EP1354026B2 - Flüssige zusammensetzung im beutel - Google Patents

Flüssige zusammensetzung im beutel Download PDF

Info

Publication number
EP1354026B2
EP1354026B2 EP02702019A EP02702019A EP1354026B2 EP 1354026 B2 EP1354026 B2 EP 1354026B2 EP 02702019 A EP02702019 A EP 02702019A EP 02702019 A EP02702019 A EP 02702019A EP 1354026 B2 EP1354026 B2 EP 1354026B2
Authority
EP
European Patent Office
Prior art keywords
water
pouch
soluble
preferred
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02702019A
Other languages
English (en)
French (fr)
Other versions
EP1354026A1 (de
EP1354026B1 (de
Inventor
Vincent John Becks
Eugene Steven Sadlowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26077520&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1354026(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from EP01870012A external-priority patent/EP1201744A1/de
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP02702019A priority Critical patent/EP1354026B2/de
Publication of EP1354026A1 publication Critical patent/EP1354026A1/de
Publication of EP1354026B1 publication Critical patent/EP1354026B1/de
Application granted granted Critical
Publication of EP1354026B2 publication Critical patent/EP1354026B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0004Non aqueous liquid compositions comprising insoluble particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2079Monocarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • This invention relates to liquid composition
  • liquid composition comprising a transparent or translucent liquid medium and solid particles contained within the liquid medium.
  • GB-A-1 303 810 published on 24 th January 1973, discloses clear, liquid compositions which comprise a visually distinct component of particle size at least 0.5mm diameter.
  • the liquid medium in which the visually distinct components are suspended preferably has the rheological properties of a Bingham body. That is to say that by virtue of its internal structure the medium will exhibit a yield value from which it is possible to calculate the maximum size of particle which can stably be suspended for a given difference in density between the medium and suspended particles.
  • GB-A-2 194 793 published on 16 th March 1988, discloses mottled liquid detergents.
  • the suspended particles themselves may either contribute to the aesthetic appearance of the product, or they may have some technically functionality, or both of these.
  • the problems of instability, i.e. particles separating either by floating or sinking, and of excessively high yield points are overcome.
  • the composition of the present invention is preferably a unit dose of a laundry composition comprising at least anionic surfactant and fatty acid builder.
  • EP-A-0 339 707 published on 2 nd November 1989, discloses a non-aqueous liquid detergent comprising a non-aqueous organic solvent and particles of a solid material dispersed therein, encapsulated in a water-dispersible substance.
  • the application discloses small particles of solid material, for example 10 microns.
  • One of the advantages of the present invention is that the solid particles are not stably suspended in the liquid medium, but rather the solid particles sink or float in the liquid medium. This allows much more flexibility to the formulator because it is no longer necessary to match the densities of the solid particle and the liquid medium.
  • the present invention provides a liquid composition
  • a liquid composition comprising a transparent or translucent liquid medium and solid particles contained within the liquid medium, wherein the liquid medium comprises less than 10% by weight of water and the composition is contained within a pouch made from a transparent or translucent water-soluble material, wherein the solid particles have a mean geometric diameter of at least 1 millimetre so that the individual solid particles are visible from the outside of the pouch, and sink or float in the liquid medium.
  • the water-soluble pouch material comprises a film of water-soluble material selected from the group consisting of polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates and mixtures and laminates thereof. More preferably the water-soluble pouch material comprises polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • the solid particles In order to be visible to the human eye when viewed from the outside of the pouch, the solid particles have a mean geometric diameter of between 1 millimetre and 12 millimetres, and preferably it is between 1 millimetre and 5 millimetres.
  • the geometric diameter of an individual solid particle as defined herein is the diameter of a hypothetical spherical particle having the same volume as the individual particle.
  • the mean geometric diameter is the arithmetical mean value of the geometric diameters of the individual particles.
  • the pouch of the invention is typically a closed structure, made of a water-soluble film described herein, enclosing a volume space which comprises a composition. Said composition is described in more detail hereinafter.
  • the pouch can be of any form, shape and material which is suitable to hold the composition, e.g. without allowing the release of the composition from the pouch prior to contact of the pouch to water. The exact execution will depend on for example, the type and amount of the composition in the pouch, the number of compartments in the pouch, the characteristics required from the pouch to hold, protect and deliver or release the compositions.
  • the pouch may have one compartment, holding the liquid composition, or it may have a number of compartment, attached to one another or non-attached to one another, thus having one compartment enclosing (but not attaching) another compartment.
  • the pouch may be of such a size that it conveniently contains either a unit dose amount of the composition herein, suitable for the required operation, for example one wash, or only a partial dose, to allow the consumer greater flexibility to vary the amount used, for example depending on the size and/or degree of soiling of the wash load.
  • the water soluble film and preferably the pouch as a whole is stretched during formation and/or closing of the pouch, such that the resulting pouch is at least partially stretched. This is to reduce the amount of film required to enclose the volume space of the pouch.
  • the degree of stretching indicates the amount of stretching of the film by the reduction in the thickness of the film. For example, if by stretching the film, the thickness of the film is exactly halved then the stretch degree of the stretched film is 100%. Also, if the film is stretched so that the film thickness of the stretched film is exactly a quarter of the thickness of the unstretched film then the stretch degree is exactly 200%.
  • the thickness and hence the degree of stretching is non-uniform over the pouch, due to the formation and closing process.
  • Another advantage of stretching the pouch is that the stretching action, when forming the shape of the pouch and/or when closing the pouch, stretches the pouch non-uniformly, which results in a pouch which has a non-uniform thickness. This allows control of the dissolution of water-soluble pouches herein, and for example sequential release of the components of the detergent composition enclosed by the pouch to the water.
  • the pouch is stretched such that the thickness variation in the pouch formed of the stretched water-soluble film is from 10 to 1000%, preferably 20% to 600%, or even 40% to 500% or even 60% to 400%. This can be measured by any method, for example by use of an appropriate micrometer.
  • the pouch is made from a water-soluble film that is stretched, said film has a stretch degree of from 40% to 500%, preferably from 40% to 200%.
  • the pouch is made from a water-soluble film.
  • the material in the form of a film can for example be obtained by casting, blow-moulding, extrusion or blow extrusion of the polymer material, as known in the art.
  • the film may be a laminate of two or more films.
  • the material is water-soluble and has a solubility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinafter using a glass-filter with a maximum pore size of 50 micrometers, namely:
  • Gravimetric method for determining water-solubility or water-dispersability of the material of the compartment and/or pouch 50 grams ⁇ 0.1 gram of material is added in a 400 ml beaker, whereof the weight has been determined, and 245ml ⁇ 1ml of distilled water is added. This is stirred vigorously on magnetic stirrer set at 600 rpm, for 30 minutes. Then, the mixture is filtered through a folded qualitative sintered-glass filter with the pore sizes as defined above (max. 50 micrometer). The water is dried off from the collected filtrate by any conventional method, and the weight of the remaining polymer is determined (which is the dissolved or dispersed fraction). Then, the % solubility or dispersability can be calculated.
  • Preferred polymer copolymers or derivatives thereof are selected from polyvinyl alcohols, polyalkylene oxides, acrylic acid, cellulose, cellulose ethers, cellulose esters, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum.
  • the polymer is selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates; most preferably polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC).
  • the level of a type polymer (e.g., commercial mixture) in the film material for example PVA polymer, is at least 60% by weight of the film.
  • the polymer can have any weight average molecular weight, preferably from about 1000 to 1,000,000, or even form 10,000 to 300,000 or even form 15,000 to 200,000 or even form 20,000 to 150,000.
  • Mixtures of polymers can also be used. This may in particular be beneficial to control the mechanical and/or dissolution properties of the compartment or pouch, depending on the application thereof and the required needs. For example, it may be preferred that a mixture of polymers is present in the material of the compartment, whereby one polymer material has a higher water-solubility than another polymer material, and/or one polymer material has a higher mechanical strength than another polymer material.
  • a mixture of polymers is used, having different weight average molecular weights, for example a mixture of PVA or a copolymer thereof of a weight average molecular weight of 10,000- 40,000, preferably around 20,000, and of PVA or copolymer thereof, with a weight average molecular weight of about 100,000 to 300,000, preferably around 150,000.
  • polymer blend compositions for example comprising hydrolytically degradable and water-soluble polymer blend such as polylactide and polyvinyl alcohol, achieved by the mixing of polylactide and polyvinyl alcohol, typically comprising 1-35% by weight polylactide and approximately from 65% to 99% by weight polyvinyl alcohol, if the material is to be water-dispersible, or water-soluble.
  • hydrolytically degradable and water-soluble polymer blend such as polylactide and polyvinyl alcohol
  • the polymer present in the film is from 60 to 98% hydrolysed, preferably 80% to 90% hydrolysed, to improve the dissolution of the material.
  • films which are water-soluble and stretchable films are films which comprise PVA polymers and that have similar properties to the film known under the trade reference Monosol®8630, as sold by Chris-Craft Industrial Products of Gary, Indiana, US and also PT-75, as sold by Aicello of Japan.
  • the water-soluble film herein may comprise other additive ingredients than the polymer or polymer material.
  • plasticisers for example glycerol, ethylene glycol, diethylene glycol, propylene glycol, sorbitol and mixtures thereof, additional water, disintegrating aids.
  • the pouch or water-soluble film itself comprises a detergent additive to be delivered to the wash water, for example organic polymeric soil release agents, dispersants, dye transfer inhibitors.
  • the pouch is typically made by a process comprising the steps of contacting a composition herein to a water-soluble film in such a way as to partially enclose the composition to obtain a partially formed pouch.
  • the composition may already contain at least one solid particle per pouch, or, alternatively, one or more of the solid particles may be added at this stage of the process.
  • the first water-soluble film of the partially formed pouch is then contacted with a second water-soluble film, and the films are sealed together to provide the fully formed pouch.
  • the first and second water-soluble films may be identical in terms of material specifications and physical properties (e.g. thickness), but this need not necessarily be the case.
  • the pouch is made using a mold, preferably the mold has round inner side walls and a round inner bottom wall.
  • a liquid medium and at least one solid particle may then be transferred into the mould, a second water-soluble film may be placed over the mould with the composition and the pouch may then be sealed.
  • the first and second films are sealed by heat sealing or by solvent sealing.
  • the liquid composition is contained in the inner volume space of the pouch, and it may be divided over one or more compartments of the pouch.
  • the liquid composition preferably has a density of 0.8kg/l to 1.3kg/l, preferably about 1.0 to 1.1 kg/l.
  • the liquid composition can made by any method and can have any viscosity, typically depending on its ingredients. The viscosity may be controlled, if desired, by using various viscosity modifiers such as hydrogenated castor oil and/or solvents. Hydrogenated castor oil is commercially available as Thixcin®. Suitable solvents are described in more detail below.
  • the liquid compositions of the present invention are concentrated and contain low levels of water.
  • the liquid compositions comprise less than 10% by weight water, and preferably less than 6% by weight water. Suitable compositions may even comprise less than 4% by weight water.
  • compositions herein are typically cleaning compositions or fabric care compositions, preferably hard surface cleaners, more preferably laundry or dish washing compositions, including pre-treatment or soaking compositions and rinse additive compositions, including fabric enhancers such as softeners, anti-wrinkling agents, perfume compositions. Particularly preferred are fabric cleaning compositions (laundry detergents).
  • the preferred amounts of ingredients described herein are % by weight of the composition herein as a whole.
  • liquid composition is a detergent composition
  • at least a surfactant and builder are present, preferably at least anionic surfactant and preferably also nonionic surfactant, and preferably at least a builder, more preferably at least a water-soluble builder such as phosphate builder and/or fatty acid builder.
  • Other preferred components are enzymes and/or bleaching agents, such as a preformed peroxyacid.
  • perfume brightener
  • buffering agents to maintain the pH preferably from 5.5 to 9, more preferably 6 to 8
  • fabric softening agents including clays and silicones benefit agents, suds suppressors.
  • a water-soluble builder is present, such as a phosphate, and preferably also surfactant, perfume, enzymes, bleach.
  • a perfume and a fabric benefit agent are present for example a cationic softening agent, or clay softening agent, anti-wrinkling agent, fabric substantive dye.
  • compositions of the invention are also additional solvents, such as alcohols, diols, monoamine derivatives, glycerol, glycols, polyalkylane glycols, such as polyethylene glycol.
  • solvents such as alcohols, diols, monoamine derivatives, glycerol, glycols, polyalkylane glycols, such as polyethylene glycol.
  • mixtures of solvents such as mixtures of alcohols, mixtures of diols and alcohols, mixtures.
  • Highly preferred may be that (at least) an alcohol, diol, monoamine derivative and preferably even glycerol are present.
  • the compositions of the invention are preferably concentrated liquids having preferably less than 50% or even less than 40% by weight of solvent (other than water), preferably less than 30% or even less than 20% or even less than 35% by weight.
  • the solvent is present at a level of at least 5% or even at least 10% or even at least 15% by weight of the composition.
  • the composition comprises a plasticiser for the water-soluble pouch material, for example one of the plasticisers described above, for example glycerol.
  • plasticisers can have the dual purpose of being a solvent for the other ingredients of the composition and a plasticiser for the pouch material.
  • the detergent compositions of the invention comprise preferably a surfactant system.
  • at least an anionic surfactant is present, preferably at least an sulphonic acid surfactant, such as a linear alkyl benzene sulphonic acid, but salt forms may also be used.
  • at least 15% or even at least 20% or even at least 30% by weight of the composition is a surfactant, up to 70% or even 60% or even 50% by weight.
  • at least an anionic surfactant and an nonionic surfactant are present in the surfactant system of the composition, preferably in a ratio of 1:2 to 2:1, and more preferably 1.5:1 to 1:1.5.
  • the anionic surfactant(s), are preferably present at a level of at least 7.5% by weight of the composition. More preferably anionic surfactant is present at a level of from 10% or even at least 15%, or even from 22.5% by weight of the composition.
  • Anionic sulfonate or sulfonic acid surfactants suitable for use herein include the acid and salt forms of a C 5 -C 20 , more preferably a C 10 -C 16 , more preferably a C 11 -C 13 alkylbenzene sulfonates, alkyl ester sulfonates, C 6 -C 22 primary or secondary alkane sulfonates, sulfonated polycarboxylic acids, and any mixtures thereof, but preferably C 11 -C 13 alkylbenzene sulfonates.
  • Anionic sulphate salts or acids surfactants suitable for use in the compositions of the invention include the primary and secondary alkyl sulphates, having a linear or branched alkyl or alkenyl moiety having from 9 to 22 carbon atoms or more preferably C 12 to C 18 alkyl.
  • beta-branched alkyl sulphate surfactants or mixtures of commercial available materials having a weight average (of the surfactant or the mixture) branching degree of at least 50% or even at least 60% or even at least 80% or even at least 95%. It has been found that these branched sulphate surfactants provide a much better viscosity profile, when clays are present, particular when 5% or more clay is present.
  • the only sulphate surfactant is such a highly branched alkyl sulphate surfactant. Accordingly only one type of commercially available branched alkyl sulphate surfactant is present, whereby the weight average branching degree is at least 50%, preferably at least 60% or even at least 80%, or even at least 90%. Preferred is for example Isalchem®, as available form Condea.
  • Mid-chain branched alkyl sulphates or sulfonates are also suitable anionic surfactants for use in the compositions of the invention.
  • Preferred are the mid-chain branched alkyl sulphates.
  • Preferred mid-chain branched primary alkyl sulphate surfactants are of the formula
  • These surfactants have a linear primary alkyl sulphate chain backbone (i.e., the longest linear carbon chain which includes the sulphated carbon atom), which preferably comprises from 12 to 19 carbon atoms and their branched primary alkyl moieties comprise preferably a total of at least 14 and preferably no more than 20, carbon atoms.
  • the average total number of carbon atoms for the branched primary alkyl moieties is preferably within the range of from greater than 14.5 to about 17.5.
  • the surfactant system preferably comprises at least one branched primary alkyl sulphate surfactant compound having a longest linear carbon chain of not less than 12 carbon atoms or not more than 19 carbon atoms, and the total number of carbon atoms including branching must be at least 14, and further the average total number of carbon atoms for the branched primary alkyl moiety is within the range of greater than 14.5 to about 17.5.
  • Preferred mono-methyl branched primary alkyl sulphates are selected from the group consisting of: 3-methyl pentadecanol sulphate, 4-methyl pentadecanol sulphate, 5-methyl pentadecanol sulphate, 6-methyl pentadecanol sulphate, 7-methyl pentadecanol sulphate, 8-methyl pentadecanol sulphate, 9-methyl pentadecanol sulphate, 10-methyl pentadecanol sulphate, 11-methyl pentadecanol sulphate, 12-methyl pentadecanol sulphate, 13-methyl pentadecanol sulphate, 3-methyl hexadecanol sulphate, 4-methyl hexadecanol sulphate, 5-methyl hexadecanol sulphate, 6-methyl hexadecanol sulphate, 7-methyl hexadecano
  • Preferred di-methyl branched primary alkyl sulphates are selected from the group consisting of: 2,3-methyl tetradecanol sulphate, 2,4-methyl tetradecanol sulphate, 2,5-methyl tetradecanol sulphate, 2,6-methyl tetradecanol sulphate, 2,7-methyl tetradecanol sulphate, 2,8-methyl tetradecanol sulphate, 2,9-methyl tetradecanol sulphate, 2,10-methyl tetradecanol sulphate, 2,11-methyl tetradecanol sulphate, 2,12-methyl tetradecanol sulphate, 2,3-methyl pentadecanol sulphate, 2,4-methyl pentadecanol sulphate, 2,5-methyl pentadecanol sulphate, 2,6-methyl pentadecanol sulphate, 2,7-methyl pen
  • anionic surfactants herein are present in the form of sodium salts.
  • Ethoxylated and propoxylated nonionic surfactants are preferred.
  • Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols.
  • nonionic alkoxylated alcohol surfactants being the condensation products of aliphatic alcohols with from 1 to 75 moles of alkylene oxide, in particular about 50 or from 1 to 15 moles, preferably to 11 moles, particularly ethylene oxide and/or propylene oxide, are highly preferred nonionic surfactants.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 9 moles and in particular 3 or 5 moles, of ethylene oxide per mole of alcohol.
  • Polyhydroxy fatty acid amides are highly preferred nonionic surfactant comprised by the composition, in particular those having the structural formula R 2 CONR 1 Z wherein : R1 is H, C 1-18 , preferably C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R 2 is a C 5 -C 31 hydrocarbyl, preferably straight-chain C 5 -C 19 or C 7 -C 19 alkyl or alkenyl, more preferably straight-chain C 9 -C 17 alkyl or alkenyl, most preferably straight-chain C 11 -C 17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the
  • Suitable cationic mono-alkoxylated and bis-alkoxylated quaternary amine surfactants with a C 6 -C 18 N-alkyl chain such as of the general formula I: wherein R 1 is an alkyl or alkenyl moiety containing from about 6 to about 18 carbon atoms, preferably 6 to about 16 carbon atoms, most preferably from about 6 to about 14 carbon atoms; R 2 and R 3 are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl, most preferably both R 2 and R 3 are methyl groups; R 4 is selected from hydrogen (preferred), methyl and ethyl; X - is an anion such as chloride, bromide, methylsulphate, sulphate, or the like, to provide electrical neutrality; A is a alkoxy group, especially a ethoxy, propoxy or butoxy group; and p is from 0 to about 30, preferably 2 to about 15, most preferably 2 to about 8.
  • the cationic bis-alkoxylated amine surfactant preferably has the general formula II: wherein R 1 is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms; R 2 is an alkyl group containing from one to three carbon atoms, preferably methyl; R 3 and R 4 can vary independently and are selected from hydrogen (preferred), methyl and ethyl, X - is an anion such as chloride, bromide, methylsulphate, sulphate, or the like, sufficient to provide electrical neutrality.
  • a and A' can vary independently and are each selected from C 1 -C 4 alkoxy, especially ethoxy, (i.e., -CH 2 CH 2 O-), propoxy, butoxy and mixtures thereof; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.
  • cationic ester surfactants Another suitable group of cationic surfactants which can be used in the detergent compositions are cationic ester surfactants.
  • Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042 , 4239660 and 4260529 .
  • compositions in accord with the present invention preferably contain a water-soluble builder compound, typically present in detergent compositions at a level of from 1% to 60% by weight, preferably from 3% to 40% by weight, most preferably from 5% to 25% by weight of the composition.
  • Suitable water-soluble builder compounds include the water soluble monomeric carboxylates, or their acid forms, or homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, and mixtures of any of the foregoing.
  • the detergent compositions contain 1% to 25% by weight of a fatty acid or salt thereof, more preferably 6% to 18% or even 10% to16% by weight.
  • a fatty acid or salt thereof more preferably 6% to 18% or even 10% to16% by weight.
  • Preferred are in particular C 12 -C 18 saturated and/ or unsaturated fatty acids, but preferably mixtures of such fatty acids.
  • mixtures of saturated and unsaturated fatty acids for example preferred is a mixture of rape seed-derived fatty acid and C 16- C 18 topped whole cut fatty acids, or a mixture of rape seed-derived fatty acid and a tallow alcohol derived fatty acid.
  • the detergent compositions of the invention may comprise phosphate-containing builder material. Preferably present at a level of from 2% to 40%, more preferably from 3% to 30%, more preferably from 5% to 20%.
  • Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • compositions in accord with the present invention may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 0.5% to 60% by weight, preferably from 5% to 50% by weight, most preferably from 8% to 40% weight of the composition.
  • aluminosilicates such as Zeolite A or zeolite MAP and/or crystalline layered silicates such as SKS-6®, available from Clariant.
  • the composition may comprise a chelating agent, typically a high ionic strength chelating agent, having two or more phosphonic acid or phosphonate groups, or two or more carboxylic acid or carboxylate groups, or mixtures thereof.
  • chelating agent it is meant herein components which act to sequester (chelate) heavy metal ions, but these components may also have calcium and magnesium chelation capacity.
  • Chelating agents are generally present at a level of from 1%, preferably from 2.5% from 3.5% or even 5.0% or even 7% and preferably up to 20% or even 15% or even 10% by weight of the composition herein.
  • Highly suitable organic phosphonates herein are amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy bisphosphonates and nitrilo trimethylene phosphonates.
  • Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
  • Suitable chelating agents for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
  • Glycinamide-N,N'-disuccinic acid Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
  • Suitable chelating agents with two or more carboxylates or carboxylic acid groups include the acid or salt forms of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
  • Chelants containing three carboxy groups include, in particular, the acids or salt forms of citrates, aconitrates and citraconates as well as succinate derivatives.
  • Preferred carboxylate chelants are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates and citric acids.
  • Chelating agents containing four carboxy groups include the salts and acid forms of oxydisuccinates, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates, sulfosuccinate derivatives.
  • At least one organo phosphonate or phosphonic acid and also at least one di- or tri-carboxylate or carboxylic acid is present.
  • At least fumaric acid (or salt) and citric acid (or salt) and one or more phosphonates are present.
  • Preferred salts are sodium salts.
  • perfume components preferably at least one component comprising a coating agent and/ or carrier material, preferably organic polymer carrying the perfume or aluminosilicate carrying the perfume, or an encapsulate enclosing the perfume, for example starch or other cellulosic material encapsulate.
  • the solid particle is a perfume encapsulate.
  • Preferred fabric softening clays are smectite clays, which can also be used to prepare the organophilic clays described hereinafter, for example as disclosed in EP-A-299575 and EP-A-313146 .
  • Specific examples of suitable smectite days are selected from the classes of the bentonites- also known as montmorillonites, hectorites, volchonskoites, nontronites, saponites and sauconites, particularly those having an alkali or alkaline earth metal ion within the crystal lattice structure.
  • Hectorites Preferably, hectorites or montmorillonites or mixtures thereof. Hectorites are most preferred days.
  • the softening clay if present may be used at levels up to about 15%, more preferably from about 3% to about 10% by weight, when the formulation is to be a fabric softening formulation.
  • the hectorite clays suitable in the present composition should preferably be sodium clays, for better softening activity.
  • Sodium clays are either naturally occurring, or are naturally-occuring calcium-clays which have been treated so as to convert them to sodium-clays. If calcium-clays are used in the present compositions, a salt of sodium can be added to the compositions in order to convert the calcium clay to a sodium clay. Preferably, such a salt is sodium carbonate, typically added at levels of up to 5% of the total amount of clay.
  • Examples of hectorite clays suitable for the present compositions include Bentone EW® as sold by Elementis.
  • Another preferred clay is an organophilic clay, preferably a smectite clay, whereby at least 30% or even at least 40% or preferably at least 50% or even at least 60% of the exchangeable cations is replaced by a, preferably long-chain, organic cations.
  • organophilic clay preferably a smectite clay
  • Such clays are also referred to as hydrophobic clays.
  • the cation exchange capacity of clays and the percentage of exchange of the cations with the long-chain organic cations can be measured in several ways known in the art, as for example fully set out in Grimshaw, The Chemistry and Physics of Clays, Interscience Publishers, Inc.,pp. 264-265 (1971 ).
  • organophilic smectite clay Whilst the organophilic smectite clay provides excellent softening benefit, they can increase the viscosity of the liquid compositions. Therefore, it will depend on the viscosity requirements of the composition, how much of these organophlic clays can be used. Typically, they are used in the liquid detergent compositions of the invention at a level of from 0.1% to 10%, more preferably from 0.3% to 7%, most preferably from 0.4% to 5% or even 0.5% to 4% by weight of the composition.
  • organophilic clays are formed prior to incorporation into the detergent composition.
  • the cations, or part thereof, of the normal smectite clays are replaced by the long-chain organic cations to form the organophilic smectite clays herein, prior to further processing of the material to form the detergents of the invention.
  • the organophilic clay is preferably in the form of a platelet or lath-shaped particle.
  • the ratio of the width to the length of such a platelet is at least 1:2, preferably at least 1:4 or even at least 1:6 or even at least 1:8.
  • a long-chain organic cation can be any compound which comprises at least one chain having at least 6 carbon atoms, but typically at least 10 carbon atoms, preferably at least 12 carbon atoms, or in certain embodiments of the invention, at least 16 or even at least 18 carbon atoms. Preferred long-chain organic cations are described hereinafter.
  • Preferred organophilic clays herein clay are smectite clays, preferably hectorite clays and/ or montmorillonite clays containing one or more organic cations of formulae: where R 1 represents an organic radical selected from R 7 , R 7 -CO-O-(CH 2 ) n , or
  • R 7 -CO-NR 8 - in which R 7 is an alkyl, alkenyl or alkylaryl group with 12-22 carbon atoms, whereby R 8 is hydrogen, C 1 -C 4 alkyl, alkenyl or hydroxyalkyl, preferably - CH 3 or -C 2 H 5 or -H ; n is an integer, preferably equal to 2 or 3; R 2 represents an organic radical selected from R 1 or C 1 -C 4 alkyl, alkenyl or hydroxyalkyl, preferably -CH 3 or -CH 2 CH 2 OH; R 3 and R 4 are organic radicals selected from C 1 -C 4 alkylaryl, C 1 -C 4 alkyl, alkenyl or hydroxyalkyl, preferably -CH 3 , -CH 2 CH 2 OH, or benzyl group; R 5 is an alkyl or alkenyl group with 12-22 carbon atoms; R 8 is preferably - OH, -NHCO-R 7 ,
  • Highly preferred cations are quaternary ammonium cations having two C 16 -C 28 or even C 16 -C 24 alkyl chains.
  • Highly preferred are one or more organic cations which have one or preferably two alkyl groups derived from natural fatty alcohols, the cations preferably being selected from dicocoyl methyl benzyl ammonium, dicocoyl ethyl benzyl ammonium, dicocoyl dimethyl ammonium, dicocoyl diethyl ammonium; more preferably ditallow diethyl ammonium, ditallow ethyl benzyl ammonium; more preferably ditallow dimethyl ammonium and/ or ditallow methyl benzyl ammonium.
  • mixtures of organic cations are present.
  • organophilic clays as available from Rheox/Elementis, such as Bentone SD-1 and Bentone SD-3, which are registered trademarks of Rheox/Elementis.
  • the solid particle is a clay particle, such as a clay agglomerate or extrudate.
  • Cationic fabric softening agents are preferably present in the composition herein.
  • Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 011 340 .
  • these water-insoluble tertiary amines or dilong chain amide materials are comprised by the solid component of the composition herein.
  • Cationic fabric softening agents are typically incorporated at total levels of from 0.5% to 15% by weight, normally from 1% to 5% by weight.
  • a perhydrate bleach such as salts of percarbonates, particularly the sodium salts, and/ or organic peroxyacid bleach precursor. It has been found that when the pouch or compartment is formed from a material with free hydroxy groups, such as PVA, the preferred bleaching agent comprises a percarbonate salt and is preferably free form any perborate salts or borate salts. It has been found that borates and perborates interact with these hydroxy-containing materials and reduce the dissolution of the materials and also result in reduced performance.
  • Inorganic perhydrate salts are a preferred source of peroxide.
  • these salts are present at a level of from 0.01% to 50% by weight, more preferably of from 0.5% to 30% by weight of the composition or component.
  • inorganic perhydrate salts include percarbonate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • the preferred executions of such granular compositions utilise a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
  • Alkali metal percarbonates particularly sodium percarbonate are preferred perhydrates herein.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na 2 CO 3 .3H 2 O 2 , and is available commercially as a crystalline solid.
  • the composition herein preferably comprises a peroxy acid or a precursor therefor (bleach activator), preferably comprising an organic peroxyacid bleach precursor. It may be preferred that the composition comprises at least two peroxy acid bleach precursors, preferably at least one hydrophobic peroxyacid bleach precursor and at least one hydrophilic peroxy acid bleach precursor, as defined herein.
  • the production of the organic peroxyacid occurs then by an in situ reaction of the precursor with a source of hydrogen peroxide.
  • the hydrophobic peroxy acid bleach precursor preferably comprises a compound having a oxy-benzene sulphonate group, preferably NOBS, DOBS, LOBS and/or NACA-OBS, as described herein.
  • the hydrophilic peroxy acid bleach precursor preferably comprises TAED, as described herein.
  • Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae: wherein R 1 is an alkyl group with from 1 to 14 carbon atoms, R 2 is an alkylene group containing from 1 to 14 carbon atoms, and R 5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
  • Amide substituted bleach activator compounds of this type are described in EP-A-0 170 386 .
  • the composition may contain a pre-formed organic peroxyacid.
  • organic peroxyacid compounds are the amide substituted compounds of the following general formulae: wherein R 1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R 2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R 5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
  • Amide substituted organic peroxyacid compounds of this type are described in EP-A-0 170 386 .
  • organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioic acid, diperoxytetradecanedioic acid and diperoxyhexadecanedioic acid.
  • diacyl and tetraacylperoxides especially diperoxydodecanedioic acid, diperoxytetradecanedioic acid and diperoxyhexadecanedioic acid.
  • Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
  • the solid particle is a particulate bleach or bleach activator.
  • the composition may comprise a suds suppresser at a level less than 10%, preferably 0.001% to 10%, preferably from 0.01% to 8%, most preferably from 0.05% to 5%, by weight of the composition
  • a suds suppresser is either a soap, paraffin, wax, or any combination thereof. If the suds suppresser is a suds suppressing silicone, then the detergent composition preferably comprises from 0.005% to 0.5% by weight a suds suppressing silicone.
  • Another preferred ingredient useful in the compositions herein is one or more enzymes.
  • Preferred enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139 .
  • protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor Intemational, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Preferred amylases include, for example, ⁇ -amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo ).
  • Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl, Duramyl and BAN by Novo Industries A/S.
  • Highly preferred amylase enzymes maybe those described in WO 9732961 and in WO95/26397 and WO96/23873 .
  • Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
  • the solid particle is an enzyme encapsulate.
  • Useful additional non-alkoxylated organic polymeric compounds for inclusion in the compositions herein include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A-1,596,756 .
  • Examples of such salts are polyacrylates of MWt 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
  • organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
  • Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof, as also described as builders above. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as in particular sodium but also potassium salts.
  • compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
  • the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
  • compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
  • Preferred brighteners include 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt, commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation; 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt, commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation; 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)
  • bleaches neutralizing agents, buffering agents, phase regulants, hydrotropes, enzyme stabilizing agents, opacifiers, anti-oxidants, bactericides, photo-bleaches.
  • Uniform spherical particles containing a polymeric profragrance were prepared by adding a reaction product of ⁇ -damascone and Lupasol® WF into molten Pluracol® E 4000 at 60°C. The melt was then cast into 10 mm spheres in a mold. Ingredient a b profragrance 6.0 % 6.0 % Pluracol® E 4000 94.0 % 93.4 % Expancel® 091 DE50 0.6 % weight of 10 mm diameter capsule 0.57 g 0.46 g
  • Samples a and b were placed in the low moisture liquid detergent media of Examples 1A and 1B and sealed in pouches of soluble polyvinyl alcohol film, Mono-Sol® 8630, (50 ml of detergent and one 10 mm capsule per pouch) to provide unitized dose liquid detergent compositions with visible fragrance capsules.
  • the particles were stable in the low moisture detergent of Examples 1 A and 1 B and dissolved in the wash to impart a fresh scent to laundry after drying.
  • the spherical particles of sample b are less dense than the detergent and float in the detergent in the pouch and rapidly dissolve when the pouch is added to the wash.
  • Extruded particles containing sodium citrate were prepared by combining 54.4 g of Pluracol® E 4000 solution (48.7% in water), 204.1 g of sodium citrate dihydrate, and 41.2 g of water. The mixture was extruded through an 8 mm axial dye and cut into 8 mm lengths. After drying, the composition was: ingredient weight percent Pluracol® E 4000 11.1 % sodium citrate (as anhydrous) 74.8 % water 14.1 %
  • Samples of the solid citrate particles were placed in the low moisture liquid detergent media of Examples 1A and 1B and sealed in pouches of soluble polyvinyl alcohol film, Mono-Sol® 8630, (50 ml of detergent and two solid particles per pouch) to provide unitized dose liquid detergent compositions with visible solid particles.
  • the particles were visible and stable in the low moisture liquid detergent and rapidly dissolve when added to the wash.
  • Uniform spherical particles containing an oxidation catalyst were prepared by combining dichloro(4,11-diethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane)manganese with molten Pluracol® E 4000 at 60°C followed by casting in a mold to give the following composition.
  • Ingredient weight percent bleach catalyst 6.0 % Pluracol® E 4000 94.0 % weight of 10 mm diameter capsule 0.59 g
  • Samples of the solid bleach catalyst particle were placed in the low moisture liquid detergent media of Examples 1A and 1B and sealed in pouches of soluble polyvinyl alcohol film, Mono-Sol® 8630, (50 ml of detergent and one solid particle per pouch) to provide unitized dose liquid detergent compositions with visible bleach catalyst particles and rapidly dissolve when added to the wash.
  • Solid particles containing a fabric anti-abrasion agent and dye anti-fading agent were prepared by combining 25.0 g of modified cellulose, 5.60 g of solution of an imidazole-epichlorohydrin condensation oligomer (44.6% in H 2 O), 20.8 g of sodium citrate dihydrate, 6.5 g of Acusol® 445N (45.0% in H 2 O), and 38.5 g of H 2 O, forming into particles approximately 10 mm in diameter, and drying.
  • Samples of the solid particles were placed in the low moisture liquid detergent media of Examples 1A and 1B and sealed in pouches of soluble polyvinyl alcohol film, Mono-Sol® 8630, (50 ml of detergent) to provide unitized dose liquid detergent compositions with visible solid particles.
  • coloured particles with a mean geometric diameter of a) 2mm and b) 5mm are made by adding dye onto starch base particles. These coloured particles or "speckles" are added to the liquid compositions of the previous examples for consumer desirable aesthetics. The speckles rapidly dissolve when added to the wash.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Wrappers (AREA)
  • Packages (AREA)

Claims (7)

  1. Flüssige Zusammensetzung umfassend ein durchsichtiges oder durchscheinendes flüssiges Medium und feste Teilchen, die innerhalb des flüssigen Mediums enthalten sind, das dadurch gekennzeichnet ist, dass das flüssige Medium weniger als 10 Gew.-% Wasser umfasst, und die Zusammensetzung innerhalb eines Beutels enthalten ist, der aus einem durchsichtigen oder durchscheinenden wasserlöslichen Material angefertigt ist, das dadurch gekennzeichnet ist, dass die Teilchen einen mittleren geometrischen Durchmesser von mindestens 1 Millimeter aufweisen, so dass die einzelnen festen Teilchen von außerhalb des Beutels sichtbar sind, und im flüssigen Medium sinken oder aufschwimmen.
  2. Flüssige Zusammensetzung nach Anspruch 1, wobei das wasserlösliche Beutelmaterial wasserlösliches Polymer umfasst, ausgewählt aus der Gruppe bestehend aus Polyacrylaten und wasserlöslichen Acrylat-Copolymeren, Methylcellulose, Carboxymethylcellulose-Natrium, Dextrin, Ethylcellulose, Hydroxyethylcellulose, Hydroxypropylmethylcellulose, Maltodextrin, Polymathacrylaten und Mischungen davon.
  3. Flüssige Zusammensetzung nach Anspruch 2, wobei das wasserlösliche Beutelmaterial Polyvinylslkohol umfasst.
  4. Flüssige Zusammensetzung nach Anspruch 1, wobei die festen Teilchen einen mittleren geometrischen Durchmesser zwischen 1. mm und 12 mm, vorzugsweise zwischen 1 mm und 5 mm, aufweisen.
  5. Flüssige Zusammensetzung nach Anspruch 1, wobei die festen Teilchen Wirkkomponenten umfassen, ausgewählt aus der Gruppe bestehend aus Bleichmittel, Bleichaktivator, Enzymen, Duftstoff und Mischungen davon.
  6. Flüssige Zusammensetzung nach einem der vorstehenden Ansprüche, wobei wenigstens einige der festen Teilchen farbige, nicht weiße Sprenkel darstellen.
  7. Flüssige Zusammensetzung nach Anspruch 1, die eine Dosiseinheit einer Wäschewasehzusammensetzung darstellt, wobei die Zusammensetzung wenigstens i) anionisches Tensid und ii) Fettsäure umfasst.
EP02702019A 2001-01-19 2002-01-18 Flüssige zusammensetzung im beutel Expired - Lifetime EP1354026B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02702019A EP1354026B2 (de) 2001-01-19 2002-01-18 Flüssige zusammensetzung im beutel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP01870012 2001-01-19
EP01870012A EP1201744A1 (de) 2000-10-31 2001-01-19 Waschmittel
US29389101P 2001-05-24 2001-05-24
US293891P 2001-05-24
PCT/US2002/001500 WO2002057402A1 (en) 2001-01-19 2002-01-18 Liquid composition in a pouch
EP02702019A EP1354026B2 (de) 2001-01-19 2002-01-18 Flüssige zusammensetzung im beutel

Publications (3)

Publication Number Publication Date
EP1354026A1 EP1354026A1 (de) 2003-10-22
EP1354026B1 EP1354026B1 (de) 2005-08-31
EP1354026B2 true EP1354026B2 (de) 2008-12-24

Family

ID=26077520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02702019A Expired - Lifetime EP1354026B2 (de) 2001-01-19 2002-01-18 Flüssige zusammensetzung im beutel

Country Status (11)

Country Link
EP (1) EP1354026B2 (de)
JP (1) JP4357837B2 (de)
AR (1) AR032503A1 (de)
AT (1) ATE303433T1 (de)
AU (1) AU2002235411A1 (de)
BR (1) BR0206467A (de)
CA (1) CA2436861C (de)
DE (1) DE60205861T3 (de)
ES (1) ES2248518T5 (de)
MX (1) MXPA03006464A (de)
WO (1) WO2002057402A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492312B1 (en) 2001-03-16 2002-12-10 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Water soluble sachet with a dishwashing enhancing particle
US20030069154A1 (en) * 2001-08-28 2003-04-10 Unilever Home And Personal Care, Usa, Division Of Conopco, Inc. Water-soluble package containing a fluid composition with a visually discrete capsule or emulsion or dispersion layer
DE10162647A1 (de) * 2001-12-20 2003-07-10 Henkel Kgaa Detergenz-haltige Portion
GB2385598B (en) * 2002-02-26 2005-03-02 Reckitt Benckiser Nv Packaged detergent compositions
GB2385599A (en) 2002-02-26 2003-08-27 Reckitt Benckiser Nv Packaged detergent composition
EP1378564A1 (de) * 2002-07-05 2004-01-07 Cognis Iberia, S.L. Portionierte flüssige Wasch- und Reinigungsmittelzubereitungen
DE10237200A1 (de) * 2002-08-14 2004-03-04 Henkel Kgaa Portionierte Wasch- oder Reinigungsmittelzusammensetzung
PL203892B1 (pl) * 2002-12-20 2009-11-30 Degussa Ciekła kompozycja o charakterze detergenta i środka czyszczącego
DE10320197A1 (de) * 2002-12-20 2004-07-08 Degussa Ag Umhüllte Persauerstoffverbindungen mit kontrollierter Freisetzung, Verfahren zu ihrer Herstellung und ihrer Verwendung
US20040186035A1 (en) * 2003-03-19 2004-09-23 The Procter & Gamble Company Water-soluble, liquid-containing pouch
DE10313453A1 (de) * 2003-03-25 2004-10-14 Henkel Kgaa Portionierte Wasch- oder Reinigungsmittelzusammensetzung
DE10313457A1 (de) * 2003-03-25 2004-10-14 Henkel Kgaa Wasch- oder Reinigungsmittel
DE10313456A1 (de) * 2003-03-25 2004-10-14 Henkel Kgaa Formstabile Reinigungsmittelportion
DE10313458A1 (de) * 2003-03-25 2004-11-18 Henkel Kgaa Wasch- oder Reinigungsmittel
ES2242121T3 (es) 2003-05-07 2005-11-01 Degussa Ag Granulados recubiertos de percarbonato sodico con estabilidad al almacenamiento mejorada.
ES2308209T3 (es) * 2003-06-03 2008-12-01 THE PROCTER & GAMBLE COMPANY Bolsa de detergente.
DE102004018787A1 (de) * 2004-04-15 2005-11-10 Henkel Kgaa Bleichmittelhaltiges flüssiges Wasch- oder Reinigungsmittel
DE102004018789A1 (de) * 2004-04-15 2005-11-10 Henkel Kgaa Flüssiges Wasch- oder Reinigungsmittel mit wasserlöslich umhülltem Bleichmittel
GB0416153D0 (en) * 2004-07-20 2004-08-18 Unilever Plc Laundry product
EP1640444A1 (de) * 2004-09-17 2006-03-29 The Procter & Gamble Company Wasserlöslicher Beutel enthaltend eine Flüssigkeit
DE102004054495A1 (de) 2004-11-11 2006-05-24 Degussa Ag Natriumpercarbonatpartikel mit einer Thiosulfat enthaltenden Hüllschicht
PL1666579T5 (pl) * 2004-11-22 2013-04-30 Procter & Gamble Rozpuszczalna w wodzie saszetka zawierająca ciecz
ES2324359T3 (es) * 2004-12-23 2009-08-05 Unilever N.V. Composiciones detergentes liquidas y uso de las mismas.
MX2007009952A (es) 2005-02-17 2007-09-26 Procter & Gamble Composicion para el cuidado de telas.
WO2006113425A1 (en) 2005-04-14 2006-10-26 Teva Pharmaceutical Industries Ltd. Process for preparing quetiapine fumarate
GB0524659D0 (en) 2005-12-02 2006-01-11 Unilever Plc Improvements relating to fabric treatment compositions
EP1996692B2 (de) 2006-03-22 2020-04-01 The Procter and Gamble Company Flüssige behandlungszusammensetzung in einer einheitsdosis
EP2166078B1 (de) * 2008-09-12 2018-11-21 The Procter & Gamble Company Extrudierte Aufheller enthaltende Partikel für Waschmittel
US8188027B2 (en) 2009-07-20 2012-05-29 The Procter & Gamble Company Liquid fabric enhancer composition comprising a di-hydrocarbyl complex
US8778862B2 (en) * 2012-05-22 2014-07-15 S.C. Johnson & Son, Inc. Concentrated cleaner in water-dissolvable pouch
EP3168286A1 (de) 2015-11-16 2017-05-17 The Procter and Gamble Company Flüssigwaschmittelzusammensetzung mit einem partikel
EP3168285B1 (de) * 2015-11-16 2019-08-14 The Procter and Gamble Company Gel enthaltend eine lamellare phasenzusammensetzung
US9796948B2 (en) * 2016-01-13 2017-10-24 The Procter & Gamble Company Laundry detergent compositions comprising renewable components
CN110713866B (zh) * 2018-07-13 2022-05-03 花王株式会社 衣料用液体洗涤剂组合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929380A (en) 1986-06-27 1990-05-29 Henkel Kommanditgesellschaft Aug Aktien Process for the preparation of a storage-stable liquid detergent composition
US6037319A (en) 1997-04-01 2000-03-14 Dickler Chemical Laboratories, Inc. Water-soluble packets containing liquid cleaning concentrates
EP0991748B1 (de) 1997-06-27 2003-10-22 The Procter & Gamble Company Wasserfreie flüssige sprenkel enthaltende waschmittelzusammensetzungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1303810A (de) * 1969-05-02 1973-01-24
US5362413A (en) * 1984-03-23 1994-11-08 The Clorox Company Low-temperature-effective detergent compositions and delivery systems therefor
GB2194793A (en) * 1987-10-15 1988-03-16 Unilever Plc Mottled liquid detergents
GB8810197D0 (en) * 1988-04-29 1988-06-02 Unilever Plc Encapsulated liquid detergent composition
AU2001262160A1 (en) * 2000-04-14 2001-10-30 Hewitt, Malcolm Water soluble package of liquid cleaning composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929380A (en) 1986-06-27 1990-05-29 Henkel Kommanditgesellschaft Aug Aktien Process for the preparation of a storage-stable liquid detergent composition
US6037319A (en) 1997-04-01 2000-03-14 Dickler Chemical Laboratories, Inc. Water-soluble packets containing liquid cleaning concentrates
EP0991748B1 (de) 1997-06-27 2003-10-22 The Procter & Gamble Company Wasserfreie flüssige sprenkel enthaltende waschmittelzusammensetzungen

Also Published As

Publication number Publication date
EP1354026A1 (de) 2003-10-22
EP1354026B1 (de) 2005-08-31
WO2002057402A1 (en) 2002-07-25
CA2436861C (en) 2007-09-04
DE60205861T2 (de) 2006-06-29
DE60205861D1 (de) 2005-10-06
DE60205861T3 (de) 2009-07-23
AR032503A1 (es) 2003-11-12
CA2436861A1 (en) 2002-07-25
ES2248518T5 (es) 2009-05-14
JP2004518003A (ja) 2004-06-17
MXPA03006464A (es) 2004-10-15
ES2248518T3 (es) 2006-03-16
AU2002235411A1 (en) 2002-07-30
BR0206467A (pt) 2004-02-03
WO2002057402A8 (en) 2003-12-18
JP4357837B2 (ja) 2009-11-04
ATE303433T1 (de) 2005-09-15

Similar Documents

Publication Publication Date Title
EP1354026B2 (de) Flüssige zusammensetzung im beutel
EP1309670B1 (de) Flüssige zusammensetzung
US7074748B2 (en) Liquid composition
EP1431384B2 (de) Einkammer-Einzelportion Textilbehandlungsmittel enthaltend in Beuteln verpackte Zusammensetzungen mit nicht-kationischen Weichspülmitteln
EP1431383B1 (de) Einkammer-Einzelportion Textilbehandlungsmittel enthaltend in Beuteln verpackte Zusammensetzungen mit kationischen Weichspülmitteln
US6878679B2 (en) Pouched compositions
US6881713B2 (en) Pouched compositions
EP1276843B1 (de) Zusammensetzungen in beuteln
CA2404689C (en) Multi-compartment pouch comprising separate solid and liquid components
US20030017955A1 (en) Pouched compositions
EP1431382A1 (de) Einkammer-Einzelportion Textilbehandlungsmittel enthaltend in Beuteln verpackte Zusammensetzungen mit nicht-kationischen Weichspülmitteln
EP1262539B1 (de) Beutelformzusammensetzungen
EP1431381A1 (de) Einkammer-Einzelportion Textilbehandlungsmittel enthaltend in Beuteln verpackte Zusammensetzungen mit kationischen Weichspülmitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040513

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60205861

Country of ref document: DE

Date of ref document: 20051006

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2248518

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HENKEL KGAA

Effective date: 20060531

NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL KGAA

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAS Information related to reply of patent proprietor to notice(s) of opposition deleted

Free format text: ORIGINAL CODE: EPIDOSDOBS3

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20080123

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

27A Patent maintained in amended form

Effective date: 20081224

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

NLR2 Nl: decision of opposition

Effective date: 20081224

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20090317

Kind code of ref document: T5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081231

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090119

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110107

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110221

Year of fee payment: 10

BERE Be: lapsed

Owner name: THE *PROCTER & GAMBLE CY

Effective date: 20120131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170117

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210105

Year of fee payment: 20

Ref country code: ES

Payment date: 20210205

Year of fee payment: 20

Ref country code: GB

Payment date: 20210106

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60205861

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220119