EP1375882B2 - Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs - Google Patents

Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs Download PDF

Info

Publication number
EP1375882B2
EP1375882B2 EP03009204A EP03009204A EP1375882B2 EP 1375882 B2 EP1375882 B2 EP 1375882B2 EP 03009204 A EP03009204 A EP 03009204A EP 03009204 A EP03009204 A EP 03009204A EP 1375882 B2 EP1375882 B2 EP 1375882B2
Authority
EP
European Patent Office
Prior art keywords
actuator
voltage
nozzle needle
fuel
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03009204A
Other languages
English (en)
French (fr)
Other versions
EP1375882A1 (de
EP1375882B1 (de
Inventor
Uwe Liskow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29716623&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1375882(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1375882A1 publication Critical patent/EP1375882A1/de
Publication of EP1375882B1 publication Critical patent/EP1375882B1/de
Application granted granted Critical
Publication of EP1375882B2 publication Critical patent/EP1375882B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors

Definitions

  • the invention is based on a method for operating an internal combustion engine, in particular of a motor vehicle, in which fuel is injected from an injection valve into a combustion chamber, in which a nozzle needle of the injection valve is adjusted by a piezoelectric actuator, wherein a hydraulic coupler is a coupling between Actuator and the nozzle needle manufactures, and in which the actuator for adjusting the nozzle needle and thus for the injection of fuel is acted upon by an electrical voltage.
  • the invention also relates to a corresponding internal combustion engine and to a corresponding control device for an internal combustion engine.
  • Such a method and such an internal combustion engine are from the DE 199 03 555 C2 known.
  • the voltage applied to the actuator is switched off again. However, this does not mean that the voltage at the actuator immediately drops completely. Instead, a residual potential remains at the actuator whose size is unknown.
  • This residual potential may also be present before the next actuation of the actuator for the purpose of injecting fuel. This has the consequence that in this next control of the actuator, the amount of injected fuel is also dependent on the unknown residual potential.
  • the object of the invention is to provide a method and an internal combustion engine, which allow processing of the residual potential without additional effort.
  • the invention achieves this object by a method according to claim 1, a fuel machine according to claim 6 and a control device according to claim 7.
  • the first voltage sets the voltage at the actuator to a defined value.
  • the voltage applied to the actuator before the next activation is thus known and can be taken into account.
  • This is then achieved by adding the voltage with which the actuator is to be controlled additively to the first voltage. This results in a change in the voltage at the actuator exactly by the value that is provided. This ensures overall that the desired amount of fuel is injected into the combustion chamber of the internal combustion engine by the control with the added second voltage. An additional effort is not required.
  • the first voltage is chosen so small that the nozzle needle of the injector is not moved or adjusted in any case.
  • the first voltage is chosen to be so large that a residual potential which may still be present in the actuator from its last activation is exceeded in each case.
  • the invention may also be implemented in the form of a computer program stored on a digital electronic storage medium and whose program instructions are executable on a computer.
  • FIG. 1 a device is shown which is provided for an internal combustion engine, in particular of a motor vehicle.
  • the internal combustion engine is provided with at least one injection valve, with which fuel is injected into a combustion chamber of the internal combustion engine. On the fuel pressure is applied, which is adapted to the fuel during the compression phase of the internal combustion engine to inject into the combustion chamber.
  • the injection valve has a nozzle needle which can be reciprocated in the injection valve.
  • the fuel In an open state of the nozzle needle, the fuel is injected into the combustion chamber in a closed state, no fuel is injected.
  • the amount of injected fuel depends on the position of the nozzle needle in the open state.
  • the injection valve has a piezoelectric actuator, which is provided for adjusting the nozzle needle.
  • a hydraulic coupler is provided between the actuator and the nozzle needle.
  • the actuator can be acted upon by an electrical voltage, which has a change in the extent of the actuator result. This change in extent is transferred to the nozzle needle, so that the nozzle needle transitions to its open state.
  • the amount of fuel injected depends on the position of the nozzle needle. This position in turn depends on the change in the extent of the actuator. The change in expansion is ultimately dependent on the change in the voltage applied to the actuator. The amount of injected fuel is thus a function of the change in the voltage applied to the actuator.
  • a voltage supply UV is provided which provides at least two voltages, namely a first voltage U1 and a second voltage U2.
  • a control unit SG controls a switch S, with which one of the two voltages U1, U2 is forwarded as actuator voltage UA.
  • the actuator voltage UA is applied to the piezoelectric actuator A of the injector described.
  • the power supply UV and the actuator A are in the FIG. 1 exemplified switched to ground.
  • the actuator voltage UA is plotted over the time t. Before a time t1, the size of the actuator voltage UA is unknown. After the time t1, the actuator voltage UA has the value of the first voltage U1. After a time t2, the actuator voltage UA has the value of the second voltage U2. The difference between the first voltage U1 and the second voltage U2 corresponds to a voltage US.
  • the first voltage U1 is selected to be so small that the nozzle needle of the injection valve is not moved or displaced in any case.
  • the first voltage U1 thus only leads to a change in the extent of the actuator A, which optionally has a change in the state of the hydraulic coupler result.
  • neither the change in the extent of the actuator A itself, nor the change in the state of the hydraulic coupler have a change in the position of the nozzle needle within the injector result.
  • the first voltage U1 can be determined in particular as a function of operating variables of the internal combustion engine, for example as a function of the pressure acting on the fuel.
  • the first voltage U1 can thus change over time.
  • the first voltage U1 is chosen to be so large that a residual potential that may still be present in the actuator A from its last activation is exceeded in each case. Such a residual potential may arise because the actuator A is not completely discharged after being subjected to a voltage.
  • the second voltage U2 is chosen as follows:
  • the amount of injected fuel is a function of the change in the voltage applied to the actuator A.
  • the change in the voltage applied to the actuator A is the voltage US. It is thus determined in a first step, which voltage US is required to obtain the desired amount of fuel to be injected. In a second step, this voltage US is then added to the first voltage U1. This results in the second voltage U2, which is then applied to the actuator A.
  • the position E of the injector nozzle needle is plotted over time t.
  • the reference character O denotes the opened state of the nozzle needle or of the injection valve and the reference symbol Z indicates the closed state.
  • the exact position of the nozzle needle within the injection valve in the opened state depends on the voltage applied to the actuator A.
  • the nozzle needle is in its closed state before the time t2. Especially during the period dt1 from the time t1 to the time t2, the position of the nozzle needle does not change from its closed state.
  • the duration dt1 is selected such that transient phenomena that have arisen in any way within the injection valve due to the first voltage U1 of the resulting change in the extent of the actuator A and the consequent change in the state of the hydraulic coupler, in any case have largely subsided.
  • the voltage US additionally applied to the actuator A at the time t2 causes the injector nozzle needle to move to its open state in accordance with the desired amount of fuel to be injected.
  • This movement or adjustment of the nozzle needle is delayed due to inertia of the entire system, according to the FIG. 2 for example, after a period dt2 after time t2.
  • Piezo actuators can be operated with voltage regulation, charge regulation or energy regulation. Irrespective of this, certain voltages U1, U2 are necessary in order to set a lift with a given current and an existing electrical capacitance of the actuator. The stroke is then controlled in further injection pulses to a setpoint. In this case, a certain current is impressed and it is a certain delta voltage U2-U1 and the knowledge about the voltage U1 needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff von einem Einspritzventil in einen Brennraum eingespritzt wird, bei dem eine Düsennadel des Einspritzventils von einem piezo-elektrischen Aktor verstellt wird, bei dem ein hydraulischer Koppler eine Kopplung zwischen Aktor und der Düsennadel herstellt, und bei dem der Aktor zur Verstellung der Düsennadel und damit zur Einspritzung von Kraftstoff von einer elektrischen Spannung beaufschlagt wird. Die Erfindung betrifft ebenfalls eine entsprechende Brennkraftmaschine sowie ein entsprechendes Steuergerät für eine Brennkraftmaschine.
  • Ein derartiges Verfahren und eine derartige Brennkraftmaschine sind aus der DE 199 03 555 C2 bekannt.
  • Dabei ist ebenfalls bekannt, dass zwischen der Menge des eingespritzten Kraftstoffs und der an dem Aktor angelegten Spannung ein funktionaler Zusammenhang besteht. Insbesondere ist die eingespritzte Kraftstoffmenge abhängig von der Änderung der an dem Aktor anliegenden Spannung.
  • Nachdem der Kraftstoff von dem Einspritzventil in den Brennraum eingespritzt worden ist, wird die an den Aktor angelegte Spannung wieder abgeschaltet. Dies führt jedoch nicht dazu, dass die Spannung an dem Aktor sofort vollständig abfällt. Statt dessen verbleibt an dem Aktor ein Restpotential, dessen Größe unbekannt ist.
  • Dieses Restpotential ist auch vor der nächsten Ansteuerung des Aktors zum Zwecke der Einspritzung von Kraftstoff gegebenenfalls noch vorhanden. Dies hat zur Folge, dass bei dieser nächsten Ansteuerung des Aktors die Menge des eingespritzten Kraftstoffs auch von dem unbekannten Restpotential abhängig ist.
  • Es wäre möglich, die Größe des Restpotentials vor der nächsten Einspritzung zu messen. Ebenfalls wäre es möglich, durch entsprechende schaltungstechnische Maßnahmen zu gewährleisten, dass das Restpotential bei der nächsten Einspritzung tatsächlich Null ist. Beide Maßnahmen wären jedoch ersichtlich mit zusätzlichem Aufwand verbunden.
  • Aufgabe und Vorteile der Erfindung
  • Aufgabe der Erfindung ist es, ein Verfahren und eine Brennkraftmaschine zu schaffen, die eine Verarbeitung des Restpotentials ohne zusätzlichen Aufwand ermöglichen.
  • Die Erfindung löst diese Aufgabe durch ein Verfahren nach dem Anspruch 1, eine Brennstofftmaschine nach dem Anspruch 6 und ein Steuergerät nach dem Anspruch 7.
  • Durch die erste Spannung wird die Spannung an dem Aktor auf einen definierten Wert gesetzt. Die vor der nächsten Ansteuerung an dem Aktor anliegende Spannung ist damit bekannt und kann berücksichtigt werden. Dies wird dann dadurch erreicht, dass diejenige Spannung, mit der der Aktor angesteuert werden soll, additiv zu der ersten Spannung hinzugefügt wird. Damit ergibt sich eine Änderung der Spannung an dem Aktor genau um denjenigen Wert, der vorgesehen ist. Dies gewährleistet insgesamt, dass durch die Ansteuerung mit der addierten, zweiten Spannung die erwünschte Menge an Kraftstoff in den Brennraum der Brennkraftmaschine eingespritzt wird. Ein zusätzlicher Aufwand ist hierzu nicht erforderlich.
  • Die erste Spannung ist dabei derart klein gewählt, dass die Düsennadel des Einspritzventils in jedem Fall nicht bewegt oder verstellt wird. Die erste Spannung ist andererseits derart groß gewählt, dass ein Restpotential, das in dem Aktor von seiner letzten Ansteuerung gegebenenfalls noch vorhanden ist, in jedem Fall überschritten wird.
  • Die Erfindung kann auch in der Form eines Computerprogramms realisiert werden, das auf einem digitalen, elektronischen Speichermedium abgespeichert ist, und dessen Programmbefehle auf einem Computer ablauffähig sind.
  • Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung.
  • Ausführungsbeispiele der Erfindung
    • Figur 1 zeigt ein schematisches Blockschaltbild einer erfindungsgemäßen Vorrichtung zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, und
    • Figur 2 zeigt zwei schematische Zeitdiagramme von Signalen und Zuständen der Vorrichtung nach Figur 1.
  • In der Figur 1 ist eine Vorrichtung dargestellt, die für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs vorgesehen ist. Die Brennkraftmaschine ist mit wenigstens einem Einspritzventil versehen, mit dem Kraftstoff in einen Brennraum der Brennkraftmaschine eingespritzt wird. Auf den Kraftstoff wird ein Druck ausgeübt, der dazu geeignet ist, den Kraftstoff auch während der Verdichtungsphase der Brennkraftmaschine in den Brennraum einzuspritzen.
  • Das Einspritzventil weist eine Düsennadel auf, die in dem Einspritzventil hin- und herbewegt werden kann. In einem geöffneten Zustand der Düsennadel wird der Kraftstoff in den Brennraum eingespritzt, in einem geschlossenen Zustand wird kein Kraftstoff eingespritzt. Die Menge des eingespritzten Kraftstoffs hängt von der Stellung der Düsennadel in dem geöffneten Zustand ab.
  • Das Einspritzventil weist einen piezo-elektrischen Aktor auf, der zur Verstellung der Düsennadel vorgesehen ist. Zum Zwecke der Kopplung ist zwischen dem Aktor und der Düsennadel beispielsweise ein hydraulischer Koppler vorgesehen. Der Aktor kann mit einer elektrischen Spannung beaufschlagt werden, die eine Änderung der Ausdehnung des Aktors zur Folge hat. Diese Änderung der Ausdehnung wird auf die Düsennadel übertragen, so dass die Düsennadel in ihren geöffneten Zustand übergeht.
  • Wie erwähnt wurde, ist die Menge des eingespritzten Kraftstoffs abhängig von der Stellung der Düsennadel. Diese Stellung ist wiederum abhängig von der Änderung der Ausdehnung des Aktors. Die Änderung der Ausdehnung ist schließlich abhängig von der Änderung derjenigen Spannung, die an dem Aktor anliegt. Die Menge des eingespritzten Kraftstoffs ist somit eine Funktion der Änderung der an dem Aktor anliegenden Spannung.
  • Gemäß der Figur 1 ist eine Spannungsversorgung UV vorgesehen, die mindestens zwei Spannungen zur Verfügung stellt, und zwar eine erste Spannung U1 und eine zweite Spannung U2. Ein Steuergerät SG steuert einen Schalter S an, mit dem eine der beiden Spannungen U1, U2 als Aktorspannung UA weitergeschaltet wird. Die Aktorspannnung UA liegt an dem piezo-elektrischen Aktor A des beschriebenen Einspritzventils an. Die Spannungsversorgung UV und der Aktor A sind in der Figur 1 beispielhaft gegen Masse geschaltet.
  • In dem oberen Diagramm der Figur 2 ist die Aktorspannung UA über der Zeit t aufgetragen. Vor einem Zeitpunkt t1 ist die Größe der Aktorspannung UA nicht bekannt. Nach dem Zeitpunkt t1 weist die Aktorspannung UA den Wert der ersten Spannung U1 auf. Nach einem Zeitpunkt t2 weist die Aktorspannung UA den Wert der zweiten Spannung U2 auf. Die Differenz zwischen der ersten Spannung U1 und der zweiten Spannung U2 entspricht einer Spannung US.
  • Die erste Spannung U1 ist einerseits derart klein gewählt, dass die Düsennadel des Einspritzventils in jedem Fall nicht bewegt oder verstellt wird. Die erste Spannung U1 führt also nur zu einer Änderung der Ausdehnung des Aktors A, die gegebenenfalls eine Veränderung des Zustands des hydraulischen Kopplers zur Folge hat. Weder die Änderung der Ausdehnung des Aktors A selbst, noch die Veränderung des Zustands des hydraulischen Kopplers haben jedoch eine Veränderung der Stellung der Düsennadel innerhalb des Einspritzventils zur Folge.
  • Die erste Spannung U1 kann insbesondere in Abhängigkeit von Betriebsgrößen der Brennkraftmaschine bestimmt werden, beispielsweise in Abhängigkeit von dem auf den Kraftstoff einwirkenden Druck. Die erste Spannung U1 kann sich damit über der Zeit auch ändern.
  • Die erste Spannung U1 ist andererseits derart groß gewählt, dass ein Restpotential, das in dem Aktor A von seiner letzten Ansteuerung gegebenenfalls noch vorhanden ist, in jedem Fall überschritten wird. Ein derartiges Restpotential kann dadurch entstehen, dass der Aktor A nach einer Beaufschlagung mit einer Spannung nicht vollständig entladen wird.
  • Wird der Aktor A vor dem Zeitpunkt t1 beispielsweise dadurch abgeschaltet, dass er auf Masse gelegt wird, so ist es möglich, dass die Spannung an dem Aktor A im Zeitpunkt t1 noch nicht vollständig abgefallen ist. Daraus resultiert dann das vorgenannte Restpotential. Die Größe dieses Restpotentials ist - wie bereits erwähnt wurde - nicht bekannt, was in der Figur 1 durch die punktierte Linie vor dem Zeitpunkt t1 angedeutet ist.
  • Die zweite Spannung U2 wird wie folgt gewählt:
  • Wie erwähnt wurde, ist die Menge des eingespritzten Kraftstoffs eine Funktion der Änderung der an dem Aktor A anliegenden Spannung. Bei der Änderung der an dem Aktor A anliegenden Spannung handelt es sich um die Spannung US. Es wird damit in einem ersten Schritt bestimmt, welche Spannung US erforderlich ist, um die erwünschte Menge an einzuspritzendem Kraftstoff zu erhalten. In einem zweiten Schritt wird dann diese Spannung US zu dem ersten Spannung U1 hinzuaddiert. Es ergibt sich die zweite Spannung U2, die dann an den Aktor A angelegt wird.
  • Wesentlich ist, dass die für die erwünschte Kraftstoffmenge erforderliche Spannung US nicht alleine den Aktor A beaufschlagt, sondern dass die Summe aus der Spannung US und der ersten Spannung U1 an den Aktor A angelegt wird. Damit wird erreicht, dass an dem Aktor A in jedem Fall - also unabhängig von jeglichem, möglicherweise vorhandenen Restpotential - eine Änderung der Spannung erfolgt, und zwar um diejenige Spannung US, die für die erwünschte Kraftstoffmenge erforderlich ist.
  • In dem unteren Diagramm der Figur 2 ist die Stellung E der Düsennadel des Einspritzventils über der Zeit t aufgetragen. Mit dem Bezugszeichen O ist der geöffnete Zustand der Düsennadel bzw. des Einspritzventils und mit dem Bezugszeichen Z der geschlossene Zustand gekennzeichnet. Dabei hängt, wie bereits erwähnt wurde, die exakte Stellung der Düsennadel innerhalb des Einspritzventils in dem geöffneten Zustand von der an dem Aktor A angelegten Spannung ab.
  • Wie aus der Figur 2 zu entnehmen ist, befindet sich die Düsennadel vor dem Zeitpunkt t2 in ihrem geschlossenen Zustand. Insbesondere während der Zeitdauer dt1 von dem Zeitpunkt t1 bis zu dem Zeitpunkt t2 ändert sich die Stellung der Düsennadel nicht aus ihrem geschlossenen Zustand.
  • Die Zeitdauer dt1 ist derart gewählt, dass Einschwingvorgänge, die aufgrund der ersten Spannung U1 der daraus resultierenden Änderung der Ausdehnung des Aktors A und der daraus gegebenenfalls sich ergebenden Änderung des Zustands des hydraulischen Kopplers in irgend einer Weise innerhalb des Einspritzventils entstanden sind, in jedem Fall weitgehend abgeklungen sind.
  • Wie erläutert wurde, hat die in dem Zeitpunkt t2 an den Aktor A zusätzlich angelegte Spannung US zur Folge, dass sich die Düsennadel des Einspritzventils in ihren geöffneten Zustand bewegt, und zwar entsprechend der erwünschten, einzuspritzenden Kraftstoffmenge. Diese Bewegung bzw. Verstellung der Düsennadel erfolgt aufgrund von Trägheiten des gesamten Systems verzögert, und zwar gemäß der Figur 2 etwa nach einer Zeitdauer dt2 nach dem Zeitpunkt t2.
  • Es wird darauf hingewiesen, dass die in der Figur 2 im oberen Diagramm dargestellten Spannungen, wie auch die im unteren Diagramm dargestellten Zustände bzw. Stellungen der Düsennadel des Einspritzventils stark schematisiert sind. Tatsächlich verändern sich die gezeigten Größen nicht sprunghaft, sondern kurvenförmig, insbesondere in der Form von Exponentialfunktionen.
  • Weiterhin wird allgemein auf folgendes verwiesen:
  • Piezoaktoren können mit Spannungsregelung, Ladungsregelung oder Energieregelung betrieben werden. Unabhängig davon sind bestimmte Spannungen U1, U2 nötig, um mit einem vorgegebenen Strom und einer vorhandenen elektrischen Kapazität des Aktors einen Hub zu stellen. Der Hub wird dann in weiteren Einspritzimpulsen auf einen Sollwert geregelt. Dabei wird ein bestimmter Strom aufgeprägt und es wird eine bestimmte Deltaspannung U2-U1 und die Kenntnis über die Spannung U1 benötigt.

Claims (7)

  1. Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs,
    - bei dem Kraftstoff von einem Einspritzventil in einen Brennraum eingespritzt wird,
    - bei dem eine Düsennadel des Einspritzventils von einem piezo-elektrischen Aktor (A) verstellt wird,
    - bei dem ein hydraulischer Koppler eine Kopplung zwischen Aktor (A) und der Düsennadel herstellt,
    - und bei dem der Aktor (A) zur Verstellung der Düsennadel und damit zur Einspritzung von Kraftstoff von einer elektrischen Spannung beaufschlagt wird, dadurch gekennzeichnet,
    - dass der Aktor (A) mit einer ersten Spannung (U1) beaufschlagt wird,
    - und dass die erste Spannung (U1) zu einer Änderung der Ausdehnung des Aktors (A) führt,
    - die eine Veränderung des Zustands des hydraulischen Kopplers jedoch keine Verstellung der Düsennadel zur Folge hat,
    - und dass die erste Spannung (U1) größer ist als ein Restpotential des Aktors (A)
    - und dass der Aktor (A) nach einer Zeitdauer (dt1) mit einer zweiten Spannung (U2) beaufschlagt wird, die die Verstellung der Düsennadel hervorruft,
    - und dass die zweite Spannung (U2) derart gewählt wird, dass die Differenz zwischen der zweiten und der ersten Spannung (U2, U1) etwa derjenigen Spannung (US) entspricht, mit der der Aktor (A) für eine erwünschte Verstellung der Düsennadel angesteuert werden muss, um eine erwünschte Menge an einzuspritzendem Kraftstoff zu erhalten.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Spannung (U1) in Abhängigkeit von Betriebsgrößen der Brennkraftmaschine eingestellt wird, insbesondere in Abhängigkeit von dem auf den Kraftstoff einwirkenden Druck.
  3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Zeitdauer (dt1) derart gewählt wird, dass Einschwingvorgänge innerhalb des Einspritzventils ausreichend abgeklungen sind.
  4. Computerprogramm mit Programmbefehlen, die dazu geeignet sind, ein Verfahren nach einem der Ansprüche 1 bis 3 durchzuführen, wenn sie auf einem Computer ausgeführt werden.
  5. Computerprogramm nach Anspruch 4, dadurch gekennzeichnet, dass es auf einem digitalen, elektronischen Speichermedium, insbesondere einem Flash-Memory abgespeichert ist.
  6. Brennkraftmaschine insbesondere eines Kraftfahrzeugs,
    - mit einem Einspritzventil zum Einspritzen von Kraftstoff in einen Brennraum,
    - mit einer Düsennadel innerhalb des Einspritzventils,
    - mit einem piezo-etektrischen Aktor (A) zum Verstellen der Düsennadel,
    - mit einem hydraulischen Koppler, der eine Kopplung zwischen Aktor (A) und der Düsennadel herstellt,
    - und mit einem Steuergerät (SG), mittels dem der Aktor(A) zur Verstellung der Düsennadel und damit zur Einspritzung von Kraftstoff von einer elektrischen Spannung beaufschlagbar ist,
    dadurch gekennzeichnet,
    - dass das Steuergerät (SG) derart ausgebildet ist, dass der Aktor (A) mit einer ersten Spannung (U1) beaufschlagt wird,
    - wobei die erste Spannung (U1) zu einer Änderung der Ausdehnung des Aktors (A) führt,
    - die eine Veränderung des Zustands des hydraulischen Kopplers jedoch keine Verstellung der Düsennadel zur Folge hat,
    - und dass die erste Spannung (U1) größer ist als ein Restpotential des Aktors (A),
    - und dass der Aktor (A) nach einer Zeitdauer (dt1) mit einer zweiten Spannung (U2) beaufschlagt wird, die die Verstellung der Düsennadel hervorruft,
    - und dass die zweite Spannung (42) derart gewählt ist, dass die Differenz zwischen der zweiten und der ersten Spannung (42, 41) etwa derjenigen Spannung (45) entspricht, mit der der Aktor (A) für eine erwünschte Verstellung der Düsennadel angesteuert werden muss, um eine erwünschte Menge an einzuspritzendem Krafftstoff zu erhalten.
  7. Steuergerät zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs,
    - wobei die Brennkraftmaschine mit einem Einspritzventil zum Einspritzen von Kraftstoff in einen Brennraum versehen ist,
    - sowie mit einer Düsennadel innerhalb des Einspritzventils,
    - sowie mit einem piezo-elektrischen Aktor (A) zum Verstellen der Düsennadel,
    - sowie mit einem hydraulischen Koppler, der eine Koppelung zwischen Aktor (A) und der Düsennadel herstellt,
    - und wobei mittels dem Steuergerät (SG) der Aktor (A) zur Verstellung der Düsennadel und damit zur Einspritzung von Kraftstoff von einer elektrischen Spannung beaufschlagbar ist, dadurch gekennzeichnet,
    - dass das Steuergerät (SG) derart ausgebildet ist, dass der Aktor (A) mit einer ersten Spannung (U1) beaufschlagt wird,
    - wobei die erste Spannung (U1) zu einer Änderung der Ausdehnung des Aktors (A) führt,
    - die eine Veränderung des Zustands des hydraulischen Kopplers jedoch keine Verstellung der Düsennadel zur Folge hat,
    - und dass die erste Spannung (U1) größer ist als ein Restpotential des Aktors (A),
    - und dass der Aktor nach einer Zeitdauer (dt1) mit einer zweiten Spannung (U2) beaufschlagt wird, die die Verstellung der Düsennadel hervorruft,
    - und dass die zweite Spannung (42) derart gewählt ist, dass die Differenz zwischen der zweiten und der ersten Spannung (42, 41) etwa derjenigen Spannung (45) entspricht, mit der der Aktor (A) für eine erwünschte Verstellung der Düsennadel angesteuert werden muss, um eine erwünschte Menge an einzuspritzendem Krafftstoff zu erhalten.
EP03009204A 2002-06-17 2003-04-23 Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs Expired - Lifetime EP1375882B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10228063A DE10228063A1 (de) 2002-06-17 2002-06-17 Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10228063 2002-06-17

Publications (3)

Publication Number Publication Date
EP1375882A1 EP1375882A1 (de) 2004-01-02
EP1375882B1 EP1375882B1 (de) 2005-03-16
EP1375882B2 true EP1375882B2 (de) 2008-11-19

Family

ID=29716623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03009204A Expired - Lifetime EP1375882B2 (de) 2002-06-17 2003-04-23 Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs

Country Status (3)

Country Link
EP (1) EP1375882B2 (de)
JP (1) JP4264303B2 (de)
DE (2) DE10228063A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053349A1 (de) * 2004-11-04 2006-05-18 Siemens Ag Verfahren und Vorrichtung zur Ansteuerung eines Kraftstoffinjektors einer Brennkraftmaschine
JP4363331B2 (ja) * 2005-01-17 2009-11-11 トヨタ自動車株式会社 燃料噴射システム
DE102005046933B4 (de) * 2005-09-30 2015-10-15 Continental Automotive Gmbh Verfahren zum Ansteuern eines piezobetätigten Einspritzventils
DE102007014330A1 (de) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Ansteuerschaltung und Ansteuerverfahren für ein piezoelektrisches Element
JP2009074373A (ja) * 2007-09-19 2009-04-09 Hitachi Ltd 内燃機関の燃料噴射制御装置
EP2077312A1 (de) 2007-12-17 2009-07-08 Nippon Oil Corporation Brennstoffe für homogen geladene verdichtungsgezündete Maschinen
DE102008044741B4 (de) * 2008-08-28 2010-10-14 Continental Automotive Gmbh Verfahren und Steuergerät zum Steuern eines Injektors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371469A2 (de) 1988-11-30 1990-06-06 Toyota Jidosha Kabushiki Kaisha Apparat zum Antreiben eines piezoelektrischen Elements zum Öffnen oder zum Schliessen eines Ventilteils
US5779149A (en) 1996-07-02 1998-07-14 Siemens Automotive Corporation Piezoelectric controlled common rail injector with hydraulic amplification of piezoelectric stroke
DE19921242C1 (de) 1999-05-07 2000-10-26 Siemens Ag Verfahren zum Positionieren des Stellantriebs in einem Kraftstoffinjektor und Vorrichtung zur Durchführung des Verfahrens
DE19905340C2 (de) 1999-02-09 2001-09-13 Siemens Ag Verfahren und Anordnung zur Voreinstellung und dynamischen Nachführung piezoelektrischer Aktoren

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732129A (en) * 1985-04-15 1988-03-22 Nippon Soken, Inc. Control apparatus for electroexpansive actuator enabling variation of stroke
DE19714610A1 (de) * 1997-04-09 1998-10-15 Bosch Gmbh Robert Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elements
DE19903555C2 (de) * 1999-01-29 2001-05-31 Daimler Chrysler Ag Vorrichtung zur Steuerung eines Piezoelement-Einspritzventils
DE19958262B4 (de) * 1999-12-03 2007-03-22 Siemens Ag Verfahren und Vorrichtung zum Aufladen eines piezoelektrischen Aktors
US6420817B1 (en) * 2000-02-11 2002-07-16 Delphi Technologies, Inc. Method for detecting injection events in a piezoelectric actuated fuel injector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371469A2 (de) 1988-11-30 1990-06-06 Toyota Jidosha Kabushiki Kaisha Apparat zum Antreiben eines piezoelektrischen Elements zum Öffnen oder zum Schliessen eines Ventilteils
US5779149A (en) 1996-07-02 1998-07-14 Siemens Automotive Corporation Piezoelectric controlled common rail injector with hydraulic amplification of piezoelectric stroke
DE19905340C2 (de) 1999-02-09 2001-09-13 Siemens Ag Verfahren und Anordnung zur Voreinstellung und dynamischen Nachführung piezoelektrischer Aktoren
DE19921242C1 (de) 1999-05-07 2000-10-26 Siemens Ag Verfahren zum Positionieren des Stellantriebs in einem Kraftstoffinjektor und Vorrichtung zur Durchführung des Verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DR.-ING. M. DORNHOLZ ET AL: "Piezoelektrisch gesteuertes Einspritzsystem zur Verbesserung d", VDI VERLAG, vol. 12, no. 182, 6 May 1993 (1993-05-06) - 7 May 1993 (1993-05-07), 14. INTERNATIONALES WIENER MOTORENSYMPOSIUM, pages 324

Also Published As

Publication number Publication date
EP1375882A1 (de) 2004-01-02
DE50300360D1 (de) 2005-04-21
JP4264303B2 (ja) 2009-05-13
JP2004019666A (ja) 2004-01-22
DE10228063A1 (de) 2004-01-08
EP1375882B1 (de) 2005-03-16

Similar Documents

Publication Publication Date Title
EP1825124B1 (de) Verfahren zum steuern eines piezoelektrischen aktors und steuereinheit zum steuern eines piezoelektrischen aktors
DE102013206600B4 (de) Einspritzsystem zum Einspritzen von Kraftstoff in eine Brennkraftmaschine und Regelverfahren für ein solches Einspritzsystem
WO2014131540A1 (de) Verfahren zur steuerung eines einspritzvorgangs eines magnetinjektors
DE10113670A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors
DE102010022910B4 (de) Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
WO2009010374A1 (de) Verfahren und vorrichtung zur formung eines elektrischen steuersignals für einen einspritzimpuls
EP1068435B1 (de) Kraftstoffversorgungssystem für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
EP2104783B1 (de) Verfahren zum betrieb eines einspritzventils
EP1375882B2 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102004037255B4 (de) Verfahren zum Betreiben einer Kraftstoffeinspritzvorrichtung insbesondere für ein Kraftfahrzeug
EP1567758B1 (de) Verfahren und vorrichtung zum betrieb eines einspritzsystems einer brennkraftmaschine
WO2007028737A1 (de) Verfahren und vorrichtung zum betreiben eines piezoaktors
EP1311005B1 (de) Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elementes
EP1527265A1 (de) Verfahren und vorrichtung zur ansteuerung eines aktors
EP2399016B1 (de) Verfahren zum betreiben einer endstufe für mindestens einen piezoaktor
DE102009027290A1 (de) Verfahren und Steuergerät zum Betreiben eines Ventils
WO2007082627A2 (de) Verfahren zum betreiben eines piezoelektrischen aktors, insbesondere eines einspritzventils
WO2006094700A1 (de) Verfahren und schaltungsanordnung zur strom- und ladungsregelung eines piezoelektrischen kraftstoff-injektors
DE10244092A1 (de) Verfahren und Vorrichtung zur Steuerung wenigstens zweier Piezoaktoren
WO2011082901A1 (de) Verfahren und steuergerät zum betreiben eines ventils
WO2013110522A1 (de) Verfahren und ansteuereinrichtung zum aufladen oder entladen eines piezoelektrischen aktors
WO2013156377A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102017219568A1 (de) Verfahren zum Steuern eines Kraftstoffinjektors
DE102006004766B4 (de) Elektrische Schaltung zum Betreiben eines Piezoaktors einer Kraftstoffeinspritzeinspritzeinrichtung einer Brennkraftmaschine
DE102015212378B4 (de) Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftstoffeinspritzsystems einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040702

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50300360

Country of ref document: DE

Date of ref document: 20050421

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050711

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AG CT IP SV

Effective date: 20051216

ET Fr: translation filed
PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20081119

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160422

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160422

Year of fee payment: 14

Ref country code: FR

Payment date: 20160422

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160628

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50300360

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170423

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170423