EP1356203A1 - Vorrichtung zur kraftstoff-hochdruckversorgung einer brennkraftmaschine - Google Patents

Vorrichtung zur kraftstoff-hochdruckversorgung einer brennkraftmaschine

Info

Publication number
EP1356203A1
EP1356203A1 EP01991686A EP01991686A EP1356203A1 EP 1356203 A1 EP1356203 A1 EP 1356203A1 EP 01991686 A EP01991686 A EP 01991686A EP 01991686 A EP01991686 A EP 01991686A EP 1356203 A1 EP1356203 A1 EP 1356203A1
Authority
EP
European Patent Office
Prior art keywords
piston
shaped element
recesses
pressure
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01991686A
Other languages
English (en)
French (fr)
Other versions
EP1356203B1 (de
Inventor
Harald Schorr
Alexander Redlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1356203A1 publication Critical patent/EP1356203A1/de
Application granted granted Critical
Publication of EP1356203B1 publication Critical patent/EP1356203B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies

Definitions

  • the invention is based on a device for supplying high-pressure fuel to an internal combustion engine, as corresponds to the preamble of patent claim 1.
  • a device for supplying high-pressure fuel to an internal combustion engine, as corresponds to the preamble of patent claim 1.
  • Such a device is known in the form of a fuel injection valve, for example from the published patent application DE 198 43 344 AI.
  • a bore is formed in a valve body, in which a piston-shaped valve member is arranged to be longitudinally displaceable.
  • the valve member has a sealing section with which it is guided in a guide section of the bore, so that only an extremely small annular gap remains in this area between the valve member and the inner wall of the bore, which is just large enough to accommodate the longitudinal displacement. ensure sliding of the valve member.
  • a pressure chamber formed by a radial expansion of the bore connects to the guide area, which pressure chamber can be filled with fuel under high pressure.
  • the pressure chamber continues towards the combustion chamber as an annular channel surrounding the valve member and is delimited at the end on the combustion chamber side by a valve sealing surface which closes off the bore towards the combustion chamber.
  • the valve member has a valve sealing surface which interacts with the valve seat for controlling at least one injection opening, so that the injection opening can be connected to the pressure chamber by the longitudinal movement of the valve member.
  • a leakage oil space connects to it, which is constantly kept at a low pressure level by a corresponding leakage oil connection. Since a very high fuel pressure is present in the pressure chamber at least during the injection, there is a high pressure difference between the two ends of the guide section of the bore. As a result, fuel is pressed from the pressure chamber into the leakage oil chamber through the annular gap, which remains because of the longitudinal displacement between the sealing section of the valve member and the guide section of the bore. Especially in the case of fuels such as those used for self-igniting internal combustion engines, the fuel in this area also serves to lubricate the valve member in the bore.
  • the device according to the invention for supplying high-pressure fuel to an internal combustion engine has the advantage, in contrast, that recesses are formed on the guide section of the piston-shaped element guided in the bore, which are hydraulically connected to the pressure chamber, but do not extend into the leakage oil chamber.
  • the recesses are preferably designed as grooves which lead from the high pressure area, that is to say the pressure chamber, to a certain height of the sealing section, but not to the low pressure area.
  • the structure of the recesses not only prevents the pressure drop behind the narrowest point of the annular channel formed between the piston-shaped element and the bore, but also builds up a higher pressure compared to the opposite side. This pressure build-up causes the valve member to experience a force which is directed away from the inner wall surface of the bore and thus centers the piston-shaped element in the bore again.
  • the recesses are arranged distributed uniformly over the circumference of the piston-shaped element, so as to connect each region of the circumference of the piston-shaped element to the pressure chamber via a recess.
  • the cross section of the recesses must be chosen to be very small.
  • a depth of 1 to 50 ⁇ m is provided, preferably 2 to 10 ⁇ m.
  • the width can vary between 100 and 500 ⁇ m.
  • the design of the recesses according to the invention is particularly advantageous if the device is a fuel injection valve and the piston-shaped element is a valve member. Due to the high fuel pressures in such fuel injection valves, as are preferably used for self-igniting internal combustion engines, an exact alignment of the valve member in the bore is particularly important in order to ensure trouble-free operation over the service life.
  • FIG. 1 shows a longitudinal section through a fuel injection valve
  • FIGS. 2, 3, 4 and 5 show enlargements in the guide region of the valve member.
  • Figure 1 is a longitudinal section through a device for
  • a component designed as a valve body 1 has a bore 3 in which a piston-shaped element, which is designed here as a valve member 5, is longitudinally displaceable. bar is arranged.
  • the valve member 5 has a longitudinal axis 6 and is sealingly guided with a sealing section 105 in a guide section 103 of the bore 3 facing away from the combustion chamber. Starting from the sealing section 105 of the valve member 5, the valve member 5 tapers towards the combustion chamber to form a pressure shoulder 13 and thus merges into a valve member shaft 205 with a reduced diameter.
  • a valve sealing surface 7 is formed, which is at least approximately conical and cooperates with a valve seat 9 formed at the combustion chamber end of the bore 3.
  • At least one injection opening 11 is formed in the valve seat 9, which connects the bore 3 to the combustion chamber of the internal combustion engine.
  • a radial expansion of the bore 3 in the valve body 1 forms a pressure chamber 19 which extends as an annular channel surrounding the valve member stem 205 as far as the valve seat 9.
  • the pressure chamber 19 can be connected via an inlet channel 25 running in the valve body 1 to a high-pressure fuel source (not shown in the drawing) and can be filled with fuel under high pressure.
  • valve body 1 facing away from the combustion chamber rests on a valve holding body 2 and is braced against the latter in the axial direction by a tensioning device (not shown in the drawing). It can also be provided that the valve body 1 and the valve holding body 2 are formed in one piece.
  • a leak oil chamber 15 is formed, into which the bore 3 opens and which is constantly relieved of pressure via a leak oil channel, not shown in the drawing, so that there is always a low fuel pressure in the leak oil chamber 15.
  • a closing device Arranged in the leakage oil chamber 15 is a closing device, not shown in the drawing, which exerts a closing force F on the valve member 5, the closing force F acting on the valve seat 9. is aimed.
  • the direction of the closing force F is indicated in the drawing by an arrow.
  • the function of the fuel injection valve when fuel is injected into the combustion chamber of the internal combustion engine is as follows, whereby two operating modes can be distinguished: In the first operating mode, a high fuel pressure in the pressure chamber 19 is constantly maintained by the high-pressure fuel source via the inlet channel 25. This results in a hydraulic force on the pressure shoulder 13, which is directed against the closing force F. If no injection is to take place, the closing force F is chosen to be correspondingly high, so that the valve member 5 rests with its valve sealing surface 7 on the valve seat 9. If an injection is to take place, the closing force F is reduced so that the hydraulic force on the pressure shoulder 13 now predominates and the valve member 5 is moved in the direction of the leak oil chamber 15.
  • valve sealing surface 7 lifts off the valve seat 9 and fuel is injected from the pressure chamber 19 through the injection opening 11 into the combustion chamber of the internal combustion engine.
  • the injection is ended again by a corresponding increase in the closing force F and the valve member 5 returns to its original position by a longitudinal movement.
  • an at least approximately constant closing force is exerted on the valve member 5, and the movement of the valve member 5 takes place through a variable fuel pressure in the pressure chamber 19. If no injection is to take place, the fuel chamber 19 has a low fuel pressure so that the hydraulic force on the pressure shoulder 13 is less than the closing force F. If an injection is to take place, fuel is introduced into the pressure chamber 19 via the inlet channel 25, as a result of which the fuel pressure rises there.
  • the valve member 5 moves in the longitudinal direction and, as in the first operating mode, also lifts the valve sealing surface 7 from the valve seat 9, and the injection takes place as described in the first operating mode.
  • the end of the injection is initiated in that the fuel supply through the inlet channel 25 is interrupted, as a result of which the fuel pressure in the pressure chamber 19 drops and thus also the hydraulic force on the pressure shoulder 13. Due to the closing force F, the valve member 5 returns to the starting position and closes the injection opening 11.
  • FIG. 2 shows an enlarged illustration in the region of the guide section 103 of the bore 3. So that the valve member 5 is longitudinally displaceable in the bore 3, it must have some play there, so that an annular gap 17 is formed between the sealing portion 105 of the valve member 5 and the guide portion 103 of the bore 3.
  • fuel constantly flows from the pressure chamber 19 into the ring-shaped throttle gap
  • the pressure in the annular gap 17 drops at least approximately linearly from the high-pressure chamber 19 to the leakage oil chamber 15. If one takes into account the groove-shaped recesses 30, as shown in FIG. 2, there is another state: The contact side of the valve member 5 opposite flows through the enlarged annular gap 17 there, the main part of the leak oil past the valve member 5. In this area, the groove-shaped recesses 30 play practically no role for the pressure profile in the annular gap 17, so that there is still a linear pressure drop here. On the other hand, on the contact side of the valve member 5 on the inner wall of the guide section 103 of the bore 3, the annular gap 17 is reduced, so that only a small fuel flow takes place in this area.
  • the recesses 30 are hydraulically connected to the pressure chamber 19 in this area, the high fuel pressure of the pressure chamber 19 continues into the recesses 30, so that essentially the pressure of the pressure chamber 19 prevails in the entire recesses 30, or at least a significantly higher pressure than at the same height on the opposite side of the annular gap 17.
  • This pressure distribution results in a resulting force on the valve member 5, which pushes it back into the center of the bore 3, so that the valve member 5 in the central position the bore 3 remains in a stable equilibrium.
  • Figure 3 shows the same section as Figure 2 of another fuel injection valve according to the invention.
  • the recesses 30 are designed here as longitudinal grooves inclined to the longitudinal axis 6, so that they have a helical course.
  • Another embodiment is shown in Figure 4.
  • the recesses 30 are shown as meandering grooves which extend to approximately two thirds of the length of the sealing section 105 of the valve member 5.
  • a further exemplary embodiment is shown in FIG. 5, in which the recesses 30 are formed by piece-wise straight grooves which are hydraulically connected to one another. This results in labyrinth-like structures on the surface of the valve member 5, which distribute the fuel evenly over the Ensure the circumference of the valve member 5 without there being a preferred direction.
  • FIGS. 2, 3, 4 and 5 unfold their respective advantages only in the overall geometry of the fuel injector. Which configuration, depth and cross-sectional shape is particularly advantageous must be determined in each individual case by experimenting or simulating the flow profile.
  • the cross section of the recesses 30 must be kept relatively small.
  • the recesses 30 have a depth of 1 to 50 ⁇ m, preferably 2 to 10 ⁇ m.
  • the width of the groove-shaped recesses 30 is preferably 100 to 500 ⁇ m, it being possible for the cross-sectional shape of the recesses to be, for example, rectangular, segmental, triangular or u-shaped.
  • the recesses extend, starting from the end of the sealing section 105 facing the combustion chamber, about half to about three quarters the length of the sealing section 105. In this way, the leakage oil flow that flows through the recesses 30 and from there through the annular gap 17 to in the leak oil chamber 15, kept within reasonable limits.
  • the recesses 30 according to the invention are not formed on the piston-shaped element 5, but rather on the inner wall of the bore 3. Hydraulically, this results in a situation comparable to the formation of the recesses 30 on the Outer surface of the piston-shaped element 5.

Abstract

Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine mit einem kolbenförmigen Element (5), das in einer Bohrung (3) eines Bauteils (1), längsverschiebbar angeordnet ist. Das kolbenförmige Element (5) ist mit einem Dirchtungsabschnitt (105) in einem Führungsabschnitt (103) der Bohrung (3) geführt, wobei der Führungsabschnitt (103) an einem Ende in einen mit Kraftstoff unter hohem Druck befüllbaren Druckraum (19) mündet und am anderen Ende in einen Leckölraum (15). Am Dichtungsabschnitt (105) des kolbenförmigen Elements (5) ist wenigstens eine Ausnehmung (30) ausgebildet, die hydraulisch mit dem Druckraum (19) verbunden ist und die bis auf den zwischen dem kolbenförmigen Element (5) und der Innenwand des Führungsabschnitts (103) ausgebildeten Ringspalt (17) gegen den Leckölraum (15) abgedichtet ist, wodurch das kolbenförmige Element (5) in der Bohrung (3) hydraulisch zentriert wird.

Description

Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine
Stand der Technik
Die Erfindung geht von einer Vorrichtung zur Kraftstoff- Hochdruckversorgung einer Brennkraftmaschine aus, wie sie dem Oberbegriff des Patentanspruchs 1 entspricht. Eine solche Vorrichtung ist in Form eines Kraftstoffeinspritzventils beispielsweise aus der Offenlegungsschrift DE 198 43 344 AI bekannt. In einem Ventilkörper ist eine Bohrung ausgebildet, in der ein kolbenförmiges Ventilglied längsverschiebbar angeordnet ist. Das Ventilglied weist einen Dichtungsabschnitt auf, mit dem es in einem Führungsabschnitt der Bohrung geführt ist, so daß in diesem Bereich zwischen dem Ventilglied und der Innenwand der Bohrung nur ein äußerst kleiner Ring- spalt verbleibt, der gerade groß genug ist, um die Längsver- schiebbarkeit des Ventilglieds sicherzustellen. Am brenn- raumzuge and en Ende des Führungsabschnitts der Bohrung schließt sich ein durch eine radiale Erweiterung der Bohrung ausgebildeter Druckraum an den Führungsbereich an, welcher Druckraum mit Kraftstoff unter hohem Druck befüllt werden kann. Der Druckraum setzt sich dem Brennraum zu als ein das Ventilglied umgebender Ringkanal fort und wird am brennraum- seitigen Ende von einer Ventildichtfläche begrenzt, die die Bohrung zum Brennraum hin abschließt. Das Ventilglied weist an seinem brennraumseitigen Ende eine Ventildichtfläche auf, die mit dem Ventilsitz zur Steuerung wenigstens einer Einspritzöffnung zusammenwirkt, so daß durch die Längsbewegung des Ventilglieds die Einspritzöffnung mit dem Druckraum verbindbar ist. Am brennraumabgewandten Ende der Bohrung schließt sich an diese ein Leckölraum an, der durch einen entsprechenden Leckölanschluß ständig auf einem niedrigen Druckniveau gehalten wird. Da zumindest während der Einspritzung im Druck- räum ein sehr hoher Kraftstoffdruck anliegt, herrscht zwischen den beiden Enden des Führungsabschnitt der Bohrung eine hohe Druckdifferenz . Hierdurch wird Kraftstoff durch den Ringspalt, der wegen der Langsverschiebbarkeit zwischen dem Dichtungsabschnitt des Ventilglieds und dem Führungsab- schnitt der Bohrung verbleibt, vom Druckraum in den Leckölraum gepreßt. Gerade bei Kraftstoffen, wie sie für selbst- zündende Brennkraftmaschinen verwendet werden, dient der Kraftstoff in diesem Bereich auch zur Schmierung des Ventil- glieds in der Bohrung. Zur Verbesserung der Schmiereigen- schaften und zum gleichmäßigen Ausbilden des Schmierfilms sind deshalb in der Offenlegungsschrift DE 198 43 344 AI verschiedene Arten von Ausnehmungen am Dichtungsabschnitt des Ventilglieds vorgesehen. Als Beispiele werden unter anderem ringförmige Nuten und Vertiefungen mit kreisförmigem Querschnitt vorgeschlagen, die zu einem gleichmäßigen
Schmierfilm und damit zu geringem Verschleiß des Ventil- glieds in der Bohrung führen sollen. Aufgrund der hohen Druckdifferenz zwischen den beiden Enden des Führungsabschnitts der Bohrung kommt es bei einem verkippten Ventil- glied zu einer hydraulischen Querkraft, die das Ventilglied an die Innenwand der Bohrung drückt. Diese Querkraft resultiert aus einem Druckabfall durch die Querschnittsverengung im Drosselspalt. Durch das Einbringen der Ringnuten gemäß DE 198 43 344 AI soll nun eine Stabilisierung des Ventilglieds durch tangentialen Druckausgleich erreicht werden. Diese Methode vermindert aber lediglich die Querkraft an der Stelle der Ringnut. Sie erzeugt aber keinen Druckaufbau, der als Rückstellkraft zur Stabilisierung des Ventilglieds wirken könnte. Dadurch kann es zu unzulässig hohem Verschleiß des Ventilglieds in der Bohrung kommen und damit zu einer ver- minderten Lebensdauer des Kraftstoffeinspritzventils oder der sonstigen Vorrichtung zur Versorgung der Brennkraftmaschine.
Vorteile der Erfindung
Die erfindungsgemäße Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine weist demgegenüber den Vorteil auf, daß am Führungsabschnitt des in der Bohrung ge- führten kolbenförmigen Elements Ausnehmungen ausgebildet sind, die mit dem Druckraum hydraulisch verbunden sind, jedoch nicht bis in den Leckölraum reichen. Die Ausnehmungen sind hierbei vorzugsweise als Rillen ausgebildet, die vom Hochdruckbereich, also dem Druckraum, bis zu einer gewissen Höhe des Dichtungsabschnitts führen, jedoch nicht bis in den Niederdruckbereich. In dieser Ausführung verhindert die Struktur der Ausnehmungen nicht nur den Druckabfall hinter der engsten Stelle des zwischen dem kolbenförmigen Element und der Bohrung gebildeten Ringkanals, sondern baut im Ver- gleich zur gegenüberliegenden Seite einen höheren Druck auf. Dieser Druckaufbau bewirkt, daß das Ventilglied eine Kraft erfährt, die von der Innenwandfläche der Bohrung weggerichtet ist und so das kolbenförmige Element wieder in der Bohrung zentriert .
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung sind die Ausnehmungen gleichmäßig über den Umfang des kolbenförmigen Elements verteilt angeordnet, um so jeden Bereich des Umfangs des kolbenförmigen Elements über eine Ausnehmung mit dem Druckraum zu verbinden.
Damit der Leckölstrom durch den Ringspalt zwischen dem kolbenförmigen Element und der Bohrung durch die Ausnehmungen nicht übermäßig steigt, muß der Querschnitt der Ausnehmungen sehr klein gewählt werden. Hierbei ist in der erfindungsge- mäßen Vorrichtung eine Tiefe von 1 bis 50 μm vorgesehen, vorzugsweise 2 bis 10 μm. Bei rillenförmigen Ausnehmungen kann die Breite zwischen 100 und 500 μm variieren.
Besonders vorteilhaft ist die Ausbildung der erfindungsgemäßen Ausnehmungen, wenn die Vorrichtung ein Kraftstoffeinspritzventil und das kolbenförmige Element ein Ventilglied ist. Durch die hohen Kraftstoffdrücke in solchen Kraftstoff- einspritzventilen, wie sie vorzugsweise für selbstzündende Brennkraftmaschinen verwendet werden, ist eine exakte Ausrichtung des Ventilglieds in der Bohrung besonders wichtig, um einen einwandfreien Betrieb über die Lebensdauer zu gewährleisten.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.
Zeichnung
In der Zeichnung ist eine Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine in Form eines Einspritzventils dargestellt. Es zeigt Figur 1 einen Längsschnitt durch ein Kraftstoffeinspritzventil, die Figuren 2, 3, 4 und 5 Vergrößerungen im Führungsbereich des Ventilglieds .
Beschreibung des Ausführungsbeispiels
In Figur 1 ist ein Längsschnitt durch eine Vorrichtung zur
Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine darstellt, wobei die Vorrichtung hier ein Kraftstoffeinspritzventil ist. Ein als Ventilkörper 1 ausgebildetes Bauteil weist eine Bohrung 3 auf, in der ein kolbenförmiges Element, das hier als Ventilglied 5 ausgebildet ist, längsverschieb- bar angeordnet ist. Das Ventilglied 5 weist eine Längsachse 6 auf und ist mit einem Dichtungsabschnitt 105 in einem brennraumabgewandten Führungsabschnitt 103 der Bohrung 3 dichtend geführt. Ausgehend vom Dichtungsabschnitt 105 des Ventilglieds 5 verjüngt sich das Ventilglied 5 dem Brennraum zu unter Bildung einer Druckschulter 13 und geht so in einen im Durchmesser verkleinerten Ventilgliedschaft 205 über. Am brennraumseitigen Ende des Ventilglieds 5 ist eine Ventil- dichtfläche 7 ausgebildet, die zumindest näherungsweise ko- nisch ausgebildet ist und mit einem am brennraumseitigen Ende der Bohrung 3 ausgebildeten Ventilsitz 9 zusammenwirkt. Im Ventilsitz 9 ist wenigstens eine Einspritzöffnung 11 ausgebildet, die die Bohrung 3 mit dem Brennraum der Brennkraftmaschine verbindet . Im Bereich der Druckschulter 13 ist durch eine radiale Erweiterung der Bohrung 3 im Ventilkörper 1 ein Druckraum 19 ausgebildet, der sich als ein den Ventilgliedschaft 205 umgebender Ringkanal bis zum Ventilsitz 9 erstreckt. Der Druckraum 19 ist über einen im Ventilkörper 1 verlaufenden Zulaufkanal 25 mit einer in der Zeichnung nicht dargestellten Kraftstoffhochdruckquelle verbindbar und über diese mit Kraftstoff unter hohem Druck befüllbar.
Die brennraumabgewandte Stirnseite des Ventilkörpers 1 liegt an einem Ventilhaltekörper 2 an und wird gegen diesen durch eine in der Zeichnung nicht dargestellte Spannvorrichtung in axialer Richtung verspannt. Es kann dabei auch vorgesehen sein, den Ventilkörper 1 und den Ventilhaltekörper 2 einstückig auszubilden. Im Ventilhaltekörper 2 ist ein Leckölraum 15 ausgebildet, in den die Bohrung 3 mündet und der über einen in der Zeichnung nicht dargestellten Leckölkanal ständig druckentlastet ist, so daß im Leckölraum 15 stets ein niedriger Kraftstoffdruck herrscht . Im Leckölraum 15 ist eine in der Zeichnung nicht dargestellte Schließvorrichtung angeordnet, die eine Schließkraft F auf das Ventilglied 5 ausübt, wobei die Schließkraft F auf den Ventilsitz 9 ge- richtet ist. Die Richtung der Schließkraft F ist in der Zeichnung durch einen Pfeil gekennzeichnet . Die Funktion des Kraftstoffeinspritzventils bei der Einspritzung von Kraftstoff in den Brennraum der Brennkraftmaschine ist wie folgt, wobei zwei Betriebsarten unterschieden werden können: Bei der ersten Betriebsart wird durch die Kraftstoffhochdruckquelle über den Zulaufkanal 25 ständig ein hoher Kraftstoffdruck im Druckraum 19 aufrecht erhalten. Hierdurch ergibt sich eine hydraulische Kraft auf die Druckschulter 13, die entgegen der Schließkraft F gerichtet ist. Soll keine Einspritzung erfolgen, so wird die Schließkraft F entsprechend hoch gewählt, so daß das Ventilglied 5 mit seiner Ventildichtfläche 7 am Ventilsitz 9 anliegt. Soll eine Einspritzung erfolgen, so wird die Schließkraft F reduziert, so daß die hydraulische Kraft auf die Druckschulter 13 nunmehr überwiegt und das Ventilglied 5 in Richtung des Leckölraum 15 bewegt wird. Hierdurch hebt die Ventildichtfläche 7 vom Ventilsitz 9 ab und Kraftstoff wird aus dem Druckraum 19 durch die Einspritzöffnung 11 in den Brennraum der Brenn- kraf maschine eingespritzt. Durch ein entsprechendes Erhöhen der Schließkraft F wird die Einspritzung wieder beendet und das Ventilglied 5 kehrt in seine ursprüngliche Position durch eine Längsbewegung zurück. Bei der zweiten Betriebsart wird eine zumindest näherungsweise konstante Schließkraft auf das Ventilglied 5 ausgeübt, und die Bewegung des Ventilglieds 5 erfolgt durch einen variablen Kraftstoffdruck im Druckraum 19. Soll keine Einspritzung erfolgen, so herrscht im Druckraum 19 ein niedriger Kraftstoffdruck, so daß die hydraulische Kraft auf die Druckschulter 13 kleiner ist als die Schließkraft F. Soll eine Einspritzung erfolgen, so wird Kraftstoff über den Zulaufkanal 25 in den Druckraum 19 eingeführt, wodurch dort der Kraftstoffdruck ansteigt. Sobald die hydraulische Kraft auf die Druckschulter 13 höher ist als die Schließkraft F, bewegt sich das Ventilglied 5 in Längsrichtung und hebt, wie bei der ersten Betriebsart, mit der Ventildichtfläche 7 vom Ventilsitz 9 ab, und die Einspritzung erfolgt wie bei der ersten Betriebsart beschrieben. Das Ende der Einspritzung wird dadurch eingeleitet, daß die Kraftstoffzufuhr durch den Zulaufkanal 25 unterbrochen wird, wodurch der Kraftstoffdruck im Druckraum 19 abfällt und damit auch die hydraulische Kraft auf die Druckschulter 13. Bedingt durch die Schließkraft F kehrt das Ventilglied 5 wieder in die Ausgangsposition zurück und verschließt die Einspritzöffnung 11.
In der Figur 2 ist eine vergrößerte Darstellung im Bereich des Führungsabschnitts 103 der Bohrung 3 dargestellt. Damit das Ventilglied 5 in der Bohrung 3 längsverschiebbar ist, muß es dort ein gewisses Spiel haben, so daß zwischen dem Dichtungsabschnitt 105 des Ventilglieds 5 und dem Führungsabschnitt 103 der Bohrung 3 ein Ringspalt 17 ausgebildet ist. Insbesondere bei der oben geschilderten ersten Betriebsart, bei der am Druckraum 19 stets ein hoher Kraftstoffdruck anliegt, fließt ständig Kraftstoff über diesen ringspaltförmigen Drosselspalt vom Druckraum 19 in den
Leckölraum 15. Bei einem genau mittig in der Bohrung 3 zentrierten Ventilglied 5 fällt der Kraftstoffdruck im Drosselspalt 17 näherungsweise linear vom Druckraum 19 zum Leckölraum 15 hin ab. Das Ventilglied 5 erfährt eine rotati- onssymmetrische hydraulische Kraft auf die Oberfläche des Dichtungsabschnitts 105, so daß sich die Radialkräfte auf das Ventilglied 5 gegenseitig aufheben. Ist das Ventilglied 5 hingegen aus seiner zentrischen Lage verschoben, so wird der Ringspalt 17 an der Anlageseite kleiner, während er sich auf der gegenüberliegenden Seite entsprechend vergrößert.
Ohne Berücksichtigung der Ausnehmungen 30 fällt der Druck im Ringspalt 17 zumindest näherungsweise linear vom Hochdruckraum 19 bis zum Leckölraum 15 ab. Berücksichtigt man die rillenförmigen Ausnehmungen 30, wie sie Figur 2 zeigt, er- gibt sich ein anderer Zustand: Der Anlageseite des Ventil- glieds 5 gegenüberliegend strömt durch den dort vergrößerten Ringspalt 17 der Hauptanteil des Lecköls am Ventilglied 5 vorbei . In diesem Bereich spielen die rillenförmigen Ausnehmungen 30 für den Druckverlauf im Ringspalt 17 praktisch keine Rolle, so daß hier weiterhin ein linearer Druckabfall gegeben ist. Auf der Anlageseite des Ventilglieds 5 an der Innenwand des Führungsabschnitts 103 der Bohrung 3 ist der Ringspalt 17 hingegen verringert, so daß nur ein geringer Kraftstoffström in diesem Bereich stattfindet. Da die Aus- nehmungen 30 in diesem Bereich mit dem Druckraum 19 hydraulisch verbunden sind, setzt sich der Kraftstoffhochdruck des Druckraums 19 in die Ausnehmungen 30 fort, so daß in den gesamten Ausnehmungen 30 im wesentlichen der Druck des Druck- raums 19 herrscht, zumindest aber ein deutlich höherer Druck als auf der gleichen Höhe an der gegenüberliegenden Seite des Ringspalts 17. Durch diese Druckverteilung ergibt sich eine resultierende Kraft auf das Ventilglied 5, die dieses zurück in die Mitte der Bohrung 3 drückt, so daß das Ventilglied 5 in der zentrischen Position der Bohrung 3 in einem stabilen Gleichgewicht verharrt.
Figur 3 zeigt denselben Ausschnitt wie Figur 2 eines weiteren erfindungsgemäßen Kraftstoffeinspritzventils . Die Ausnehmungen 30 sind hier als zur Längsachse 6 geneigte Längs- rillen ausgebildet, so daß sie eine schraubenförmigen Verlauf aufweisen. Ein weiteres Ausführungsbeispiel ist in Figur 4 dargestellt. Hier sind die Ausnehmungen 30 als mäan- derförmig ausgebildete Rillen dargestellt, die sich auf etwa zwei Drittel der Länge des Dichtungsabschnitts 105 des Ven- tilglieds 5 erstrecken. In Figur 5 ist ein weiteres Ausführungsbeispiel gezeigt, bei dem die Ausnehmungen 30 durch stückweise gerade Rillen gebildet werden, die untereinander hydraulisch verbunden sind. Hierdurch ergeben sich Labyrinth-artige Strukturen auf der Oberfläche des Ventilglieds 5, die eine gleichmäßige Verteilung des Kraftstoffs über den Umfang des Ventilglieds 5 sicherstellen, ohne daß eine Vorzugsrichtung existiert.
Die Ausgestaltungen der Fig. 2, 3, 4 und 5 entfalten ihren jeweiligen Vorteil nur in der Gesamtgeometrie des Kraft- stoffeinspritzventils . Welche Ausgestaltung, Tiefe und Querschnittsform jeweils besonders vorteilhaft ist, muß in jedem Einzelfall durch Versuch oder Simulation des Strömungsprofils bestimmt werden.
Damit der Leckölstrom vom Druckraum 19 in den Leckölraum 15 keine unzulässig hohen Werte annimmt, muß der Querschnitt der Ausnehmungen 30 relativ klein gehalten werden. Um dies zu erreichen, weisen die Ausnehmungen 30 eine Tiefe von 1 bis 50 μm, vorzugsweise 2 bis 10 μm, auf. Die Breite der rillenförmigen Ausnehmungen 30 ist vorzugsweise 100 bis 500 μm, wobei die Querschnittsform der Ausnehmungen beispielsweise rechteckförmig, kreisabschnittsförmig, dreieck- fδrmig oder u-förmig ausgebildet sein kann. Die Ausnehmungen erstrecken sich dabei, ausgehend vom brennraumzugewandten Ende des Dichtungsabschnitts 105, etwa über die Hälfte bis etwa drei Viertel der Länge des Dichtungsabschnitts 105. Auf diese Weise wird der Leckölstrom, der durch die Ausnehmungen 30 fließt und von dort durch den Ringspalt 17 bis in den Leckölraum 15, in vertretbaren Grenzen gehalten.
Neben der Anwendung der erfindungsgemäßen Ausnehmungen 30 an einem Ventilglied 5 kann es auch vorgesehen sein, derartige Ausnehmungen an anderen kolbenförmigen Elementen auszubil- den, die längs erschiebbar in einer Bohrung geführt sind, wenn auf einer Seite der Bohrung ein hoher Druck und auf der anderen Seite ein niedriger Druck herrscht. Eine solche Anordnung ist beispielsweise auch bei Kraftstoffeinspritzpumpen gegeben, die durch einen längsbeweglichen Kolben, der in einer Bohrung gelagert ist, Kraftstoff auf einer Seite kom- -f primieren und unter hohem Druck einem Kraftstoffemspritz- ventil zuführen, während auf der anderen Seite des Führungsabschnitts dieses Kolbens ein nie'driger Kraftstoffdruck aufrecht erhalten wird.
Alternativ zu den oben beschriebenen Vorrichtungen kann es auch vorgesehen sein, die erfindungsgemäßen Ausnehmungen 30 nicht an dem kolbenförmigen Element 5 auszubilden, sondern an der Innenwand der Bohrung 3. Hydraulisch ergibt sich da- durch eine vergleichbare Situation wie bei der Ausbildung der Ausnehmungen 30 an der Außenfläche des kolbenförmigen Elements 5.

Claims

Ansprüche
1. Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine mit einem kolbenförmigen Element (5) , das in einer Bohrung (3) eines Bauteils (1) längsver- schiebbar angeordnet ist, und welches kolbenförmige Element (5) mit einem Dichtungsabschnitt (105) in einem Führungsabschnitt (103) der Bohrung (3) geführt ist, wobei der Führungsabschnitt (103) an einem Ende in einen mit Kraftstoff unter hohem Druck befüllbaren Druckraum (19) mündet und am anderen Ende in einen Leckölraum (15) , in welchem Leckölraum (15) stets ein niedriger Kraftstoffdruck herrscht, dadurch gekennzeichnet, daß am Dichtungsabschnitt (105) des kolbenförmigen Elements (5) wenigstens eine Ausnehmung (30) ausgebildet ist, die hydrau- lisch mit dem Druckraum (19) verbunden ist und die bis auf den zwischen dem kolbenförmigen Element (5) und der Innenwand des FührungsabSchnitts (103) ausgebildeten Ringspalt (17) gegen den Leckölraum (15) abgedichtet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Ausnehmungen (30) in Längsrichtung des kolbenförmigen
Elements (5) verlaufende Längsrillen sind, die an ihrem dem Druckraum (19) zugewandten Ende bis in den Druckraum (19) reichen.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Ausnehmungen (30) als Rillen ausgebildet sind, die schraubenförmig um den geführten Dichtungsabschnitt (105) des kolbenförmigen Elements (5) verlaufen.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Ausnehmungen (30) durch stückweise gerade Rillen ge- bildet werden, welche untereinander hydraulisch verbunden sind.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Ausnehmungen (30) als äanderförmige Rillen ausgebil-
5 det sind.
6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Rillen einen rechteckförmigen Querschnitt aufweisen.
7. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch ge- 10 kennzeichnet, daß die Rillen einen dreieckförmigen Querschnitt au weisen.
8. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Rillen einen kreisabschnittsförmi- gen Querschnitt aufweisen.
15 9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sich die Ausnehmungen über 20 % bis 80 % der Länge des Dichtungsabschnitts (105) des kolbenförmigen Elements (5) erstrecken, vorzugsweise 50 bis 80 %.
10.Vorrichtung nach einem der vorstehenden Ansprüche, da- 20 durch gekennzeichnet, daß die Ausnehmungen (30) eine Tiefe von 2 bis 50 μm aufweisen, vorzugsweise 2 bis 10 μm.
11.Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß an dem kolbenförmigen Element i (5) mehrere Ausnehmungen (30) ausgebildet sind, die
25 gleichmäßig über den Umfang verteilt angeordnet sind.
12.Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Vorrichtung ein Kraftstoffeinspritzventil ist.
13.Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß das Bauteil ein Ventilkörper (1) ist. 30 14.Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß das kolbenförmige Element ein Ventilglied (5) ist.
EP01991686A 2001-01-19 2001-12-22 Vorrichtung zur kraftstoff-hochdruckversorgung einer brennkraftmaschine Expired - Lifetime EP1356203B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10102234A DE10102234A1 (de) 2001-01-19 2001-01-19 Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine
DE10102234 2001-01-19
PCT/DE2001/004915 WO2002064969A1 (de) 2001-01-19 2001-12-22 Vorrichtung zur kraftstoff-hochdruckversorgung einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1356203A1 true EP1356203A1 (de) 2003-10-29
EP1356203B1 EP1356203B1 (de) 2011-09-28

Family

ID=7671029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01991686A Expired - Lifetime EP1356203B1 (de) 2001-01-19 2001-12-22 Vorrichtung zur kraftstoff-hochdruckversorgung einer brennkraftmaschine

Country Status (6)

Country Link
US (1) US7011256B2 (de)
EP (1) EP1356203B1 (de)
JP (1) JP2004518076A (de)
DE (1) DE10102234A1 (de)
PL (1) PL357212A1 (de)
WO (1) WO2002064969A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245573A1 (de) * 2002-09-27 2004-04-08 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
JP4007202B2 (ja) 2003-01-23 2007-11-14 株式会社デンソー 軸部材の摺動構造およびインジェクタ
JP4119812B2 (ja) * 2003-09-19 2008-07-16 ボッシュ株式会社 燃料噴射弁
JP4066959B2 (ja) 2004-01-27 2008-03-26 株式会社デンソー 燃料噴射装置
JP2008057458A (ja) * 2006-08-31 2008-03-13 Mitsubishi Heavy Ind Ltd 燃料噴射弁
DE102012223334A1 (de) * 2012-12-17 2014-06-18 Robert Bosch Gmbh Kolbenzylindereinheit
DE102014218179A1 (de) 2014-09-11 2016-03-17 Robert Bosch Gmbh Axialkolbenmaschine und Verwendung einer Axialkolbenmaschine
DE102015211705A1 (de) * 2015-06-24 2016-12-29 Robert Bosch Gmbh Kraftstoffinjektor mit Steuerventil
DE102015226326A1 (de) * 2015-12-21 2017-06-22 Robert Bosch Gmbh Hydraulische Kopplereinrichtung und Kraftstoffeinspritzventil mit einer solchen
DE102017115613A1 (de) * 2017-07-12 2019-01-17 L'orange Gmbh Kraftstoffinjektor und Einspritzsystem für eine Brennkraftmaschine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3433710A1 (de) 1984-09-14 1986-03-27 Robert Bosch Gmbh, 7000 Stuttgart Elektrisch gesteuerte pumpeduese fuer die kraftstoffeinspritzung bei dieselbrennkraftmaschinen
DE19820264A1 (de) * 1998-05-07 1999-11-11 Mtu Friedrichshafen Gmbh Hochdruck-Kolbenzylindereinheit
GB9819746D0 (en) * 1998-09-11 1998-11-04 Lucas Ind Plc Fuel injector
DE19843344A1 (de) * 1998-09-22 2000-03-23 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
US6776358B2 (en) * 1998-10-09 2004-08-17 Jun Arimoto Fuel injection nozzle for a diesel engine
DE69841890D1 (de) * 1998-10-09 2010-10-21 Jun Arimoto Brennstoffeinspritzventil für dieselmotoren
GB9904938D0 (en) * 1999-03-04 1999-04-28 Lucas Ind Plc Fuel injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02064969A1 *

Also Published As

Publication number Publication date
US7011256B2 (en) 2006-03-14
JP2004518076A (ja) 2004-06-17
WO2002064969A1 (de) 2002-08-22
EP1356203B1 (de) 2011-09-28
DE10102234A1 (de) 2002-07-25
US20040124286A1 (en) 2004-07-01
PL357212A1 (en) 2004-07-26

Similar Documents

Publication Publication Date Title
DE69918902T2 (de) Brennstoffinjektor
DE102005003663B4 (de) Kraftstoffeinspritzvorrichtungen mit vermindertem Verschleiß
DE19709794A1 (de) Ventil zum Steuern von Flüssigkeiten
DE19946827C1 (de) Ventil zum Steuern von Flüssigkeiten
EP0302068A1 (de) Rückschlagventil.
WO2002064969A1 (de) Vorrichtung zur kraftstoff-hochdruckversorgung einer brennkraftmaschine
DE19834867A1 (de) Einspritzdüse für eine direkt einspritzende Brennkraftmaschine
WO2002077445A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102009032850A1 (de) Druckbegrenzungsventil insbesondere für ein Common-Rail-Einspritzsystem
DE19611963A1 (de) Modulierende Strömungsumleitung für eine Brennstoffeinspritzvorrichtung
DE102005010453A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102011000739A1 (de) Kraftstoffeinspritzvorrichtung
EP1574701A1 (de) Common-Rail Injektor
DE69921242T2 (de) Kraftstoffeinspritzventil
EP1608866B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19738804B4 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19941709A1 (de) Gebautes Steuerventil für einen Injektor eines Kraftstoffeinspritzsystems für Brennkraftmaschinen
DE10132450B4 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0396127B1 (de) Kraftstoffeinspritzvorrichtung
DE10111783A1 (de) Einspritzdüse
EP1416152A1 (de) Ventil zum Steuern von Flüssigkeiten mit einer Druckmittelzuführung
DE102004055265A1 (de) Kraftstoffeinspritzvorrichtung
DE10121340A1 (de) Common-Rail-Injektor
DE19929881A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2256332B1 (de) Kraftstoffinjektor mit Druckverstärkerkolben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20080423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50115965

Country of ref document: DE

Effective date: 20111201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111228

26N No opposition filed

Effective date: 20120629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50115965

Country of ref document: DE

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130123

Year of fee payment: 12

Ref country code: DE

Payment date: 20130225

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115965

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115965

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231