EP1377730B1 - Centrale thermique a vapeur avec complement d'equipement et procede de post-equipement d'une centrale thermique a vapeur - Google Patents

Centrale thermique a vapeur avec complement d'equipement et procede de post-equipement d'une centrale thermique a vapeur Download PDF

Info

Publication number
EP1377730B1
EP1377730B1 EP02716986A EP02716986A EP1377730B1 EP 1377730 B1 EP1377730 B1 EP 1377730B1 EP 02716986 A EP02716986 A EP 02716986A EP 02716986 A EP02716986 A EP 02716986A EP 1377730 B1 EP1377730 B1 EP 1377730B1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
pressure
power plant
retrofit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP02716986A
Other languages
German (de)
English (en)
Other versions
EP1377730A1 (fr
Inventor
Richard Brendon Scarlin
Charles Smadja
Maurus Herzog
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23080461&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1377730(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1377730A1 publication Critical patent/EP1377730A1/fr
Application granted granted Critical
Publication of EP1377730B1 publication Critical patent/EP1377730B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type

Definitions

  • the invention relates to a steam power plant with retrofit kit and a method for retrofitting a steam power plant.
  • Steam turbine plants with conventional water / steam cycle are known from the prior art.
  • Known steam turbine plants are formed by a steam turbine set including condensation plant, connecting pipes and auxiliary equipment.
  • the steam turbine set usually consists of multi-stage steam turbines.
  • About the steam turbo set a work machine is driven, which is formed in the case of a power plant by a generator.
  • Large, fossil-fueled steam turbine plants typically use a reheat process.
  • Such a steam power plant with reheat is schematically in FIG. 7 shown.
  • the live steam temperature is usually about 520 ° C to 565 ° C
  • the live steam pressure is about 120 bar to 200 bar.
  • the steam enters a high-pressure turbine 4.
  • the pressure drop is converted into mechanical energy, before the steam at the outlet into a stream, the one High-pressure feedwater pre-heater 21 is supplied, and a stream which is supplied to a reheater 5, is divided.
  • the steam supplied to the high pressure feedwater pre-heater 21 is also referred to as bleed steam for feedwater pre-heating and serves to heat the feedwater by means of heat exchangers.
  • the second partial flow passes, as already mentioned, via a reheater 5 and 6 interceptor valves in a medium-pressure turbine 7, wherein pressure and temperature here typically be 30 to 40 bar and 520 ° C to 565 ° C. From the medium-pressure turbine 7 also passes tap water for the feedwater preheating in high-pressure feedwater preheaters 19 and 20 or directly into a connected to a boiler feed pump 18 feedwater tank 17.
  • the other part of the steam flow which is also referred to as working steam, enters a low-pressure turbine 8, from where the exiting working steam flows into a condensing unit 11 designed as a condenser, in which the steam is condensed by means of a heat exchanger through which cooling water flows.
  • the condensate is preheated by, for example, two low-pressure feedwater preheaters, here designated by reference numerals 15, 16, and fed to the feedwater tank 17 by means of a condensate pump 13.
  • the preheating in the low-pressure feedwater preheaters 15, 16 takes place with bleed steam from the low-pressure turbine 8.
  • a currently practiced approach to avoiding such losses is a conventional retrofit of older steam power plants where only the steam path of the turbines is modified.
  • new rotating and stationary turbine blades with improved profile are exchanged for the old turbine blades.
  • only certain blade rows are exchanged here, while the remaining blade rows continue to be operated unchanged.
  • the entire rotor including the rotating blades and / or the stator, in which the stationary blades are mounted replaced and thus the existing steam turbine plant can be better utilized.
  • Such a modification alone does not cause any significant major changes to the generator, the boiler, piping, capacitors or buildings.
  • the steam temperature and the vapor pressure remain substantially unchanged in such retrofitting.
  • the WO 98/49428 a retrofitting system for coal-fired power plants.
  • a hydrogen combustion system will be installed to reach extremely high steam temperatures from 650 ° C to 870 ° C.
  • the power plant's high-pressure turbine is completely replaced by a retort package comprising a hydrogen combustion system and a new high-pressure turbine suitable for this purpose.
  • the high-pressure turbine is rigidly coupled to the same shaft of the already existing downstream turbine stages.
  • the WO 98/49428 discloses all features in the preamble of claim 1.
  • Closing reveals the WO 97/18386 a refitting system in which an existing power plant operating on low superheated steam is supplemented by adding a gas turbo set.
  • a high-pressure super-hot-steam turbine be supplemented, which is fed by a gas turbine heated heat recovery steam generator.
  • the inlet temperatures for the superheated steam high-pressure turbine are 537 ° C to 593 ° C and the inlet pressures 69bar to 248bar.
  • the super hot steam weekly pressure turbine and the gas turbine thereby drive a new common generator, while the existing steam turbine set remains unchanged and drives the previous generator.
  • the invention has for its object to avoid the disadvantages of the prior art described above. Furthermore, it is an object of the present invention to provide a way to improve the efficiency or to extend the life of existing steam power plants available. In this case, the most cost-effective solutions are to be created in which as much as possible original parts of the existing steam power plant can continue to be used. Furthermore, if possible, the general infrastructure should be maintained. Finally, the use of existing operating licenses often plays an important role.
  • An inventive steam power plant with retrofit kit has a steam generator with superheater, a steam turbine set including condensation plants, connecting pipes, auxiliary equipment and a generator.
  • the retrofit kit at least one for elevated steam temperatures> 565 ° C, preferably 620 ° C to 720 ° C, and for unchanged or Modified live steam pressure designed retrofit turbine module, which is upstream of the existing steam turbine set with the shaft of the retrofit turbine module and the shaft of the existing steam turbine set are mechanically coupled together.
  • the existing generator may need to be adapted or replaced, or the power delivered may be limited to a permissible level.
  • an additional generator may be added at a still free end of the shaft to reduce the excess power.
  • the term turbine module in addition to the actual turbines and the necessary piping and valves for the corresponding temperatures and pressures to understand.
  • the retrofit turbine module is supplied with suitable parameter-containing steam.
  • the upstream high pressure also takes over the expansion of the existing high-pressure turbine, and thereby the existing high-pressure turbine can be replaced by the high-pressure turbine of the retrofit kit.
  • the freed by the elimination of the high-pressure turbine of the existing steam power plant space can be used advantageously for the turbine module of the retrofit kit.
  • many existing components of the steam power plant such as e.g. the feedwater pump and piping can continue to be used.
  • it can be used e.g. also the possibility to integrate one or more additional preheating stages and thus an additional increase in efficiency can be created.
  • the live steam pressure can be modified to be ⁇ 200 bar, preferably 240 bar to 375 bar. If the stress on previously existing safety margins of the existing components for a substantial pressure increase is not sufficient, a corresponding modification of the pressure-loaded components is required.
  • Another solution variant envisages that only the live steam temperature is increased by way of example to 720 ° C., but the live steam pressure is reduced to, for example, 100 bar. This can prove to be particularly advantageous in older steam power plants, where it depends primarily on the extension of the life. In this case can be dispensed with a reheater.
  • An increased live steam temperature can be realized for example by modification of the superheater or by external heat sources.
  • modification of the superheater comes here, for example, the use of high temperature resistant materials as well as spatial and / or geometric changes of the superheater in question.
  • the turbine module of the retrofit kit is made of high-temperature resistant materials, preferably of nickel-base alloys. Such alloys are particularly suitable for high steam temperatures. Depending on the component, alloys such as IN617, IN625 or Waspaloy are suitable.
  • the retrofit Turblnenmodul has a single or multi-flow high-pressure turbine.
  • the present at the turbine inlet steam temperature can be about 720 ° C and the live steam pressure 375 bar.
  • the working steam exiting the upstream (super) high-pressure turbine of the retrofit turbine module is i.d.R. provided as input steam for the high-pressure turbine of the existing turbo group.
  • the retrofit turbine module has a single or multi-flow super-high pressure turbine and a single or multi-flow super-medium pressure turbine.
  • the live steam temperature present at the turbine inlet of the high-pressure turbine can be for example 620 ° C. and the live steam pressure about 240 bar.
  • the working steam exiting the upstream super-high-pressure turbine of the retrofit turbine module is usually used as input steam for the high-pressure turbine of the existing turbo group.
  • the inlet temperature at this high-pressure turbine can be unchanged, for example 540 ° C and the inlet pressure 150 bar.
  • the working steam is taken in this embodiment already at higher pressure from the high-pressure turbine to be modified and reheated by another reheater, for example, to about 60 bar / 620 ° C to one of the existing medium-pressure turbine upstream turbine to be fed, which relaxes the steam on the previous entry state of the existing medium-pressure turbine.
  • the supercharging super-high-pressure can be additionally designed for the residual expansion of the existing high-pressure turbine, with which this existing component can be removed.
  • the super high pressure and super medium pressure turbine of the retrofit turbine module may be housed in a common housing or in separate housings. When arranged in a common housing material can be saved, which contributes to a reduction in manufacturing costs. Furthermore, such an arrangement leads to additional space gain, which also cramped sites can be retrofitted accordingly.
  • the retrofit kit also has a modified steam generator and / or superheater for generating live steam with elevated steam temperature> 565 ° C, preferably 620 ° C to 720 ° C, and with unchanged or modified steam pressure.
  • the existing steam generator and / or superheater if this is technically possible, for example, be modified for higher steam temperatures and optionally higher vapor pressure or against a retrofit steam generator and / or superheater, for generating temperatures of> 565 ° C and optionally pressures of ⁇ 200 bar is exchanged.
  • another steam generator and / or superheater can be connected downstream, which can also be operated with an external heat source.
  • retrofit steam generators may be partially made, for example, from nickel-based alloys.
  • An advantageous development of the steam power plant according to the invention provides that an additional generator or a modified or replaced generator for power reduction of the additional power generated by the retrofit turbine set is provided.
  • This can be an additional generator on the same or a separate shaft can be added in addition to the existing generator, or the existing generator can be upgraded by modification, such as the winding, or the existing generator can be completely replaced by a new generator.
  • the steam generator and / or the superheater and the feedwater pump can be retrofitted or rebuilt or added to an additional designated as a booster pump feedwater pump and the associated piping for the higher live steam pressure can be modified.
  • the disadvantages of the prior art are avoided and the efficiency or the life of the existing steam power plant is substantially improved.
  • the general infrastructure can be maintained as far as economic and environmentally sound.
  • the spatial arrangement can be made according to local conditions. It is advantageous if the pipelines between the steam generator and retrofit turbine module are kept as short as possible in order to limit the use of high temperature resistant materials to the most necessary degree.
  • FIG. 12 shows a schematic block diagram of a steam power plant 22 with retrofit kit, which does not form part of the claimed invention.
  • a steam boiler steam generator 1 with a superheater 32 condensate or boiler feed water is brought to the desired steam temperature.
  • a feedwater pump designated as booster pump 29 in addition to the installation (respectively the adaptation or replacement of components 18 to 21) ensures the required pressure.
  • the known from the prior art components 18 to 21 can be adapted or replaced.
  • modified pressure lines 34 between the booster pump 29 and the main steam valves 23 are also provided.
  • the live steam temperature is in the present embodiment about 700 ° C, the live steam pressure is about 375 bar.
  • the super-high-pressure turbine 24 is here according to the present example FIG. 1 designed to be single-entry.
  • the steam path of the retrofitted super-high pressure turbine 24 is made of high temperature resistant materials, namely, nickel base alloys.
  • the inlet temperature of the live steam is about 700 ° C and the input steam pressure is about 375 bar.
  • An economic optimization can also justify the avoidance of high temperature materials by choosing a process with only eg 620 ° C and 240 bar.
  • the super-high pressure turbine 24 is mounted on a separate shaft 14 separately from the shaft 9 of the existing turbo group.
  • the power generated here is tapped by an additional generator (not shown) and converted into electricity.
  • a line passes from the super-high pressure turbine 24 exiting steam directly or via the decommissioned, existing live steam valves 3 in the single-flow high-pressure turbine 4 of the existing steam power plant.
  • the unchanged turbine inlet temperature in this example is 540 ° C and the turbine inlet pressure 150 bar.
  • the steam is split at the exit from the high-pressure turbine 4 into a stream which is fed to a high-pressure feedwater pre-heater 21 and a stream which is fed to a reheater 5.
  • the steam supplied to the high pressure feedwater pre-heater 21 is also referred to as bleed steam for feedwater pre-heating and serves to heat the feedwater by means of heat exchangers.
  • the second partial flow passes via the reheater 5 and the interceptor valves 6 in the double-ended in this example medium-pressure turbine 7, wherein pressure and temperature here typically unchanged 36 bar and 540 ° C, for example.
  • the medium-pressure turbine 7 also tap-in steam for the feedwater preheating in the high-pressure feedwater preheaters 19 and 20 and directly into the feedwater tank 17.
  • the other part of the vapor stream which is also referred to as working steam, enters the two-flow low-pressure turbine 8, from where the exiting Working steam flows into a condenser 11 in which the steam is condensed via a heat exchanger through which cooling water flows.
  • the condensate is preheated by means of low-pressure spas water preheaters 15, 16 and fed to the spout water tank 17.
  • the preheating in the low-pressure feedwater preheaters 15, 16 takes place with bleed steam from the low-pressure turbine 8.
  • the high-pressure turbine 4, the medium-pressure turbine 7 and the low-pressure turbine 8 form the turbo group of the already existing steam power plant.
  • the blading of this turbo group can be replaced as needed by new blades with modified blade profile.
  • the turbo group is arranged on the common shaft 9, which is rotatably supported by shaft bearings 12.
  • the shaft 9 drives a rotor of an alternator 10, through which the power generation is effected.
  • FIG. 2 shows a schematic block diagram of an advantageous embodiment of a steam power plant 22 according to the invention with retrofit kit.
  • a steam boiler 1 with superheater 32 condensate or Kesselspelsewasser to the desired steam temperature, for example, 700 ° C and brought by a booster pump 29 to the desired vapor pressure of eg 375 bar.
  • a suitable adaptation of the feedwater pump is possible.
  • the super-high-pressure turbine 24 is designed to be single-flow in the present exemplary embodiment and has a steam path made of high-temperature nickel-base alloys ,
  • the inlet temperature of the live steam is about 700 ° C and the input steam pressure is about 375 bar.
  • An economic optimization can also justify the avoidance of high temperature materials by choosing a process with only eg 620 ° C and 240 bar.
  • the super-high-pressure turbine 24 is made according to the embodiment FIG. 2 mounted on a shaft 14, which is connected to the shaft. 9 the already existing turbo group of the retrofitted steam power plant is connected via a coupling 28.
  • the steam passes directly or via the corresponding, set out of operation live steam valves 3 in the single-flow high-pressure turbine 4 of the existing steam power plant.
  • the turbine inlet temperature is also here, as before retrofitting, e.g. 540 ° C and the turbine inlet pressure 150 bar.
  • the steam is split at the exit from the high pressure turbine 4 into bleed steam supplied to a high pressure feedwater pre-heater 21 and working steam supplied to a reheater 5.
  • the working steam passes through the reheater 5 and the interceptor valves 6 in the double-ended in this example medium-pressure turbine 7, the pressure here also unchanged, typically 36 bar and the temperature, for example. 540 ° C is. From the medium-pressure turbine 7 also tap-in steam for the feedwater preheating in the high-pressure feedwater preheaters 19 and 20 or directly into the feedwater tank 17. The working steam enters the two-flow low-pressure turbine 8, from where it flows into a condenser 11, in which the steam over a is condensed by cooling water flowing through the heat exchanger.
  • the condensate is preheated via low-pressure feedwater pre-heater 15, 16 and fed to the feedwater tank 17.
  • the preheating in the low-pressure feedwater preheaters 15, 16 takes place with bleed steam from the low-pressure turbine 8.
  • the high-pressure turbine 4, the medium-pressure turbine 7 and the low-pressure turbine 8 form the turbo group of the already existing steam power plant.
  • the blading of this turbo group can be replaced as needed by new blades with modified blade profile.
  • the turbo group is arranged on the common shaft 9, which is rotatably supported by shaft bearings 12.
  • the shaft 9 drives in the embodiment according to FIG. 2 together with the via the clutch 28 connected to the shaft 9 super-high-pressure turbine 24 to the alternator 10.
  • the generator 10 is optionally modified so that it can absorb the power increased by connecting the super high-pressure turbine 24, or the output power is limited to a permissible level.
  • FIG. 3 shows a schematic block diagram of a steam power plant 22 with retrofit kit, which is not part of the claimed invention.
  • condensate or Kesseispelsewasser is brought to the desired steam temperature of, for example, 620 ° C and by the booster pump 29 to the desired vapor pressure of eg 240 bar in a modified for the elevated temperatures and pressures steam boiler 1 with superheater increased pressure line 34 is modified accordingly.
  • the steam passes into a retrofit turbine module 25, which in the present substancessbalspiel after FIG. 3 a super-pressure turbine 24 and a super medium-pressure turbine 27 has.
  • the super-Hochdrucldurbine 24 and the Super Mitteldruckturblne 27 are each designed einflutig and arranged in a common housing.
  • the steam pond of the retrofitted super high pressure turbine 24 and the steam path of the retrofitted super medium pressure turbine 27 are made of high temperature resistant materials.
  • the inlet temperature of the live steam is in the present example after FIG. 3 for example, 620 ° C and the input steam pressure eg 240 bar.
  • the super-high-pressure turbine 24 and the super-Mlltel réelleturbine 27 are mounted on a common shaft 14, separate from the shaft 9 of the existing turbo group The power generated here is tapped by an additional generator 30 and converted into electricity.
  • the working steam from the super-high-pressure turbine 24 then enters the super-mid-pressure turbine 27 of the retrofit turbine module 25.
  • the turbine inlet temperature of the working steam is here also e.g. 620 ° C and the turbine inlet pressure about 60 bar.
  • the pressure here, for example, unchanged 36 bar and the temperature 540 ° C is.
  • the working steam passes from the medium-pressure turbine 7 into the low-pressure turbine 8, which has a double flow in this exemplary embodiment.
  • the bleed steam for feedwater heating which serves to heat the feedwater by means of a heat exchanger, and the return of the condensate in the boiler are in FIG. 3 only hinted.
  • the original high pressure turbine is replaced in this embodiment by the retrofit turbine module 25, which includes a super high pressure turbine 24 and a super medium pressure turbine 27.
  • the medium-pressure turbine 7 and the low-pressure turbine 8 thereby form the turbo group of the already existing steam power plant.
  • the blading of this turbo group can be replaced as needed by new blades with modified blade profile.
  • the existing turbo group is arranged on a common shaft 9, which is rotatably supported by shaft bearings 12.
  • the shaft 9 drives in the embodiment according to FIG. 3 the original three-phase generator 10 of the existing steam power plant.
  • FIG. 4 shows a schematic block diagram of a second advantageous embodiment of a steam power plant 22 according to the invention with retrofit kit.
  • condensate or boiler feed water is likewise heated to the desired steam temperature of, for example, 620 ° C. and by the booster pump 29 or by suitable adaptation of the feedwater pump brought to the desired vapor pressure of eg 240 bar.
  • the working at elevated pressure line 34 is modified accordingly
  • the steam passes into a retrofit turbine module 25, which in the present exemplary embodiment has a super-high-pressure turbine 24 and a super-mid-pressure turbine 27.
  • the super-high-pressure turbine 24 is designed to be single-flow, the super-mid-pressure turbine 27 double-flow.
  • the steam path of the retrofitted super-high pressure turbine 24 and the steam path of the retrofitted medium pressure turbine 27 are made of high temperature resistant materials.
  • the input temperature of the live steam in the present embodiment is, for example, 620 ° C and the input steam pressure is e.g. 240 bar.
  • the super-high-pressure turbine 24 and the super-mid-pressure turbine 27 are mounted on a common shaft 14, which is connected to the shaft 9 of the existing turbo group via a coupling 28.
  • the working steam passes directly or via the existing, put out of operation live steam valves 3 in the single-flow high-pressure turbine 4 of the existing steam power plant.
  • the turbine inlet temperature of the working steam is unchanged here 540 ° C and the turbine inlet pressure, for example, 150 bar.
  • the existing high-pressure turbine must be rebuilt in such a way that the steam can be removed at the pressure required for the increased reheater pressure.
  • Via a reheater 33 and intercept valves 26, the working steam enters the super-Mitteldruckturbine 27 of the retrofit turbine module 25.
  • the bleed steam for feedwater heating which serves to heat the feedwater by means of a heat exchanger, and the return of the condensate in the boiler are in FIG. 4 only hinted.
  • the blading of this turbo group can be replaced as needed by new blades with modified blade profile.
  • the turbo group is arranged on the common shaft 9, which is rotatably supported by shaft bearings 12.
  • the shaft 9 drives in the embodiment according to FIG. 4 together with the connected via the coupling 28 with the shaft 9 retrofit turbine set 25 to the alternator 10.
  • the generator 10 is optionally modified so that it can absorb the power increased by connecting the retrofit turbine set, or the output power is limited to an acceptable level.
  • FIG. 5 shows a schematic block diagram of a third advantageous embodiment of a steam power plant 22 according to the invention with retrofit kit.
  • the steam is brought to pass through the steam generator 1 to the desired steam temperature.
  • the live steam temperature is in the present embodiment about 700 ° C, the live steam pressure remains unchanged, for example, 150 bar.
  • the steam After passing through the live steam superheater 32 and corresponding live steam valves 23, the steam enters a super high pressure turbine 24 of a retrofit turbine module 25.
  • the super high pressure turbine 24 completely replaces the high pressure turbine of the existing power plant and is via a clutch 28 with the shaft 9 of the existing steam Turbolo group connected.
  • the steam passes at the outlet from the super-high-pressure turbine 24 via a reheater 5 and the interceptor valves 6 in the medium-pressure turbine 7, wherein Pressure and temperature here typically 36 bar and 540 ° C, for example.
  • Pressure and temperature here typically 36 bar and 540 ° C, for example.
  • the additional power can be tapped via a modified generator 10.
  • FIG. 6 a schematic block diagram of a fourth advantageous embodiment of a steam power plant 22 according to the invention with retrofit kit.
  • This variant is provided for high operating temperatures by about 720 ° C but low operating pressures of about 100 bar, which is why essentially the original components of the existing steam power plant can be maintained and no major conversion of the steam boiler 1 is required.
  • the existing boiler feed pump 18 can operate at reduced pressure.
  • only a modified superheater 32 and the super high pressure turbine 24 are needed.
  • the super-high-pressure turbine 24 replaces completely the high-pressure turbine of the existing power plant and is connected to the shaft 9 of the existing steam turbo group via a coupling 28.
  • the steam enters the super high pressure turbine 24 of the retrofit turbine module 25.
  • the steam passes at the outlet from the super-high-pressure turbine 24 directly or via the shut-off valves 6 set in the medium-pressure turbine 7, wherein pressure and temperature here typically 36 bar and 540 ° C, for example.
  • a reheater can be omitted here.
  • Steam is supplied to the low-pressure turbine 8 from the medium-pressure turbine 7.
  • the power is delivered to the original generator 10 connected to the shaft 9.
  • This fourth embodiment is particularly suitable for further operation of steam power plants beyond their actual service life at low investment costs. Since the material fatigue here only allows pressures below the original design pressures on the high pressure side, the vapor pressures acting on the components are chosen lower than in the original design of the existing steam power plant. Since in this particular application i.d.R. no significant additional power is expected, the original generator 10 can often be kept unchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (12)

  1. Centrale thermique à vapeur avec post-équipement, la centrale thermique à vapeur présentant un générateur de vapeur (1) avec surchauffeur, un équipement de suralimentation à vapeur, y compris des installations de condensation (11), des conduites tubulaires de raccordement, des dispositifs auxiliaires et un générateur (10), caractérisée en ce qu'au moins un module de turbine de post-équipement (25) conçu pour des températures de vapeur fraîche > 565°, de préférence 620°C à 720°C, et pour une pression de vapeur fraîche modifiée ou non modifiée, est prévu en tant que post-équipement et est monté en amont de l'équipement de suralimentation à vapeur existant, et en ce que l'arbre (14) du module de turbine de post-équipement (25) et l'arbre (9) de l'équipement de suralimentation à vapeur existant sont accouplés l'un à l'autre mécaniquement.
  2. Centrale thermique à vapeur selon la revendication 1, caractérisée en ce que la pression de vapeur fraîche modifiée est ≥ 200 bars, de préférence est de 240 bars à 375 bars.
  3. Centrale thermique à vapeur selon la revendication 1, caractérisée en ce que la pression de vapeur fraîche modifiée est inférieure à la pression de vapeur fraîche de l'équipement de suralimentation à vapeur existant, de préférence est de l'ordre de 100 bars.
  4. Centrale thermique à vapeur selon l'une quelconque des revendications précédentes, caractérisée en ce que le module de turbine de post-équipement (25) se compose de matériaux résistants aux hautes températures, de préférence d'acier ou d'un alliage à base de nickel.
  5. Centrale thermique à vapeur selon l'une quelconque des revendications précédentes, caractérisée en ce que le module de turbine de post-équipement (25) présente une turbine à super haute pression (24) à une ou plusieurs cannelures.
  6. Centrale thermique à vapeur selon l'une quelconque des revendications précédentes, caractérisée en ce que le module de turbine de post-équipement (25) présente une turbine à super haute pression (24) à une ou plusieurs cannelures et une turbine à super moyenne pression (27) à une ou plusieurs cannelures.
  7. Centrale thermique à vapeur selon la revendication 6, caractérisée en ce que la turbine à super haute pression (24) et la turbine à super moyenne pression (27) sont disposées dans un boîtier commun.
  8. Centrale thermique à vapeur selon l'une quelconque des revendications précédentes, caractérisée en ce que le post-équipement présente un générateur de vapeur modifié (1) et/ou des surchauffeurs (32) pour générer de la vapeur fraîche à température de vapeur élevée > 565°C, de préférence entre 620°C et 720°C, et avec une pression de vapeur modifiée ou non modifiée.
  9. Centrale thermique à vapeur selon l'une quelconque des revendications précédentes, caractérisée en ce qu'un générateur supplémentaire (30) ou un générateur modifié ou remplacé (10) est prévu pour réduire la puissance de la puissance excessive produite par le post-équipement de suralimentation (25) .
  10. Procédé pour le post-équipement d'une centrale thermique à vapeur existante comprenant un générateur de vapeur (1) avec surchauffeur, un équipement de suralimentation à vapeur, y compris des installations de condensation (11), des conduites tubulaires de raccordement, des dispositifs auxiliaires et un générateur (10), le procédé présentant les étapes suivantes :
    montage d'un module de turbine de post-équipement (25) pour la vapeur fraîche avec une température de vapeur accrue et une pression de vapeur fraîche modifiée ou non modifiée, en amont de l'équipement de suralimentation existant, l'arbre (14) du module de turbine de post-équipement (25) et
    l'arbre (9) de l'équipement de suralimentation existant étant accouplés l'un à l'autre mécaniquement ; fourniture d'un générateur de vapeur (1) et/ou d'un surchauffeur (32) pour fournir de la vapeur fraîche à une température de vapeur accrue.
  11. Procédé pour le post-équipement d'une centrale thermique à vapeur selon la revendication 10, qui présente en outre l'étape suivants :
    post-équipement ou remplacement du générateur de vapeur et du surchauffeur (32) ainsi que de la pompe d'eau d'alimentation ou ajout d'une pompe de charge (29) et modification des conduites tubulaires correspondantes, afin de fournir une pression de vapeur fraîche accrue.
  12. Procédé pour le post-équipement d'une centrale thermique à vapeur selon la revendication 10 ou 11, qui présente en outre l'étape suivants :
    ajout, remplacement ou modification d'un générateur (10) pour réduire la puissance de la puissance excessive produite par le post-équipement de suralimentation (25).
EP02716986A 2001-04-09 2002-04-09 Centrale thermique a vapeur avec complement d'equipement et procede de post-equipement d'une centrale thermique a vapeur Revoked EP1377730B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28219301P 2001-04-09 2001-04-09
US282193P 2001-04-09
PCT/IB2002/001110 WO2002084080A1 (fr) 2001-04-09 2002-04-09 Centrale thermique a vapeur avec complement d'equipement et procede de post-equipement d'une centrale thermique a vapeur

Publications (2)

Publication Number Publication Date
EP1377730A1 EP1377730A1 (fr) 2004-01-07
EP1377730B1 true EP1377730B1 (fr) 2010-03-24

Family

ID=23080461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02716986A Revoked EP1377730B1 (fr) 2001-04-09 2002-04-09 Centrale thermique a vapeur avec complement d'equipement et procede de post-equipement d'une centrale thermique a vapeur

Country Status (4)

Country Link
US (1) US7458219B2 (fr)
EP (1) EP1377730B1 (fr)
DE (1) DE50214301D1 (fr)
WO (1) WO2002084080A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030216893A1 (en) * 2002-05-17 2003-11-20 Warren Hendrickson Method of designing and constructing a power plant
EP1577507A1 (fr) * 2004-03-01 2005-09-21 Alstom Technology Ltd Centrale d'énergie avec un foyer à charbon
US7743497B2 (en) * 2005-10-06 2010-06-29 General Electric Company Method of providing non-uniform stator vane spacing in a compressor
ES2304118B1 (es) * 2008-02-25 2009-07-29 Sener Grupo De Ingenieria, S.A Procedimiento para generar energia mediante ciclos termicos con vapor de presion elevada y temperatura moderada.
WO2009124585A1 (fr) * 2008-04-08 2009-10-15 Eriksson Development And Innovation Ab Dispositif à turbine
EP2147896A1 (fr) * 2008-07-22 2010-01-27 Uhde GmbH Procedé à basse énergie pour la production d'ammoniac ou de méthanol
US8313292B2 (en) * 2009-09-22 2012-11-20 Siemens Energy, Inc. System and method for accommodating changing resource conditions for a steam turbine
CN102624147B (zh) * 2011-01-26 2016-03-23 阿尔斯通技术有限公司 改进发电厂的方法
CN103352823B (zh) * 2013-08-02 2015-08-05 山东电力工程咨询院有限公司 给水泵和前置泵的新型综合驱动系统及方法
US9310070B2 (en) * 2013-09-18 2016-04-12 Skavis Corporation Steam generation apparatus and associated control system and methods for providing venting
US9383095B2 (en) 2013-09-18 2016-07-05 Skavis Corporation Steam generation apparatus and associated control system and methods for providing desired steam quality
US9303865B2 (en) 2013-09-18 2016-04-05 Skavis Corporation Steam generation apparatus and associated control system and methods for startup
US9303866B2 (en) 2013-09-18 2016-04-05 Skavis Corporation Steam generation apparatus and associated control system and methods for providing a desired injection pressure
JP6033391B1 (ja) * 2015-11-24 2016-11-30 三菱日立パワーシステムズ株式会社 ガスタービンの運転制御方法、改装方法、及びガスタービン制御装置の設定変更方法
WO2021151605A1 (fr) * 2020-01-29 2021-08-05 Siemens Aktiengesellschaft Installation comprenant un module auxiliaire
DE102020201640A1 (de) * 2020-02-11 2021-08-12 Siemens Aktiengesellschaft Erneuerung von Dampfturbinenanlagen und Anlage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069674A (en) * 1977-01-14 1978-01-24 Warren Glenn B Power plant
US4996846A (en) * 1990-02-12 1991-03-05 Ormat Inc. Method of and apparatus for retrofitting geothermal power plants
EP0595009B1 (fr) * 1992-09-30 1996-01-10 Siemens Aktiengesellschaft Procédé de fonctionnement d'une centrale et centrale fonctionnant suivant ce procédé
WO1995033127A1 (fr) * 1994-06-01 1995-12-07 Masnoi, Sergei Sergeevich Procede d'utilisation d'une installation de turbine a vapeur et installation de turbine a vapeur destinee a la mise en oeuvre dudit procede
DE19542917A1 (de) 1994-12-21 1996-06-27 Abb Management Ag Kombianlage mit konventionellem Wasser/Dampf-Kreislauf
GR1002431B (el) * 1995-02-03 1996-09-11 �. ������ Καινοτομικο συστημα ειδικου λεβητα υπερθερμανσης του ατμου χαμηλης ποιοτητας σταθμων συνδυασμενου κυκλου και αυξησης του συνολικου βαθμου αποδοσης τους.
WO1997018386A1 (fr) * 1995-11-14 1997-05-22 Westinghouse Electric Corporation Systeme et procede de realimentation par turbine a combustion de turbines existantes a vapeur faiblement surchauffee
US6021569A (en) * 1997-04-30 2000-02-08 Siemens Westinghouse Power Corporation Retrofitting coal-fired power generation systems with hydrogen combustors
DE19923210A1 (de) 1999-05-20 2000-11-23 Abb Alstom Power Ch Ag Kombikraftwerk
DE19962403A1 (de) 1999-12-23 2001-06-28 Alstom Power Schweiz Ag Baden Verfahren zum Umrüsten eines Sattdampf erzeugenden Systems mit mindestens einer Dampfturbogruppe sowie nach dem Verfahren umgerüstetes Kraftwerk
DE19962386A1 (de) 1999-12-23 2001-06-28 Alstom Power Schweiz Ag Baden Verfahren zum Nachrüsten eines Sattdampf erzeugenden Systems mit mindestens einer Dampfturbogruppe sowie nach dem Verfahren nachgerüstete Dampfkraftanlage

Also Published As

Publication number Publication date
US7458219B2 (en) 2008-12-02
EP1377730A1 (fr) 2004-01-07
US20040194467A1 (en) 2004-10-07
DE50214301D1 (de) 2010-05-06
WO2002084080A1 (fr) 2002-10-24

Similar Documents

Publication Publication Date Title
EP1377730B1 (fr) Centrale thermique a vapeur avec complement d'equipement et procede de post-equipement d'une centrale thermique a vapeur
DE102010037861A1 (de) Gasturbine mit Zwischenüberhitzung
WO2014191157A2 (fr) Pompe à chaleur équipée d'une première machine thermique à énergie fluidique et d'une seconde machine thermique à énergie fluide montées en circuit
CH697959A2 (de) Kombinierter Prozess unter Verwendung überkritischen Dampfs und Verfahren.
EP1937942B1 (fr) Centrale à vapeur et procédé pour réaménager une centrale à vapeur
DE102018123663A1 (de) Brennstoffvorwärmsystem für eine Verbrennungsgasturbine
EP1368555B1 (fr) Procede d'utilisation d'un groupe vapeur et groupe vapeur correspondant
EP2326800B1 (fr) Centrale à vapeur destinée à la production d'énergie électrique
WO2011006728A1 (fr) Installation de centrale thermique à vapeur présentant un ensemble turbine à vapeur et un consommateur de vapeur de traitement, et procédé permettant de faire fonctionner une installation de centrale thermique à vapeur présentant l’ensemble turbine à vapeur et le consommateur de vapeur de traitement
WO2008104465A2 (fr) Procédé de fonctionnement d'une turbine à vapeur à plusieurs étages
WO2013072183A2 (fr) Procédé permettant de faire fonctionner une installation à turbine à gaz et turbine à vapeur pour la stabilisation de la fréquence
WO2009153082A1 (fr) Utilisation d'un dispositif de turbine à gaz et à vapeur au moyen d'un convertisseur de fréquence
EP1801363A1 (fr) Centrale électrique
DE4447044C1 (de) Verfahren zur Verminderung der Anfahrverluste eines Kraftwerksblockes
EP1286030B1 (fr) Installation avec combination de turbine à gaz et à air
DE10155508C5 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
WO2007144285A2 (fr) Centrale à vapeur
EP0158629B1 (fr) Cycle à vapeur pour installation énergétique à vapeur
DE602005003913T2 (de) Kombikraftwerk mit Dampfturbinen- und Gasturbinengruppen
EP3810907B1 (fr) Recirculation des gaz d'échappement dans des installations de turbines à gaz et à vapeur
WO2021151605A1 (fr) Installation comprenant un module auxiliaire
EP2138677B1 (fr) Installation de turbines à gaz et à vapeur
DE102015118098A1 (de) Verfahren zur Speisewasservorwärmung eines Dampferzeugers eines Kraftwerks
DE19849740A1 (de) Gas- und Dampfturbinenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17Q First examination report despatched

Effective date: 20080919

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCARLIN, RICHARD, BRENDON

Inventor name: HERZOG, MAURUS

Inventor name: SMADJA, CHARLES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

REF Corresponds to:

Ref document number: 50214301

Country of ref document: DE

Date of ref document: 20100506

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100330

Year of fee payment: 9

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20101221

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110409

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 50214301

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 50214301

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20140412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140430

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 50214301

Country of ref document: DE

Effective date: 20140925