in the order of 540 Nm in negative circumferential direction and 1420 Nm in positive circumferential direction at a firing interval of 72 °.
  • the circumferential second-order moments in both directions can be reduced to approximately 100 Nm in both directions at firing intervals of 54 ° and 90 °, but the positive first-order torque is 4943 Nm.
  • the arrangement of the cranks for the second cylinder bank can be obtained from the arrangement of the cranks for the first cylinder bank, in which first all cranks are rotated by an offset angle ⁇ and then the angles for the first and fifth as well as the second and fourth offset are interchanged , ie mirrored with respect to the middle, third bend.
  • Table 1 shows, free forces remain in the first two embodiments. In this case, the first embodiment cuts off somewhat better due to the more uniform distribution of the cranks about the crankshaft.
  • cranking arrangements are more favorable, in which the offset angles ⁇ j of the second cylinder bank are obtained from the offset angles ⁇ i of the first cylinder bank solely by a phase shift by the given offset angle ⁇ j .
  • Table 1 arrangements with a more even distribution of the offsets, ie those in which the offsets are only slightly spaced from one another by an integer multiple of 72 °, tend to be more favorable (see Embodiments 3, 4 and 5) as more irregular arrangements according to the embodiments 6 and 7.
  • a negatively rotating first-order component can be selectively generated, which can be used for mass effects of other engine components, in particular at a given operating state Mass effect from the valve train at least partially compensate.
  • the resulting positively rotating parts can be compensated directly on the crankshaft as required.
  • Example 9 is based on Example 1 but has twice the V inclusion angle ⁇ . In Examples 10 and 11, in comparison to Examples 1 and 9, a variation of the oscillating masses was made to eliminate the remaining negative-going free forces.
  • V-angles ⁇ of 216 ° and 288 ° corresponding embodiments can be formed. They correspond to Examples 1, 9, 10 and 11 each with an exchange of the cylinder banks and allow for the cranks 4/9 and 5/10 crank pin with ⁇ of about 0 °.
  • the increase of the oscillating masses at the cranks 3 and 8 can be compared to the examples 10 and 11 by increasing the stroke by 9% at the associated cylinders 3 and 8 are replaced. Conveniently, this is associated with a corresponding shortening of the connecting rods, so that the top dead center (compression) remains at almost the same level. This changes the crank angle ⁇ i only slightly, as example 12 shows.
  • the ignition sequence corresponds to Example 11. The advantage of this is the avoidance of ballast.
  • the best examples are 1 and 3 and 8 to 11 with relatively uniform firing intervals, as can be seen in Table 3 with the ignition sequences also shown there.
  • these examples are advantageous because of the only slightly deviating with respect to the second engine order from 72 ° crankshaft angle.
  • All embodiments are characterized by a far-reaching compensation of the mass effect in the first and second order. Any remaining residual forces and / or residual moments can be easily compensated by simple measures, such as counterweights on the crankshaft and / or the crank gears.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Claims (13)

  1. Moteur à combustion interne à 10 cylindres comprenant deux bancs de cylindres disposés en V par rapport au vilebrequin, chaque banc ayant cinq cylindres en ligne, et avec un maneton de vilebrequin pour chaque cylindre d'un banc,
    caractérisé en ce qu'
    on a une division irrégulière des angles de maneton ϕ de façon que pour chaque banc de cylindres l'effet des masses du second ordre soit compensé pratiquement totalement,
    les angles de maneton ϕ projetés dans le plan normal au vilebrequin sont les mêmes pour les deux bancs de cylindres, et
    les manetons des deux bancs de cylindres sont installés sur le vilebrequin de façon à supprimer au moins pratiquement totalement la composante tournante négative des forces d'inertie du premier ordre et/ou des moments d'inertie du premier ordre, et
    pour un banc de cylindres on a les angles de maneton ϕ suivants rapportés au premier maneton :
    - premier maneton : 0,00°
    - second maneton : 70,12°
    - troisième maneton : 283,72°
    - quatrième maneton : 137,33°
    - cinquième maneton : 207,45°
    ou
    - premier maneton : 0,00°
    - second maneton : 109,88°
    - troisième maneton : 256,28°
    - quatrième maneton : 42,67°
    - cinquième maneton : 152,55°
  2. Moteur à combustion interne à 10 cylindres selon la revendication 1, dans lequel pour chaque cylindre une manivelle est prévue sur le vilebrequin,
    caractérisé en ce que
    les contrepoids sur les manivelles et/ou sur les vilebrequins permettent d'annuler les forces d'inertie du premier ordre.
  3. Moteur à combustion interne selon la revendication 2,
    caractérisé en ce qu'
    on annule les moments d'inertie du premier ordre par des contrepoids sur les manivelles et/ou sur les vilebrequins.
  4. Moteur à combustion interne selon l'une quelconque des revendications 1 à 3,
    caractérisé en ce que
    l'angle de maneton ϕi pour l'un des bancs de cylindres par rapport aux angles de maneton ϕj de l'autre banc de cylindre est symétrique par rapport au maneton central.
  5. Moteur à combustion interne selon la revendication 4,
    caractérisé en ce que
    la disposition des manetons pour le second banc de cylindres s'obtient à partir de la disposition des manetons du premier banc de cylindres en tournant tout d'abord d'un angle de décalage δ tous les manetons et ensuite en échangeant c'est-à-dire en reproduisant par symétrie par rapport au maneton central, les angles ϕ du premier et du cinquième, ainsi que du second et du quatrième maneton.
  6. Moteur à combustion interne selon l'une quelconque des revendications 1 à 3,
    caractérisé en ce que
    les manetons d'un banc de cylindres sont tournés chaque fois du même angle de décalage δ par rapport aux manetons de l'autre banc de cylindres.
  7. Moteur à combustion interne selon l'une quelconque des revendications 1 à 6,
    caractérisé en ce que
    les manetons des deux bancs de cylindres sont tournés l'un par rapport à l'autre d'un angle de décalage δ, pour lequel on a la relation δ = 2 γ - 180°, relation dans laquelle γ représente l'angle du V entre les bancs de cylindres.
  8. Moteur à combustion interne selon l'une quelconque des revendications 6 ou 7,
    caractérisé en ce que
    pour une déviation définie de l'angle de décalage par rapport à l'angle de décalage δ du calcul, on génère une composante tournante négative du premier ordre avec laquelle, pour un état de fonctionnement donné, les effets des masses des autres composants du moteur en particulier ceux de l'entraînement des soupapes sont complètement compensés.
  9. Moteur à combustion interne selon l'une quelconque des revendications 1 à 8,
    caractérisé en ce que
    pour chaque fois deux manetons d'un banc de cylindres, l'amplitude de la différence d'angle par rapport au maneton central est la même.
  10. Moteur à combustion interne selon l'une quelconque des revendications 1 à 9,
    caractérisé en ce que
    pour les deux bancs de cylindres, la différence angulaire par rapport au maneton central pour le premier et le cinquième maneton ainsi qu'en outre pour le second et le quatrième maneton, sont chaque fois de même amplitude mais de signe algébrique différent.
  11. Moteur à combustion interne selon l'une quelconque des revendications 1 à 10,
    caractérisé en ce que
    les bancs de cylindres sont décalés dans la direction longitudinale.
  12. Moteur à combustion interne selon l'une quelconque des revendications 1 à 11,
    caractérisé en ce que
    les masses oscillantes et/ou la course de chaque cylindre central des bancs de cylindres sont augmentées pour compenser les forces libres du premier ordre de chaque banc de cylindres.
  13. Vilebrequin d'un moteur à combustion interne à 10 cylindres ayant deux ensembles de cylindres disposés en V, chaque ensemble ayant cinq cylindres en ligne,
    caractérisé en ce que
    pour chaque banc de cylindres relié au vilebrequin, qui a un maneton pour chaque cylindre, on a prévu une division irrégulière de l'angle de maneton ϕ de façon que pour chaque banc de cylindres on compense pratiquement totalement l'effet des masses du second ordre,
    les angles de maneton ϕ projetés dans un plan normal au vilebrequin pour les deux bancs de cylindres sont identiques, et
    les manetons des deux bancs de cylindres sont installés sur le vilebrequin pour supprimer au moins pratiquement totalement la composante tournante négative des forces d'inertie du premier ordre et/ou des moments d'inertie du premier ordre, et pour un banc de cylindres on prévoit les angles de maneton ϕ suivants rapportés au premier maneton :
    - premier maneton : 0,00°
    - second maneton : 70,12°
    - troisième maneton : 283,72°
    - quatrième maneton : 137,33°
    - cinquième maneton : 207,45°
    ou
    - premier maneton : 0,00°
    - second maneton : 109,88°
    - troisième maneton : 256,28°
    - quatrième maneton : 42,67°
    - cinquième maneton : 152,55°
EP20030014997 2002-08-03 2003-07-02 Moteur à dix cylindres Expired - Lifetime EP1387059B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10235575 2002-08-03
DE2002135575 DE10235575A1 (de) 2002-08-03 2002-08-03 10-Zylinder-Verbrennungsmotor

Publications (2)

Publication Number Publication Date
EP1387059A1 EP1387059A1 (fr) 2004-02-04
EP1387059B1 true EP1387059B1 (fr) 2007-10-31

Family

ID=30010583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030014997 Expired - Lifetime EP1387059B1 (fr) 2002-08-03 2003-07-02 Moteur à dix cylindres

Country Status (2)

Country Link
EP (1) EP1387059B1 (fr)
DE (2) DE10235575A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103696933B (zh) * 2013-12-19 2015-10-21 宝鸡市博磊化工机械有限公司 煤化工用高低压一体式十列对称平衡大型往复压缩机
CN109611442A (zh) * 2019-02-15 2019-04-12 广西玉柴机器股份有限公司 V型10缸柴油机曲轴

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1552667A (en) * 1924-11-05 1925-09-08 Chris G Barr Crank shaft
FR1202729A (fr) * 1957-10-02 1960-01-12 Daimler Benz Ag Moteur à 10 cylindres fonctionnant comme moteur à combustion interne à quatre temps, en particulier pour voitures automobiles
DE1096112B (de) * 1957-10-02 1960-12-29 Daimler Benz Ag Als V-Motor ausgebildeter 10-Zylinder-Motor mit 5fach gekroepfter Kurbelwelle
FR2273186B1 (fr) * 1974-05-31 1977-09-30 Semt
JPH0730777B2 (ja) * 1988-08-04 1995-04-10 いすゞ自動車株式会社 内燃機関のクランク軸製造方法
AT395204B (de) * 1991-02-26 1992-10-27 Avl Verbrennungskraft Messtech Kurbelwelle
JP3861012B2 (ja) * 2002-01-30 2006-12-20 三菱重工業株式会社 多気筒内燃機関
DE10218922A1 (de) * 2002-04-27 2002-11-07 Christian Puchas Kurbelwelle für einen V10-Motor mit 100 DEG - 120 DEG V-Winkel

Also Published As

Publication number Publication date
EP1387059A1 (fr) 2004-02-04
DE50308482D1 (de) 2007-12-13
DE10235575A1 (de) 2004-02-19

Similar Documents

Publication Publication Date Title
DE4019304C1 (fr)
DE102011018166A1 (de) Vorrichtung zum Verändern eines Kompressionsverhältnisses einer Hubkolben-Brennkraftmaschine
DE3541831A1 (de) Motorausbildung mit geringer vibration
DE2047180C3 (de) Kolbentriebwerk
DE60221452T2 (de) Kolbenbetätigung einer V-Typ-Brennkraftmaschine mit variablem Verdichtungsverhältnis
WO2011098104A1 (fr) Moteur à combustion interne avec course d'expansion allongée et poids d'équilibrage sur l'arbre d'excentrique
DD298017A5 (de) Vorrichtung zum umwandeln von linearen hin- und herbewegungen in drehbewegungen
DE3231988C2 (fr)
DE3612641A1 (de) Brennkraftmaschine der v-bauart mit mittig angeordneten, zwei obenliegende nockenwellen koppelnden antriebsraedern
WO2005038197A1 (fr) Moteur a combustion interne a piston alternatif
DE102006060660B4 (de) Kolbenarbeitsmaschine
EP1387059B1 (fr) Moteur à dix cylindres
DE3232013A1 (de) Gegengewichtsanordnung fuer verbrennungskraftmaschinen mit drei zylindern
DE2904066A1 (de) Faecherfoermige kolbenmaschine
EP0048321B1 (fr) Moteur polycylindrique à piston et à soupapes commandées
DE4025927A1 (de) Baureihe von hubkolben-brennkraftmaschinen in v-bauweise
EP0501096B1 (fr) Vilebrequin
DE3132144A1 (de) Anordnung zum vollstaendigen massenausgleich einer hubkolben-kurbenwellenmaschine
DE102008009556A1 (de) Ausgleichswelle einer Brennkraftmaschine
DE102017102953A1 (de) Kurbelwelle
DE3842366A1 (de) Massenausgleichseinrichtung
DE102018101616A1 (de) V-Motor mit innenliegendem Doppelnockenwellensystem
DE331197C (fr)
DE2941515A1 (de) Kurbeltriebwerk fuer hubkolbenmaschinen
EP0881364B1 (fr) Fabrication d'un variateur de phase comprenant un rotor et une palette, en particulier pour arbres à cames de moteurs à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040214

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20061205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071031

REF Corresponds to:

Ref document number: 50308482

Country of ref document: DE

Date of ref document: 20071213

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080801

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150711

Year of fee payment: 13

Ref country code: GB

Payment date: 20150730

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150629

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150729

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50308482

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160702