EP0158629B1 - Steam cycle for a steam power plant - Google Patents

Steam cycle for a steam power plant Download PDF

Info

Publication number
EP0158629B1
EP0158629B1 EP85890073A EP85890073A EP0158629B1 EP 0158629 B1 EP0158629 B1 EP 0158629B1 EP 85890073 A EP85890073 A EP 85890073A EP 85890073 A EP85890073 A EP 85890073A EP 0158629 B1 EP0158629 B1 EP 0158629B1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
heat
feed
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85890073A
Other languages
German (de)
French (fr)
Other versions
EP0158629A2 (en
EP0158629A3 (en
Inventor
Herbert Dipl.-Ing. Dr. Univ. Prof. Jericha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0158629A2 publication Critical patent/EP0158629A2/en
Publication of EP0158629A3 publication Critical patent/EP0158629A3/en
Application granted granted Critical
Publication of EP0158629B1 publication Critical patent/EP0158629B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • F01K19/04Regenerating by compression in combination with cooling or heating

Definitions

  • the invention relates to a new steam cycle for improving the thermal efficiency of steam power plants.
  • This cycle can be used for condensing power plants as well as for counter pressure plants.
  • the absolute amount of the thermal efficiency that can be achieved is significantly improved
  • the proportion of electrical energy that can be generated is improved compared to the proportion of heat supply.
  • Heat sources of all kinds are possible as heat sources, in particular the heat can be supplied to the steam cycle to be described below by an atmospherically fired steam boiler, but also by a pressure-fired boiler charged by means of compressors and gas turbines.
  • the state of the art can be determined.
  • the main advantage of the steam cycle in its classic form according to Clausius and Rankine is that the compression takes place in the liquid phase of the circulation medium and therefore a comparatively very small amount of compressor work is required, which is also carried out in a machine that is easy to construct, namely the feed pump, which works at a relatively low temperature and is therefore simple and reliable to construct. Furthermore, that the subsequent evaporation of the circulating agent in the heating surface of the boiler brings about good cooling of the pipes and therefore provides relatively ashamed thermal stress on the pipes.
  • the real technical development problem was therefore only the development of a suitable expansion machine, in the current form of the steam turbine, a machine of ever increasing technical complexity, but in which the vast majority of electrical energy generation still takes place worldwide.
  • the advantage of being able to carry out the compression in the liquid phase also has the greatest disadvantage of the steam cycle in its current form. This is because, after the end of compression, the heat must begin to bring the working fluid to the maximum temperature of the circuit. However, this means that a large part of the heat in the steam cycle in its current form must be supplied to the cycle medium at relatively low temperatures for the purpose of preheating and evaporation. However, this means that, in terms of exergy, very significant losses in temperature difference and thus losses in possible efficiency gains already occur when heat is added to the process. This process can be easily explained by using the Carnot cycle for each differential step of supplying heat to the circulating medium.
  • US 4,433,545 Chang uses multiple reheating by heat exchangers which are connected between individual stage groups of the turbine. (Your designation 28, 36, 42, 28 ', 36', 42 '). In the latter scheme, the steam flow is cooled to saturated steam temperature and only then reheated to be fed to the next stage group of the turbine.
  • French Patent No. 79 20276, No. de publication FR-A-2 435 600 also uses a heat exchanger (designated 6) interposed between the turbine stage groups, but which functions as a known reheater. Furthermore, a partial flow is branched off from the medium-pressure turbine to a condensation turbine which drives the feed pump. Apart from these two features of the use of heat exchangers and the branching off of partial streams, these patents have no further factual connection with the present invention described below.
  • the temperature increase occurs in a combined gas-steam process in that the heat is first fed to the gas process and its waste heat is processed in the steam process.
  • F. Pauker “Recent Proposals on the Gas-Vapor Process", Div. 111, Paper 28 G 1/6, 5th World Power Conference, Vienna 1956.
  • ⁇ P 172.202 and more recently DE-OS 26 37 924 (Stal-Laval).
  • the methods mentioned relate to open gas turbine processes.
  • methods that use closed gas turbine processes in a combined gas-steam process have also become known. Air, carbon dioxide and helium were used or suggested as working gases. See H. Bormann and J. Buxmann “Combined Power Plant Processes with Closed Gas and Steam Turbines", Brennst.-Heat-Kraft 1981.
  • the heat is supplied to the closed gas circuit, and the heat is removed from it partly to the downstream steam circuit and partly to the outer gas cooler in order to lower the temperature of the gas before compression as much as possible. It is the transfer Waste heat to the steam circuit only through a metallic heating surface and as a result of the water. server steaming only possible with considerable temperature differences.
  • This cycle consisting of compression, heat exchange, heat supply, expansion, heat exchange and heat dissipation is run through in a simple loop and lies in the T, s diagram of the water vapor above the limit curve and the compression in all cases to the left of the critical point, ie in the range of entropies smaller than the critical entropy.
  • a steam cycle for a steam power plant to generate power from external heat is to be created, which maintains the advantage of heat dissipation at a low temperature in the condenser, but at the same time increases the temperature of the heat supply appreciably, so that the thermal efficiency in Carnot's sense experiences a significant increase.
  • the design of the high-temperature steam turbine required here has the advantage that its operating pressure is comparatively low and roughly corresponds to the pressure of an intermediate superheating turbine of a conventional steam turbine, so that in this case the machine can be designed with a housing with a much smaller wall thickness.
  • suitable ceramic and mineral materials and the corresponding strengthening of an insulation body by means of metallic reinforcements it is easily possible to construct such an internal insulation in a reliable manner.
  • the steam compressor works in the medium pressure and low temperature range and can therefore be designed as a conventional turbomachine.
  • the envisaged water injection in front of the steam compressor is said to result in moisture in the range of 5 to 12%.
  • the desuperheater requires the warmed up condensate to be atomized by means of appropriate injection nozzles, which can be achieved in the necessary fineness by slightly increasing the pressure generated by the feed pump.
  • the droplets injected into the vapor stream of the main stream are carried on by it and evaporated by supplying heat from the superheating area, so that a sufficiently fine distribution of the droplets in the saturated steam area arises in accordance with the selected size of the injection drops. As described above, these do not pose any risk of wear for the steam compressor.
  • the steam heat exchanger transfers heat from the steam of low pressure and higher temperature to the steam flow of higher pressure and lower temperature. Its temperature range can generally be selected so that only conventional boiler steels have to be used. It is therefore possible to build such a device with a sufficient cross-section and inexpensively so that there are low pressure losses on both sides.
  • the condensation steam turbine and the condenser, as well as the tap preheating system are designed in a completely conventional manner. The same applies to the feed pump and its drive, only with the provision of having to apply the pressure difference to atomize the spray water.
  • the boiler can be designed as an atmospherically fired boiler with any fuel. It is only necessary to adapt the flue gases from the boiler and the air drawn in to one another in a heat exchanger in such a way that a temperature arises in the combustion chamber of the boiler which is above the temperature of the steam heater with a sufficient temperature difference. Taking into account the fact that the specific heat of the boiler exhaust gas and the intake air are different due to the combustion process and the fuel content, but also taking into account the fact that the air is brewed colder than the flue gas is released into the chimney, this is easily possible . The air must be preheated to approximately 500 ° C and the heat must be removed by exchanging it from the boiler flue gas.
  • the external heat can be supplied by a bige heat source suitable high temperature.
  • 1 means the downwind blower, 2 its electric drive, 3 a suction fan, 4 a flue gas heat exchanger, 5 its air-side heating surface, and 6 its gas-side heating surface, 7 the fuel supply, and 8 the combustion chamber of the boiler with atmospheric combustion. If the boiler is charged, 1 designates the charging compressor, 3 the exhaust gas turbine, and 2 the electric drive and driven machine. In both cases, the heating surface 10 of the steam circuit in which the external heat supply takes place is located in the combustion chamber 8. This steam cycle is also described in accordance with FIG. 1.
  • a small partial flow is fed from the high-pressure compressor 12 to the high-temperature turbine 13 for cooling the rotor via the line 13.1.
  • the exhaust steam is cooled on the low-pressure side of the heat exchanger 14, whereupon the steam flows are divided at the branching point 15, one partial flow flowing into the injection cooler 23 and consequently into the steam compressor 11, while the other part flows into the condensation turbine 16 expands further, releasing bleed steam, condenses in the condenser 17, and runs to the degasifier feed water tank 20 via the condensate pump 18 and the low-pressure preheater 19. From this, the injection water is injected into the injection cooler 23 and 24 via the feed pump 21 and further heating in the high pressure preheater 22, whereby the double circuit is closed.
  • This circuit is characterized by the arrangement of a compressor or several stage groups of compressors and by the arrangement of a heat exchanger. This leads thermodynamically to the fact that the heat is supplied at preheated steam of moderate pressure at a very high average temperature. Furthermore, the process is characterized by an expansion of the steam in the high temperature range with subsequent cooling in the heat exchanger with an entry temperature into the condensation turbine, which results in a favorable condensation end point with regard to erosion and heat dissipation. This will be described with reference to FIG. 2 in the TS diagram for water vapor.
  • the heating of the full amount of the circuit in the heating surface 10 means the change of state-C14-C1, the expansion in the high-temperature turbine 13, the change of state-C1-C2, the cooling of the full amount of the circuit on the low-pressure side of the heat exchanger 14, the change of state C2-C3, the expansion of the partial flow branched off in the condensation turbine 16 at the branching point 15 corresponds to the change in state C3-C4-C5-C6-C7, the intermediate points removal of bleed steam and the end point C7 corresponding to the start of condensation of the heat transfer to the cooling water in the condenser 17.
  • the condenser is pumped on by the condensate pump 18 in accordance with the change in state C15-C16.
  • the warm-up in the low-pressure preheater 19 corresponds to the change in state (C16C17.
  • the warm-up in the degasifier 2 corresponds to the change in state C17-C18.
  • the feed pump flows to injection pressure in accordance with the change in state C18-C19, whereupon the remaining preheating in the high-pressure preheater 22 in accordance with the change in state C19-C20 takes place, so that the injection water is available for the desuperheaters 23 and 24 in the state C20.
  • the other partial flow of the steam undergoes the following change of state from the branching point 15: cooling in the injection cooler 23 C3-C8-C9 then compression in the first steam compressor part 11 in accordance with the change in state C9-C10. Then further cooling by water injection in the injection cooler 24 in accordance with the change in state C10 ⁇ C11 ⁇ C12.
  • This is the full circle Running volume achieved by combining the partial flows.
  • This is followed by the compression in the second steam compressor part 12 to the full circuit pressure corresponding to the change in state C12-C13 and then the heating of the full circulating flow on the high pressure side of the heat exchanger 14 in accordance with the change in state C13-C14, which describes the entire circuit.
  • the detail of the change in state in the injection coolers 23 and 24 and in the steam compressors 11 and 12 can be carried out as described above with cooling down to the wet steam region, but can also be designed such that these state changes only in the region of overheated steam.
  • the state points C8 and C9 are then identical, just like the state points C11 and C12 are identical - they then represent the states at the entry into the first steam compressor part 11 and in the second steam compressor part - and are located in the Ts diagram above the limit curve in the area of superheated steam. This avoids problems with wet steam flow at the inlet to the compressors.
  • the evaporation of the water droplets which are formed in the injection cooler during the injection of the feed water takes place completely if the change in the state of the steam therein remains restricted to the superheated area of the steam.

Description

Die Erfindung betrifft einen neuen Dampfkreislauf zur Verbesserung des thermischen Wirkungsgrades von Dampfkraftanlagen. Dieser Kreislauf ist für Kondensationskraftanlagen ebenso anwendbar wie für Gegendruckanlagen. Im ersteren wird der Absolutbetrag des erreichbaren thermischen Wirkungsgrades deutlich verbessert, während im letzteren der Anteil der erzeugbaren elektrischen Energie gegenüber dem Anteil der Wärmelieferung verbessert wird. Als Wärmequellen kommen Wärmelieferanten aller Art in Frage, insbesondere kann die Wärmelieferung an den im folgenden zu schildernden Dampfkreislauf durch einen atmosphärisch gefeuerten Dampfkessel aber auch durch einen mittels Kompressoren und Gasturbinen aufgeladenen druckgefeuerten Kessel erfolgen.The invention relates to a new steam cycle for improving the thermal efficiency of steam power plants. This cycle can be used for condensing power plants as well as for counter pressure plants. In the former, the absolute amount of the thermal efficiency that can be achieved is significantly improved, while in the latter, the proportion of electrical energy that can be generated is improved compared to the proportion of heat supply. Heat sources of all kinds are possible as heat sources, in particular the heat can be supplied to the steam cycle to be described below by an atmospherically fired steam boiler, but also by a pressure-fired boiler charged by means of compressors and gas turbines.

Zum Stand der Technik ist festzustellen. Der Hauptvorteil des Dampfkreislaufes in seiner klassischen Form nach Clausius und Rankine ist, daß die Kompression in der flüssigen Phase der Kreislaufmediums vorgenommen wird und daher eine vergleichsweise sehr geringe Kompressorsarbeit erforderlich ist, die zudem in einer einfach zu konstruierenden Maschine, nämlich der Speisepumpe erfolgt, die bei relativ niedriger Temperatur arbeitet und daher einfach und betriebssicher zu konstruieren ist. Weiters, daß die daran folgende Verdampfung des Kreislaufmittels in der Heizfläche des Kessels eine gute Kühlung der Rohre bewirkt und daher für relativ neidrige thermische Beanspruchung derselben sorgt. Das eigentliche technische Entwicklungsproblem war daher nur die Entwicklung einer geeigneten Expansionsmaschine, in der heutigen Form der Dampfturbine, einer Maschine von immer steigender technischer Komplexität, in der aber weltweit noch immer der weit überweigende Anteil der elektrischen Energieerzeugung erfolgt.The state of the art can be determined. The main advantage of the steam cycle in its classic form according to Clausius and Rankine is that the compression takes place in the liquid phase of the circulation medium and therefore a comparatively very small amount of compressor work is required, which is also carried out in a machine that is easy to construct, namely the feed pump, which works at a relatively low temperature and is therefore simple and reliable to construct. Furthermore, that the subsequent evaporation of the circulating agent in the heating surface of the boiler brings about good cooling of the pipes and therefore provides relatively jealous thermal stress on the pipes. The real technical development problem was therefore only the development of a suitable expansion machine, in the current form of the steam turbine, a machine of ever increasing technical complexity, but in which the vast majority of electrical energy generation still takes place worldwide.

Der Vorteil, die Kompression in der flüssigen Phase vornehmen zukönnen, bewirkt aber auch zugleich den größten Nachteil des Dampfkreislaufes in seiner heutigen Form. Deshalb nämlich, da nach dem Ende der Kompression die Wärmezufuhr beginnen muß, um das Arbeitsmittel auf die Höchsttemperatur des Kreislaufes zu bringen. Dies bedeutet aber, daß ein Großteil der Wärme im Dampfkreislauf in seiner heutigen Form bei relativ niedrigen Temperaturen zum Zwecke der Vorwärmung und der Verdampfung dem Kreislaufmedium zugeführt werden muß. Dies bedeutet aber, daß im Sinne der Exergie betrachtet, schon bei der Wärmezufuhr in den Prozeß ganz wesentliche Verluste an Temperaturdifferenz und damit Verluste an möglichen Wirkungsgradgewinnen eintreten. Durch Anwendung des Carnotschen Kreisprozesses für jeden einzelnen differentiellen Schritt der Wärmezufuhr an das Kreislaufmedium ist dieser Vorgang leicht zu erklären.The advantage of being able to carry out the compression in the liquid phase also has the greatest disadvantage of the steam cycle in its current form. This is because, after the end of compression, the heat must begin to bring the working fluid to the maximum temperature of the circuit. However, this means that a large part of the heat in the steam cycle in its current form must be supplied to the cycle medium at relatively low temperatures for the purpose of preheating and evaporation. However, this means that, in terms of exergy, very significant losses in temperature difference and thus losses in possible efficiency gains already occur when heat is added to the process. This process can be easily explained by using the Carnot cycle for each differential step of supplying heat to the circulating medium.

Versuche den einfachen Wasserdampfprozeß, den Rankine-Prozeß zu verbessern erfolgten schon sehr früh. Zur laufenden Druck- und Temperatursteigerung kam die Verbesserung durch immer weiter gehende Speisewasservorwärmung und durch Zwischenüberhitzung. Der Versuche den Prozeß direkt zu verändern und anstelle der Speisepumpe einen Dampfkompressor zu verwenden wurde ebenfalls gemacht. (Siehe A. Stodola, Dampf- und Gasturbinen, Springer, 5. Auflage, 1922, Seite 1077). Die Verfahren von Thurston und Dolder versuchen dies, nach teilweiser Kondensation des Dampfes soll dieser auf das ursprüngliche Druckniveau verdichtet werden. Auch das Verfahren von Lang GB-PS Nr. 1 470 527 versucht den Dampf nach der Expansion in die Turbine direkt wieder zu kompremieren und der Kesseltrommel zuzuführen, die beabsichtigte Verminderung der Abwärme bewirkt jedoch bei sonst gleichen Bedingungen nach Carbot nur dann einen Wirkungsgradgewinn, wenn gleichzeitig die Temperatur der Wärmezufuhr gesteigert wird.Attempts at the simple water vapor process to improve the Rankine process were made very early. In addition to the constant increase in pressure and temperature, there was an improvement due to continually increasing preheating of the feed water and reheating. Attempts to change the process directly and to use a steam compressor instead of the feed pump were also made. (See A. Stodola, steam and gas turbines, Springer, 5th edition, 1922, page 1077). The methods of Thurston and Dolder try to do this; after partial condensation of the steam, it should be compressed to the original pressure level. The method of Lang GB-PS No. 1 470 527 also tries to compress the steam again directly after expansion into the turbine and to feed it to the boiler drum, but the intended reduction of the waste heat leads to an efficiency gain under otherwise identical conditions according to Carbot only if at the same time the temperature of the heat supply is increased.

Die US 4,433,545 Chang verwendet gemäss ihren Fig. 1 und Fig. 2 mehrfache Zwischenüberhitzung durch Wärmetauscher die zwischen einzelne Stufengruppen der Turbine geschaltet sind. (Ihre Bezeichnung 28, 36, 42, 28', 36', 42'). Im letzeren Schema wird dabei der Dampfstrom bis auf Sattdampftemperatur gekühlt und erst dann zwischenüberhitzt um der nächsten Stufengruppe der Turbine zugeleitet zu werden. Die französische Patentschrift Nr. 79 20276, Nr. de publication FR-A-2 435 600 verwendet ebenfalls einen zwischen die Stufengruppen der Turbine eingeschalteten Wärmetauscher (ihre bezeichnung 6), der jedoch als bekannter Zwischenüberhitzer funktioniert. Weiters wird aus der Mitteldruckturbine ein Teilstrom zu einer Kondensationsturbine, die die Speisepumpe antreibt abgezweigt. Ausser dieser beiden Merkmalen der Verwendung von Wärmetauschern und der Abzweigung von Teilströmen stehen diese Patentschriften in keinem weiteren sachlichen Zusammenhang mit der weiter unten geschilderten vorliegenden Erfindung.According to FIGS. 1 and 2, US 4,433,545 Chang uses multiple reheating by heat exchangers which are connected between individual stage groups of the turbine. (Your designation 28, 36, 42, 28 ', 36', 42 '). In the latter scheme, the steam flow is cooled to saturated steam temperature and only then reheated to be fed to the next stage group of the turbine. French Patent No. 79 20276, No. de publication FR-A-2 435 600 also uses a heat exchanger (designated 6) interposed between the turbine stage groups, but which functions as a known reheater. Furthermore, a partial flow is branched off from the medium-pressure turbine to a condensation turbine which drives the feed pump. Apart from these two features of the use of heat exchangers and the branching off of partial streams, these patents have no further factual connection with the present invention described below.

Die Temperatursteigerung tritt in einem kombinierten Gas-Dampfprozeß dadurch ein, daß die Wärme zunächst dem Gasprozeß zugeführt und dessen Abwärme in Dampfprozeß verarbeitet wird. Siehe F. Pauker "Neuere Vorschläge zum Gas-Dampf-Verfahren", Div. 111, Paper 28 G 1/6, 5th World Power Conference, Vienna 1956. Sowie ÖP 172.202 und aus neuerer Zeit DE-OS 26 37 924 (Stal-Laval). Die genannten Verfahren betreffen offene Gasturbinenprozesse. Es sind aber auch Verfahren, die geschlossene Gasturbinenprozeße in einem kombinierten Gas-DampfProzeß verwenden bekannt geworden. Als Arbeitsgase wurden hiebei Luft, Kohendioxyd und Helium verwendet bzw. vorgeschlagen. Siehe H. Bormann und J. Buxmann "Kombinierte Kraftwerksprozesse mit geschlossener Gas- und Dampfturbine", Brennst.-Wärme-Kraft 1981.The temperature increase occurs in a combined gas-steam process in that the heat is first fed to the gas process and its waste heat is processed in the steam process. See F. Pauker "Recent Proposals on the Gas-Vapor Process", Div. 111, Paper 28 G 1/6, 5th World Power Conference, Vienna 1956. As well as ÖP 172.202 and more recently DE-OS 26 37 924 (Stal-Laval). The methods mentioned relate to open gas turbine processes. However, methods that use closed gas turbine processes in a combined gas-steam process have also become known. Air, carbon dioxide and helium were used or suggested as working gases. See H. Bormann and J. Buxmann "Combined Power Plant Processes with Closed Gas and Steam Turbines", Brennst.-Heat-Kraft 1981.

Die Wärmezufuhr erfolgt hiebei an den geschlossenen Gaskreis, die Wärmeabfuhr aus demselben zum Teil an den nachgeschalteten Dampfkreis zum anderen Teil äußere Gaskühler, um die Temperatur des Gases vor der Kompression möglichst abzusenken. Es ist die Übertragung der Abwärme an den Dampfkreis nur durch eine metallische Heizfläche und infolge der Was- . serverdampfung nur mit beträchtlichen Temperaturedifferenzen möglich.The heat is supplied to the closed gas circuit, and the heat is removed from it partly to the downstream steam circuit and partly to the outer gas cooler in order to lower the temperature of the gas before compression as much as possible. It is the transfer Waste heat to the steam circuit only through a metallic heating surface and as a result of the water. server steaming only possible with considerable temperature differences.

Weiters sind geschlossene Kreisläufe mit Kohlendioxy als Arbeitsmittel bekannt geworden, die das Medium nach teilweiser Kondensation zur Wärmeabfuhr auch in Verzweigungen der Mengenströme gasförmig komprimieren. Siehe N. Gasparovic "Fluide und Kreisprozesse für Wärmekraftanlagen mit großen Einheitenleistungen", Brennst.-Wärme-Kraft 1969. Weiters ist ein Vorschlag bekannt geworden, einen Dampfkreislauf zur Gänze im überkritischem Gebiet ablaufen zu lassen, Siehe J. H. Potter "The Totally Supercritical Steam Cycle", Trans. ASME, Journal of Eng. for Power, 1969. Dieser Kreislauf bestehend aus Kompression, Wärmetausch, Wärmezufuhr, Expansion, Wärmetausch und Wärmeabfuhr wird in einer einfachen Schleife durchlaufen und liegt im T,s-Diagramm des Wasserdampfes oberhalb der Grenzkurve und die Kompression in allen Fällen links der kritischen Punktes, d.h. im Bereich von Entropien kleiner als die kritische Entropie. Die bedeutet Wärmeabfuhr bei relativ hoher Temperatur und sehr hohe Drücke im gesamten Kreislauf, somit das Erfordernis von Turbinen und Kompressoren mit sehr hoher Gehäusewandstärke und hoher Stufenzahl.Furthermore, closed circuits with carbon dioxide as a working medium have become known, which compress the medium gaseously after partial condensation for heat dissipation even in branches of the mass flows. See N. Gasparovic "Fluids and Cycle Processes for Thermal Power Plants with Large Unit Outputs", Brennst.-Wärmkraftkraft 1969. Furthermore, a proposal has been made to run a steam cycle entirely in the supercritical area, See JH Potter "The Totally Supercritical Steam Cycle ", Trans. ASME, Journal of Eng. for Power, 1969. This cycle consisting of compression, heat exchange, heat supply, expansion, heat exchange and heat dissipation is run through in a simple loop and lies in the T, s diagram of the water vapor above the limit curve and the compression in all cases to the left of the critical point, ie in the range of entropies smaller than the critical entropy. This means heat dissipation at a relatively high temperature and very high pressures in the entire circuit, thus the need for turbines and compressors with a very high wall thickness and a large number of stages.

Es wurde auch der Weg der Übereinanderschaltung von Sattdampfprozessen verschiedener Fluide beschritten, um die Temperatur der Wärmezufuhr anzuheben und die hohen Drücke des Wasserdampfes zu vermeiden. Stodola beschreibt in seinem Buch Seite 1090 die Übereinanderschaltung von Sattdampfprozessen für Quecksilber und Wasser. In neuerer Zeit wurde auch die Verwendung von Sattdampfprozessen mit Natrium oder Kalium und auch noch mit zwischengeschalteten organischen Fluiden vorgeschlagen. Neben der Tatsache, daß die thermodynamischen Eigenschaften dieser Fluide nicht immer völlig günstig sind ist für den Kraftwerksbetrieb der Zwang zur Verwendung mehrerer verschiedener Medien von Nachteil. Außerdem muß die Wärem jeweils von einem Fluid zum anderen durch metallische Heizflächen geleitet werden.The path of superimposing saturated steam processes of different fluids was also taken in order to raise the temperature of the heat supply and to avoid the high pressures of the water vapor. In his book, page 1090, Stodola describes the interconnection of saturated steam processes for mercury and water. More recently, the use of saturated steam processes with sodium or potassium and also with intermediate organic fluids has been proposed. In addition to the fact that the thermodynamic properties of these fluids are not always entirely favorable, the requirement to use several different media is disadvantageous for power plant operation. In addition, the heat must be conducted from one fluid to another through metallic heating surfaces.

Es ist daher derzeit noch kein Verfahren bekannt, das nur unter Verwendung des außerordentlich erprobten und erforschten Kreislaufmediums Wasser, eine wesentliche Wirkungsgradverbesserung von thermischen Kraftanlagen ermöglichen würde.Therefore, there is currently no known method that would only enable a significant improvement in the efficiency of thermal power plants using the extraordinarily tried and tested cycle medium water.

Hier Abhilfe zu schaffen ist der Zweck der vorliegenden Erfindung. Es soll ein Dampfkreislauf für ein Dampfkraftwerk zur Erzeugung von Leistung aus äusserer Wärme geschaffen werden, der den Vorteil der Wärmeabfuhr bei niedriger Temperatur im Kondensator beibehält, dabei aber die Temperatur der Wärmezufuhr merkbar erhöht, sodass der thermische Wirkungsgrad im Sinne Carnot's ein deutliche Steigerung erfährt.To remedy this is the purpose of the present invention. A steam cycle for a steam power plant to generate power from external heat is to be created, which maintains the advantage of heat dissipation at a low temperature in the condenser, but at the same time increases the temperature of the heat supply appreciably, so that the thermal efficiency in Carnot's sense experiences a significant increase.

Dies geschieht gemäß den in den Patentanspruch 1, beschriebenen Merkmale.This is done according to the features described in claim 1.

Ein weiterer entscheidender Vorteil dieses Kreislaufes ist, daß die Notwendigkeit einer Höchstdruckdampfturbine, wie sie bei konventionellen Anlagen zur Wirkungsgradsteigerung erforderlich ist nicht mehr gegeben ist. Soll in einem konventionellen Prozeß die Temperatur der Wärmezufuhr gesteigert werden, so kann dies nur dadurch geschehen, daß nach extremer Speisewasseranzapf-Vorwärmung, die jedoch mit der Annäherung an die Sattdampftemperatur begrenzt ist, die Sattdampftemperatur durch Drucksteigerung selbst angehoben wird, was jedoch nur bis zum kritischen Punkt möglich ist und hierauf eine möglichst hohe Überhitzung erfolgt. Dies erfordert jedoch, um eine Expansionslinie der Dampfturbine zu erhalten, die im feuchten Gebiet endet, einen außerordentlich hohen Frischdampfdruck. Diese hohen Frischdampfdrücke, die zum Teil schon überkritisch sind und den Bereich von 300 bar erreicht haben, bedingen jedoch außerordentlich schwierige, teure und zum Teil auch betriebsunsichere Konstruktionen der Höchsdruckdampfturbinen. Außerdem kann auch durch diese Maßnahme des überkritischen Druckes, wie der Verlauf der Erwärmung im T,s-Diagramm des Wasserdampfes zeigt, die mittlere Temperatur der Wärmezufuhr in keine Weise derart angehoben werden, wie nach der vorliegenden Erfindung.Another decisive advantage of this circuit is that the need for a high-pressure steam turbine, as is required in conventional systems for increasing efficiency, is no longer present. If the temperature of the heat supply is to be increased in a conventional process, this can only be done by raising the saturated steam temperature itself by increasing the pressure after extreme feedwater preheating, which is however limited to the approximation to the saturated steam temperature, but this only up to critical point is possible and this results in the highest possible overheating. However, this requires an extraordinarily high live steam pressure in order to obtain an expansion line of the steam turbine which ends in the moist area. However, these high live steam pressures, some of which are already supercritical and have reached the 300 bar range, result in extremely difficult, expensive and, in some cases, also unreliable designs of the high pressure steam turbines. In addition, this measure of supercritical pressure, as the course of the heating in the T, s diagram of the water vapor shows, does not raise the mean temperature of the heat supply in any way as in accordance with the present invention.

In der Konstruktion ergibt sich für die hier nötige Hochtemperaturdampfturbine der Vorteil, daß deren Betriebsdruck vergleichsweise niedrig ist und etwa dem Druck einer Zwischenüberhitzungsturbine einer konventionellen Dampfturbine entspricht, sodaß in diesem Fall die Maschine mit einem Gehäuse wesentlich geringerer Wandstärke ausgeführt werden kann. Dies, sowie die Tatsache, daß die Sattdampftemperatur des zugehörigen Druckes von etwa 50 bar sehr niedrig liegt, bietet die Möglichkeit eine derartige Maschine mit innerer Isolation im Sinne der Konstruktion von Gasturbinen zu gestalten. Hiezu ist eine Isolation nötig, die im Dampfbereich arbeitet und die Temperaturdifferenz von der Höchsttemperatur des Prozeßes auf die Sattdampftemperatur dieses höchsten Druckes im Bereich von 50 bar überwindet. Bei Auswahl geeigneter keramischer und mineralischer Materialien und entsprechender Festigung eines Isolationskörpers durch metallische Verstärkungen ist es ohne weiteres möglich eine derartige innenliegende Isolation betriebssicher zu konstruieren. Durch Anzapfung und Entwässerung des Gehäuses im Innenbereich und unter voller Wirkung der Isolation wird dann erreicht, daß an der Innenseite des Dampfgehäuses der Sattdampfzustand der Höchsttemperatur-Dampfturbine erreicht wird. Dies ist jedoch eine vergleichsweise niedrige Temperatur im Bereich von 200 bis 250°C, sodaß ein derartiges Gehäuse nicht nur aus niedrig legierten Materialien und durch Schweißkonstruktion gefertigt werden kann, sondern außerdem durch die niedrige Temperatur und die mögliche hohe Leitfähigkeit des zu verwendenden Stahles einen sehr geringen Wärmeverzug aufweisen wird, was der Betriebsfähigkeit und Anstreifsicherheit dieser Turbine zugute kommt. Zusammen mit der Tatsache, daß der Mengenstrom gegenüber einer konventionellen Dampfturbine wesentlich erhöht ist, ergibt sich somit, daß hier eine Turbine mit weniger Stufen, aber größeren Schaufellängen und geringeren Spalten vorliegen kann. Dies bedeutet andererseits, daß der Strömungswirkungsgrad einer derartigen Maschine deutlich höher sein wird, als der einer konventionellen Höckstdruckturbine. Auch diese Tatsache kommt dem Gesamtwirkungsgrad des Kreislaufes zugute.The design of the high-temperature steam turbine required here has the advantage that its operating pressure is comparatively low and roughly corresponds to the pressure of an intermediate superheating turbine of a conventional steam turbine, so that in this case the machine can be designed with a housing with a much smaller wall thickness. This, as well as the fact that the saturated steam temperature of the associated pressure of about 50 bar is very low, offers the possibility of designing such a machine with internal insulation in the sense of the construction of gas turbines. This requires insulation that works in the steam area and overcomes the temperature difference from the maximum temperature of the process to the saturated steam temperature of this highest pressure in the range of 50 bar. With the selection of suitable ceramic and mineral materials and the corresponding strengthening of an insulation body by means of metallic reinforcements, it is easily possible to construct such an internal insulation in a reliable manner. By tapping and draining the housing inside and with the full effect of the insulation, it is then achieved that the saturated steam state of the maximum temperature steam turbine is reached on the inside of the steam housing. However, this is a comparatively low temperature in the range of 200 to 250 ° C, so that such a housing can not only be made of low-alloy materials and welded construction, but also a very low temperature and the possible high conductivity of the steel to be used low heat distortion will show what benefits the operability and rub resistance of this turbine. Together with the fact that the volume flow is significantly increased compared to a conventional steam turbine, it follows that there can be a turbine with fewer stages, but larger blade lengths and fewer gaps. On the other hand, this means that the flow efficiency of such a machine will be significantly higher than that of a conventional high-pressure turbine. This fact also benefits the overall efficiency of the circuit.

Der Dampfkompressor arbeitet im Bereich mittleren Druckes und niedriger Temperatur und ist daher als konventionelle Strömungsmaschine ausführbar. Die ins Auge gefaßte Wassereinspritzung vor dem Dampfkompressor soll Feuchtigkeiten im Bereich von 5 bis 12% ergeben. Nach den Betriebserfahrungen mit Sattdampfturbinen, die in diesem Feuchtigkeitsbereich einwandfrei arbeiten, erscheint es keinerlei Problem zu bieten einen Dampfkompressor, insbesondere auch z.B. einen solchen mit Radialausführung mit einer derartigen Eintrittsfeuchtigkeit zu beaufschlagen.The steam compressor works in the medium pressure and low temperature range and can therefore be designed as a conventional turbomachine. The envisaged water injection in front of the steam compressor is said to result in moisture in the range of 5 to 12%. After the operational experience with saturated steam turbines, which work perfectly in this humidity range, it does not seem to be a problem to offer a steam compressor, especially also e.g. to apply such a radial design with such entry moisture.

Der Einspritzkühler erfordert eine Zersäubung des aufgewärmten Kondensates durch entsprechende Einspritzdüsen, die in der nötigen Feinheit durch eine leichte Steigerung des Druckes der von der Speisepumpe erzeugt wird, erreicht werden kann. Die in dem Dampfstrom des Hauptstroms eingespritzten Tröpfchen werden von diesem weitergetragen und durch Wärmezufuhr aus dem Überhitzungsbereich verdampft, sodaß entsprechend der gewählten Einspritztropfengröße eine genügend feine Verteilung der Tröpfchen im Sattdampfbereich entsteht. Diese stellen für den Dampfkompressor, wie oben geschildert, keine Abnützungsgefahr dar.The desuperheater requires the warmed up condensate to be atomized by means of appropriate injection nozzles, which can be achieved in the necessary fineness by slightly increasing the pressure generated by the feed pump. The droplets injected into the vapor stream of the main stream are carried on by it and evaporated by supplying heat from the superheating area, so that a sufficiently fine distribution of the droplets in the saturated steam area arises in accordance with the selected size of the injection drops. As described above, these do not pose any risk of wear for the steam compressor.

Der Dampfwärmetauscher überträgt Wärme vom Dampf niedrigen Druckes und höherer Temperatur auf den Dampfstrom höheren Druckes und niedriger Temperatur. Sein Temperaturbereich ist im allgemeinen so wählbar, daß hiezu lediglich konventionelle Kesselbaustähle Verwendung finden müssen. Es ist daher möglich ein derartiges Gerät mit genügendem Querschnitt und in preiswerter Weise so zu bauen, daß geringe Druckverluste auf beiden Seiten einstehen.The steam heat exchanger transfers heat from the steam of low pressure and higher temperature to the steam flow of higher pressure and lower temperature. Its temperature range can generally be selected so that only conventional boiler steels have to be used. It is therefore possible to build such a device with a sufficient cross-section and inexpensively so that there are low pressure losses on both sides.

Die Aufwärmung im Dampferhitzer (der Ausdruck Überhitzer ist hier nicht ganz angebracht, da schon der Vorwärmer einen Teil der Überhitzung besorgt). Diese Heizfläche stellt die einzigewärmeaufnehmende Heizfläche des im folgenden zu schildernden Kessels dar. In ihr hat die Aufwärmung des Dampfes auf die Höchsttemperatur des Prozeßes zu erfolgen. Bei einem Druck der nach heutigen konventionellen Begriffen als mittlere Druck anzusprechen ist. Wird die Temperatur hier hoch und über den heute üblichen Spritzenwert hinaus gesteigert, so sind hier höherwertige Materialien für die entsprechenden Rohre einzusetzen. Dies kann jedoch durch Wahl von austenitischen Rohrmaterialien bzw. auch Nickelbasis Rohrmaterialien in geeigneter Weise geschehen.Warming up in the steam heater (the term superheater is not quite appropriate here, since the preheater already does some of the overheating). This heating surface represents the only heat-absorbing heating surface of the boiler to be described below. In it, the steam must be heated to the maximum temperature of the process. At a pressure that is to be referred to as medium pressure according to today's conventional terms. If the temperature is high here and increased above the usual syringe value, higher quality materials have to be used for the corresponding pipes. However, this can be done in a suitable manner by selecting austenitic tube materials or also nickel-based tube materials.

Die Kondensationsdampfturbine und der Kondensator sowie das Anzapf-Vorwärm-System sei in völlig konventioneller Weise ausgeführt. Ebenso die Speisepumpe und ihrAntrieb, lediglich mit der Vorsorge die Druckdifferenz zur Zerstäubung des Entspritzwassers ebenfalls aufbringen zu müssen.The condensation steam turbine and the condenser, as well as the tap preheating system, are designed in a completely conventional manner. The same applies to the feed pump and its drive, only with the provision of having to apply the pressure difference to atomize the spray water.

Zum Kessel ist festzustellen, daß dieser als atmosphärisch gefeuerter Kessel mit beliebigen Brennstoffen ausgestaltet werden kann. Es ist lediglich notwendig die Abgase des Kessels und die angesaugte Luft in einem Wärmtauscher so aneinander anzupassen, daß im Feuerraum des Kessels ein Temperatur entsteht, die mit genügender Temperaturdifferenz über der Temperatur liegt, die der Dampferhitzer aufweist. Unter Berücksichtigung der Tatsache, daß die spezifischen Wärmen des Kesselabgases und der angesaugten Luft infolge des Verbrennungsvorganges und des Brennstoffanteiles verschieden sind, jedoch auch unter Berücksichtigung der Tatsache, daß die Luft kälter angesauft wird als das Rauchgas in den Schornstein abgegeben wird ist diese ohne weiteres möglich. Es muß die Luft auf etwa 500°C vorgewärmt werden und die Wärme durch Abtausch aus dem Kesselabgas heizu entnommen werden. Es ist möglich einen Kessel in der geschilderten Art mit lediglich atmosphärischer Feuerung mit Zufuhr der Luft durch ein Unterwindgebläse bzw. Abfuhr des Rauchgases durch ein Saug-Zug-Gebläse zu versorgen. Es ist aber auch möglich einen Teil dieser Temperaturdifferenz zur Aufwärmung der Luft nicht über den Wärmetauscher, sondern mittels Aufladung durch einen Kompressor zu bewirken und damit gleichzeitig den Druck im Wärmetauscher und in der Brennkammer des Kessels entsprechend zu steigern und den Wärmeübergang an den Dampferhitzer entsprechend zu verbessern. Dies kann soweit gehen, daß der Rauchgas-Wärmetauscher völlig entfallen kann und lediglich die Aufladung durch Kompressor und die Entspannung durch die entsprechende Gasturbine der Luft bzw. des Rauchgases im Kesseldurchsatz erfolgt, wie dies die DE-OS 22 62 305 (Brown Boveri) lehrt.Regarding the boiler, it should be noted that it can be designed as an atmospherically fired boiler with any fuel. It is only necessary to adapt the flue gases from the boiler and the air drawn in to one another in a heat exchanger in such a way that a temperature arises in the combustion chamber of the boiler which is above the temperature of the steam heater with a sufficient temperature difference. Taking into account the fact that the specific heat of the boiler exhaust gas and the intake air are different due to the combustion process and the fuel content, but also taking into account the fact that the air is brewed colder than the flue gas is released into the chimney, this is easily possible . The air must be preheated to approximately 500 ° C and the heat must be removed by exchanging it from the boiler flue gas. It is possible to supply a boiler in the manner described with only atmospheric firing with the air being supplied by a downwind fan or the flue gas being removed by a suction-draft fan. However, it is also possible to effect part of this temperature difference for heating the air not by means of the heat exchanger, but by means of a compressor, thus simultaneously increasing the pressure in the heat exchanger and in the combustion chamber of the boiler and increasing the heat transfer to the steam heater accordingly improve. This can go so far that the flue gas heat exchanger can be completely dispensed with and only the supercharging by the compressor and the relaxation by the corresponding gas turbine of the air or the flue gas in the boiler throughput takes place, as taught in DE-OS 22 62 305 (Brown Boveri) .

Die vorliegende Erfindung soll an Hand der Figuren näher erläutert werden, wobei:The present invention will be explained in more detail with reference to the figures, in which:

Zeichnungsbeschreibung:

  • Fig. 1 erfindungsgemässe Schaltung. Die einzelnen Aparate und Maschinen sind mit einfachen Ziffern bezeichnet, deren Bedeutung aus dem Text hervorgeht. Volle Linien bedeuten Leitungsverbindungen.
  • Fig. 2: Temperatur-Entropie Diagramm der erfindungsgemässen Schaltung eines Dampfkreislaufes für ein Dampfkraftwerk. Es sind spezifische Werte der Entropie des Wasserdampfes eingetragen. Beziehungen zwischen verschiedenen Mengenströmen sind daher nicht ersichtlich. Lediglich Temperaturdifferenzen erscheinen in wahrer Grösse. Diefunktionelle Bedeutung der mit C1 bis C20 bezeichneten Zustandspunkte geht aus dem Beschreibungstext hervor.
Drawing description:
  • Fig. 1 circuit according to the invention. The individual devices and machines are identified with simple numbers, the meaning of which is evident from the text. Solid lines mean line connections.
  • Fig. 2: Temperature entropy diagram of the circuit according to the invention of a steam circuit for a steam power plant. Specific values of the entropy of water vapor are entered. Relationships between different mass flows are therefore not evident. Only temperature differences appear in true size. The functional meaning of the status points labeled C1 to C20 can be seen from the description text.

Die äussere Wärmezufuhr kann durch eine beliebige Wärmequelle geeigneter hoher Temperatur erfolgen. Hier sei beispielsweise die äussere Wärmeerzeugung durch Verbrennung fossiler Brennstoffe in einem atmosphärisch oder druckgefeuerten Dampfkessel beschrieben. Dabei bedeute 1 das Unterwindgebläse, 2 seinen elektrischen Antrieb, 3 ein Saugzuggebläse, 4 einen Rauchgas-wärmetauscher, 5 dessen luftseitige Heizfläche, und 6 dessen gasseitige Heizfläche, 7 die Brennstoffzufuhr, und 8 die Brennkammer des Kessels mit atmosphärischer Verbrennung. Handelt es sich um einen aufgeladenen Kessel dann bezeichnet 1 den Ladekompressor, 3 die Abgasturbine, und 2 die elektrische An- und Abtriebsmaschine. In beiden Fällen befindet sich in der Brennkammer 8, die Heizfläche 10, des Dampfkreislaufes in der die äussere Wärmezufuhr erfolgt. Dieser Dampfkreislauf wird ebenfalls gemäss Fig. 1 beschrieben. Dieser sei ein doppelter Dampfkreislauf für ein Dampfkraftwerk mit Wärmezufuhr zur Erzeugung von Leistung aus hochwertiger Wärme, wobei die Dampfkreisläufe im Hochtemperaturbereich kombiniert werden-durch Einspritzung von Speisewasser in den Einspritzkühlern 23 und 24, und danach eine Teildampfmenge im Dampfkompressor 11 verdichtet wird, und die volle Kreislaufmenge im Dampverdichter 12 auf den Höchstdruck des Kreislaufs verdichtet wird, und diese volle Kreislaufmenge auf der Hochdruckseite des Wärmetauschers 14 erwärmt wird, und über die Leitung 9 der Heizfläche des Dampferhitzers 10 zugeleitet wird, wo sie durch äussere Wärmezufuhr auf die Höchsttemperatur des Prozesses erhitzt wird. Um dann anschliessend der Hochtemperaturdampfturbine 13 zuzulaufen in der die volle Kreislaufmenge expandiert wird. Ein kleiner Teilstrom wird vom Hochdruckkompressor 12 zur Kühlung des Rotors über die Leitung 13.1 der Hochtemperaturturbine 13 zugeleitet. Nach der Expansion in der Hochtemperaturdampfturbine 13 erfolgt die Kühlung des Abdampfes auf der Niederdruckseite des Wärmetauscher 14, worauf im Verzweigungspunkt 15 eine Teilung der Dampfströme erfolgt, wobei der eine Teilstrom dem Einsprizkühler 23 un in der Folge dem Dampfkompressor 11 zuströmt, während der andere Teil in der Kondensationsturbine 16 unter Abgabe von Anzapfdampf weiter expandiert, im Kondensator 17 kondensiert, und über die Kondensatpumpe 18 und den Niederdruckvorwärmer 19 dem Entgaser-Speisewasserbehälter 20 zuläuft. Von diesem wird über die Speisepumpe 21 und weitere Erwärmung im Hockdruckvorwärmer 22 das Einspritzwasser in die Einspritzkühler 23 und 24 eingespritzt, womit der doppelte Kreislauf geschlossen ist. Trennung der Mengenströme der beiden Kreisläufe erfolgt somit im Verzweigungspunkt 15 die Vereinigung der Mengenströme zur vollen Kreislaufmenge erfolgt in den Einspritzkühlern 23 und 24. Gekennzeichnet ist dieser Kreislauf durch die Anordnung eines Kompressors bzw. mehrerer Stufengruppen von Kompressoren und durch die Anordnung eines Wärmetauschers. Dies führt thermodynamisch dazu, dass die Wärmezufuhr an schon Vorgewärmten Dampf mässigen Druckes bei sehr hoher mittlerer Temperatur erfolgt. Weiters ist das Verfahren gekennzeichnet durch eine Expansion des Dampfes im Hochtemperaturbereich mit einer nachfolgenden Kühlung im Wärmetauscher mit einer Eintrittstemperatur in die Kondensationsturnbine, die einen günstigen Kondensationsendpunkt im Hinblick auf Erosion und Wärmeabfuhr ergibt. Diese werde an Hand von Fig. 2 im TS-Diagramm für Wasserdampf beschrieben. In diesem sind spezifische Werte der Entropie eingetragen, sodass dieses Diagramm nur Zustandspunkte des Mediums nicht aber die Mengenverhältnisse des Kreislaufes wiedergibt. Diese Zustandspunkte sind daher auch mit C1 bis C20 bezeichnet. Es ist also die Höchsttemperatur des Dampfes nach der äusseren Wärmezufuhr mit Punkt C1 bezeichnet.The external heat can be supplied by a bige heat source suitable high temperature. Here, for example, the external heat generation by burning fossil fuels in an atmospheric or pressure-fired steam boiler is described. 1 means the downwind blower, 2 its electric drive, 3 a suction fan, 4 a flue gas heat exchanger, 5 its air-side heating surface, and 6 its gas-side heating surface, 7 the fuel supply, and 8 the combustion chamber of the boiler with atmospheric combustion. If the boiler is charged, 1 designates the charging compressor, 3 the exhaust gas turbine, and 2 the electric drive and driven machine. In both cases, the heating surface 10 of the steam circuit in which the external heat supply takes place is located in the combustion chamber 8. This steam cycle is also described in accordance with FIG. 1. This is a double steam circuit for a steam power plant with heat supply to generate power from high-quality heat, the steam circuits being combined in the high temperature range - by injecting feed water in the injection coolers 23 and 24, and then compressing a partial steam quantity in the steam compressor 11, and the full one Circulation quantity in the steam compressor 12 is compressed to the maximum pressure of the circuit, and this full circuit quantity is heated on the high-pressure side of the heat exchanger 14, and is fed via line 9 to the heating surface of the steam heater 10, where it is heated to the maximum temperature of the process by external heat supply . In order to then subsequently run to the high-temperature steam turbine 13 in which the full circulation quantity is expanded. A small partial flow is fed from the high-pressure compressor 12 to the high-temperature turbine 13 for cooling the rotor via the line 13.1. After expansion in the high-temperature steam turbine 13, the exhaust steam is cooled on the low-pressure side of the heat exchanger 14, whereupon the steam flows are divided at the branching point 15, one partial flow flowing into the injection cooler 23 and consequently into the steam compressor 11, while the other part flows into the condensation turbine 16 expands further, releasing bleed steam, condenses in the condenser 17, and runs to the degasifier feed water tank 20 via the condensate pump 18 and the low-pressure preheater 19. From this, the injection water is injected into the injection cooler 23 and 24 via the feed pump 21 and further heating in the high pressure preheater 22, whereby the double circuit is closed. Separation of the volume flows of the two circuits thus takes place at the branching point 15, the combination of the volume flows to the full volume of the circuit takes place in the injection coolers 23 and 24. This circuit is characterized by the arrangement of a compressor or several stage groups of compressors and by the arrangement of a heat exchanger. This leads thermodynamically to the fact that the heat is supplied at preheated steam of moderate pressure at a very high average temperature. Furthermore, the process is characterized by an expansion of the steam in the high temperature range with subsequent cooling in the heat exchanger with an entry temperature into the condensation turbine, which results in a favorable condensation end point with regard to erosion and heat dissipation. This will be described with reference to FIG. 2 in the TS diagram for water vapor. Specific values of the entropy are entered in this, so that this diagram only shows the state of the medium of the medium and not the quantitative relationships of the circuit. These status points are therefore also designated C1 to C20. The maximum temperature of the steam after the external supply of heat is therefore designated as point C1.

Die Eintragung dieser Zustandspunkte in Fig. 2 ist als beispielsweise Darstellung des erfindungsgemässen Dampfkreislaufes aufzulassen. In physikalischer Hinsicht ist die Lage der Zustandspunkte in Bezug auf die Grenzkurve also im Hinblick auf überhitzten Zustand oder Nassdampfzustand von Bedeutung. Im folgenden wird die Nummer des Bauteiles nach Fig. 1 und die darin stattfindende Zustandsänderung nach Fig 2 durch den Bindestrich zwischen den mit C notierten Zustandspunkten angegeben. So bedeutet: die Erwärmung der vollen Kreislaufmenge in der Heizfläche 10 die Zustandsänderung-C14-C1, die Expansion in der Hochtemperaturturbine 13 die Zustandsänderung Cl-C2, die Kühlung der vollen Kreislaufmenge auf der Niederdruckseite des Wärmetauschers 14 die Zustandsänderung C2-C3, die Expansion des Teilstromes in der Kondensationsturbine 16 abgezweigt im Verzweigungspunkt 15 entspricht der Zustandsänderung C3-C4-C5-C6-C7, wobei die Zwischenpunkte Entnahmen von Anzapfdampf und der Endpunkt C7 den Kondensationsbeginn der Wärmeabgabe an das Kühlwasser im Kondensator 17 entspricht. Nach völliger Niederschlagung des Dampfes wird das Kondensator durch die Kondensatpumpe 18 gemäss der Zustandsänderung C15-C16 weitergepumpt. Die Aufwärmung im Niederdruckvorwärmer 19 entspricht der Zustandsänderung (C16­C17. Die Aufwärmung im Entgaser 2 entspricht zur Zustandsänderung C17-C18. Aus dem angeschlossenen Speisewasserbehälter 20 föndert die Speisepumpe auf Einspritzdruck gemäss der Zustandsänderung C18-C19, worauf die restliche Vorwärmung im Hochdruckvorwärmer 22 gemäss der Zustandsänderung C19-C20 erfolgt, Damit steht das Einspritzwasser für die Einspritzkühler 23 und 24 im Zustand C20 bereit.The entry of these status points in FIG. 2 is to be regarded as an example of the steam cycle according to the invention. From a physical point of view, the position of the state points in relation to the limit curve is important with regard to the overheated state or wet steam state. In the following, the number of the component according to FIG. 1 and the state change according to FIG. 2 taking place therein are indicated by the hyphen between the state points notated with C. Thus, the heating of the full amount of the circuit in the heating surface 10 means the change of state-C14-C1, the expansion in the high-temperature turbine 13, the change of state-C1-C2, the cooling of the full amount of the circuit on the low-pressure side of the heat exchanger 14, the change of state C2-C3, the expansion of the partial flow branched off in the condensation turbine 16 at the branching point 15 corresponds to the change in state C3-C4-C5-C6-C7, the intermediate points removal of bleed steam and the end point C7 corresponding to the start of condensation of the heat transfer to the cooling water in the condenser 17. After the steam has been completely deposited, the condenser is pumped on by the condensate pump 18 in accordance with the change in state C15-C16. The warm-up in the low-pressure preheater 19 corresponds to the change in state (C16C17. The warm-up in the degasifier 2 corresponds to the change in state C17-C18. From the connected feed water tank 20, the feed pump flows to injection pressure in accordance with the change in state C18-C19, whereupon the remaining preheating in the high-pressure preheater 22 in accordance with the change in state C19-C20 takes place, so that the injection water is available for the desuperheaters 23 and 24 in the state C20.

Der andere Teilstrom des Dampfes durchläuft ab dem Verzweigungspunkt 15 folgende Zustandsänderung: Abkühlung im Einspritzkühler 23 C3-C8-C9 hierauf Verdichtung im ersten Dampfkompressorteil 11 entsprechend der Zustandsänderung C9-C10. Hierauf weitere Abkühlung durch Wassereinspritzung im Einspritzkühler 24 entsprechend der Zustandsänderung C10―C11―C12. Hiemit ist die volle Kreislaufmenge durch Vereinigung der Teilströme erreicht. Es folgt die Verdichtung im zweiten Dampfkompressorteil 12 auf den vollen Kreislaufdruck entsprechend der Zustandsänderung C12-C13 und anschliessend die Erwärmung der vollen Kreiaslaufmenge auf der Hochdruckseite des Wärmetauschers 14 entsprechend der Zustandsänderung C13-C14, womit der gesamte Kreislauf beschrieben ist.The other partial flow of the steam undergoes the following change of state from the branching point 15: cooling in the injection cooler 23 C3-C8-C9 then compression in the first steam compressor part 11 in accordance with the change in state C9-C10. Then further cooling by water injection in the injection cooler 24 in accordance with the change in state C10 ― C11 ― C12. This is the full circle Running volume achieved by combining the partial flows. This is followed by the compression in the second steam compressor part 12 to the full circuit pressure corresponding to the change in state C12-C13 and then the heating of the full circulating flow on the high pressure side of the heat exchanger 14 in accordance with the change in state C13-C14, which describes the entire circuit.

Gemäss der Beschreibung der Erfindung und gemäss den Ansprüchen kann das Detail der Zustandsänderung in den Einspritzkühlern 23 und 24 und in den Dampfkompressoren 11 und 12 wie oben beschrieben mit Kühlung bis in Nassdampfgebiet erfolgen, aber auch so gestaltet werden, dass diese Zustandsänderungen nur im Gebiet des überhitzten Dampfes ablaufen. Die Zustandspunkte C8 und C9 sind dann ident, ebenso wie die Zustandspunkte C11 und C12 ident sind-sie stellen dann die Zustände jeweils am Eintritt in den ersten Dampfkompressorteil 11 und in den zweiten Dampfkompressorteil dar-und liegen im Ts-Diagramm über der Grenzkurve im Gebiet des überhitzten Dampfes. Dadurch werden Probleme der Nassdampfströmung am Eintritt in die Kompressoren vermieden. Ausserdem erfolgt die Verdampfung der Wassertröpfchen die bei der Einspritzung des Speisewassers im Einspritzkühler gebildet werden vollständig, wenn die Zustandsänderung des Dampfes in demselben auf das überhitze Gebiet des Dampfes beschränkt bleibt.According to the description of the invention and according to the claims, the detail of the change in state in the injection coolers 23 and 24 and in the steam compressors 11 and 12 can be carried out as described above with cooling down to the wet steam region, but can also be designed such that these state changes only in the region of overheated steam. The state points C8 and C9 are then identical, just like the state points C11 and C12 are identical - they then represent the states at the entry into the first steam compressor part 11 and in the second steam compressor part - and are located in the Ts diagram above the limit curve in the area of superheated steam. This avoids problems with wet steam flow at the inlet to the compressors. In addition, the evaporation of the water droplets which are formed in the injection cooler during the injection of the feed water takes place completely if the change in the state of the steam therein remains restricted to the superheated area of the steam.

Claims (2)

1. Double steam cycle for a steam power plant, with heat input for power production from high quality heat, in which case the two steam cycles are combined in the high temperature region and the full cycle mass flows are heated by external heat input, by guiding over heater surfaces, and said full mass flows are expanded in a high temperature steam turbine, providing thus useful power as driving power to an electric generator, at which part of the steam expanded in the high temperature turbine is further expanded in a condensing turbine from which steam is bled for feed heating, and the steam flow thus further expanded in the condensing turbine is condensed in a condenser and is thus liquified in giving up its latent heat to the cooling water or a heating wafer circle, in either case in the liquid condensate being brought to higher pressure by the condensate pump, now called feed water, and is heated by low pressure bled steam heaters to the higher temperature before it is fed to the deaerator for deaeration which serves also as a means for feed water storage and this deaerated feed water is pressurized by the feed pump to a specified high pressure and is further heated by bled steam from the condensing turbine in high pressure heaters characterized in that the fully cycle mass flows before being heated by external heat input are heated in a heat exchanger by heat exchange with the full cycle mass flows expanded in the high temperature steam turbine and flowing from the high temperature steam turbine to said heat exchanger where they are cooled, and that this part of the full cycle mass flows thus cooled in said heat exchanger which is not fed to the condensing turbine for further expansion, this other part is cooled by injection of feed water in an injection cooler, said feed water being pressurized by the feed pump and being feed heated by bled steam heater, said part of the full steam cycle mass flows being increased by the mass flow of the injected feed water is compressed in a steam compressor or a first stage group thereof, this steam compressor being driven by the high temperature steam turbine, after which a further injection and compression in a succeeding part of the steam compressor may follow, and that in consequence the full cycle mass flows being thus replenished and compressed are heated in the heat exchanger mentioned above.
2. Steam cycle for a steam power plant further characterized in that, instead of a condensing turbine a backpressure turbine is provided, the exhaust steam of which, after heat release from technological or room heating purposes is returned as condensate after being properly cleaned to the feed heating part of the plant and is fed via feed pump to the injection coolers as injection feed water, or in that, the newly purified fresh water is feed heated and fed via feed pump and injection coolers into the cycle in case the exhaust steam from the back pressure turbine is directly used for technological purposes.
EP85890073A 1984-03-23 1985-03-21 Steam cycle for a steam power plant Expired - Lifetime EP0158629B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT984/84 1984-03-23
AT98484 1984-03-23

Publications (3)

Publication Number Publication Date
EP0158629A2 EP0158629A2 (en) 1985-10-16
EP0158629A3 EP0158629A3 (en) 1986-02-26
EP0158629B1 true EP0158629B1 (en) 1990-08-16

Family

ID=3504276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85890073A Expired - Lifetime EP0158629B1 (en) 1984-03-23 1985-03-21 Steam cycle for a steam power plant

Country Status (2)

Country Link
EP (1) EP0158629B1 (en)
DE (1) DE3579183D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223024A1 (en) * 2012-12-13 2014-06-18 Zf Friedrichshafen Ag Waste heat recovery unit for motor-vehicle drive with internal combustion engine, has motor-driven side and output side cooling circuit that is connected to thermodynamic circuit to assist condensation of working medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145596A1 (en) * 1999-12-21 2003-08-07 Christoph Noelscher Method for operating a steam turbine installation and a steam turbine installation that functions according thereto
US20070193271A1 (en) * 2004-09-29 2007-08-23 Alexander Gorban Methods of generating exergy
CN101696643B (en) * 2009-10-30 2012-09-19 北京联合优发能源技术有限公司 Low-temperature heat energy recovering apparatus of heat and electricity co-generation and recovering method thereof
WO2015000536A1 (en) * 2013-07-05 2015-01-08 Siemens Aktiengesellschaft Method for preheating feed water in steam power plants, with process steam outcoupling
CN107448249A (en) * 2017-07-14 2017-12-08 中国神华能源股份有限公司 Combustion engine turbine cooling control method and device, storage medium
CN107780982A (en) * 2017-12-07 2018-03-09 华电郑州机械设计研究院有限公司 A kind of online indirect air cooling high back pressure thermal power plant unit backpressure control system and method
CN112360571B (en) * 2020-10-26 2023-07-14 北京动力机械研究所 Low-heat-dissipation closed Brayton cycle thermoelectric conversion system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2435600A1 (en) * 1978-08-10 1980-04-04 Bbc Brown Boveri & Cie STEAM TURBINE INSTALLATION
US4433545A (en) * 1982-07-19 1984-02-28 Chang Yan P Thermal power plants and heat exchangers for use therewith

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212561B (en) * 1962-09-05 1966-03-17 Licentia Gmbh Axial high pressure hot steam turbine
CH399078A (en) * 1963-02-15 1966-03-31 Escher Wyss Ag Housing for gas or steam turbines
AT290927B (en) * 1968-10-28 1971-06-25 Elin Union Ag Cooling the drum rotor of gas turbines
GB1470527A (en) * 1974-10-08 1977-04-14 Lang W Steam power plant
SE402797B (en) * 1975-09-12 1978-07-17 Stal Laval Turbin Ab COMBINED ENGINE AND GAS TURBINE SYSTEM

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2435600A1 (en) * 1978-08-10 1980-04-04 Bbc Brown Boveri & Cie STEAM TURBINE INSTALLATION
US4433545A (en) * 1982-07-19 1984-02-28 Chang Yan P Thermal power plants and heat exchangers for use therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223024A1 (en) * 2012-12-13 2014-06-18 Zf Friedrichshafen Ag Waste heat recovery unit for motor-vehicle drive with internal combustion engine, has motor-driven side and output side cooling circuit that is connected to thermodynamic circuit to assist condensation of working medium

Also Published As

Publication number Publication date
EP0158629A2 (en) 1985-10-16
DE3579183D1 (en) 1990-09-20
EP0158629A3 (en) 1986-02-26

Similar Documents

Publication Publication Date Title
DE102008037410B4 (en) Combined cycle and method using supercritical steam
DE69932766T2 (en) A method of preheating fuel for a gas turbine in a combined cycle power plant having a flow of multi-component mixtures
EP2368021B1 (en) Waste heat steam generator and method for improved operation of a waste heat steam generator
WO2021013465A1 (en) System for converting thermal energy into mechanical work
EP2187051A1 (en) Method and device for intermediate heating in a solar thermal power plant with indirect steam
DE69929918T2 (en) Gas turbine combined-cycle power plant
CH702163A2 (en) Method for increasing the power output of a gas and steam combined cycle power plant during selected periods of operation.
DE19506787B4 (en) Process for operating a steam turbine
EP0158629B1 (en) Steam cycle for a steam power plant
WO2008107406A2 (en) Combined power plant and method for starting up a combined power plant
EP1377730A1 (en) Steam power plant provided with a retrofit kit and method for retrofitting a steam power plant
WO2005056994A1 (en) Air-storage plant
WO2007144285A2 (en) Steam power plant
DE102012110579B4 (en) Plant and process for generating process steam
DE3110364A1 (en) Steam power plant
EP3810907B1 (en) Exhaust gas recirculation in gas and steam turbines plants
DE102004040730B3 (en) Method and apparatus for utilizing waste heat
EP2138677B1 (en) Gas and steam turbine array
WO1995025880A1 (en) Process for operating a waste heat steam generator and waste heat steam generator so operated
DE102017223705A1 (en) power plant
DE3042782A1 (en) Steam generating plant using superheated steam - has recuperation stage allowing excess heat to be transferred to intake water supply
EP1242729B1 (en) Method for operating a steam turbine, and a turbine system provided with a steam turbine that functions according to said method
DE102013219166A1 (en) Air intake
DE102013205053B4 (en) Method for operating a power plant having a water-steam cycle
EP2801759A1 (en) Steam bypass in a waste heat steam generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19860515

17Q First examination report despatched

Effective date: 19861217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900816

Ref country code: FR

Effective date: 19900816

REF Corresponds to:

Ref document number: 3579183

Country of ref document: DE

Date of ref document: 19900920

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950524

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203