EP1377924B1 - VERFAHREN UND VORRICHTUNG ZUM EXTRAHIEREN EINER SIGNALKENNUNG, VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN EINER DAZUGEHÖRIGEN DATABANK und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals - Google Patents

VERFAHREN UND VORRICHTUNG ZUM EXTRAHIEREN EINER SIGNALKENNUNG, VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN EINER DAZUGEHÖRIGEN DATABANK und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals Download PDF

Info

Publication number
EP1377924B1
EP1377924B1 EP02714186A EP02714186A EP1377924B1 EP 1377924 B1 EP1377924 B1 EP 1377924B1 EP 02714186 A EP02714186 A EP 02714186A EP 02714186 A EP02714186 A EP 02714186A EP 1377924 B1 EP1377924 B1 EP 1377924B1
Authority
EP
European Patent Office
Prior art keywords
signal
time
database
identifier
search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02714186A
Other languages
English (en)
French (fr)
Other versions
EP1377924A2 (de
Inventor
Frank Klefenz
Karlheinz Brandenburg
Wolfgang Hirsch
Christian Uhle
Christian Richter
Andras Katai
Matthias Kaufmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1377924A2 publication Critical patent/EP1377924A2/de
Application granted granted Critical
Publication of EP1377924B1 publication Critical patent/EP1377924B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0008Associated control or indicating means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2240/00Data organisation or data communication aspects, specifically adapted for electrophonic musical tools or instruments
    • G10H2240/121Musical libraries, i.e. musical databases indexed by musical parameters, wavetables, indexing schemes using musical parameters, musical rule bases or knowledge bases, e.g. for automatic composing methods
    • G10H2240/131Library retrieval, i.e. searching a database or selecting a specific musical piece, segment, pattern, rule or parameter set
    • G10H2240/135Library retrieval index, i.e. using an indexing scheme to efficiently retrieve a music piece
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/005Algorithms for electrophonic musical instruments or musical processing, e.g. for automatic composition or resource allocation
    • G10H2250/011Genetic algorithms, i.e. using computational steps analogous to biological selection, recombination and mutation on an initial population of, e.g. sounds, pieces, melodies or loops to compose or otherwise generate, e.g. evolutionary music or sound synthesis

Definitions

  • the present invention relates to processing time signals that have a harmonic component, and in particular on the generation of a signal identifier for a Time signal to get the time signal using a database in of a plurality of signal identifiers for a plurality of Time signals is stored to be able to describe.
  • time signals with a harmonic component such as B. audio data
  • a harmonic component such as B. audio data
  • the Wish e.g. B. a CD of the artist in question to acquire.
  • the present audio signal only includes the time signal content, but no name above the interpreter, the music publisher etc. is an identification the origin of the audio signal or by whom Song comes from, not possible. The only hope was then in it, the audio piece including reference data regarding the Author or the source where the audio signal can be purchased, heard again to get the title you want to be able to.
  • a realistic inventory of audio files is several thousand saved audio files up to hundreds of thousands of audio files.
  • Music database information can be stored on a central Internet server, and potential Search queries could be made over the Internet.
  • the central music databases on local hard disk systems conceivable by users. It is desirable to have such music databases to be able to search for reference data via to learn an audio file, of which only the file itself, but no reference data are known.
  • music databases search using predetermined criteria to be able to, for example, similar
  • Similar pieces are for example, the pieces with a similar melody, one similar set of instruments, or simply with similar ones Noises such as B. sound of the sea, twittering of birds, male voices, female voices, etc.
  • U.S. Patent No. 5,918,223 discloses a method and a device for content-based analysis, storage, Recovery and segmentation of audio information. This procedure relies on several acoustic Extract features from an audio signal. Measured are volume, bass, pitch, brightness and melency-based Cepstral coefficients in a time window certain length in periodic intervals.
  • everyone Measurement data set consists of a sequence of measured feature vectors. Each audio file is through the complete sentence the characteristic sequences calculated for each characteristic. Furthermore, the first derivatives for each sequence of Feature vectors calculated. Then statistical values how mean and standard deviation are calculated. This Set of values is in an N vector, i.e. H. a vector with N elements, saved.
  • This procedure is based on a variety of audio files applied to each audio file derive an N vector. This will gradually according to a database made up of a large number of N vectors. An unknown audio file then becomes Extract a search n vector using the same procedure. In the case of a search query, a distance calculation is then made of the given N vector and that in the database stored N vectors determined. Eventually the N vector is output, which is the minimum distance to that Search N vector. The output N vector is data assigned via the author, title, source of supply, etc. so an audio file regarding its origin can be identified.
  • This method has the disadvantage that several characteristics are calculated and arbitrary heuristics to calculate of the parameters are introduced.
  • mean and Standard deviation calculations across all feature vectors for an entire audio file the information generated by the time course of the feature vectors is given, reduced to a few feature sizes. This leads to one high loss of information.
  • the object of the present invention is a Method and device for extracting a signal identifier to create a time signal that is meaningful Identification of a time signal without too large Enable loss of information.
  • This task is accomplished by a method of extracting a Signal identifier from a time signal according to claim 1 or by a device for extracting a signal identifier solved from a time signal according to claim 19.
  • Another object of the present invention is therein, a method and an apparatus for generating a Database of signal identifiers and a method and a Device for referencing a search time signal by means of to create such a database.
  • This task is accomplished by a method for generating a Database according to claim 13, a device for generating a database according to claim 20, a method for referencing a search time signal according to claim 14 or a device for referencing a Search time signal according to claim 21 solved.
  • the present invention is based on the finding that that with time signals that have a harmonic component, the time course of the time signal can be used can to a signal identifier of the time signal from the time signal to extract the one hand a good fingerprint for the time signal, but on the other hand is manageable in terms of their amount of data in order to be an efficient one Search a variety of signal identifiers in to enable a database.
  • the audio signal is thus characterized that a tone, that is, a frequency, at a certain point Time is present, and that this sound, i.e. H. this frequency, another one later Sound, d. H. another frequency follows.
  • the signal identifier or, in other words, the feature vector (MV) used to describe the time signal thus comprises a sequence of signal identification values, the more or less roughly depending on the embodiment reproduces the time course of the time signal.
  • the time signal is therefore not based on, as in the prior art characterized its spectral properties, but based on the temporal sequence of frequencies in the time signal.
  • a frequency value from the detected signal edges are at least two detected signal edges needed.
  • the selection of these two signal edges the total detected signal edges, on the basis thereof Frequency values are calculated is varied.
  • First can have two consecutive signal edges of essentially same length can be used.
  • the frequency value is then the reciprocal of the time interval between them Flanks.
  • a selection can also be made according to the amplitude of the detected signal edges. So two successive signal edges can be the same Amplitude can be taken to get a frequency value determine. However, it doesn't always have to be two consecutive Signal edges are taken, but z. B. always the second, third, fourth, ... signal edge of the same amplitude or length.
  • any two signal edges can be taken to under Using statistical methods and based on the Superposition laws to get the coordinate tuple.
  • a flute sound is two Signal edges with high amplitude provides between those there is a wave crest with a lower amplitude.
  • a selection of the two detected signal edges after the Amplitude are taken.
  • the temporal sequence represents in particular for audio signals of tones the most natural way of characterizing because there is the easiest way to recognize it from music signals is the essence of the audio signal in the chronological sequence of tones.
  • the most immediate Sensation that a listener receives from a music signal is the sequence of tones.
  • the concept according to the invention is based on this knowledge and provides a signal identifier that consists of a temporal Sequence of frequencies exists or, depending on the embodiment, from a chronological sequence of frequencies, d. H. Tones derived from statistical methods.
  • An advantage of the present invention is that the signal identifier as a chronological sequence of frequencies High information content fingerprint for time signals with a harmonic component and to a certain extent the essential or the core of a time signal.
  • Another advantage of the present invention is in that the signal identifier extracted according to the invention represents a strong compression of the time signal, however, the timing of the time signal continues is based on the natural view of time signals, e.g. B. pieces of music is adjusted.
  • Another advantage of the present invention is in that due to the sequential nature of the signal identifier from the distance calculation referencing algorithms in State of the art can be gone and for referencing the time signal used in a database algorithms can be known from DNA sequencing are and that in addition also similarity calculations can be performed using DNA sequencing algorithms with replace / insert / delete operations be used.
  • Another advantage of the present invention is in that to detect the time occurrence of Signal edges in the time signal in a favorable manner the Hough transform can be used for that efficient algorithms from image processing and image recognition exist.
  • Another advantage of the present invention is in that the signal identifier extracted according to the invention of a time signal is independent of whether the search signal identifier from the entire time signal or only from one Section of the time signal is derived because according to the DNA sequencing algorithms one step at a time Comparison of the search signal identifier with a reference signal identifier can be carried out, due to the temporal sequential comparison of the section of the identifying time signal to a certain extent automatically the reference time signal is identified where the highest match between search signal identifier and Reference signal identifier exists.
  • Fig. 1 shows a block diagram of an extracting device a signal identifier from a time signal.
  • the device comprises a device 12 for performing a Signal edge detection, a device 14 for determining the distance between two selected detected edges, a device 16 for frequency calculation and a device 18 for signal identification generation using from output from the device 16 for frequency calculation Coordinate tuples, each a frequency value and have an appearance time for this frequency value.
  • the device 12 for detecting the occurrence of time of signal edges in the time signal preferably carries one Hough transformation through.
  • the Hough transform is described in U.S. Patent No. 3,069,654 by Paul V. C. Hough.
  • the Hough transformation is used to recognize complex structures and especially for the automatic detection of complex Lines in photographs or other images.
  • the Hough transformation is thus generally a technique that can be used to create features with special shape inside extract an image.
  • the Hough transform used to do this from the time signal Extract signal edges with specified time lengths is initially determined by its temporal Length specified.
  • a sine wave would be a signal edge through the rising edge of the sine function defined from 0 to 90 °.
  • samples Is the time signal as a result of time samples ("Samples")
  • the length of time corresponds to one Signal edge taking into account the sampling frequency, with the samples were generated, a certain number of samples.
  • the length of a signal edge can thus by simply specifying the number of samples, specified to encompass the signal edge become.
  • a signal edge only then to be detected as a signal edge if the same is continuous and is predominantly monotonous, i.e. in In the case of a positive signal edge a predominantly monotone has increasing course. Of course you can too negative signal edges, i.e. monotonously falling signal edges can be detected.
  • Another criterion for the classification of signal edges is that a signal edge is only a signal edge is detected when it has a certain level range exceeds. To hide noise disturbances, it is preferred to use a minimum for a signal edge Specify level range or amplitude range, being monotonous rising signal edges below this level range cannot be detected as signal edges.
  • a preferred embodiment of the present Invention is used for referencing audio signals further restriction that only Signal edges are searched, their specified temporal length greater than a minimum limit length and is less than a maximum time limit.
  • This in other words means that only signal edges are searched that are on frequencies less than an upper cutoff frequency and greater than a lower cutoff frequency Clues.
  • the signal edge detection unit 12 thus provides one Signal edge and the time of occurrence of the signal edge. It is irrelevant whether the time of the signal occurrence the signal edge the time of the first sample the signal edge, the time of the last sample the signal edge or the time of any sample is taken within the signal edge as long Signal edges are treated the same.
  • the facility is based on this 16 for calculating a frequency value from the determined time interval. The frequency value corresponds to the inverse the determined time interval.
  • Fig. 5 shows a section of about 13 seconds in length of the clarinet quintet in A major, Larghetto, KV 581 by Wolfgang Amadeus Mozart as it exit 16 would appear for frequency calculation.
  • a clarinet sounds which is a melody leading Solo part plays as well as an accompanying string quartet.
  • the coordinate tuples shown in FIG. 5 result, as provided by the device 16 for frequency calculation could be generated.
  • the device 18 is finally used from the results to generate a signal identifier for the device 16, the cheap and suitable for a signal identification database is.
  • the signal identifier is generally made up of a plurality generated from coordinate tuples, each coordinate tuple includes a frequency value and an occurrence time, so that the signal identifier is a sequence of signal identifier values includes the time course of the time signal.
  • the device 18 serves to from the frequency-time diagram of Fig. 5, which by the device 16 could be generated, the essential Extract information to a fingerprint of the To generate time signal that is compact on the one hand, and on the other hand, the time signal is sufficiently precise and distinguishable can differ from other time signals.
  • FIG. 2 shows an extraction device according to the invention a signal identifier according to a preferred embodiment of the present invention.
  • an audio file 20 is input to an audio I / O handler.
  • the audio I / O handler 22 reads the audio file, for example from a hard drive.
  • the audio data stream can can also be read directly via a sound card.
  • To reading a portion of the audio data stream device 22 retrieves the audio file and loads the next one audio file to be edited or terminates the import process.
  • the device 24 serves on the one hand, if necessary a sample rate conversion perform, or a volume modification of the Audio signal.
  • Audio signals are on different Media in different sampling frequencies in front.
  • the Time of occurrence of a signal edge in the audio signal used to describe the audio signal so that the sampling rate must be known to the times of occurrence of signal edges to be detected correctly and above also correctly detect frequency values.
  • alternative can do a sample rate conversion by decimation or interpolation be performed to the audio signals different Bring sampling rates to the same sampling rate.
  • the device 24 is therefore provided for setting a sampling rate perform.
  • the PCM samples also become automatic Level adjustment also undergone in the facility 24 is provided.
  • the device 24 is for automatic Level adjustment in a look-ahead buffer is the middle one Signal power of the audio signal determined.
  • the audio signal section, the between two signal power minima is multiplied by a scaling factor that the product of a weighting factor and the quotient from full scale and maximum level within the segment is.
  • the length of the look-ahead buffer is variable.
  • the audio signal preprocessed in this way is then converted into the device 12 is fed by a signal edge detection performs as described with reference to FIG. 1 has been.
  • the Hough transform used.
  • a circuit technology Realization of the Hough transformation is in the WO 99/26167.
  • the amplitude of one determined by the Hough transformation Signal edge and the time of detection of a signal edge are then transferred to the device 14 of FIG. 1.
  • this unit there are two successive ones Subtract detection times from each other, where the reciprocal of the difference in performance times as a frequency value Is accepted.
  • This task is accomplished by the 1 causes and leads when a piece of music is processed accordingly to the frequency-time diagram of Fig. 5, in which the obtained frequency-time coordinate tuple are graphically represented by Mozart, Köchel-Directory 581.
  • the representation of FIG. 5 could already be can be used as a signal identifier for the time signal since the temporal sequence of the coordinate tuples the temporal Reproduces the course of the time signal.
  • Postprocess to get out of the frequency-time diagram 5 to extract the essential information, one for signal referencing if possible small and yet meaningful fingerprint deliver for the time signal.
  • the signal identification generator 18 can be used as in FIG. 3 be constructed shown.
  • the device 18 is structured into a device 18a for determining the cluster areas, into a device 18b for grouping, into a Device 18c for averaging over a group, in a Device 18d for setting intervals, in a device to quantize 18e and finally into a device 18f to switch the signal identifier for the time signal receive.
  • the device 18a characteristic distribution point clouds to determine the cluster areas, which are referred to as clusters or clusters are worked out. This is done by isolating everyone Frequency-time tuples are deleted that have a given Minimum distance to the closest spatial neighbor exceed. Such isolated frequency-time tuples are for example, the dots in the top right corner of the 5. This leaves a so-called pitch contour strip band left that in Fig. 5 with the reference symbol 50 is outlined.
  • the Pitch Contour strip tape consists of clusters of certain frequency latitude and longitude, whereby these clusters are caused by played notes. These tones are shown in Fig.
  • the tone a1 has a frequency of 440 Hz.
  • the tone h1 has a frequency of 494 Hz.
  • the tone c2 has one Frequency of 523 Hz, the tone cis2 has a frequency of 554 Hz, while the tone d2 has a frequency of 587 Hz.
  • the stripe width for single tones also depends of a vibrato of the musical instrument producing the single tones from.
  • Blocks become the coordinate tuples of the pitch contour strip in a time window of n samples summarized in a processing block to be processed separately or grouped.
  • the block size can be equidistant or variable.
  • a relatively rough division can be chosen, for example a one-second grid thing about the present Sampling rate of a certain number of samples corresponds to per block, or a smaller division.
  • alternative can, in the case of pieces of music the underlying notation To take account of the grid always chosen that a tone falls into the grid. This is it is necessary to estimate the length of a sound, what by the polynomial fit function 54 shown in FIG. 5 is possible.
  • a group or block is then created by the temporal distance between two local extreme values of the Polynomial determined.
  • This approach delivers particularly relatively large groups for relatively monophonic sections samples as they occur between 6 and 12 seconds, while at relatively polyphonic intervals of the piece of music, where the coordinate tuples are larger than one Frequency range are distributed, such as. B. at about 2 seconds 5 in Fig. 5 or smaller at 12 seconds from Fig. 5 Groups are determined, which in turn leads to the fact that the Signal identification carried out on the basis of relatively small groups becomes smaller, so that the information compression than with solid block formation.
  • block 18c for averaging over a group of samples becomes a weighted average as needed determined over all coordinate tuples present in a block.
  • the Tuples outside of the Pitch Contour strip band beforehand "Hidden".
  • this can also be done Hide are dispensed with, which leads to all coordinate tuple calculated by the device 16 at the averaging performed by the device 18c will be taken into account.
  • the value generated by the device 18c has been calculated in non-equidistant Grid values quantized.
  • the division according to the audio frequency scale being the tone frequency scale, as already stated has been classified according to the frequency range, which is supplied by a standard piano and differs from 27.5 Hz (tone A2) to 4186 Hz (tone c5) and 88 tone levels includes. Is the averaged value at the output of the Device 18c between two adjacent semitones, see above he receives the value of the closest reference tone.
  • the quantized values by the device 18f be post-processed, with post-processing for example in a pitch offset correction, one Transposition into another tone scale, etc. could exist.
  • FIG. 4 shows schematically a device for referencing a Search time signal in a database 40, the database 40 signal identifiers of a plurality of database time signals Track_1 to Track_m, which in one preferably library 42 separate from database 40 are saved.
  • Audio files 41 are gradually fed to a vector generator 43, which has a reference identifier for each audio file and stored in the database so that they are recognized can to which audio file z. B. in library 42 the signal identifier belongs.
  • the signal identifier corresponds MV11, ...., MV1n the time signal Track_1.
  • the Signal identifier MV21, ..., MV2n belongs to the time signal Track_2.
  • the signal identifier MVm1, ..., MVmn to the time signal Track_m.
  • the vector generator 43 is designed to generally perform the operations shown in FIGS Fig. 1 perform functions, and is according to a preferred embodiment as in FIG. 2nd and 3 implemented. Processed in "Learn" mode the vector generator 43 gradually different Audio files (Track_1 to Track_m) for signal identifiers for save the time signals in the database, d. H. around to fill the database.
  • an audio file 41 is to be based on the database 40 are referenced.
  • the search time signal 41 processed by the vector generator 43 to generate a search identifier 45.
  • the search identifier 45 will then fed into a DNA sequencer 46 to match the reference identifiers to be compared in database 40.
  • the DNA sequencer 46 is also arranged to make a statement about the search time signal with respect to the plurality of database time signals from library 42.
  • the DNA sequencer searches the database with the search identifier 45 40 on a matching reference identifier and passes a pointer to the corresponding one with the reference identifier associated audio files in library 42.
  • the DNA sequencer 46 thus makes a comparison of the search identifier 45 or parts thereof with the reference identifiers in the database. If the given sequence is available or a partial sequence thereof becomes the associated time signal referenced in library 42.
  • DNA sequencer 46 preferably uses a Boyer-Moore algorithm which, for example, in the specialist book "Algorithms on Strings, Trees and Sequences", Dan Gusfield, Cambridge University Press, 1997. According to A first alternative is based on exact match checked. The conclusion of a statement is therefore that it is said that the search time signal is identical to one Time signal in library 42 is. Alternatively or additionally can also see the similarity of two sequences Use of replace / insert / delete operations and a pitch offset correction (pitch offset correction) to be examined.
  • pitch offset correction pitch offset correction
  • database 40 is structured to: composed of the chaining of signal identification sequences is, the end of each vector signal identifier of a time signal is specified by a separator so the search does not continue beyond time signal file limits. If multiple matches are found, all of them referenced time signals specified.
  • a similarity measure can be introduced with the time signal referenced in library 42 is that the search time signal 41 based on a predetermined Similarity measure is most similar. Furthermore, it prefers to measure the similarity of the search audio signal and then determine multiple signals in the library the most similar n sections in library 42 in Order of descending similarity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

Die vorliegende Erfindung bezieht sich auf die Verarbeitung von Zeitsignalen, die einen harmonischen Anteil haben, und insbesondere auf das Erzeugen einer Signalkennung für ein Zeitsignal, um das Zeitsignal mittels einer Datenbank, in der eine Mehrzahl von Signalkennungen für eine Mehrzahl von Zeitsignalen gespeichert ist, beschreiben zu können.
Konzepte, durch die Zeitsignale mit einem harmonischen Anteil, wie z. B. Audiodaten, identifizierbar und referenzierbar sind, sind für viele Anwender nützlich. Insbesondere in einer Situation, in der ein Audiosignal vorliegt, dessen Titel und Autor unbekannt sind, ist es oftmals wünschenswert, herauszufinden, von wem das entsprechende Lied stammt. Ein Bedarf hierzu besteht beispielsweise, wenn der Wunsch vorhanden ist, z. B. eine CD des betreffenden Interpreten zu erwerben. Wenn das vorliegende Audiosignal lediglich den Zeitsignalinhalt umfaßt, jedoch keinen Namen über den Interpreten, den Musikverlag etc., so ist eine Identifizierung des Ursprungs des Audiosignals bzw. von wem ein Lied stammt, nicht möglich. Die einzige Hoffnung bestand dann darin, das Audiostück samt Referenzdaten bezüglich des Autors oder der Quelle, wo das Audiosignal zu erwerben ist, noch einmal zu hören, um dann den gewünschten Titel beschaffen zu können.
Im Internet ist es nicht möglich, Audiodaten unter Verwendung herkömmlicher Suchmaschinen zu suchen, da die Suchmaschinen lediglich mit textuellen Daten umgehen können. Audiosignale bzw. allgemeiner gesagt, Zeitsignale, die einen harmonischen Anteil haben, können durch solche Suchmaschinen nicht verarbeitet werden, wenn sie keine textuellen Suchangaben umfassen.
Ein realistischer Bestand an Audiodateien liegt bei mehreren tausend gespeicherten Audiodateien bis zu hunderttausenden von Audiodateien. Musikdatenbankinformationen können auf einem zentralen Internet-Server abgelegt sein, und potentielle Suchanfragen könnten über das Internet erfolgen. Alternativ sind bei heutigen Festplattenkapazitäten auch die zentrale Musikdatenbanken auf lokalen Festplattensystemen von Benutzern denkbar. Es ist wünschenswert, solche Musikdatenbanken durchsuchen zu können, um Referenzdaten über eine Audiodatei zu erfahren, von der lediglich die Datei selbst, jedoch keine Referenzdaten bekannt sind.
Darüber hinaus ist es gleichermaßen wünschenswert, Musikdatenbanken unter Verwendung vorgegebener Kriterien durchsuchen zu können, die beispielsweise dahingehend lauten, ähnliche Stücke herausfinden zu können. Ähnliche Stücke sind beispielsweise die Stücke mit einer ähnlichen Melodie, einem ähnlichen Instrumentensatz, oder einfach mit ähnlichen Geräuschen, wie z. B. Meeresrauschen, Vogelgezwitscher, männliche Stimmen, weibliche Stimmen, etc.
Das U.S.-Patent Nr. 5,918,223 offenbart ein Verfahren und eine Vorrichtung für eine Inhalts-basierte Analyse, Speicherung, Wiedergewinnung und Segmentierung von Audioinformationen. Dieses Verfahren beruht darauf, mehrere akustische Merkmale aus einem Audiosignal zu extrahieren. Gemessen werden Lautstärke, Baß, Tonhöhe, Brightness und Melfrequenz-basierte Cepstral-Koeffizienten in einem Zeitfenster bestimmter Länge in periodischen Intervallabständen. Jeder Meßdatensatz besteht aus einer Folge von gemessenen Merkmalsvektoren. Jede Audiodatei ist durch den kompletten Satz der pro Merkmal berechneten Merkmalsfolgen spezifiziert. Ferner werden die ersten Ableitungen für jede Folge von Merkmalsvektoren berechnet. Dann werden statistische Werte wie Mittelwert und Standardabweichung berechnet. Dieser Satz von Werten wird in einem N-Vektor, d. h. einem Vektor mit N Elementen, gespeichert. Diese Vorgehensweise wird auf eine Vielzahl von Audiodateien angewendet, um für jede Audiodatei einen N-Vektor abzuleiten. Damit wird nach und nach eine Datenbank aus einer Vielzahl von N-Vektoren aufgebaut. Aus einer unbekannten Audiodatei wird dann unter Verwendung derselben Vorgehensweise ein Such-N-Vektor extrahiert. Bei einer Suchanfrage wird dann eine Abstandsberechnung des vorgegebenen N-Vektors und der in der Datenbank gespeicherten N-Vektoren ermittelt. Schließlich wird der N-Vektor ausgegeben, der den minimalen Abstand zu dem Such-N-Vektor hat. Dem ausgegebenen N-Vektor sind Daten über den Autor, den Titel, die Beschaffungsquelle etc. zugeordnet, so daß eine Audiodatei hinsichtlich ihres Ursprungs identifiziert werden kann.
Dieses Verfahren hat den Nachteil, daß mehrere Merkmale berechnet werden und willkürliche Heuristiken zur Berechnung der Kenngrößen eingeführt werden. Durch Mittelwert- und Standardabweichungsberechnungen über alle Merkmalsvektoren für eine gesamte Audiodatei wird die Information, die durch den zeitlichen Verlauf der Merkmalsvektoren gegeben ist, auf wenige Merkmalsgrößen reduziert. Dies führt zu einem hohen Informationsverlust.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren und eine Vorrichtung zum Extrahieren einer Signalkennung aus einem Zeitsignal zu schaffen, die eine aussagekräftige Kennzeichnung eines Zeitsignals ohne zu großen Informationsverlust ermöglichen.
Diese Aufgabe wird durch ein Verfahren zum Extrahieren einer Signalkennung aus einem Zeitsignal nach Patentanspruch 1 oder durch eine Vorrichtung zum Extrahieren einer Signalkennung aus einem Zeitsignal nach Patentanspruch 19 gelöst.
Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren und eine Vorrichtung zum Erzeugen einer Datenbank aus Signalkennungen und ein Verfahren und eine Vorrichtung zum Referenzieren eines Such-Zeitsignals mittels einer solchen Datenbank zu schaffen.
Diese Aufgabe wird durch ein Verfahren zum Erzeugen einer Datenbank nach Patentanspruch 13, eine Vorrichtung zum Erzeugen einer Datenbank nach Patentanspruch 20, ein Verfahren zum Referenzieren eines Such-Zeitsignals nach Patentanspruch 14 oder eine Vorrichtung zum Referenzieren eines Such-Zeitsignals nach Patentanspruch 21 gelöst.
Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß bei Zeitsignalen, die einen harmonischen Anteil haben, der zeitliche Verlauf des Zeitsignals verwendet werden kann, um eine Signalkennung des Zeitsignals aus dem Zeitsignal zu extrahieren, die einerseits einen guten Fingerabdruck für das Zeitsignal liefert, die jedoch andererseits hinsichtlich ihrer Datenmenge überschaubar ist, um ein effizientes Durchsuchen einer Vielzahl von Signalkennungen in einer Datenbank zu ermöglichen. Eine wesentliche Eigenschaft von Zeitsignalen mit einem harmonischen Anteil sind wiederkehrende Signalflanken in dem Zeitsignal, wobei z. B. zwei aufeinanderfolgende Signalflanken mit gleicher bzw. ähnlicher Länge die Angabe einer Periodendauer und damit einer Frequenz in dem Zeitsignal mit hoher zeitlicher und frequenzmäßiger Auflösung ermöglichen, wenn nicht nur das Vorhandensein der Signalflanken an sich, sondern auch das zeitliche Auftreten der Signalflanken in dem Zeitsignal berücksichtigt wird. Somit ist es möglich, eine Beschreibung des Zeitsignals dadurch zu erhalten, daß das Zeitsignal aus zeitlich aufeinanderfolgenden Frequenzen besteht. Am Beispiel eines Audiosignals wird das Audiosignal somit so charakterisiert, daß ein Ton, also eine Frequenz, zu einem bestimmten Zeitpunkt vorhanden ist, und daß diesem Ton, d. h. dieser Frequenz, zu einem späteren Zeitpunkt ein anderer Ton, d. h. eine andere Frequenz, folgt.
Erfindungsgemäß wird somit von der Beschreibung des Zeitsignals durch eine Folge von zeitlichen Abtastwerten in eine Beschreibung des Zeitsignals durch Koordinaten-Tupel aus Frequenz und Zeitpunkt des Auftretens der Frequenz übergegangen. Die Signalkennung oder anders ausgedrückt der Merkmalsvektor (MV), der zum Beschreiben des Zeitsignals verwendet wird, umfaßt somit eine Folge von Signalkennungswerten, die je nach Ausführungsform mehr oder weniger grob den zeitlichen Verlauf des Zeitsignals wiedergibt. Das Zeitsignal wird somit nicht, wie im Stand der Technik, anhand seiner spektralen Eigenschaften charakterisiert, sondern anhand der zeitlichen Abfolge von Frequenzen in dem Zeitsignal.
Zur Berechnung eines Frequenzwerts aus den detektierten Signalflanken werden somit zumindest zwei detektierte Signalflanken benötigt. Die Auswahl dieser zwei Signalflanken aus den gesamten detektierten Signalflanken, auf deren Basis Frequenzwerte berechnet werden, ist vielfältig. Zunächst können zwei aufeinanderfolgende Signalflanken von im wesentlichen gleicher Länge verwendet werden. Der Frequenzwert ist dann der Kehrwert aus dem zeitlichen Abstand dieser Flanken. Alternativ kann eine Auswahl auch nach der Amplitude der detektierten Signalflanken durchgeführt werden. So können auch zwei aufeinanderfolgende Signalflanken gleicher Amplitude genommen werden, um einen Frequenzwert zu ermitteln. Es müssen jedoch nicht immer zwei aufeinanderfolgende Signalflanken genommen werden, sondern z. B. immer die zweite, dritte, vierte, ... Signalflanke gleicher Amplitude oder Länge. Schließlich sei angemerkt, daß auch zwei beliebige Signalflanken genommen werden können, um unter Verwendung statistischer Methoden und auf der Basis der Superpositionsgesetze die Koordinatentupel zu erhalten. Am Beispiel einer Flöte wird deutlich, daß ein Flötenton zwei Signalflanken mit hoher Amplitude liefert, zwischen denen sich ein Wellenberg mit niedrigerer Amplitude befindet. Um den Grundton der Flöte zu ermitteln, könnte beispielsweise eine Auswahl der zwei detektierten Signalflanken nach der Amplitude getroffen werden.
Insbesondere für Audiosignale stellt die zeitliche Abfolge von Tönen die natürlichste Art und Weise der Charakterisierung dar, da, wie es am einfachsten an Musiksignalen erkennbar ist, der Wesensgehalt des Audiosignals eben in der zeitlichen Abfolge von Tönen steckt. Die unmittelbarste Empfindung die ein Hörer von einem Musiksignal erhält, ist die zeitliche Abfolge von Tönen. Nicht nur in der klassischen Musik, bei der sich Werke immer um ein bestimmtes Thema aufbauen, das sich in verschiedenen Abwandlungen durch das ganze Werk zieht, sondern auch bei Liedern der populären oder sonstigen zeitgenössischen Musik existiert eine einprägsame Melodie, die im allgemeinen aus einer Folge von einfachen Tönen besteht, wobei das Thema bzw. die einfache Melodie wesentlich die Wiedererkennungsfähigkeit unabhängig von Rhythmus, der Tonhöhe, einer eventuellen Instrumentenbegleitung etc. prägt.
Das erfindungsgemäße Konzept basiert auf dieser Erkenntnis und liefert eine Signalkennung, die aus einer zeitlichen Abfolge von Frequenzen besteht oder, je nach Ausführungsform, aus einer zeitlichen Abfolge von Frequenzen, d. h. Tönen, durch statistische Verfahren abgeleitet ist.
Ein Vorteil der vorliegenden Erfindung besteht darin, daß die Signalkennung als zeitliche Abfolge von Frequenzen einen Fingerabdruck von hohem Informationsgehalt für Zeitsignale mit harmonischem Anteil darstellt und gewissermaßen das wesentliche oder den Kern eines Zeitsignal ausmacht.
Ein weiterer Vorteil der vorliegenden Erfindung besteht darin, daß die erfindungsgemäß extrahierte Signalkennung zwar eine starke Komprimierung des Zeitsignals darstellt, jedoch nach wie vor an den zeitlichen Verlauf des Zeitsignals angelehnt ist und damit an die natürliche Auffassung von Zeitsignalen, z. B. Musikstücken, angepasst ist.
Ein weiterer Vorteil der vorliegenden Erfindung besteht darin, daß durch die sequentielle Natur der Signalkennung von den Abstandsberechnungs-Referenzierungsalgorithmen im Stand der Technik weggegangen werden kann und zur Referenzierung des Zeitsignals in einer Datenbank Algorithmen eingesetzt werden können, die aus der DNA-Sequenzierung bekannt sind und daß darüber hinaus auch Ähnlichkeitsberechnungen durchgeführt werden können, indem DNA-Sequenzierungsalgorithmen mit Ersetzen/Einfügen/Löschen-Operationen eingesetzt werden.
Ein weiterer Vorteil der vorliegenden Erfindung besteht darin, daß zum Detektieren des zeitlichen Auftretens von Signalflanken in dem Zeitsignal auf günstige Art und Weise die Hough-Transformation eingesetzt werden kann, für die aus der Bildverarbeitung und Bilderkennung effiziente Algorithmen existieren.
Ein weiterer Vorteil der vorliegenden Erfindung besteht darin, daß die erfindungsgemäß extrahierte Signalkennung eines Zeitsignals unabhängig davon ist, ob die Such-Signalkennung aus dem gesamten Zeitsignal oder nur aus einem Abschnitt des Zeitsignals abgeleitet ist, da gemäß den Algorithmen der DNA-Sequenzierung ein zeitlich schrittweiser Vergleich der Such-Signalkennung mit einer Referenz-Signalkennung durchgeführt werden kann, wobei aufgrund des zeitlich sequentiellen Vergleichs der Abschnitt des zu identifizierenden Zeitsignals gewissermaßen automatisch in dem Referenz-Zeitsignal dort identifiziert wird, wo die höchste Übereinstimmung zwischen Such-Signalkennung und Referenz-Signalkennung existiert.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
Fig. 1
ein Blockschaltbild der erfindungsgemäßen Vorrichtung zum Extrahieren einer Signalkennung aus einem Zeitsignal;
Fig. 2
ein Blockschaltbild eines bevorzugten Ausführungsbeispiels, in dem eine Vorverarbeitung des Audiosignals dargestellt ist;
Fig. 3
ein Blockschaltbild eines Ausführungsbeispiels für die Signalkennungserzeugung;
Fig. 4
ein Blockschaltbild für eine erfindungsgemäße Vorrichtung zum Erzeugen einer Datenbank und zum Referenzieren eines Such-Zeitsignals in der Datenbank.
Fig. 5
graphische Darstellung eines Ausschnitts von Mozart KV 581 durch Frequenz-Zeit-Koordinaten-Tupel.
Fig. 1 zeigt ein Blockdiagramm einer Vorrichtung zum Extrahieren einer Signalkennung aus einem Zeitsignal. Die Vorrichtung umfaßt eine Einrichtung 12 zum Durchführen einer Signalflankendetektion, eine Einrichtung 14 zur Abstandsermittlung zwischen zwei ausgewählten detektierten Flanken, eine Einrichtung 16 zur Frequenzberechnung und eine Einrichtung 18 zur Signalkennungserzeugung unter Verwendung von aus der Einrichtung 16 zur Frequenzberechnung ausgegebenen Koordinaten-Tupeln, die jeweils einen Frequenzwert und eine Auftrittszeit für diesen Frequenzwert aufweisen.
An dieser Stelle sei darauf hingewiesen, daß, obgleich im nachfolgenden von einem Audiosignal als Zeitsignal gesprochen wird, das erfindungsgemäße Konzept nicht nur für Audiosignale geeignet ist, sondern für sämtliche Zeitsignale, die einen harmonischen Anteil haben, da die Signalkennung darauf basiert, daß ein Zeitsignal aus einer zeitlichen Abfolge von Frequenzen, am Beispiel des Audiosignals von Tönen, besteht.
Die Einrichtung 12 zum Erfassen des zeitlichen Auftretens von Signalflanken in dem Zeitsignal führt vorzugsweise eine Hough-Transformation durch.
Die Hough-Transformation ist in dem U.S.-Patent Nr. 3,069,654 von Paul V. C. Hough beschrieben. Die Hough-Transformation dient zur Erkennung von komplexen Strukturen und insbesondere zur automatischen Erkennung von komplexen Linien in Photographien oder anderen Bilddarstellungen. Die Hough-Transformation ist somit allgemein eine Technik, die verwendet werden kann, um Merkmale mit spezieller Form innerhalb eines Bildes zu extrahieren.
In ihrer Anwendung gemäß der vorliegenden Erfindung wird die Hough-Transformation dazu verwendet, aus dem Zeitsignal Signalflanken mit spezifizierten zeitlichen Längen zu extrahieren. Eine Signalflanke wird zunächst durch ihre zeitliche Länge spezifiziert. Im Idealfall einer Sinuswelle wäre eine Signalflanke durch die ansteigende Flanke der Sinusfunktion von 0 bis 90° definiert. Alternativ könnte eine Signalflanke auch durch den Anstieg der Sinus-Funktion von -90° bis +90° spezifiziert werden.
Liegt das Zeitsignal als Folge von zeitlichen Abtastwerten ("Samples") vor, so entspricht die zeitliche Länge einer Signalflanke unter Berücksichtigung der Abtastfrequenz, mit der die Samples erzeugt worden sind, einer bestimmten Anzahl von Abtastwerten. Die Länge einer Signalflanke kann somit ohne weiteres durch die Angabe der Anzahl der Abtastwerte, die die Signalflanke umfassen soll, spezifiziert werden.
Darüber hinaus wird es bevorzugt, eine Signalflanke nur dann als Signalflanke zu detektieren, wenn dieselbe stetig ist und einen überwiegend monotonen Verlauf hat, also im Falle einer positiven Signalflanke einen überwiegend monoton steigenden Verlauf hat. Selbstverständlich können auch negative Signalflanken, also monoton fallende Signalflanken detektiert werden.
Ein weiteres Kriterium zur Klassifizierung von Signalflanken besteht darin, daß eine Signalflanke nur dann als Signalflanke detektiert wird, wenn sie einen bestimmten Pegelbereich übersteigt. Um Rauschstörungen auszublenden, wird es bevorzugt, für eine Signalflanke einen minimalen Pegelbereich oder Amplitudenbereich vorzugeben, wobei monoton steigende Signalflanken unterhalb dieses Pegelbereichs nicht als Signalflanken detektiert werden.
Gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung wird zur Referenzierung von Audiosignalen eine weitere Einschränkung dahingehend getroffen, daß lediglich Signalflanken gesucht werden, deren spezifizierte zeitliche Länge größer als eine minimale Grenzlänge und kleiner als eine maximale zeitliche Grenzlänge ist. Dies bedeutet in anderen Worten ausgedrückt, daß lediglich Signalflanken gesucht werden, die auf Frequenzen kleiner als eine obere Grenzfrequenz und größer als eine untere Grenzfrequenz hinweisen. Bei Musikstücken wird es bevorzugt, lediglich Signalflanken zu detektieren, die auf Frequenzen im Frequenzbereich von 27,5 Hz (Ton A2) bis 4186 Hz (Ton c5) hinweisen. Dieser Frequenzbereich wird durch die durch ein übliches Klavier zur Verfügung gestellten Töne überstrichen. Für Signalkennungen von Musikstücken hat sich dieser Tonbereich als ausreichend herausgestellt.
Die Signalflankendetektionseinheit 12 liefert somit eine Signalflanke und den Zeitpunkt des Auftretens der Signalflanke. Hierbei ist es unerheblich, ob als Signalauftrittszeitpunkt der Signalflanke der Zeitpunkt des ersten Abtastwerts der Signalflanke, der Zeitpunkt des letzten Abtastwerts der Signalflanke oder der Zeitpunkt irgend eines Abtastwerts innerhalb der Signalflanke genommen wird, so lange Signalflanken gleich behandelt werden.
Die Einrichtung 14 zum Ermitteln eines zeitlichen Abstands zwischen zwei aufeinanderfolgenden Signalflanken, deren zeitliche Längen abgesehen von einem vorbestimmten Toleranzwert gleich sind, untersucht die von der Einrichtung 12 ausgegebenen Signalflanken und extrahiert zwei aufeinanderfolgende Signalflanken, die gleich sind oder innerhalb eines bestimmten vorgegebenen Toleranzwerts im wesentlichen gleich sind. Wenn ein einfacher Sinuston betrachtet wird, so ist eine Periode des Sinustons durch den zeitlichen Abstand zweier aufeinanderfolgender gleich langer z. B. positiver Viertelwellen gegeben. Hierauf beruht die Einrichtung 16 zum Berechnen eines Frequenzwerts aus dem ermittelten zeitlichen Abstand. Der Frequenzwert entspricht dem Inversen des ermittelten zeitlichen Abstands.
Durch diese Vorgehensweise kann mit hoher zeitlicher und gleichzeitig frequenzmäßiger Auflösung eine Darstellung eines Zeitsignals durch Angabe der in dem Zeitsignal vorkommenden Frequenzen und durch Angabe der mit den Frequenzen korrespondierenden Auftrittszeitpunkten geliefert werden. Wenn die Ergebnisse der Einrichtung 16 zur Frequenzberechnung graphisch dargestellt werden, wird ein Diagramm gemäß Fig. 5 erhalten.
Fig. 5 zeigt einen Ausschnitt mit etwa 13 Sekunden Länge des Klarinettenquintetts A-Dur, Larghetto, KV 581 von Wolfgang Amadeus Mozart, wie es am Ausgang der Einrichtung 16 zur Frequenzberechnung erscheinen würde. In diesem Ausschnitt erklingt eine Klarinette, die eine melodieführende Solostimme spielt sowie ein begleitendes Streichquartett. Es ergeben sich die in Fig. 5 dargestellten Koordinaten-Tupel, wie sie durch die Einrichtung 16 zur Frequenzberechnung erzeugt werden könnten.
Die Einrichtung 18 dient schließlich dazu, aus den Ergebnissen der Einrichtung 16 eine Signalkennung zu erzeugen, die für eine Signalkennungsdatenbank günstig und geeignet ist. Die Signalkennung wird allgemein aus einer Mehrzahl von Koordinatentupeln erzeugt, wobei jeder Koordinatentupel einen Frequenzwert und einen Auftrittszeitpunkt umfaßt, so daß die Signalkennung eine Folge von Signalkennungswerten umfaßt, die den zeitlichen Verlauf des Zeitsignals wiedergibt.
Wie es später erläutert wird, dient die Einrichtung 18 dazu, aus dem Frequenz-Zeit-Diagramm von Fig. 5, das durch die Einrichtung 16 erzeugt werden könnte, die wesentlichen Informationen zu extrahieren, um einen Fingerabdruck des Zeitsignals zu erzeugen, der einerseits kompakt ist, und der andererseits das Zeitsignal ausreichend genau und unterscheidbar von anderen Zeitsignalen unterscheiden kann.
Fig. 2 zeigt eine erfindungsgemäße Vorrichtung zum Extrahieren einer Signalkennung gemäß einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung. Als Zeitsignal wird eine Audiodatei 20 in einen Audio-I/O-Handler eingegeben. Der Audio-I/O-Handler 22 liest die Audiodatei beispielsweise von einer Festplatte. Der Audiodatenstrom kann auch direkt über eine Soundkarte eingelesen werden. Nach dem Einlesen eines Abschnitts des Audiodatenstroms schließt die Einrichtung 22 die Audiodatei wieder und lädt die nächste zu bearbeitende Audiodatei oder terminiert den Einlesevorgang. Die Folge von PCM-Abtastwerten (PCM = Puls Code Modulated), wie sie beispielsweise von einer CD erhalten werden, werden dann in eine Einrichtung 24 zur Vorverarbeitung des Audiosignals eingegeben. Die Einrichtung 24 dient einerseits dazu, falls erforderlich eine Abtastratenumwandlung durchzuführen, oder eine Lautstärkemodifikation des Audiosignals zu erreichen. Audiosignale liegen auf verschiedenen Medien in unterschiedlichen Abtastfrequenzen vor. Wie es bereits ausgeführt worden ist, wird jedoch der Zeitpunkt des Auftretens einer Signalflanke in dem Audiosignal zur Beschreibung des Audiosignals verwendet, so daß die Abtastrate bekannt sein muß, um die Auftrittszeitpunkte von Signalflanken korrekt zu detektieren, und um darüber hinaus Frequenzwerte korrekt zu detektieren. Alternativ kann eine Abtastratenumwandlung durch Dezimierung oder Interpolation durchgeführt werden, um die Audiosignale verschiedener Abtastraten auf eine gleiche Abtastrate zu bringen.
Bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung, das für mehrere Abtastraten geeignet sein soll, ist daher die Einrichtung 24 vorgesehen, um eine Abtastrateneinstellung durchzuführen.
Die PCM-Abtastwerte werden ferner einer automatischen Pegelanpassung unterzogen, die ebenfalls in der Einrichtung 24 vorgesehen ist. In der Einrichtung 24 wird zur automatischen Pegelanpassung in einem Look-Ahead-Buffer die mittlere Signalleistung des Audiosignals bestimmt. Der Audiosignalabschnitt, der zwischen zwei Signalleistungsminima liegt, wird mit einem Skalierungsfaktor multipliziert, der das Produkt aus einem Gewichtungsfaktor und dem Quotienten aus Vollausschlag und maximalem Pegel innerhalb des Segments ist. Die Länge des Look-Ahead-Buffers ist variabel.
Anschließend wird das derart vorverarbeitete Audiosignal in die Einrichtung 12 eingespeist, die eine Signalflankendetektion durchführt, wie sie bezugnehmend auf Fig. 1 beschrieben worden ist. Bevorzugterweise wird hierzu die Hough-Transformation verwendet. Eine schaltungstechnische Realisierung der Hough-Transformation ist in der WO 99/26167 offenbart.
Die durch die Hough-Transformation ermittelte Amplitude einer Signalflanke und der Detektionszeitpunkt einer Signalflanke werden dann in die Einrichtung 14 von Fig. 1 übergeben. In dieser Einheit werden jeweils zwei aufeinanderfolgende Detektionszeitpunkte voneinander subtrahiert, wobei der Kehrwert der Differenz der Auftrittszeiten als Frequenzwert angenommen wird. Diese Aufgabe wird durch die Einrichtung 16 aus Fig. 1 bewirkt und führt, wenn ein Musikstück entsprechend bearbeitet wird, zu dem Frequenz-Zeit-Diagramm von Fig. 5, in der die erhaltenen Frequenz-Zeit-Koordinaten-Tupel graphisch dargestellt sind, die durch Mozart, Köchel-Verzeichnis 581, erhalten werden.
Erfindungsgemäß könnte die Darstellung von Fig. 5 bereits als Signalkennung für das Zeitsignal verwendet werden, da die zeitliche Folge der Koordinaten-Tupel den zeitlichen Verlauf des Zeitsignals wiedergibt.
Bei einem Ausführungsbeispiel wird es jedoch bevorzugt, eine Nachbearbeitung durchzuführen, um aus dem Frequenz-Zeit-Diagramm von Fig. 5 die wesentlichen Informationen zu extrahieren, die für eine Signal-Referenzierung einen möglichst kleinen und dennoch möglichst aussagefähigen Fingerabdruck für das Zeitsignal liefern.
Hierzu kann die Signalkennungserzeugung 18 wie in Fig. 3 dargestellt aufgebaut sein. Die Einrichtung 18 gliedert sich in eine Einrichtung 18a zur Ermittlung der Häufungsgebiete, in eine Einrichtung 18b zur Gruppierung, in eine Einrichtung 18c zur Mittelung über einer Gruppe, in eine Einrichtung 18d zur Intervallfestlegung, in eine Einrichtung zum Quantisieren 18e und schließlich in eine Einrichtung 18f auf, um die Signalkennung für das Zeitsignal zu erhalten.
Wie in Fig. 5 gut erkennbar, werden in der Einrichtung 18a zur Ermittlung der Häufungsgebiete charakteristische Verteilungspunktwolken, die als Haufen oder Cluster bezeichnet werden, herausgearbeitet. Dies geschieht, indem alle isolierten Frequenz-Zeit-Tupel gelöscht werden, die einen vorgegebenen Mindestabstand zum nächsten räumlichen Nachbarn überschreiten. Solche isolierten Frequenz-Zeit-Tupel sind beispielsweise die Punkte in der rechten oberen Ecke des Diagramms von Fig. 5. Dadurch bleibt ein sogenanntes Pitch-Contour-Streifenband übrig, das in Fig. 5 mit dem Bezugszeichen 50 skizziert ist. Das Pitch-Contour-Streifenband besteht aus Clustern bestimmter Frequenzbreite und Länge, wobei diese Cluster von gespielten Tönen hervorgerufen werden. Diese Töne sind in Fig. 5 durch waagrechte Linien, die die Ordinate schneiden, angedeutet (52), wobei bei dem hier gezeigten Beispiel die Töne h1, c2, cis2, d2 und h1 in dem Bereich zwischen etwa 6 und 10 Sekunden in der genannten Folge auftreten. Der Ton a1 hat eine Frequenz von 440 Hz. Der Ton h1 hat eine Frequenz von 494 Hz. der Ton c2 hat eine Frequenz von 523 Hz, der Ton cis2 hat eine Frequenz von 554 Hz, während der Ton d2 eine Frequenz von 587 Hz hat.
Bei polyphonen Klängen ergeben sich breitere Streifenbänder. Die Streifenbreite bei Einzeltönen hängt darüber hinaus von einem Vibrato des die Einzeltöne erzeugenden Musikinstruments ab.
In der Einrichtung 18b zur Gruppierung oder zur Bildung von Blöcken werden die Koordinaten-Tupel des Pitch-Contour-Streifenbandes in einem Zeitfenster von n Abtastwerten zu einem separat zu bearbeitenden Verarbeitungsblock zusammengefaßt oder gruppiert. Die Blockgröße kann dabei äquidistant oder variabel gewählt werden. Je nach Genauigkeit und zur Verfügung stehendem Speicherplatz für die Signalkennung kann eine relativ grobe Aufteilung gewählt werden, beispielsweise ein Ein-Sekunden-Raster, was über die vorliegende Abtastrate einer bestimmten Anzahl von Abtastwerten pro Block entspricht, oder eine kleinere Einteilung. Alternativ kann, um bei Musikstücken der zugrunde liegenden Notenschreibweise Rechnung zu tragen, das Raster immer so gewählt werden, daß in das Raster ein Ton fällt. Hierzu ist es erforderlich, die Länge eines Tons abzuschätzen, was durch die in Fig. 5 eingezeichnete Polynomfitfunktion 54 möglich ist. Eine Gruppe bzw. ein Block wird dann durch den zeitlichen Abstand zwischen zwei lokalen Extremwerten des Polynoms bestimmt. Diese Vorgehensweise liefert besonders bei relativ monophonen Abschnitten relativ große Gruppen von Abtastwerten, wie sie zwischen 6 und 12 Sekunden auftreten, während bei relativ polyphonen Abständen des Musikstücks, bei denen die Koordinaten-Tupel über einen größen Frequenzbereich verteilt sind, wie z. B. etwa bei 2 Sekunden in Fig. 5 oder bei 12 Sekunden von Fig. 5 kleinere Gruppen ermittelt werden, was wiederum dazu führt, daß die Signalkennung auf der Basis relativ kleiner Gruppen durchgeführt wird, so daß die Informationskompression kleiner als bei einer festen Blockbildung ist.
In dem Block 18c zur Mittelung über einer Gruppe von Abtastwerten wird je nach Bedarf ein gewichteter Mittelwert über alle in einem Block vorhandenen Koordinaten-Tupel bestimmt. Bei dem bevorzugten Ausführungsbeispiel wurden die Tupel außerhalb des Pitch-Contour-Streifenband bereits vorher "ausgeblendet". Alternativ kann jedoch auch auf dieses Ausblenden verzichtet werden, was dazu führt, daß sämtliche durch die Einrichtung 16 berechneten Koordinaten-Tupel bei der Mittelung, die durch die Einrichtung 18c durchgeführt wird, berücksichtigt werden.
In der Einrichtung 18d zur Intervallfestlegung wird eine Sprungweite zur Festlegung der Mitte der nächsten, d. h. zeitlich folgenden, Gruppe von Abtastwerten bestimmt.
Es sei darauf hingewiesen, daß in der Einrichtung 18c entweder eine arithmetische, eine geometrische oder eine Median-Mittelung durchgeführt werden kann.
In dem Quantisierer 18e wird der Wert, der durch die Einrichtung 18c berechnet worden ist, in nicht äquidistante Rasterwerte quantisiert. Bei Musikstücken wird es bevorzugt, die Unterteilung nach der Tonfrequenzskala durchzuführen, wobei die Tonfrequenzskala, wie es bereits ausgeführt worden ist, gemäß dem Frequenzbereich eingeteilt ist, der durch ein übliches Klavier geliefert wird und sich von 27,5 Hz (Ton A2) bis 4186 Hz (Ton c5) erstreckt und 88 Tonstufen umfaßt. Liegt der gemittelte Wert am Ausgang der Einrichtung 18c zwischen zwei benachbarten Halbtönen, so erhält er den Wert des nächstliegenden Bezugstons.
Damit ergibt sich am Ausgang der Einrichtung 18e zum Quantisieren nach und nach eine Folge von quantisierten Werten, welche zusammen die Signalkennung ergeben. Je nach Bedarf können die quantisierten Werte durch die Einrichtung 18f nachverarbeitet werden, wobei eine Nachverarbeitung beispielsweise in einer Tonhöhen-Offset-Korrektur, einer Transposition in eine andere Tonskala, etc. bestehen könnte.
Im nachfolgenden wird auf Fig. 4 Bezug genommen. Fig. 4 zeigt schematisch eine Vorrichtung zum Referenzieren eines Such-Zeitsignals in einer Datenbank 40, wobei die Datenbank 40 Signalkennungen einer Mehrzahl von Datenbank-Zeitsignalen Track_1 bis Track_m aufweist, die in einer vorzugsweise von der Datenbank 40 getrennten Bibliothek 42 gespeichert sind.
Um ein Zeitsignal anhand der Datenbank 40 referenzieren zu können, muß die Datenbank zunächst gefüllt werden, was in einem "Lernen"-Modus erreicht werden kann. Hierzu werden Audiodateien 41 nach und nach einem Vektorgenerator 43 zugeführt, der für jede Audiodatei eine Referenz-Kennung aufweist und in der Datenbank so abspeichert, daß erkannt werden kann, zu welcher Audiodatei z. B. in der Bibliothek 42 die Signalkennung gehört.
Gemäß der in Fig. 4 gegebenen Zuordnung entspricht die Signalkennung MV11, ...., MV1n dem Zeitsignal Track_1. Die Signal kennung MV21, ..., MV2n gehört zu dem Zeitsignal Track_2. Schließlich gehört die Signalkennung MVm1, ..., MVmn zu dem Zeitsignal Track_m.
Der Vektorgenerator 43 ist ausgebildet, um allgemein die in Fig. 1 dargestellten Funktionen durchzuführen, und ist gemäß einem bevorzugten Ausführungsbeispiel wie in den Fig. 2 und 3 dargestellt implementiert. Im "Lernen"-Modus verarbeitet der Vektorgenerator 43 nach und nach verschiedene Audiodateien (Track_1 bis Track_m), um Signalkennungen für die Zeitsignale in der Datenbank abzuspeichern, d. h. um die Datenbank zu füllen.
Im "Suchen"-Modus soll eine Audiodatei 41 anhand der Datenbank 40 referenziert werden. Hierzu wird das Such-Zeitsignal 41 durch den Vektorgenerator 43 verarbeitet, um eine Such-Kennung 45 zu erzeugen. Die Such-Kennung 45 wird dann in einen DNA-Sequencer 46 eingespeist, um mit den Referenz-Kennungen in der Datenbank 40 verglichen zu werden. Der DNA-Sequencer 46 ist ferner angeordnet, um eine Aussage über das Such-Zeitsignal bezüglich der Mehrzahl von Datenbank-Zeitsignalen aus der Bibliothek 42 zu treffen. Der DNA-Sequencer sucht mit der Such-Kennung 45 die Datenbank 40 auf eine übereinstimmende Referenz-Kennung ab und übergibt einen Zeiger auf das entsprechende mit der Referenzkennung assoziierte Audiofile in der Bibliothek 42.
Der DNA-Sequencer 46 führt somit einen Vergleich der Such-Kennung 45 oder Teilen davon mit den Referenz-Kennungen in der Datenbank durch. Bei Vorliegen der vorgegebenen Folge bzw. einer Teilsequenz davon wird das zugehörige Zeitsignal in der Bibliothek 42 referenziert.
Vorzugsweise führt der DNA-Sequencer 46 einen Boyer-Moore-Algorithmus aus, welcher beispielsweise in dem Fachbuch "Algorithms on Strings, Trees and Sequences", Dan Gusfield, Cambridge University Press, 1997, beschrieben ist. Gemäß einer ersten Alternative wird auf exakte Übereinstimmung geprüft. Das Treffen einer Aussage besteht daher darin, daß gesagt wird, daß das Such-Zeitsignal identisch zu einem Zeitsignal in der Bibliothek 42 ist. Alternativ oder zusätzlich kann auch die Ähnlichkeit zweier Sequenzen durch Verwendung von Ersetzen/Einfügen/Löschen-Operationen und einer Pitch-Offset-Korrektur (Tonhöhen-Versatzkorrektur) untersucht werden.
Vorzugsweise ist die Datenbank 40 so strukturiert, daß sie aus der Verkettung von Signalkennungsfolgen zusammengesetzt ist, wobei das Ende jeder Vektorsignalkennung eines Zeitsignals durch ein Trennzeichen festgelegt wird, damit die Suche nicht über Zeitsignaldateigrenzen fortgesetzt wird. Werden mehrere Übereinstimmungen festgestellt, werden alle referenzierten Zeitsignale angegeben.
Durch Nutzung der Operationen Ersetzen/Einfügen/Löschen (Replace/Insert/Delete) kann ein Ähnlichkeitsmaß eingeführt werden, wobei das Zeitsignal in der Bibliothek 42 referenziert wird, das dem Such-Zeitsignal 41 anhand eines vorgegebenen Ähnlichkeitsmaßes am ähnlichsten ist. Ferner wird es bevorzugt, ein Ähnlichkeitsmaß des Such-Audio-Signals zu mehreren Signalen in der Bibliothek zu ermitteln und dann die ähnlichsten n Abschnitte in der Bibliothek 42 in Reihenfolge absteigender Ähnlichkeit auszugeben.

Claims (22)

  1. Verfahren zum Extrahieren einer Signalkennung aus einem Zeitsignal, das einen harmonischen Anteil hat, mit folgenden Schritten:
    Detektieren (12) des zeitlichen Auftretens von Signalflanken in dem Zeitsignal;
    Ermitteln (14) eines zeitlichen Abstands zwischen zwei ausgewählten detektierten Signalflanken;
    Berechnen (16) eines Frequenzwerts aus dem ermittelten zeitlichen Abstand und Zuordnen des Frequenzwerts zu einer Auftrittszeit des Frequenzwerts in dem Zeitsignal, um einen Koordinatentupel aus dem Frequenzwert und der Auftrittszeit für diesen Frequenzwert zu erhalten; und
    Erzeugen (18) der Signalkennung aus einer Mehrzahl von Koordinatentupeln, wobei jeder Koordinatentupel einen Frequenzwert und eine Auftrittszeit umfaßt, wodurch die Signalkennung eine Folge von Signalkennungswerten umfaßt, die den zeitlichen Verlauf des Zeitsignals wiedergibt.
  2. Verfahren nach Anspruch 1, bei dem im Schritt des Detektierens (12) eine Signalflanke nur dann als Signalflanke detektiert, wenn dieselbe über ihrer spezifizierten zeitlichen Länge eine Amplitude aufweist, die größer als ein vorbestimmten Amplitudenschwellwert ist.
  3. Verfahren nach Anspruch 1 oder 2,
    bei dem im Schritt des Detektierens (12) eine Signalflanke nur dann als Signalflanke detektiert wird, wenn ihre spezifizierte zeitliche Länge größer als eine minimale Grenzlänge und kleiner als eine maximale Grenzlänge ist.
  4. Verfahren nach Anspruch 3, bei dem das Zeitsignal ein Audiosignal ist, und bei dem die minimale zeitliche Grenzlänge anhand einer maximalen hörbaren Grenzfrequenz und die maximale zeitliche Grenzlänge anhand einer minimalen hörbaren Grenzfrequenz festgelegt sind.
  5. Verfahren nach Anspruch 3, bei dem das Zeitsignal ein Audiosignal ist, und bei dem die minimale zeitliche Grenzlänge anhand einer maximalen durch ein Instrument erzeugbaren Tonfrequenz und die maximale zeitliche Grenzlänge anhand einer minimalen durch ein Instrument erzeugbaren Tonfrequenz festgelegt sind.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Schritt des Erzeugens (18) der Signalkennung folgenden Schritt aufweist:
    Eliminieren (18a) von Koordinatentupeln, die mehr als einen vorbestimmten Schwellenabstand von einem benachbarten Koordinatentupel in einem Frequenz-Zeit-Diagramm beabstandet sind, um Häufungen von Koordinaten-Tupeln zu ermitteln.
  7. Verfahren nach Anspruch 5 oder 6, bei dem der Schritt des Erzeugens (18) folgenden Schritt aufweist:
    Gruppieren (18b) von Koordinaten-Tupeln in aufeinanderfolgenden Zeitintervallen zu Blöcken von Koordinatentupeln.
  8. Verfahren nach Anspruch 7, bei dem die aufeinanderfolgenden Zeitintervalle eine feste und/oder eine variable Länge haben.
  9. Verfahren nach Anspruch 7 oder 8, bei dem der Schritt des Erzeugens (18) der Signalkennung folgenden Schritt aufweist:
    Mitteln (18c) der Frequenzwerte von Koordinaten-Tupeln in den Zeitintervallen, um eine Folge von gemittelten Frequenzwerten für eine Folge von Zeitintervallen zu erhalten, wobei die Folge von gemittelten Frequenzwerten einen Merkmalsvektor darstellt.
  10. Verfahren nach Anspruch 9, bei dem der Schritt (18) des Erzeugens der Signalkennung folgenden Schritt aufweist:
    Quantisieren (18e) des Merkmalsvektors, um einen quantisierten Merkmalsvektor zu erhalten.
  11. Verfahren nach Anspruch 10, bei dem der Schritt des Quantisierens (18e) unter Verwendung nicht-äquidistant verteilter Rasterpunkte durchgeführt wird, wobei Abstände zwischen zwei benachbarten Rasterpunkten gemäß einer Tonfrequenzskala bestimmt sind.
  12. Verfahren nach einem der vorhergehenden Ansprüche, bei dem im Schritt (12) des Detektierens von Signalflanken eine Hough-Transformation verwendet wird.
  13. Verfahren zum Erzeugen einer Datenbank (40) aus Referenz-Signalkennungen für eine Mehrzahl von Zeitsignalen, mit folgenden Schritten:
    Extrahieren einer ersten Signalkennung für ein erstes Zeitsignal durch das Verfahren gemäß einem der Ansprüche 1 bis 12;
    Extrahieren einer zweiten Signalkennung für ein zweites Zeitsignal durch ein Verfahren gemäß einem der Ansprüche 1 bis 12; und
    Speichern der extrahierten ersten Signalkennung in Zuordnung zu dem ersten Zeitsignal in der Datenbank (40); und
    Speichern der extrahierten zweiten Signalkennung in Zuordnung zu dem zweiten Zeitsignal in der Datenbank (40).
  14. Verfahren zum Referenzieren eines Such-Zeitsignals unter Verwendung einer Datenbank (40), wobei die Datenbank Referenz-Signalkennungen einer Mehrzahl von Datenbank-Zeitsignalen aufweist, wobei eine Referenz-Signalkennung eines Datenbank-Zeitsignals durch ein Verfahren gemäß einem der Patentansprüche 1 bis 12 ermittelt worden ist, mit folgenden Schritten:
    Vorgeben zumindest eines Abschnitts eines Such-Zeitsignals (41);
    Extrahieren (43) einer Such-Signalkennung aus dem Such-Zeitsignal durch ein Verfahren gemäß einem der Patentansprüche 1 bis 12; und
    Vergleichen (46) der Such-Signalkennung mit der Mehrzahl von Referenz-Signalkennungen, und, ansprechend auf den Schritt des Vergleichens, Treffen einer Aussage über das Such-Zeitsignal bezüglich der Mehrzahl von Datenbank-Zeitsignalen.
  15. Verfahren nach Anspruch 14, bei dem im Schritt des Treffens einer Aussage ein Such-Zeitsignal als Referenz-Zeitsignal identifiziert wird, wenn die Such-Signalkennung zumindest mit einem Abschnitt einer Referenz-Signalkennung übereinstimmt.
  16. Verfahren nach Anspruch 14, bei dem im Schritt des Treffens einer Aussage eine Ähnlichkeit zwischen einem Such-Zeitsignal und einem Datenbank-Zeitsignal festgestellt wird, falls die Such-Signalkennung und/oder zumindest ein Abschnitt einer Datenbank-Signalkennung durch eine reproduzierbare Manipulation in Übereinstimmung bringbar sind.
  17. Verfahren nach einem der Patentansprüche 14 bis 16,
    bei dem die Datenbank-Signalkennung eine Folge von Datenbank-Signalkennungswerten aufweist, die den zeitlichen Verlauf des Datenbank-Zeitsignals wiedergeben,
    bei dem die Such-Signalkennung eine Suchfolge von Such-Signalkennungswerten aufweist, die den zeitlichen Verlauf des Such-Zeitsignals wiedergeben,
    bei dem die Länge der Datenbank-Folge größer als die Länge der Such-Folge ist, und
    bei dem die Such-Folge sequentiell mit der Datenbank-Folge verglichen wird.
  18. Verfahren nach Anspruch 17, bei dem während des sequentiellen Vergleichens der Suchfolge mit der Datenbankfolge eine Korrektur der Werte der Such- und/oder der Datenbank-Signalkennung durch eine Ersetzen-, Einfügen- oder Löschen-Operation von zumindest einem Wert der Such- und/oder der Datenbank-Signalkennung durchgeführt wird, um eine Ähnlichkeit des Such-Zeitsignals und des Datenbank-Zeitsignals zu ermitteln.
  19. Verfahren nach einem der Ansprüche 14 bis 18,
    bei dem der Schritt des Vergleichens (46) unter Verwendung eines DNA-Sequencing-Algorithmus und/oder unter Verwendung des Boyer-Moore-Algorithmus durchgeführt wird.
  20. Vorrichtung zum Extrahieren einer Signalkennung aus einem Zeitsignal, das einen harmonischen Anteil hat, mit folgenden Merkmalen:
    einer Einrichtung zum Detektieren (12) des zeitlichen Auftretens von Signalflanken in dem Zeitsignal;
    einer Einrichtung zum Ermitteln (14) eines zeitlichen Abstands zwischen zwei ausgewählten detektierten Signalflanken;
    einer Einrichtung zum Berechnen (16) eines Frequenzwerts aus dem ermittelten zeitlichen Abstand und Zuordnen des Frequenzwerts zu einer Auftrittszeit des Frequenzwerts in dem Zeitsignal, um einen Koordinatentupel aus dem Frequenzwert und der Auftrittszeit für diesen Frequenzwert zu erhalten; und
    einer Einrichtung zum Erzeugen (18) der Signalkennung aus einer Mehrzahl von Koordinatentupeln, wobei jeder Koordinatentupel einen Frequenzwert und eine Auftrittszeit umfaßt, wodurch die Signalkennung eine Folge von Signalkennungswerten umfaßt, die den zeitlichen Verlauf des Zeitsignals wiedergibt.
  21. Vorrichtung zum Erzeugen einer Datenbank (40) aus Referenz-Signalkennungen für eine Mehrzahl von Zeitsignalen, mit folgenden Merkmalen:
    einer Einrichtung zum Extrahieren einer ersten Signalkennung für ein erstes Zeitsignal gemäß Anspruch 20;
    einer Einrichtung zum Extrahieren einer zweiten Signalkennung für ein zweites Zeitsignal gemäß Anspruch 20; und
    einer Einrichtung zum Speichern der extrahierten ersten Signalkennung in Zuordnung zu dem ersten Zeitsignal in der Datenbank (40); und
    einer Einrichtung zum Speichern der extrahierten zweiten Signalkennung in Zuordnung zu dem zweiten Zeitsignal in der Datenbank (40).
  22. Vorrichtung zum Referenzieren eines Such-Zeitsignals unter Verwendung einer Datenbank (40), wobei die Datenbank Referenz-Signalkennungen einer Mehrzahl von Datenbank-Zeitsignalen aufweist, wobei eine Referenz-Signalkennung eines Datenbank-Zeitsignals durch ein Verfahren gemäß einem der Patentansprüche 1 bis 12 ermittelt worden ist, mit folgenden Merkmalen:
    einer Einrichtung zum Vorgeben zumindest eines Abschnitts eines Such-Zeitsignals (41);
    einer Einrichtung zum Extrahieren (43) einer Such-Signalkennung gemäß Patentanspruch 20; und
    einer Einrichtung zum Vergleichen (46) der Such-Signalkennung mit der Mehrzahl von Referenz-Signalkennungen, und, ansprechend auf den Schritt des Vergleichens, Treffen einer Aussage über das Such-Zeitsignal bezüglich der Mehrzahl von Datenbank-Zeitsignalen.
EP02714186A 2001-04-10 2002-03-12 VERFAHREN UND VORRICHTUNG ZUM EXTRAHIEREN EINER SIGNALKENNUNG, VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN EINER DAZUGEHÖRIGEN DATABANK und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals Expired - Lifetime EP1377924B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10117871A DE10117871C1 (de) 2001-04-10 2001-04-10 Verfahren und Vorrichtung zum Extrahieren einer Signalkennung, Verfahren und Vorrichtung zum Erzeugen einer Datenbank aus Signalkennungen und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals
DE10117871 2001-04-10
PCT/EP2002/002703 WO2002084539A2 (de) 2001-04-10 2002-03-12 Verfahren und vorrichtung zum extrahieren einer signalkennung, verfahren und vorrichtung zum erzeugen einer dazugehörigen databank

Publications (2)

Publication Number Publication Date
EP1377924A2 EP1377924A2 (de) 2004-01-07
EP1377924B1 true EP1377924B1 (de) 2004-09-22

Family

ID=7681083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02714186A Expired - Lifetime EP1377924B1 (de) 2001-04-10 2002-03-12 VERFAHREN UND VORRICHTUNG ZUM EXTRAHIEREN EINER SIGNALKENNUNG, VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN EINER DAZUGEHÖRIGEN DATABANK und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals

Country Status (9)

Country Link
US (1) US20040158437A1 (de)
EP (1) EP1377924B1 (de)
JP (1) JP3934556B2 (de)
AT (1) ATE277381T1 (de)
AU (1) AU2002246109A1 (de)
CA (1) CA2443202A1 (de)
DE (2) DE10117871C1 (de)
HK (1) HK1059492A1 (de)
WO (1) WO2002084539A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10232916B4 (de) * 2002-07-19 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Charakterisieren eines Informationssignals
EP1684263B1 (de) * 2005-01-21 2010-05-05 Unlimited Media GmbH Vervahren zum Erzeugen eines Abdrucks eines Audiosignals
US7996212B2 (en) 2005-06-29 2011-08-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device, method and computer program for analyzing an audio signal
DE102005030326B4 (de) * 2005-06-29 2016-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und Computerprogramm zur Analyse eines Audiosignals
WO2010135623A1 (en) * 2009-05-21 2010-11-25 Digimarc Corporation Robust signatures derived from local nonlinear filters
DE102017213510A1 (de) * 2017-08-03 2019-02-07 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erzeugen eines maschinellen Lernsystems, und virtuelle Sensorvorrichtung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR772961A (fr) * 1934-05-07 1934-11-09 Procédé d'enregistrement de la musique jouée sur un instrument à clavier, et appareil basé sur ce procédé
US3069654A (en) * 1960-03-25 1962-12-18 Paul V C Hough Method and means for recognizing complex patterns
US3979557A (en) * 1974-07-03 1976-09-07 International Telephone And Telegraph Corporation Speech processor system for pitch period extraction using prediction filters
US4697209A (en) * 1984-04-26 1987-09-29 A. C. Nielsen Company Methods and apparatus for automatically identifying programs viewed or recorded
DE4324497A1 (de) * 1992-07-23 1994-04-21 Roman Koller Verfahren und Anordnung zur ferngewirkten Schaltung eines Verbrauchers
US5918223A (en) * 1996-07-22 1999-06-29 Muscle Fish Method and article of manufacture for content-based analysis, storage, retrieval, and segmentation of audio information
CN1291324A (zh) * 1997-01-31 2001-04-11 T-内提克斯公司 检测录制声音的系统和方法
DE19948974A1 (de) * 1999-10-11 2001-04-12 Nokia Mobile Phones Ltd Verfahren zum Erkennen und Auswählen einer Tonfolge, insbesondere eines Musikstücks
US6990453B2 (en) * 2000-07-31 2006-01-24 Landmark Digital Services Llc System and methods for recognizing sound and music signals in high noise and distortion

Also Published As

Publication number Publication date
JP3934556B2 (ja) 2007-06-20
WO2002084539A3 (de) 2003-10-02
DE10117871C1 (de) 2002-07-04
US20040158437A1 (en) 2004-08-12
ATE277381T1 (de) 2004-10-15
AU2002246109A1 (en) 2002-10-28
EP1377924A2 (de) 2004-01-07
DE50201116D1 (de) 2004-10-28
WO2002084539A2 (de) 2002-10-24
HK1059492A1 (en) 2004-07-02
CA2443202A1 (en) 2002-10-24
JP2004531758A (ja) 2004-10-14

Similar Documents

Publication Publication Date Title
DE10117870B4 (de) Verfahren und Vorrichtung zum Überführen eines Musiksignals in eine Noten-basierte Beschreibung und Verfahren und Vorrichtung zum Referenzieren eines Musiksignals in einer Datenbank
DE10232916B4 (de) Vorrichtung und Verfahren zum Charakterisieren eines Informationssignals
EP1368805B1 (de) Verfahren und vorrichtung zum charakterisieren eines signals und verfahren und vorrichtung zum erzeugen eines indexierten signals
EP1407446B1 (de) Verfahren und vorrichtung zum charakterisieren eines signals und zum erzeugen eines indexierten signals
EP1405222B1 (de) Verfahren und vorrichtung zum erzeugen eines fingerabdrucks und verfahren und vorrichtung zum identifizieren eines audiosignals
EP1371055B1 (de) Vorrichtung zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen des audiosignals unter verwendung einer autokorrelationsfunktion
EP2099024B1 (de) Verfahren zur klangobjektorientierten Analyse und zur notenobjektorientierten Bearbeitung polyphoner Klangaufnahmen
EP1388145B1 (de) Vorrichtung und verfahren zum analysieren eines audiosignals hinsichtlich von rhythmusinformationen
DE10157454B4 (de) Verfahren und Vorrichtung zum Erzeugen einer Kennung für ein Audiosignal, Verfahren und Vorrichtung zum Aufbauen einer Instrumentendatenbank und Verfahren und Vorrichtung zum Bestimmen der Art eines Instruments
DE102004028693B4 (de) Vorrichtung und Verfahren zum Bestimmen eines Akkordtyps, der einem Testsignal zugrunde liegt
EP1377924B1 (de) VERFAHREN UND VORRICHTUNG ZUM EXTRAHIEREN EINER SIGNALKENNUNG, VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN EINER DAZUGEHÖRIGEN DATABANK und Verfahren und Vorrichtung zum Referenzieren eines Such-Zeitsignals
EP1671315B1 (de) Vorrichtung und verfahren zum charakterisieren eines tonsignals
DE68911858T2 (de) Verfahren und Vorrichtung zum automatischen Transkribieren.
EP1743324B1 (de) Vorrichtung und verfahren zum analysieren eines informationssignals
EP1381024B1 (de) Verfahren zum Auffinden einer Tonfolge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030930

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KATAI, ANDRAS

Inventor name: KAUFMANN, MATTHIAS

Inventor name: UHLE, CHRISTIAN

Inventor name: RICHTER, CHRISTIAN

Inventor name: HIRSCH, WOLFGANG

Inventor name: KLEFENZ, FRANK

Inventor name: BRANDENBURG, KARLHEINZ

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1059492

Country of ref document: HK

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040922

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040922

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201116

Country of ref document: DE

Date of ref document: 20041028

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050102

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050312

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1059492

Country of ref document: HK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050623

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND

Effective date: 20050331

BERE Be: lapsed

Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50201116

Country of ref document: DE

Representative=s name: SCHOPPE, ZIMMERMANN, STOECKELER, ZINKLER & PAR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50201116

Country of ref document: DE

Owner name: MUFIN GMBH, DE

Free format text: FORMER OWNER: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Effective date: 20111109

Ref country code: DE

Ref legal event code: R082

Ref document number: 50201116

Country of ref document: DE

Representative=s name: SCHOPPE, ZIMMERMANN, STOECKELER, ZINKLER, SCHE, DE

Effective date: 20111109

Ref country code: DE

Ref legal event code: R082

Ref document number: 50201116

Country of ref document: DE

Representative=s name: SCHOPPE, ZIMMERMANN, STOECKELER, ZINKLER & PAR, DE

Effective date: 20111109

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120105 AND 20120111

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20120207

Ref country code: FR

Ref legal event code: TP

Owner name: MUFIN GMBH, DE

Effective date: 20120207

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 277381

Country of ref document: AT

Kind code of ref document: T

Owner name: MUFIN GMBH, DE

Effective date: 20120402

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190322

Year of fee payment: 18

Ref country code: CH

Payment date: 20190322

Year of fee payment: 18

Ref country code: GB

Payment date: 20190322

Year of fee payment: 18

Ref country code: DE

Payment date: 20181211

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190328

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201116

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 277381

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200312

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200312