EP0158629B1 - Cycle à vapeur pour installation énergétique à vapeur - Google Patents

Cycle à vapeur pour installation énergétique à vapeur Download PDF

Info

Publication number
EP0158629B1
EP0158629B1 EP85890073A EP85890073A EP0158629B1 EP 0158629 B1 EP0158629 B1 EP 0158629B1 EP 85890073 A EP85890073 A EP 85890073A EP 85890073 A EP85890073 A EP 85890073A EP 0158629 B1 EP0158629 B1 EP 0158629B1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
heat
feed
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85890073A
Other languages
German (de)
English (en)
Other versions
EP0158629A3 (en
EP0158629A2 (fr
Inventor
Herbert Dipl.-Ing. Dr. Univ. Prof. Jericha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0158629A2 publication Critical patent/EP0158629A2/fr
Publication of EP0158629A3 publication Critical patent/EP0158629A3/de
Application granted granted Critical
Publication of EP0158629B1 publication Critical patent/EP0158629B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • F01K19/04Regenerating by compression in combination with cooling or heating

Definitions

  • the invention relates to a new steam cycle for improving the thermal efficiency of steam power plants.
  • This cycle can be used for condensing power plants as well as for counter pressure plants.
  • the absolute amount of the thermal efficiency that can be achieved is significantly improved
  • the proportion of electrical energy that can be generated is improved compared to the proportion of heat supply.
  • Heat sources of all kinds are possible as heat sources, in particular the heat can be supplied to the steam cycle to be described below by an atmospherically fired steam boiler, but also by a pressure-fired boiler charged by means of compressors and gas turbines.
  • the state of the art can be determined.
  • the main advantage of the steam cycle in its classic form according to Clausius and Rankine is that the compression takes place in the liquid phase of the circulation medium and therefore a comparatively very small amount of compressor work is required, which is also carried out in a machine that is easy to construct, namely the feed pump, which works at a relatively low temperature and is therefore simple and reliable to construct. Furthermore, that the subsequent evaporation of the circulating agent in the heating surface of the boiler brings about good cooling of the pipes and therefore provides relatively ashamed thermal stress on the pipes.
  • the real technical development problem was therefore only the development of a suitable expansion machine, in the current form of the steam turbine, a machine of ever increasing technical complexity, but in which the vast majority of electrical energy generation still takes place worldwide.
  • the advantage of being able to carry out the compression in the liquid phase also has the greatest disadvantage of the steam cycle in its current form. This is because, after the end of compression, the heat must begin to bring the working fluid to the maximum temperature of the circuit. However, this means that a large part of the heat in the steam cycle in its current form must be supplied to the cycle medium at relatively low temperatures for the purpose of preheating and evaporation. However, this means that, in terms of exergy, very significant losses in temperature difference and thus losses in possible efficiency gains already occur when heat is added to the process. This process can be easily explained by using the Carnot cycle for each differential step of supplying heat to the circulating medium.
  • US 4,433,545 Chang uses multiple reheating by heat exchangers which are connected between individual stage groups of the turbine. (Your designation 28, 36, 42, 28 ', 36', 42 '). In the latter scheme, the steam flow is cooled to saturated steam temperature and only then reheated to be fed to the next stage group of the turbine.
  • French Patent No. 79 20276, No. de publication FR-A-2 435 600 also uses a heat exchanger (designated 6) interposed between the turbine stage groups, but which functions as a known reheater. Furthermore, a partial flow is branched off from the medium-pressure turbine to a condensation turbine which drives the feed pump. Apart from these two features of the use of heat exchangers and the branching off of partial streams, these patents have no further factual connection with the present invention described below.
  • the temperature increase occurs in a combined gas-steam process in that the heat is first fed to the gas process and its waste heat is processed in the steam process.
  • F. Pauker “Recent Proposals on the Gas-Vapor Process", Div. 111, Paper 28 G 1/6, 5th World Power Conference, Vienna 1956.
  • ⁇ P 172.202 and more recently DE-OS 26 37 924 (Stal-Laval).
  • the methods mentioned relate to open gas turbine processes.
  • methods that use closed gas turbine processes in a combined gas-steam process have also become known. Air, carbon dioxide and helium were used or suggested as working gases. See H. Bormann and J. Buxmann “Combined Power Plant Processes with Closed Gas and Steam Turbines", Brennst.-Heat-Kraft 1981.
  • the heat is supplied to the closed gas circuit, and the heat is removed from it partly to the downstream steam circuit and partly to the outer gas cooler in order to lower the temperature of the gas before compression as much as possible. It is the transfer Waste heat to the steam circuit only through a metallic heating surface and as a result of the water. server steaming only possible with considerable temperature differences.
  • This cycle consisting of compression, heat exchange, heat supply, expansion, heat exchange and heat dissipation is run through in a simple loop and lies in the T, s diagram of the water vapor above the limit curve and the compression in all cases to the left of the critical point, ie in the range of entropies smaller than the critical entropy.
  • a steam cycle for a steam power plant to generate power from external heat is to be created, which maintains the advantage of heat dissipation at a low temperature in the condenser, but at the same time increases the temperature of the heat supply appreciably, so that the thermal efficiency in Carnot's sense experiences a significant increase.
  • the design of the high-temperature steam turbine required here has the advantage that its operating pressure is comparatively low and roughly corresponds to the pressure of an intermediate superheating turbine of a conventional steam turbine, so that in this case the machine can be designed with a housing with a much smaller wall thickness.
  • suitable ceramic and mineral materials and the corresponding strengthening of an insulation body by means of metallic reinforcements it is easily possible to construct such an internal insulation in a reliable manner.
  • the steam compressor works in the medium pressure and low temperature range and can therefore be designed as a conventional turbomachine.
  • the envisaged water injection in front of the steam compressor is said to result in moisture in the range of 5 to 12%.
  • the desuperheater requires the warmed up condensate to be atomized by means of appropriate injection nozzles, which can be achieved in the necessary fineness by slightly increasing the pressure generated by the feed pump.
  • the droplets injected into the vapor stream of the main stream are carried on by it and evaporated by supplying heat from the superheating area, so that a sufficiently fine distribution of the droplets in the saturated steam area arises in accordance with the selected size of the injection drops. As described above, these do not pose any risk of wear for the steam compressor.
  • the steam heat exchanger transfers heat from the steam of low pressure and higher temperature to the steam flow of higher pressure and lower temperature. Its temperature range can generally be selected so that only conventional boiler steels have to be used. It is therefore possible to build such a device with a sufficient cross-section and inexpensively so that there are low pressure losses on both sides.
  • the condensation steam turbine and the condenser, as well as the tap preheating system are designed in a completely conventional manner. The same applies to the feed pump and its drive, only with the provision of having to apply the pressure difference to atomize the spray water.
  • the boiler can be designed as an atmospherically fired boiler with any fuel. It is only necessary to adapt the flue gases from the boiler and the air drawn in to one another in a heat exchanger in such a way that a temperature arises in the combustion chamber of the boiler which is above the temperature of the steam heater with a sufficient temperature difference. Taking into account the fact that the specific heat of the boiler exhaust gas and the intake air are different due to the combustion process and the fuel content, but also taking into account the fact that the air is brewed colder than the flue gas is released into the chimney, this is easily possible . The air must be preheated to approximately 500 ° C and the heat must be removed by exchanging it from the boiler flue gas.
  • the external heat can be supplied by a bige heat source suitable high temperature.
  • 1 means the downwind blower, 2 its electric drive, 3 a suction fan, 4 a flue gas heat exchanger, 5 its air-side heating surface, and 6 its gas-side heating surface, 7 the fuel supply, and 8 the combustion chamber of the boiler with atmospheric combustion. If the boiler is charged, 1 designates the charging compressor, 3 the exhaust gas turbine, and 2 the electric drive and driven machine. In both cases, the heating surface 10 of the steam circuit in which the external heat supply takes place is located in the combustion chamber 8. This steam cycle is also described in accordance with FIG. 1.
  • a small partial flow is fed from the high-pressure compressor 12 to the high-temperature turbine 13 for cooling the rotor via the line 13.1.
  • the exhaust steam is cooled on the low-pressure side of the heat exchanger 14, whereupon the steam flows are divided at the branching point 15, one partial flow flowing into the injection cooler 23 and consequently into the steam compressor 11, while the other part flows into the condensation turbine 16 expands further, releasing bleed steam, condenses in the condenser 17, and runs to the degasifier feed water tank 20 via the condensate pump 18 and the low-pressure preheater 19. From this, the injection water is injected into the injection cooler 23 and 24 via the feed pump 21 and further heating in the high pressure preheater 22, whereby the double circuit is closed.
  • This circuit is characterized by the arrangement of a compressor or several stage groups of compressors and by the arrangement of a heat exchanger. This leads thermodynamically to the fact that the heat is supplied at preheated steam of moderate pressure at a very high average temperature. Furthermore, the process is characterized by an expansion of the steam in the high temperature range with subsequent cooling in the heat exchanger with an entry temperature into the condensation turbine, which results in a favorable condensation end point with regard to erosion and heat dissipation. This will be described with reference to FIG. 2 in the TS diagram for water vapor.
  • the heating of the full amount of the circuit in the heating surface 10 means the change of state-C14-C1, the expansion in the high-temperature turbine 13, the change of state-C1-C2, the cooling of the full amount of the circuit on the low-pressure side of the heat exchanger 14, the change of state C2-C3, the expansion of the partial flow branched off in the condensation turbine 16 at the branching point 15 corresponds to the change in state C3-C4-C5-C6-C7, the intermediate points removal of bleed steam and the end point C7 corresponding to the start of condensation of the heat transfer to the cooling water in the condenser 17.
  • the condenser is pumped on by the condensate pump 18 in accordance with the change in state C15-C16.
  • the warm-up in the low-pressure preheater 19 corresponds to the change in state (C16C17.
  • the warm-up in the degasifier 2 corresponds to the change in state C17-C18.
  • the feed pump flows to injection pressure in accordance with the change in state C18-C19, whereupon the remaining preheating in the high-pressure preheater 22 in accordance with the change in state C19-C20 takes place, so that the injection water is available for the desuperheaters 23 and 24 in the state C20.
  • the other partial flow of the steam undergoes the following change of state from the branching point 15: cooling in the injection cooler 23 C3-C8-C9 then compression in the first steam compressor part 11 in accordance with the change in state C9-C10. Then further cooling by water injection in the injection cooler 24 in accordance with the change in state C10 ⁇ C11 ⁇ C12.
  • This is the full circle Running volume achieved by combining the partial flows.
  • This is followed by the compression in the second steam compressor part 12 to the full circuit pressure corresponding to the change in state C12-C13 and then the heating of the full circulating flow on the high pressure side of the heat exchanger 14 in accordance with the change in state C13-C14, which describes the entire circuit.
  • the detail of the change in state in the injection coolers 23 and 24 and in the steam compressors 11 and 12 can be carried out as described above with cooling down to the wet steam region, but can also be designed such that these state changes only in the region of overheated steam.
  • the state points C8 and C9 are then identical, just like the state points C11 and C12 are identical - they then represent the states at the entry into the first steam compressor part 11 and in the second steam compressor part - and are located in the Ts diagram above the limit curve in the area of superheated steam. This avoids problems with wet steam flow at the inlet to the compressors.
  • the evaporation of the water droplets which are formed in the injection cooler during the injection of the feed water takes place completely if the change in the state of the steam therein remains restricted to the superheated area of the steam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (2)

1. Cycle à vapeur à deux cycles supplemen- taires, pour un installation de production d'énergie chauffée par chaleur exterieure de haute qualité, avec combination des cettes cycles en la région de haute température, et avec amenage de la chaleur exterieure à les débits completes des cycles par conduisage sur des surfaces de chauffage, ces débits de vapeur sont réchaufees et sont depuis détendues dans une turbine a haute température, en génerant la puissance utile dans une géneratrice, et part du débit de la vapeur échappant de la turbine a haute température est en suite détendu dans la turbine a condensation qui est soutirée pour supplementer de la vapeur a réchauffage de l'eau, et le débit de la vapeour détendu en cette turbine à condensation est finalement liquifié dans le condensateur en échangeant la chaleur à condensation de la vepeur à l'eau de réfroidissement ou à un circuit de chauffage domicile, et l'eau obtenue par cette liquefaction est pompée par la pompe condensateur, nominée maintenant l'eau d'alimentation, et est conduite par des étages de réchauffage a soutirage en élevant la température envers le degazeur et a la bâche d'alimentation, étant dega- zée c'est énlevee en pression jusque a une pression specifié par la pompe d'alimentation et est encore elevée en température par des étages de réchauffage a soutirage a haute pression par vapeur soutirée de la turbine a condensation, characterisée par que les débits completes de la vapeur du cycle avant la chauffage par la chaleur exterieure sont réchauffées par l'échange de la chaleur avec les débits completes échappantes de. la turbine a haute temperature dans un échangeur thermique en refroidissant les débits ainsi détendues, et en ce que cette part de le débit de la vapeur qui après cette échangement thermique ne sera pas détendu dans la turbine à condensation est refroidissée dans un refroidisseur à injection par injection de l'eau d'alimentation, preparé par la pompe d'alimentation et des étages de réchauffage a soutirage, en même temps le débit de la vapeur est rempli par le débit d'injecteur. Et est en suite conduit à le compresseur à vapeur ou à les premier étages d'un compresseur à vapeur commandé par la turbine a haute temperature pour compression, une autre injection et compression peut suivre, et depuis les debits completes du cycle sont réchauffes dans le échan échangeur thermique mentionée.
2. Cycle a vapeur pour un installation de production de l'énergie charactérisée par que en lieu de une turbine a condensation une turbine a contre pression est arrangée, en cas que le débit de la vapeur et sa chaleur est utilisée pour des raisons technologieques ou de la chauffage en general, et la condensat refluant après nettoyage est retourné en le cycle a les réchauffeurs a soutirage et a la pompe d'alimentation pour etre injecté par des injecteurs à réfroidissement de la vapeur, et que de l'eau fraiche sera utilisee en même mode si la vapeur de échappement de la turbine a contre pression est utilisée directement pour des effets technologieques.
EP85890073A 1984-03-23 1985-03-21 Cycle à vapeur pour installation énergétique à vapeur Expired - Lifetime EP0158629B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT98484 1984-03-23
AT984/84 1984-03-23

Publications (3)

Publication Number Publication Date
EP0158629A2 EP0158629A2 (fr) 1985-10-16
EP0158629A3 EP0158629A3 (en) 1986-02-26
EP0158629B1 true EP0158629B1 (fr) 1990-08-16

Family

ID=3504276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85890073A Expired - Lifetime EP0158629B1 (fr) 1984-03-23 1985-03-21 Cycle à vapeur pour installation énergétique à vapeur

Country Status (2)

Country Link
EP (1) EP0158629B1 (fr)
DE (1) DE3579183D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223024A1 (de) * 2012-12-13 2014-06-18 Zf Friedrichshafen Ag Abwärmenutzungseinheit für einen Fahrzeugantrieb

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518220A (ja) * 1999-12-21 2003-06-03 シーメンス アクチエンゲゼルシヤフト 蒸気タービン設備の運転方法およびこの方法で運転される蒸気タービン設備
WO2006035256A2 (fr) * 2004-09-29 2006-04-06 Elthom Enterprises Limited Procedes de production de l'exergie
CN101696643B (zh) * 2009-10-30 2012-09-19 北京联合优发能源技术有限公司 热电联产低温热能回收装置及其回收方法
CN105358909B (zh) * 2013-07-05 2017-10-24 西门子公司 用于借助工艺蒸汽耦合输出预加热蒸汽发电厂中的补充水的方法
CN107448249A (zh) * 2017-07-14 2017-12-08 中国神华能源股份有限公司 燃机透平冷却控制方法及装置、存储介质
CN107780982B (zh) * 2017-12-07 2024-05-14 华电郑州机械设计研究院有限公司 一种在线的间接空冷高背压供热机组背压控制系统及方法
CN112360571B (zh) * 2020-10-26 2023-07-14 北京动力机械研究所 一种低散热闭式布雷顿循环热电转换系统
CN117682593B (zh) * 2024-02-02 2024-05-07 广东美的暖通设备有限公司 负压自除氧设备及其控制系统和控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2435600A1 (fr) * 1978-08-10 1980-04-04 Bbc Brown Boveri & Cie Installation de turbine a vapeur
US4433545A (en) * 1982-07-19 1984-02-28 Chang Yan P Thermal power plants and heat exchangers for use therewith

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212561B (de) * 1962-09-05 1966-03-17 Licentia Gmbh Axial-Hochdruckheissdampf-Turbine
CH399078A (de) * 1963-02-15 1966-03-31 Escher Wyss Ag Gehäuse für Gas- oder Dampfturbinen
AT290927B (de) * 1968-10-28 1971-06-25 Elin Union Ag Kühlung des Trommelrotors von Gasturbinen
GB1470527A (en) * 1974-10-08 1977-04-14 Lang W Steam power plant
SE402797B (sv) * 1975-09-12 1978-07-17 Stal Laval Turbin Ab Kombinerad ang- och gasturbinanleggning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2435600A1 (fr) * 1978-08-10 1980-04-04 Bbc Brown Boveri & Cie Installation de turbine a vapeur
US4433545A (en) * 1982-07-19 1984-02-28 Chang Yan P Thermal power plants and heat exchangers for use therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223024A1 (de) * 2012-12-13 2014-06-18 Zf Friedrichshafen Ag Abwärmenutzungseinheit für einen Fahrzeugantrieb

Also Published As

Publication number Publication date
EP0158629A3 (en) 1986-02-26
EP0158629A2 (fr) 1985-10-16
DE3579183D1 (de) 1990-09-20

Similar Documents

Publication Publication Date Title
DE102008037410B4 (de) Superkritischen Dampf verwendender kombinierter Kreisprozess und Verfahren
DE69932766T2 (de) Methode zum Vorwärmen von Brennstoff für eine Gasturbine in einem Kombikraftwerk mit einer Strömung von Mehrkomponentenmischungen
EP2368021B1 (fr) Générateur de vapeur à récupération de chaleur et procédé pour améliorer le fonctionnement d'un générateur de vapeur à récupération de chaleur
WO2021013465A1 (fr) Système de conversion d'énergie thermique en énergie mécanique
EP2187051A1 (fr) Procédé et dispositif destinés à la surchauffe intermédiaire dans une centrale thermique solaire à l'aide d'une évaporation indirecte
DE69929918T2 (de) Gasturbinenkombikraftwerk
CH702163A2 (de) Verfahren zur Steigerung der Leistungsabgabe eines Gas- und Dampf-Kombikraftwerks während ausgewählter Betriebszeiträume.
EP0158629B1 (fr) Cycle à vapeur pour installation énergétique à vapeur
WO2008107406A2 (fr) Installation à turbine à vapeur et procédé pour faire démarrer une installation à turbine à vapeur
EP1377730A1 (fr) Centrale thermique a vapeur avec complement d'equipement et procede de post-equipement d'une centrale thermique a vapeur
WO2005056994A1 (fr) Groupe moteur a reservoir d'air
WO2007144285A2 (fr) Centrale à vapeur
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
EP2559867A1 (fr) Procédé de production d'énergie électrique à l'aide d'une centrale électrique combinée et centrale électrique combinée destinée à l'exécution du procédé
DE3110364A1 (de) Dampfkraftanlage
EP3810907B1 (fr) Recirculation des gaz d'échappement dans des installations de turbines à gaz et à vapeur
DE102004040730B3 (de) Verfahren und Vorrichtung zum Nutzen von Abwärme
EP2138677B1 (fr) Installation de turbines à gaz et à vapeur
WO1995025880A1 (fr) Procede d'exploitation de generateurs de vapeur chauffes par la chaleur perdue et generateurs de vapeur ainsi exploites
DE102017223705A1 (de) Kraftwerk
DE3042782A1 (de) Dampfkraftanlage
EP1242729B1 (fr) Procede permettant de faire fonctionner une turbine a vapeur, ainsi qu'ensemble turbine dote d'une turbine a vapeur fonctionnant selon ledit procede
DE102013219166A1 (de) Ansaugluftvorwärmsystem
DE102013205053B4 (de) Verfahren zum Betrieb eines einen Wasser-Dampf-Kreislauf aufweisenden Kraftwerks
EP2801759A1 (fr) Dérivation de vapeur dans un générateur de vapeur à récupération de chaleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19860515

17Q First examination report despatched

Effective date: 19861217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900816

Ref country code: FR

Effective date: 19900816

REF Corresponds to:

Ref document number: 3579183

Country of ref document: DE

Date of ref document: 19900920

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950524

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203