EP1371055B1 - Vorrichtung zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen des audiosignals unter verwendung einer autokorrelationsfunktion - Google Patents
Vorrichtung zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen des audiosignals unter verwendung einer autokorrelationsfunktion Download PDFInfo
- Publication number
- EP1371055B1 EP1371055B1 EP02742987A EP02742987A EP1371055B1 EP 1371055 B1 EP1371055 B1 EP 1371055B1 EP 02742987 A EP02742987 A EP 02742987A EP 02742987 A EP02742987 A EP 02742987A EP 1371055 B1 EP1371055 B1 EP 1371055B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- information
- rhythm
- sub
- autocorrelation function
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000033764 rhythmic process Effects 0.000 title claims abstract description 143
- 238000005311 autocorrelation function Methods 0.000 title claims abstract description 113
- 230000005236 sound signal Effects 0.000 title claims abstract description 61
- 238000012805 post-processing Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 abstract description 7
- 238000000605 extraction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000001303 quality assessment method Methods 0.000 description 7
- 230000001934 delay Effects 0.000 description 6
- 230000001020 rhythmical effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000013441 quality evaluation Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000003918 fraction a Anatomy 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000000067 inner hair cell Anatomy 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/0204—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
- G10L19/0208—Subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
- G10H1/00—Details of electrophonic musical instruments
- G10H1/36—Accompaniment arrangements
- G10H1/40—Rhythm
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
- G10H2210/00—Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
- G10H2210/031—Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
- G10H2210/076—Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for extraction of timing, tempo; Beat detection
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10H—ELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
- G10H2250/00—Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
- G10H2250/131—Mathematical functions for musical analysis, processing, synthesis or composition
- G10H2250/135—Autocorrelation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/06—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being correlation coefficients
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/90—Pitch determination of speech signals
Definitions
- the present invention relates to signal processing concepts and in particular to the analysis of audio signals in terms of of rhythm information.
- semantically relevant features allow similarity relationships to model between pieces that are human Get close to sensation.
- the use of features that semantic meaning also allows for example a automatic suggestion of interesting for a particular user Pieces, if his preferences are known.
- the tempo is an important musical one Parameter that has semantic meaning.
- the pace will be usually measured in beats per minute (BPM).
- BPM beats per minute
- the automatic Extraction of the tempo and the center of gravity of the "Beats" or generally the automatic extraction of Rhythm information, is an example of winning one semantically important feature of a piece of music.
- the feature extraction d. H. extracting rhythm information an audio signal
- Robustness means that it does not matter if that is Piece has been source coded and decoded again, whether the piece played over a loudspeaker and received by a microphone whether it is from an instrument or an instrument Plural of instruments is played.
- the input signal is by means of a filter bank split into a number of subbands, for example in 6 subbands with crossover frequencies of 200 Hz, 400 Hz, 800 Hz, 1600 Hz and 3200 Hz.
- low pass filtering is used carried out.
- For the last subband is a High pass filtering is done, for the rest, in between bandpass filtering is described.
- each Subband is processed as follows.
- the subband signal is first rectified. In other words the absolute value of the samples is determined.
- n values are then smoothed, for example with a Averaging over a suitable window to get an envelope signal to obtain.
- the envelope signal be subsampled.
- the envelope signals will be differentiated, d. H. sudden changes in signal amplitude are preferably forwarded by the differentiation filter. The result is then limited to non-negative values.
- Each envelope signal is then converted into a bank of resonant filters, d. H. Oscillators, given, each one filter for each Tempo range so that matches the musical tempo Filter is most excited. For each filter is the energy of the output signal as a measure of the match the tempo of the input signal at the tempo associated with the filter calculated.
- the energies for each tempo eventually become summed over all subbands, with the largest amount of energy the tempo delivered as a result, d. H. the rhythm information, features.
- the oscillator bank also with output signals at the double, triple, etc. of the Tempos or even at rational multiples (eg 2/3, 4/3) of the Tempos reacts to a stimulus.
- An autocorrelation function does not have this property, it only provides output signals at the halved, thirded, etc. pace.
- a major disadvantage of this method is the large Computing and storage complexity especially for realization the large number of parallel vibrating "oscillators", of which ultimately only one is selected. This makes an efficient implementation, for example, for real-time applications almost impossible.
- the known algorithm is shown in Fig. 3 as a block diagram shown.
- the audio signal is sent via an audio input 300 an analysis filter bank 302 supplied.
- the analysis filter bank generates from the audio input a number n of channels, i. H. of individual subband signals. Each subband signal contains a certain range of frequencies of the audio signal.
- the Analysis Filter Bank filters are selected to match the Approximate the selection characteristic of the human inner ear.
- Such an analysis filter bank is also called a gamma-tone filter bank designated.
- the rhythm information becomes each subband signal evaluated.
- For every input signal will initially be an envelope-like output signal calculated (according to a so-called “Inner Hair Cell” processing in the ear) and subsampled. Out of this result An autocorrelation function (AKF) is calculated to determine the periodicity the signal as a function of the delay, d. H. of To get "lag".
- AMF autocorrelation function
- the individual autocorrelation functions of the subband signals are then combined in a means 306 by summation, to obtain a sum auto-correlation function (SAKF) which Aspects of the rhythm information of the signal at the audio input 300 plays.
- SAKF sum auto-correlation function
- This information may be at a tempo output 308 are issued.
- Great values in the sum auto-correlation indicate that for a peak assigned to the SAKF Delay (lag) a high periodicity of note beginnings is present. Therefore, for example, the largest value of Sum auto correlation function within the musically meaningful Delays searched.
- Musically meaningful delays are, for example, the tempo range between 60 bpm and 200 bpm.
- the device 306 may be further arranged to provide a delay time in tempo information implement. For example, a peak corresponds a delay of one second, a tempo of 60 beats per minute. Minor delays indicate higher tempo while larger delays occur at slower speeds than 60 bpm clues.
- the object of the present invention is to provide a Apparatus and method for analyzing an audio signal in terms of rhythm information using a To create autocorrelation function that is robust and computing time efficient.
- This object is achieved by a device for analyzing a Audio signal according to claim 1 or by a Method for analyzing an audio signal according to claim 7 solved.
- the present invention is based on the finding that a post-processing of an autocorrelation function in a partial band can be performed to the ambiguities of the autocorrelation function for periodic signals to eliminate or Tempo information that does not autocorrelation processing provides the information obtained by an autocorrelation function to be added.
- a post-processing of an autocorrelation function in a partial band can be performed to the ambiguities of the autocorrelation function for periodic signals to eliminate or Tempo information that does not autocorrelation processing provides the information obtained by an autocorrelation function to be added.
- Tempo information that does not autocorrelation processing provides the information obtained by an autocorrelation function to be added.
- an autocorrelation function post-processing the subband signals already used the ambiguities eliminate "at the root", or "missing" rhythm information to add will be an autocorrelation function post-processing the subband signals already used the ambiguities eliminate "at the root", or "missing" rhythm information to add.
- According to another aspect of the present invention is a Post-processing of the sum auto-correlation function performed, re-edited rhythm raw information for the audio signal so that in the reworked rhythm raw information a signal component at an integer fraction a delay that has an autocorrelation function peak is assigned, is added.
- This makes it possible to rhythm information not obtained by an autocorrelation function at double, triple etc. tempos or at rational Multiply by calculating by an integer factor or by a rational factor compressed versions of the Autocorrelation function and by adding these versions to the to produce the original autocorrelation function.
- a complex oscillator bank is required, this is done according to the invention with easy to implement weighting and addition routines.
- the Sum auto-correlation function also post-processed by a with a factor greater than zero and less than one, weighted to an integer factor greater than one splayed Version of the raw rhythm information about the autocorrelation function is subtracted.
- rhythm raw information with compressed and / or spread versions of the same can be combined.
- certain rhythm raw information with compressed and / or spread versions of the same can be combined.
- the compressed / spread version before adding or subtracting weighted by a factor between zero and one is the compressed / spread version before adding or subtracting weighted by a factor between zero and one.
- Invention is a quality assessment of the rhythm raw information, to get a significance measure, on the basis the postprocessed rhythm raw information performed, such that the quality rating is no longer due to autocorrelation function artifacts being affected. This will be a safe quality assessment possible, reducing the robustness determining rhythm information of the audio signal can be further increased.
- the quality assessment can be carried out before the AKF post-processing occur.
- This has the advantage that if a flat course of the rhythm raw information found is, i. no pronounced rhythm information on the AKF post-processing for this subband signal can be dispensed with can, because this subband due to its little meaningful Rhythm information when determining the rhythm information the audio signal will not matter anyway. In this manner and way, the computational and memory overhead can be further reduced become.
- the subbands lie often different favorable conditions for finding of rhythmic periodicities. While, for example, at Pop music often in the middle, for example around 1 kHz, the signal is dominated by vocals not corresponding to the beat is often present in the higher frequency ranges all percussion sounds present, such. B. the hihat of the drums, which is a very good extraction of rhythmic regularities allow. In other words, different ones Frequency bands depending on the audio signal a different amount in rhythmic information or have a different Quality or significance for the rhythm information of the audio signal.
- the audio signal is therefore first decomposed into subband signals.
- Each subband signal is examined for its periodicity, around raw rhythm information for each subband signal to obtain. This is according to a preferred embodiment
- the present invention provides an evaluation of quality the periodicity of each subband signal is performed by a significance measure for each subband signal. A high degree of significance indicates that in this subband signal clear rhythm information is available, while a low Significance indicates that in this subband signal less clear rhythm information is available.
- a preferred embodiment of the present invention is considered when examining a subband signal Its periodicities initially a modified envelope of the subband signal and then an autocorrelation function the envelope is calculated.
- the autocorrelation function the envelope represents the raw rhythm information.
- Unique Rhythm information is present when the autocorrelation function has distinct maxima, while less definite Rhythm information is present when the autocorrelation function the envelope of the subband signal less pronounced Signal peaks or no signal peaks at all.
- An autocorrelation function which has significant signal peaks, therefore receive a high degree of significance while an autocorrelation function, which has a relatively flat course, a low one Significance is obtained.
- the artifacts of autocorrelation functions are, as stated above, according to the invention eliminated.
- the individual rhythm raw information of the individual subband signals So they are not simply combined "blindly” but rather taking into account the significance measure for each subband signal used to get the rhythm information of the audio signal to obtain. If a subband signal has a high degree of significance, then it is preferred in determining the rhythm information, while a subband signal, that is a low significance measure has, d. H. this is a low quality in terms of rhythm information in determining the rhythm information the audio signal hardly or in extreme cases not at all is taken into account.
- weighting factor This can be computationally good by a weighting factor be implemented, which depends on the significance measure. While a subband signal that is good quality for the rhythm information has, d. H. which has a high degree of significance, one Weighting factor of 1 will get another Subband signal having a smaller significance measure, a weighting factor less than 1 received. In extreme cases, a Subband signal, which is a completely flat autocorrelation function has to have a weighting factor of 0. The weighted Autocorrelation functions, d. H. the weighted rhythm raw information are then simply added up.
- the inventive concept is advantageous in that it allows a robust determination of the rhythm information because subband signals with no unique or even different Rhythm information, d. H. if the song is another Has rhythm as the actual beat of the piece, the Rhythm information of the audio signal does not "dilute” or “distort".
- very noisy subband signals which will complete a system autocorrelation function provide a flat waveform, the signal-to-noise ratio in determining the rhythm information does not worsen. Exactly this would happen, however, if, as in the state of Technique, just all the autocorrelation functions of the subband signals be summed up with the same weight.
- Another advantage of the method described is that with a small additional computational effort a significance measure can be determined, and that the evaluation of the rhythm raw information with the significance measure and the subsequent Summation without large storage and computational time efficient can be performed, which is the concept of the invention especially recommended for real-time applications.
- Fig. 1 shows a block diagram of an apparatus for analyzing an audio signal regarding rhythm information.
- the audio signal is passed through an input 100 of a device 102 for decomposing the audio signal into at least two subband signals 104a and 104b supplied.
- Each subband signal 104a, 104b is sent to a device 106a or 106b for examining it in terms of periodicities in the subband signal, around raw rhythm information 108a and 108b for each To obtain subband signal.
- the rhythm raw information will be then a device 110a or 110b for rating a quality the periodicity of each of the at least two subband signals supplied to a significance measure 112a, 112b for each of the at least to obtain two subband signals.
- Both the rhythm raw information 108a, 108b as well as the significance measures 112a, 112b are a means 114 for determining the rhythm information supplied to the audio signal.
- the device 114 takes into account in determining the rhythm information of the audio signal the significance measures 112a, 112b for the subband signals and the rhythm raw information 108a, 108b of at least one Sub-band signal.
- the device 110a has a quality evaluation found that in the subband signal 104a no special Periodicity is present, then the significance measure 112a becomes very be small, or equal to 0.
- the rhythm information of the Audio signals are then solely and exclusively based the rhythm raw information 108b of the subband signal 104b.
- a device 102 for decomposing the audio signal may be a usual Analysis filter bank, the output one of provides a user selectable number of subband signals.
- each Subband signal is then processed by the facilities 106a, 106b and 106c, respectively, and then through the facilities 110a to 110c of each rhythm raw information significance measures be determined.
- the device 114 includes at the illustrated in Fig. 2 preferred embodiment a Means 114a for calculating weighting factors for each Subband signal based on the significance measure for this Subband signal and optionally also the other subband signals.
- the device 114b finds a weighting of the rhythm raw information 108a to 108c with the weighting factor for this subband signal instead, whereupon then, also in the Means 114b combining weighted rhythm raw information, z. B. summed up to be at the tempo output 116th to get the rhythm information of the audio signal.
- the inventive concept thus arises as follows After the evaluation of the rhythmic information of the Individual bands, which are produced, for example, by enveloping, Smoothing, differentiating, limiting to positive values and forming the autocorrelation function can take place (facilities 106a to 106c), finds a rating of the value or the Quality of these intermediate results in the facilities 110a to 110c instead. This is achieved by means of an evaluation function, which the reliability of the individual results valued with a significance measure. From the significance measures All subband signals become a weighting factor for each Volume derived for the extraction of rhythm information. The overall result of the rhythm extraction will then be in the facility 114b by combining the bandwise individual results achieved taking into account their respective weighting factors.
- the rhythm raw information becomes 108a, 108b, 108c
- the periodicity of the respective Subband signal represent, by means of an autocorrelation function certainly.
- Significance measure to determine by a maximum of the autocorrelation function by an average of the autocorrelation function is divided, and then the value 1 is subtracted. It was It should be noted that any autocorrelation function is always included a delay of 0 is a local maximum, i. H. a peak, which represents the energy of the signal. This local Maximum should be disregarded, so that the quality determination is not distorted.
- the autocorrelation function is intended only in a special Tempo range are considered, d. H. from a maximum Delay corresponding to the smallest interest rate of interest, to a minimum delay, which is the highest one of interest Tempo corresponds.
- a typical tempo area lies between 60 bpm and 200 bpm.
- the ratio between the arithmetic mean of the autocorrelation function in the interest Tempo range and the geometric mean of the Autocorrelation function determined in the tempo of interest become. It is known that if all values of the autocorrelation function are the same, d. H. if the autocorrelation function has a flat course, the geometric mean the autocorrelation function and the arithmetic mean the autocorrelation function are the same. In that case would have the significance measure has a value equal to 1, which means that the Rhythm raw information is not significant.
- weighting factors there are various possibilities.
- a relative weight such that all weighting factors of all subband signals to Add 1, d. H. that determines the weighting factor of a band is divided as the significance value of this band by the sum of all significance values.
- the audio signal is sent via the audio signal input 100 in the device 102 for decomposing the audio signal in Subband signals 104a and 104b are fed. Each subband signal is then in the device 106a or 106b, as stated investigated using an autocorrelation function, to determine the periodicity of the subband signal.
- the rhythm raw information then lies at the output of the device 106a or 106b 108a, 108b. These are in a facility 118a and 118b, respectively, by the autocorrelation function rhythm raw information output from the device 116a rework. This will u. a.
- the quality assessment can also be based on the post-processed Rhythm raw information take place, these the latter option is preferred since the quality assessment on the basis of the reworked raw rhythm information, that the quality of an information is assessed which is no longer ambiguous.
- the determination of the rhythm information by the device 114 then takes place on the basis of postprocessed rhythm information a channel and preferably also on the base the significance measure for this channel.
- the subband signal becomes 104a into the device 106a for examining the periodicity of the subband signal by means of an autocorrelation function fed to raw rhythm information To receive 108a.
- an autocorrelation function fed to raw rhythm information To receive 108a.
- a spread autocorrelation function by means of a device 121, wherein the device 121 is arranged is to calculate the spread autocorrelation function so that it is spread by an integer multiple.
- An institution 122 is arranged in this case to the spread Autocorrelation function from the original autocorrelation function, d. H.
- rhythm raw information 108a subtracts the rhythm raw information 108a.
- the periodicity of a subband signal can examine the basis of an autocorrelation function So a further improvement can be achieved if the properties the autocorrelation function and are involved the post-processing using means 118a or 118b is performed. So creates a periodic sequence of Grade starts with a distance t0 not just an AKF peak at a delay t0 but also at 2t0, 3t0, etc. This will to an ambiguity in tempo detection, d. H. the search significant maxima in the autocorrelation function. The ambiguities can thereby be eliminated when around integer factors splayed versions of the AKF from baseline deducted part-bandwise (weighted).
- the AKF post-processing thus takes place on a part-band basis, with for at least one subband signal, an autocorrelation function is calculated and this with stretched or spread versions this feature is combined.
- the post-processing of the sum auto-correlation function, to the ambiguities at the half, to eliminate the third part, the fourth part etc. of the tempo carried out by the spread by integer factors Versions of the sum auto correlation function not be subtracted just before subtracting with a Factor not equal to one and preferably less than one and be weighted greater than zero and then subtracted. This will make a more robust determination of rhythm information possible because the unweighted subtracting only for ideal sinusoidal signals complete elimination of the AKF ambiguity supplies.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Electrophonic Musical Instruments (AREA)
Description
- Fig. 1
- ein Blockschaltbild einer Vorrichtung zum Analysieren eines Audiosignals mit einer Qualitätsbewertung der Rhythmus-Rohinformationen;
- Fig. 2
- ein Blockschaltbild einer Vorrichtung zum Analysieren eines Audiosignals unter Verwendung von Gewichtungsfaktoren auf der Basis der Signifikanzmaße;
- Fig. 3
- ein Blockschaltbild einer bekannten Vorrichtung zum Analysieren eines Audiosignals hinsichtlich von Rhythmusinformationen;
- Fig. 4
- ein Blockschaltbild einer Vorrichtung zum Analysieren eines Audiosignals hinsichtlich von Rhythmusinformationen unter Verwendung einer Autokorrelationsfunktion mit einer teilbandweisen Nachbearbeitung der Rhythmus-Rohinformationen; und
- Fig. 5
- ein detailliertes Blockschaltbild der Einrichtung zum Nachbearbeiten von Fig. 4.
Claims (7)
- Vorrichtung zum Analysieren eines Audiosignals hinsichtlich von Rhythmusinformationen des Audiosignals unter Verwendung einer Autokorrelationsfunktion, mit folgenden Merkmalen:einer Einrichtung (102) zum Zerlegen des Audiosignals in zumindest zwei Teilbandsignale (104a, 104b);einer Einrichtung zum Untersuchen (106a, 106b) zumindest eines Teilbandsignals hinsichtlich einer Periodizität in dem zumindest einen Teilbandsignal mittels einer Autokorrelationsfunktion, um Rhythmus-Rohinformationen (108a) für das Teilbandsignal zu erhalten, wobei einer Spitze der Autokorrelationsfunktion eine Verzögerung zugeordnet ist;einer Einrichtung (118a) zum Nachbearbeiten der mittels der Autokorrelationsfunktion bestimmten Rhythmus-Rohinformationen (108a) für das Teilbandsignal (104a), um nachbearbeitete Rhythmus-Rohinformationen (120a) für das Teilbandsignal zu erhalten, so daß in den nachbearbeiteten Rhythmus-Rohinformationen eine Mehrdeutigkeit bei einem ganzzahligen Vielfachen einer Verzögerung, der eine Autokorrelationsfunktionsspitze zugeordnet ist, vermindert ist, oder ein Signalanteil bei einem ganzzahligen Bruchteil einer Verzögerung, der eine Autokorrelationsfunktionsspitze zugeordnet ist, hinzugefügt ist; undeiner Einrichtung (114) zum Ermitteln der Rhythmusinformationen des Audiosignals unter Verwendung der nachbearbeiteten Rhythmus-Rohinformationen (120a) des Teilbandsignals und unter Verwendung eines weiteren Teilbandsignals der zumindest zwei Teilbandsignale.
- Vorrichtung nach Anspruch 1,
bei der die Einrichtung zum Nachbearbeiten (118a, 118b) folgende Merkmale aufweist:eine Einrichtung (121) zum Berechnen einer um einen ganzzahligen Faktor gespreizten Version der Rhythmus-Rohinformationen (108a) eines Teilbandsignals; undeiner Einrichtung (122) zum Subtrahieren der um einen ganzzahligen Faktor größer als Eins gespreizten Version der Rhythmus-Rohinformationen (108a) des Teilbandsignals oder eine von dieser Version abgeleitete Version von den Rhythmus-Rohinformationen (108a) des Teilbandsignals, um die nachbearbeiteten Rhythmus-Rohinformationen (120a) für das Teilbandsignal zu erhalten. - Vorrichtung nach Anspruch 2, bei der die Einrichtung (122) zum Subtrahieren angeordnet ist, um vor dem Subtrahieren eine Gewichtung der gespreizten Version mit einem Faktor zwischen Null und Eins durchzuführen, um die abgeleitete Version zu erzeugen.
- Vorrichtung nach Anspruch 1, bei der die Einrichtung zum Nachbearbeiten (118a) folgende Merkmale aufweist:eine Einrichtung (121) zum Berechnen einer um einen ganzzahligen Faktor größer als Eins gestauchten Version der Rhythmus-Rohinformationen (108a); undeine Einrichtung (122) zum Addieren der gestauchten Version der Rhythmus-Rohinformationen des Teilbandsignals oder eine von dieser Version abgeleitete Version zu den Rhythmus-Rohinformationen (108a) des Teilbandsignals, um die nachbearbeiteten Rhythmus-Rohinformationen (120a) für das Teilbandsignal zu erhalten.
- Vorrichtung nach Anspruch 4, bei der die Einrichtung (122) zum Addieren angeordnet ist, um vor der Addition eine Gewichtung der gestauchten Version der Rhythmus-Rohinformationen mittels eines Faktors zwischen Null und Eins durchzuführen, derart, daß eine gewichtete gestauchte Version der Rhythmus-Rohinformationen zu den Rhythmus-Rohinformationen des Teilbandsignals hinzuaddiert wird, um die abgeleitete Version zu erzeugen.
- Vorrichtung nach einem der vorhergehenden Ansprüche, die ferner folgendes Merkmal aufweist:eine Einrichtung (110a, 110b) zum Bewerten einer Qualität der Periodizität der nachverarbeiteten Rhythmus-Rohinformationen (120a), um ein Signifikanzmaß für das Teilbandsignal zu erhalten,
- Verfahren zum Analysieren eines Audiosignals hinsichtlich von Rhythmusinformationen des Audiosignals unter Verwendung einer Autokorrelationsfunktion, mit folgenden Schritten:Zerlegen (102) des Audiosignals in zumindest zwei Teilbandsignale (104a, 104b);Untersuchen (106a, 106b) zumindest eines Teilbandsignals hinsichtlich einer Periodizität in dem zumindest einen Teilbandsignal mittels einer Autokorrelationsfunktion, um Rhythmus-Rohinformationen (108a) für das Teilbandsignal zu erhalten, wobei einer Spitze der Autokorrelationsfunktion eine Verzögerung zugeordnet ist;Nachbearbeiten (118a) der mittels der Autokorrelationsfunktion bestimmten Rhythmus-Rohinformationen (108a) für das Teilbandsignal (104a), um nachbearbeitete Rhythmus-Rohinformationen (120a) für das Teilbandsignal zu erhalten, so daß in den nachbearbeiteten Rhythmus-Rohinformationen eine Mehrdeutigkeit bei einem ganzzahligen Vielfachen einer Verzögerung, der eine Autokorrelationsfunktionsspitze zugeordnet ist, vermindert ist, oder ein Signalanteil bei einem ganzzahligen Bruchteil einer Verzögerung, der eine Autokorrelationsfunktionsspitze zugeordnet ist, hinzugefügt ist; undErmitteln (114) der Rhythmusinformationen des Audiosignals unter Verwendung der nachbearbeiteten Rhythmus-Rohinformationen (120a) des Teilbandsignals und unter Verwendung eines weiteren Teilbandsignals der zumindest zwei Teilbandsignale.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10123281 | 2001-05-14 | ||
DE10123281A DE10123281C1 (de) | 2001-05-14 | 2001-05-14 | Vorrichtung und Verfahren zum Analysieren eines Audiosignals hinsichtlich von Rhythmusinformationen des Audiosignals unter Verwendung einer Autokorrelationsfunktion |
PCT/EP2002/005171 WO2002093550A2 (de) | 2001-05-14 | 2002-05-10 | Vorrichtung zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen unter verwendung einer autokorrelationsfunktion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1371055A2 EP1371055A2 (de) | 2003-12-17 |
EP1371055B1 true EP1371055B1 (de) | 2005-04-27 |
Family
ID=7684650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02742987A Expired - Lifetime EP1371055B1 (de) | 2001-05-14 | 2002-05-10 | Vorrichtung zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen des audiosignals unter verwendung einer autokorrelationsfunktion |
Country Status (6)
Country | Link |
---|---|
US (1) | US7012183B2 (de) |
EP (1) | EP1371055B1 (de) |
AT (1) | ATE294440T1 (de) |
DE (2) | DE10123281C1 (de) |
ES (1) | ES2240762T3 (de) |
WO (1) | WO2002093550A2 (de) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10123366C1 (de) * | 2001-05-14 | 2002-08-08 | Fraunhofer Ges Forschung | Vorrichtung zum Analysieren eines Audiosignals hinsichtlich von Rhythmusinformationen |
JP4263382B2 (ja) * | 2001-05-22 | 2009-05-13 | パイオニア株式会社 | 情報再生装置 |
DE10223735B4 (de) * | 2002-05-28 | 2005-05-25 | Red Chip Company Ltd. | Verfahren und Vorrichtung zum Ermitteln von Rhythmuseinheiten in einem Musikstück |
DE10232916B4 (de) * | 2002-07-19 | 2008-08-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Charakterisieren eines Informationssignals |
US8918316B2 (en) | 2003-07-29 | 2014-12-23 | Alcatel Lucent | Content identification system |
EP1709624A1 (de) * | 2004-01-21 | 2006-10-11 | Koninklijke Philips Electronics N.V. | Verfahren und system zur bestimmung eines masses der tempomehrdeutigkeit für ein musikeingangssignal |
US8535236B2 (en) * | 2004-03-19 | 2013-09-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for analyzing a sound signal using a physiological ear model |
US7626110B2 (en) * | 2004-06-02 | 2009-12-01 | Stmicroelectronics Asia Pacific Pte. Ltd. | Energy-based audio pattern recognition |
US7563971B2 (en) * | 2004-06-02 | 2009-07-21 | Stmicroelectronics Asia Pacific Pte. Ltd. | Energy-based audio pattern recognition with weighting of energy matches |
US7193148B2 (en) * | 2004-10-08 | 2007-03-20 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for generating an encoded rhythmic pattern |
EP1797507B1 (de) * | 2004-10-08 | 2011-06-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und verfahren zum erzeugen eines codierten rhytmischen musters |
DE102005038876B4 (de) * | 2005-08-17 | 2013-03-14 | Andreas Merz | Benutzereingabevorrichtung mit Benutzereingabebewertung und Verfahren |
JP4948118B2 (ja) * | 2005-10-25 | 2012-06-06 | ソニー株式会社 | 情報処理装置、情報処理方法、およびプログラム |
JP4465626B2 (ja) * | 2005-11-08 | 2010-05-19 | ソニー株式会社 | 情報処理装置および方法、並びにプログラム |
FI20065010A0 (fi) * | 2006-01-09 | 2006-01-09 | Nokia Corp | Häiriönvaimennuksen yhdistäminen tietoliikennejärjestelmässä |
JP5351373B2 (ja) * | 2006-03-10 | 2013-11-27 | 任天堂株式会社 | 演奏装置および演奏制御プログラム |
US7952012B2 (en) * | 2009-07-20 | 2011-05-31 | Apple Inc. | Adjusting a variable tempo of an audio file independent of a global tempo using a digital audio workstation |
US8121618B2 (en) | 2009-10-28 | 2012-02-21 | Digimarc Corporation | Intuitive computing methods and systems |
US8490131B2 (en) * | 2009-11-05 | 2013-07-16 | Sony Corporation | Automatic capture of data for acquisition of metadata |
US9484046B2 (en) | 2010-11-04 | 2016-11-01 | Digimarc Corporation | Smartphone-based methods and systems |
GB201109731D0 (en) | 2011-06-10 | 2011-07-27 | System Ltd X | Method and system for analysing audio tracks |
US8952233B1 (en) * | 2012-08-16 | 2015-02-10 | Simon B. Johnson | System for calculating the tempo of music |
US9357163B2 (en) * | 2012-09-20 | 2016-05-31 | Viavi Solutions Inc. | Characterizing ingress noise |
US9311640B2 (en) | 2014-02-11 | 2016-04-12 | Digimarc Corporation | Methods and arrangements for smartphone payments and transactions |
US9354778B2 (en) | 2013-12-06 | 2016-05-31 | Digimarc Corporation | Smartphone-based methods and systems |
JP2016177204A (ja) * | 2015-03-20 | 2016-10-06 | ヤマハ株式会社 | サウンドマスキング装置 |
US9756281B2 (en) | 2016-02-05 | 2017-09-05 | Gopro, Inc. | Apparatus and method for audio based video synchronization |
CN105741835B (zh) * | 2016-03-18 | 2019-04-16 | 腾讯科技(深圳)有限公司 | 一种音频信息处理方法及终端 |
US9697849B1 (en) | 2016-07-25 | 2017-07-04 | Gopro, Inc. | Systems and methods for audio based synchronization using energy vectors |
US9640159B1 (en) | 2016-08-25 | 2017-05-02 | Gopro, Inc. | Systems and methods for audio based synchronization using sound harmonics |
US9653095B1 (en) * | 2016-08-30 | 2017-05-16 | Gopro, Inc. | Systems and methods for determining a repeatogram in a music composition using audio features |
US9916822B1 (en) | 2016-10-07 | 2018-03-13 | Gopro, Inc. | Systems and methods for audio remixing using repeated segments |
JP2020106753A (ja) * | 2018-12-28 | 2020-07-09 | ローランド株式会社 | 情報処理装置および映像処理システム |
CN111508457A (zh) * | 2020-04-14 | 2020-08-07 | 上海影卓信息科技有限公司 | 音乐节拍检测方法和系统 |
US11107504B1 (en) * | 2020-06-29 | 2021-08-31 | Lightricks Ltd | Systems and methods for synchronizing a video signal with an audio signal |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999009A (en) * | 1971-03-11 | 1976-12-21 | U.S. Philips Corporation | Apparatus for playing a transparent optically encoded multilayer information carrying disc |
JPS61117746A (ja) * | 1984-11-13 | 1986-06-05 | Hitachi Ltd | 光デイスク基板 |
JPS61177642A (ja) * | 1985-01-31 | 1986-08-09 | Olympus Optical Co Ltd | 光学的情報記録再生装置 |
GB2207027B (en) | 1987-07-15 | 1992-01-08 | Matsushita Electric Works Ltd | Voice encoding and composing system |
US5255260A (en) * | 1989-07-28 | 1993-10-19 | Matsushita Electric Industrial Co., Ltd. | Optical recording apparatus employing stacked recording media with spiral grooves and floating optical heads |
US5392263A (en) * | 1990-01-31 | 1995-02-21 | Sony Corporation | Magneto-optical disk system with specified thickness for protective layer on the disk relative to the numerical aperture of the objective lens |
KR940002573B1 (ko) * | 1991-05-11 | 1994-03-25 | 삼성전자 주식회사 | 광디스크기록재생장치에 있어서 연속재생장치 및 그 방법 |
US5255262A (en) * | 1991-06-04 | 1993-10-19 | International Business Machines Corporation | Multiple data surface optical data storage system with transmissive data surfaces |
US5470627A (en) * | 1992-03-06 | 1995-11-28 | Quantum Corporation | Double-sided optical media for a disk storage device |
AU4341193A (en) * | 1992-06-03 | 1993-12-30 | Neil Philip McAngus Todd | Analysis and synthesis of rhythm |
DE4311683C2 (de) * | 1993-04-08 | 1996-05-02 | Sonopress Prod | Plattenförmiger optischer Speicher und Verfahren zu dessen Herstellung |
CA2125331C (en) * | 1993-06-08 | 2000-01-18 | Isao Satoh | Optical disk, and information recording/reproduction apparatus |
DE69422870T2 (de) * | 1993-09-07 | 2000-10-05 | Hitachi, Ltd. | Informationsaufzeichnungsträger, optische Platten und Wiedergabesystem |
US5518325A (en) * | 1994-02-28 | 1996-05-21 | Compulog | Disk label printing |
JP3210549B2 (ja) * | 1995-05-17 | 2001-09-17 | 日本コロムビア株式会社 | 光情報記録媒体 |
US5729525A (en) * | 1995-06-21 | 1998-03-17 | Matsushita Electric Industrial Co., Ltd. | Two-layer optical disk |
JP3674092B2 (ja) * | 1995-08-09 | 2005-07-20 | ソニー株式会社 | 再生装置 |
JP2728057B2 (ja) * | 1995-10-30 | 1998-03-18 | 日本電気株式会社 | 光ディスク用情報アクセス装置 |
JPH09161320A (ja) * | 1995-12-08 | 1997-06-20 | Nippon Columbia Co Ltd | 貼り合わせ型光情報記録媒体 |
JPH09293083A (ja) | 1996-04-26 | 1997-11-11 | Toshiba Corp | 楽曲検索装置および検索方法 |
US5918223A (en) * | 1996-07-22 | 1999-06-29 | Muscle Fish | Method and article of manufacture for content-based analysis, storage, retrieval, and segmentation of audio information |
TW350571U (en) * | 1996-11-23 | 1999-01-11 | Ind Tech Res Inst | Optical grille form of optical read head in digital CD-ROM player |
JPH10269611A (ja) * | 1997-03-27 | 1998-10-09 | Pioneer Electron Corp | 光ピックアップ及びそれを用いた多層ディスク再生装置 |
US5949752A (en) * | 1997-10-30 | 1999-09-07 | Wea Manufacturing Inc. | Recording media and methods for display of graphic data, text, and images |
JP4043175B2 (ja) * | 2000-06-09 | 2008-02-06 | Tdk株式会社 | 光情報媒体およびその製造方法 |
US6657117B2 (en) * | 2000-07-14 | 2003-12-02 | Microsoft Corporation | System and methods for providing automatic classification of media entities according to tempo properties |
-
2001
- 2001-05-14 DE DE10123281A patent/DE10123281C1/de not_active Expired - Fee Related
-
2002
- 2002-05-10 EP EP02742987A patent/EP1371055B1/de not_active Expired - Lifetime
- 2002-05-10 AT AT02742987T patent/ATE294440T1/de not_active IP Right Cessation
- 2002-05-10 WO PCT/EP2002/005171 patent/WO2002093550A2/de active IP Right Grant
- 2002-05-10 ES ES02742987T patent/ES2240762T3/es not_active Expired - Lifetime
- 2002-05-10 DE DE50202914T patent/DE50202914D1/de not_active Expired - Lifetime
-
2003
- 2003-11-14 US US10/713,691 patent/US7012183B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO2002093550A3 (de) | 2003-02-27 |
DE50202914D1 (de) | 2005-06-02 |
ATE294440T1 (de) | 2005-05-15 |
US20040094019A1 (en) | 2004-05-20 |
DE10123281C1 (de) | 2002-10-10 |
EP1371055A2 (de) | 2003-12-17 |
US7012183B2 (en) | 2006-03-14 |
ES2240762T3 (es) | 2005-10-16 |
WO2002093550A2 (de) | 2002-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1371055B1 (de) | Vorrichtung zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen des audiosignals unter verwendung einer autokorrelationsfunktion | |
EP1388145B1 (de) | Vorrichtung und verfahren zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen | |
EP1523719B1 (de) | Vorrichtung und verfahren zum charakterisieren eines informationssignals | |
EP1407446B1 (de) | Verfahren und vorrichtung zum charakterisieren eines signals und zum erzeugen eines indexierten signals | |
EP2099024B1 (de) | Verfahren zur klangobjektorientierten Analyse und zur notenobjektorientierten Bearbeitung polyphoner Klangaufnahmen | |
EP1606798B1 (de) | Vorrichtung und verfahren zum analysieren eines audio-informationssignals | |
DE3306730C2 (de) | ||
EP1368805B1 (de) | Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals | |
EP2351017B1 (de) | Verfahren zur erkennung von notenmustern in musikstücken | |
DE102007034774A1 (de) | Vorrichtung zur Bestimmung von Akkordnamen und Programm zur Bestimmung von Akkordnamen | |
EP1280138A1 (de) | Verfahren zur Analyse von Audiosignalen | |
WO2005122135A1 (de) | Vorrichtung und verfahren zum umsetzen eines informationssignals in eine spektraldarstellung mit variabler auflösung | |
DE60031812T2 (de) | Vorrichtung und Verfahren zur Klangsynthesierung | |
DE102004028693B4 (de) | Vorrichtung und Verfahren zum Bestimmen eines Akkordtyps, der einem Testsignal zugrunde liegt | |
WO2006005448A1 (de) | Verfahren und vorrichtung zur rhythmischen aufbereitung von audiosignalen | |
EP1377924B1 (de) | VERFAHREN UND VORRICHTUNG ZUM EXTRAHIEREN EINER SIGNALKENNUNG, VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN EINER DAZUGEHÖRIGEN DATABANK und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals | |
EP1671315A1 (de) | Vorrichtung und verfahren zum charakterisieren eines tonsignals | |
EP1743324B1 (de) | Vorrichtung und verfahren zum analysieren eines informationssignals | |
DE10253868B3 (de) | Verfahren und Anordnung zur Synchronisation von Test- und Referenzmustern sowie ein entsprechendes Computerprogramm-Erzeugnis und ein entsprechendes computerlesbares Speichermedium | |
DE602004007249T2 (de) | Einheitliche Behandlung von aufgelösten und nicht-aufgelösten Oberwellen | |
EP1381024A1 (de) | Verfahren zum Auffinden einer Tonfolge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20031017 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ROHDEN, JAN Inventor name: UHLE, CHRISTIAN Inventor name: HERRE, JUERGEN Inventor name: CREMER, MARKUS |
|
17Q | First examination report despatched |
Effective date: 20040423 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050427 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050427 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050427 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050427 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050510 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050510 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
REF | Corresponds to: |
Ref document number: 50202914 Country of ref document: DE Date of ref document: 20050602 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050727 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050727 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051010 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2240762 Country of ref document: ES Kind code of ref document: T3 |
|
BERE | Be: lapsed |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND Effective date: 20050531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND Effective date: 20050531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080523 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080521 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080523 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090409 AND 20090415 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090518 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090510 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090511 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120529 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120525 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50202914 Country of ref document: DE Effective date: 20131203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130510 |