EP1386187A2 - Cristaux photoniques - Google Patents

Cristaux photoniques

Info

Publication number
EP1386187A2
EP1386187A2 EP02727481A EP02727481A EP1386187A2 EP 1386187 A2 EP1386187 A2 EP 1386187A2 EP 02727481 A EP02727481 A EP 02727481A EP 02727481 A EP02727481 A EP 02727481A EP 1386187 A2 EP1386187 A2 EP 1386187A2
Authority
EP
European Patent Office
Prior art keywords
substrate
thermal expansion
glass
glass ceramic
photonic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02727481A
Other languages
German (de)
English (en)
Inventor
Walter Heitmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Publication of EP1386187A2 publication Critical patent/EP1386187A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B5/00Single-crystal growth from gels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices

Definitions

  • the present invention relates to photonic crystals.
  • Photonic crystals are generally understood to mean three-dimensional dielectric structures which are opaque to electromagnetic radiation in a specific wavelength range regardless of the direction of incidence. The wavelength range is largely determined by the arrangement, shape and size of the structures.
  • An important type of photonic crystals is a regular, for example matrix-like, arrangement of free-standing dielectric
  • Microsaules or cylinders with very small diameters and a relatively large height are formed. Typical diameters of microcylinders for visible and IR light are in the range from one hundred to a few hundred nanometers.
  • photonic crystals For the production of photonic crystals with micro cylinders, a substrate is required which carries the micro cylinders. For this reason, quartz glass has mostly been used, among other things because of the mechanical and chemical stability.
  • photonic crystals is understood to mean the three-dimensional dielectric structure with microscopes or cylinders, including a substrate carrying them.
  • photonic crystals are very well suited for the production of optical components such as very narrow-band filters, modulatable filters, add-drop filters and integrated optical structures with 90 ° deflection.
  • optical components such as very narrow-band filters, modulatable filters, add-drop filters and integrated optical structures with 90 ° deflection.
  • Such components are used in DWDM technology (Dense Wavelength Division Multiplexing)
  • BEST ⁇ TIGUMGSKOP ⁇ E electromagnetic radiation of different wavelengths is used as a carrier.
  • the channel spacing between adjacent channels used at the same time is 0.4 nm, with wavelengths in the range around 1550 nm being used.
  • the channel spacing will decrease to 0.2 nm or less in order to achieve a higher bandwidth when transmitting via an optical fiber. This requires components now with a very high stability of the filter properties, especially in the case of large temperature fluctuations.
  • a photonic crystal according to the invention has a substrate whose thermal expansion coefficient in the temperature range between -60 ° C. and 85 ° C. is at least 50% smaller than the amount of the expansion coefficient of quartz glass.
  • the thermal expansion of the substrate is kept low even with large temperature fluctuations; however, the distance of the microsaules or cylinders of the photonic crystal carried by the substrate changes only slightly. Therefore, the optical properties of the photonic also change Little crystal, so that the optical properties are much more stable than that of photonic crystals with a quartz glass substrate.
  • the thermal expansion coefficients of the substrate and / or the quartz glass are e.g. linear coefficients of thermal expansion.
  • the amount of the thermal expansion coefficient of the substrate in the, preferably entire, temperature range between -60 ° C. and 85 ° C. is preferably at least 50% smaller than the amount of the thermal expansion coefficient of quartz glass.
  • a substrate with a base body made of a glass ceramic which has a coefficient of thermal expansion which in the temperature range between -60 ° C and 85 ° C is less than 5 x 10 "7 / ° C, less than 4 x 10 ⁇ 7 / ° C , less than 3 X 10 "7 / ° C, less than 2 X 10 ⁇ 7 / ° C, particularly preferably less than 1 X 10 " 7 / ° C and most preferably less than 5 x 10 "8 / ° C or is less than 2 x 10 "8 / ° C.
  • a glass ceramic with expansion coefficients within the latter two ranges is complex to manufacture.
  • Glass ceramics are basically composite materials with an amorphous glass phase and embedded crystals, which are produced by ceramization, ie controlled devitrification (crystallization) of glasses. They result from the heat treatment of a suitable glass, in which crystals are created. For this purpose, suitable raw material is first melted, rectified, homogenized and then shaped while hot. After cooling and tempering the glass-like blank, a temperature treatment follows, in which the crystallization takes place. During the heat treatment, crystallization nuclei form in the glass on them subsequently the crystals grow at a slightly higher temperature.
  • the glass ceramic according to the invention contains more than 50% by weight of SiO 2 . In addition, it can be different
  • Contain additives especially z.
  • B203 Calcium oxide
  • Al oxide aluminum oxide
  • PbO lead oxide
  • MgO magnesium oxide
  • BaO barium oxide
  • K20 potassium oxide
  • Glass ceramics are mechanically and chemically very stable, which is an advantage in the production of photonic crystals, but also in their later use.
  • the invention further relates to a method for producing the photonic crystals according to the invention having the features of claim 8.
  • the photonic crystals according to the invention can also be produced with all known methods for the production of photonic crystals with quartz glass substrates.
  • additive lithography can be used to manufacture. This procedure is in SPIE Vol. 2849
  • the glass ceramic preferably has a glass phase and a crystalline phase distributed therein with a coefficient of thermal expansion which is lower in the temperature range between -60 ° C. and 85 ° C. than that of the glass phase.
  • a glass ceramic is particularly preferably used, the crystalline phase of which has a negative coefficient of thermal expansion at least in parts of the temperature range between -60 ° C. and 85 ° C. Because the thermal
  • Coefficient of expansion of a composite material depends, among other things, strongly on the thermal expansion coefficient of its components, resulting in a particularly small thermal expansion coefficient of the glass ceramic.
  • the proportion by weight of the crystalline phase also influences the thermal expansion coefficient of the glass ceramic. It is therefore preferred in the case that the thermal expansion coefficient of the crystalline phase is smaller than that of the glass phase, in particular negative, the proportion of the crystalline phase chosen so high that the thermal expansion is particularly small in the temperature range between -60 ° C and 85 ° C is.
  • the proportion by weight of the crystalline phase in the glass ceramic is preferably between 60 and 90%, particularly preferably 70 and 80%.
  • the crystalline phase is preferably largely homogeneously distributed in the glass ceramic.
  • Fig. 1 is a schematic perspective view of a section of a preferred embodiment of the photonic crystal according to the invention.
  • FIG. 2 shows a plan view of a section of the photonic crystal from FIG. 1.
  • FIG. 1 shows the photonic crystal 1 according to the invention, which was produced by means of additive lithography with electron beam-induced deposition or deposition of a three-dimensional structure 2 on a substrate 3.
  • a beam current of 100 pA to 20OpA was used for the production.
  • the three-dimensional structure 2 is arranged on the substrate 3 and adheres to the substrate.
  • the deposited material has grown into a composition of essentially spherical metallic nanocrystals in a matrix of insulating amorphous carbon or polymers from CH X radicals. For example, platinum and / or gold are used as metals.
  • the exemplary three-dimensional structure 2 comprises a multiplicity of essentially cylindrical microsaules or rods 4 made of Me 2 Au arranged in a two-dimensional regular matrix.
  • the band gap is 1.38 eV, corresponding to a photon wavelength of 900 nm.
  • the length h of the rods is approximately 2000 nm.
  • the structure 2 is or the rods 4 are nanocrystalline or amorphous.
  • the diameter d of the rods 4 is approximately 140 nm and the spacing a of the rods 4 within the regular matrix arrangement in the horizontal and vertical directions is 320 nm from center to center of adjacent rods 4.
  • a diameter of the rods in the range from 80 nm to 300 nm can also be produced and / or used.
  • shapes other than cylindrical rods can be produced and / or used
  • a substrate in particular a glass ceramic, which comprises or consists of microcrystals of a, preferably average, size in the range of approximately 50 nm.
  • Micro crystal sizes other than the said ones, for example smaller or larger than 50 nm, can also be used in the context of the invention.
  • a substrate 2 is preferably used which is chemically, mechanically and / or in terms of polishability essentially similar or even identical to the quartz glass.
  • the substrate 2 has a smooth, e.g. polished surface, which is particularly advantageous in cooperation with the three-dimensional structures of the photonic crystal according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

L'invention concerne des cristaux photoniques, c'est-à-dire des structures diélectriques tridimensionnelles, qui sont opaques au rayonnement électromagnétique dans une plage de longueurs d'onde déterminée, quelle que soit sa direction d'incidence. Un cristal photonique selon l'invention présente par exemple un agencement sous forme de matrice de microcolonnes ou de microcylindres diélectriques isolés présentant un très faible diamètre. Ces microcolonnes ou microcylindres sont placés sur un substrat dont le coefficient de dilatation thermique dans une plage de températures comprise entre - 60 °C et 85 °C est inférieur d'au moins 50 % à celui du verre de quartz. La dilatation thermique du substrat est ainsi maintenue à niveau faible même en cas de fortes variations de température et par conséquent l'écart entre les microcolonnes ou microcylindres, supportés par le substrat, du cristal photonique varie peu, de sorte que les propriétés optiques des cristaux photoniques selon l'invention sont sensiblement plus stables que celles des cristaux photoniques à substrat en verre de quartz. On utilise de préférence comme substrat une vitrocéramique, par exemple ZERODUR®.
EP02727481A 2001-04-03 2002-03-26 Cristaux photoniques Ceased EP1386187A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10116500 2001-04-03
DE10116500A DE10116500A1 (de) 2001-04-03 2001-04-03 Photonische Kristalle
PCT/EP2002/003365 WO2002082135A2 (fr) 2001-04-03 2002-03-26 Cristaux photoniques

Publications (1)

Publication Number Publication Date
EP1386187A2 true EP1386187A2 (fr) 2004-02-04

Family

ID=7680166

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02727481A Ceased EP1386187A2 (fr) 2001-04-03 2002-03-26 Cristaux photoniques

Country Status (6)

Country Link
US (1) US7359605B2 (fr)
EP (1) EP1386187A2 (fr)
JP (1) JP2004532427A (fr)
CA (1) CA2439191A1 (fr)
DE (1) DE10116500A1 (fr)
WO (1) WO2002082135A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1965446B1 (fr) * 2007-02-28 2011-11-16 Corning Incorporated Module thermoélectrique en céramique-verre
DE102007027414B3 (de) 2007-06-11 2009-01-22 Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH Mikro- und Nanofluidsystem zur dynamischen Strukturanalyse von linearen Makromolekülen und Anwendungen davon
EP2180534B1 (fr) * 2008-10-27 2013-10-16 Corning Incorporated Dispositifs et procédés de conversion d'énergie
TW201024800A (en) * 2008-12-30 2010-07-01 Ind Tech Res Inst Negative refraction photonic crystal lens
JP2012064824A (ja) * 2010-09-17 2012-03-29 Toshiba Corp 固体撮像素子、その製造方法、カメラ
US9651718B2 (en) * 2014-01-27 2017-05-16 Forelux Inc. Photonic apparatus with periodic structures
US10677965B2 (en) 2014-01-27 2020-06-09 Forelux Inc. Optical apparatus for non-visible light applications
DE102018109345A1 (de) * 2018-04-19 2019-10-24 Physik Instrumente (Pi) Gmbh & Co. Kg Integriert-optisches Funktionselement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993032A (en) * 1989-12-28 1991-02-12 General Dynamics Corp., Electronics Divn. Monolithic temperature stabilized optical tuning circuit for channel separation in WDM systems utilizing tunable lasers
US5385114A (en) * 1992-12-04 1995-01-31 Milstein; Joseph B. Photonic band gap materials and method of preparation thereof
US5303319A (en) * 1992-12-28 1994-04-12 Honeywell Inc. Ion-beam deposited multilayer waveguides and resonators
US5377285A (en) * 1993-02-11 1994-12-27 Honeywell Inc. Technique for making ultrastable ring resonators and lasers
JP2674680B2 (ja) * 1994-02-23 1997-11-12 宇都宮大学長 超伝導超格子結晶デバイス
US5600483A (en) * 1994-05-10 1997-02-04 Massachusetts Institute Of Technology Three-dimensional periodic dielectric structures having photonic bandgaps
DE19743296C1 (de) * 1997-09-30 1998-11-12 Siemens Ag Verfahren zur Herstellung einer offenen Form
WO2000006506A1 (fr) * 1998-07-30 2000-02-10 Corning Incorporated Procede de fabrication de structures photoniques
TWI228179B (en) * 1999-09-24 2005-02-21 Toshiba Corp Process and device for producing photonic crystal, and optical element
DE10014723A1 (de) * 2000-03-24 2001-09-27 Juergen Carstensen Herstellung dreidimensionaler photonischer Kristalle mit Porenätzungsverfahren in Silizium
US20030016895A1 (en) * 2001-07-23 2003-01-23 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing photonic crystals
US6768256B1 (en) * 2001-08-27 2004-07-27 Sandia Corporation Photonic crystal light source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02082135A2 *

Also Published As

Publication number Publication date
WO2002082135A2 (fr) 2002-10-17
US20040109657A1 (en) 2004-06-10
DE10116500A1 (de) 2002-10-17
CA2439191A1 (fr) 2002-10-17
JP2004532427A (ja) 2004-10-21
US7359605B2 (en) 2008-04-15
WO2002082135A3 (fr) 2003-11-27

Similar Documents

Publication Publication Date Title
DE60026122T2 (de) Glaskeramik und Temperaturkompensationselement
DE112014001293B4 (de) Vorrichtung zum Mie-Streuen von Licht aus einer optischen Faser und Verfahren zu deren Herstellung
DE10238607B4 (de) Verfahren zur Formung von Glas oder Glaskeramik und dessen Verwendung
DE3607259A1 (de) Mikrolinsenplatte und verfahren zu ihrer herstellung
DE102016119942B4 (de) Verfahren zur Herstellung einer keramisierbaren Grünglaskomponente sowie keramisierbare Grünglaskomponente und Glaskeramikgegenstand
EP1236695A2 (fr) Vitrocéramique
EP0017296B1 (fr) Procédé de fabrication de microlentilles et élément de couplage comportant une microlentille préparée selon ce procédé
EP1430001A2 (fr) Verre a revetement superficiel poreux antireflechissant, et procede de fabrication d'un tel verre
WO2006024440A1 (fr) Agent d'assemblage pour assembler des elements constitutifs, procede d'assemblage d'elements constitutifs a base d'un materiau contenant de l'acide silicique a haute densite, a l'aide de l'agent d'assemblage et element composite obtenu selon ledit procede
DE102004054392A1 (de) Verfahren zum Verbinden von Bauteilen aus hochkieselsäurehaltigem Werkstoff, sowie aus derartigen Bauteilen zusammengefügter Bauteil-Verbund
DE102007005780A1 (de) Verbundstruktur für die Mikrolithographie und optische Anordnung
WO2016055524A2 (fr) Stratifié en verre à résistance élevée
DE1800983A1 (de) Verfahren zum Herstellen duennschichtiger Membranen
DE10302342A1 (de) Substrat für die EUV-Mikrolithographie und Herstellverfahren hierfür
EP1386187A2 (fr) Cristaux photoniques
DE102006056088B4 (de) Verfahren zur Festigkeitssteigerung von Lithium-Alumino-Silikat-Glaskeramik durch Oberflächenmodifikation und durch dieses Verfahren hergestellte Lithium-Alumino-Silikat-Glaskeramik
DE102006035806A1 (de) Farbeffekt-Schichtsystem und Beschichtungen auf Basis photonischer Kristalle, ein Verfahren zu deren Herstellung und deren Verwendung
DE102019217977A1 (de) Glas, Verfahren zur Herstellung eines Glases und Glasschmelzanlage
EP1534631A1 (fr) Procede de production de cristaux hautement organises au moyen de procedes sol-gel
WO2022128681A1 (fr) Procédé de production d'articles en verre structuré par gravure alcaline
DE4420024C2 (de) Halbzeug in Form eines Verbundkörpers für ein elektronisches oder opto-elektronisches Halbleiterbauelement
DE19918001C2 (de) Hitzbeständiges, synthetisches Quarzglas und Herstellungsverfahren dafür
WO2007137944A1 (fr) Procédé pour la fabrication d'un cristal photonique
EP1757662A2 (fr) Procédé de production de cristaux hautement organisés au moyen de procédé sol-gel
DE102010035331B4 (de) Verfahren zur Herstellung linsenförmiger optischer Bauelemente aus Glas und Reflow Asphäre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20040527

17Q First examination report despatched

Effective date: 20040706

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20060416