EP1349816A1 - Substrat en verre pourvu d' l ments en verre et en relief - Google Patents

Substrat en verre pourvu d' l ments en verre et en relief

Info

Publication number
EP1349816A1
EP1349816A1 EP01271827A EP01271827A EP1349816A1 EP 1349816 A1 EP1349816 A1 EP 1349816A1 EP 01271827 A EP01271827 A EP 01271827A EP 01271827 A EP01271827 A EP 01271827A EP 1349816 A1 EP1349816 A1 EP 1349816A1
Authority
EP
European Patent Office
Prior art keywords
substrate
elements
glass
electrodes
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01271827A
Other languages
German (de)
English (en)
Inventor
Didier Jousse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1349816A1 publication Critical patent/EP1349816A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/065Forming profiled, patterned or corrugated sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/037Re-forming glass sheets by drawing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/864Spacers between faceplate and backplate of flat panel cathode ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • H01J9/242Spacers between faceplate and backplate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure

Definitions

  • the invention relates to a glass substrate provided with glass elements arranged in relief over a part of its surface.
  • a plasma screen essentially consists of two flat glass substrates. On at least one of the substrates are deposited one or more networks of electrodes, a layer of dielectric material and layers made of phosphor materials corresponding for example to the colors green, red and blue. Before being joined together, the glass substrates also receive barriers whose functions consist in forming a multitude of cells which isolate the phosphors therefrom, and in maintaining a distance between the two glass substrates.
  • the barriers also qualified as “ribs” are produced independently of the glass substrates and attached to the substrate.
  • the "ribs” are obtained by depositing a glass frit associated with one of the substrates by a process which however presents slow stages such as screen printing, sandblasting, as well as complex and costly stages requiring in particular recycling dust generated during the sanding step which is not without creating some pollution problems. Furthermore, we have noticed a functional degradation of the phosphors which would be due to the deposition of impurities on the ribs generated during the process for obtaining the ribs.
  • the object of the invention is therefore to propose a glass substrate provided with glass elements arranged in relief in order to constitute in particular “ribs” which do not generate the drawbacks of the prior art and allow cost savings on the manufacture of products using such a substrate.
  • the glass substrate comprising glass elements arranged in relief over a part of its surface, is characterized in that said glass elements are incorporated intrinsically into the substrate.
  • the body of the substrate has two opposite parallel faces, the elements being integrated into at least one of the two faces.
  • the glass elements extend along at least one line substantially parallel to one side of the substrate; they can form at least one continuous low wall or form isolated studs. Preferably, they constitute regularly spaced parallel lines, with a pitch p which can vary from 0.2 to
  • the section of the elements can take various forms.
  • the section is for example of triangular shape, the base of the triangle being integrated into the substrate. It can also have a concave curved geometry at the level of the body of the substrate, and a substantially straight neck at the top.
  • the section is in the form of an arch such that the volume constitutes a half-cylinder.
  • the height of these elements can vary from 0.15 to 12 mm, the top of these elements can form a flat whose width is less than 500 ⁇ m while their base can have a width of 50 vm to 50 mm.
  • One mode of use of the structured substrate of the invention is in particular that of a plasma screen which comprises said structured substrate constituting the rear face of the screen, and a flat substrate constituting the front face of the screen and provided on its internal face opposite the internal face of the substrate structured with a first network of electrodes, the plasma screen being characterized in that a second network of electrodes substantially perpendicular to the first network is disposed on the internal face of the substrate structured in the space existing between the elements in relief while a dielectric covers said second array of electrodes and phosphors are housed in said space above the dielectric.
  • the second network of rear face electrodes substantially perpendicular to the first network of front face is arranged on the external face of the structured substrate and opposite the space existing between the elements in relief while that luminophores occupy in surface the space existing between the elements in relief.
  • the rear face electrodes are advantageously placed on the external face of the substrate, that is to say outside the screen and not inside the screen.
  • a third network of electrodes may be provided parallel to the second network, arranged on the external face of the substrate and at 'opposite vertices of the elements in relief, while lumiphores occupy in surface the space existing between the elements in relief.
  • the structured substrate of the invention in particular in its use for a plasma screen, comprises a multitude of walls, constituting the "ribs", parallel to each other and extending from one edge of the substrate to the opposite edge, the two lateral walls of the two respective edges of the substrate being of greater width than the intermediate walls in order to ensure a sufficient rest and contact surface in this peripheral zone for sealing the two substrates of the screen.
  • the structured substrate of the invention can of course be used in other embodiments, the elements in relief being able to constitute simple spacers between two walls, for example between two faces of an FED screen for example, or between a bottom and a cover of a flat lamp.
  • the process for manufacturing the structured substrate is characterized in that the substrate is obtained by extrusion by introducing flat glass under high pressure into a heated die so that the glass reaches a temperature close to that of softening.
  • glass is extruded by means of a die to form an intermediate substrate incorporating elements in relief, substrate having a cross section of shape substantially identical to that which is to be obtained to the nearest homothetic ratio, then the intermediate substrate is stretched to form the final substrate of desired section.
  • FIG. 2 is a partial schematic sectional view of a plasma screen according to the invention.
  • FIG. 3 and 4 are alternative embodiments of Figure 2;
  • FIG. 5 schematically illustrates a device for implementing the process for obtaining a structured substrate according to the invention
  • - Figure 6 is a sectional view from above of the bottom of the die illustrated in the device of Figure 5; - Figures 7a to 7d illustrate in section and partially several variants of geometry of the relief elements incorporated in a substrate of the invention;
  • FIG. 8 is a partial schematic sectional view of a plasma screen according to the invention from the geometry of the substrate illustrated in Figure 7b;
  • a conventional known plasma screen as illustrated in FIG. 1 consists of a first glass substrate 10 and a second substrate 11 which are parallel and arranged one opposite the other to constitute the rear face and the front of the screen.
  • the substrates are flat, that is to say having no particular element integrated into their surface.
  • the electrodes 12 on the rear face are covered with a dielectric 14 based on elements with a low melting point such as PbO, and the electrodes 13a and 13b, an ITO layer for example, are covered with a dielectric 15, also based on PbO.
  • the front face electrodes 13a and 13b generally form double electrode tracks, that is to say that they are pairs of two lines of electrodes spaced about 70 to 80 ⁇ and connected to each other. .
  • the electrodes 12 on the rear face of the screen are also covered with a layer 16 of a phosphor. Each phosphor, red, green or blue, is separated by glass-based elements 20 of the "ribs" type extending in the form of continuous walls over almost the entire length of the substrate.
  • the walls of the ribs are also partially covered with phosphors, that is to say up to the thickness of the electrodes.
  • the volume 17 created between the two substrates 10 and 11 and in the channels 21 delimited by the "ribs" 20 is filled with a gas, for example a mixture of neon and xenon.
  • the gas mixture is excited by applying suitable voltages to the electrodes 12, 13a and 13b, which generates Xe + and Ne + ions emitting UN photons. UN photons. then excite the phosphors which convert the excitation energy into visible red, green or blue light.
  • FIG. 2 reproduces the same arrangement of the electrodes as that of FIG. 1 on the front and rear faces of the screen, the phosphors being isolated by the ribs which, not reported as in the prior art, form an integral part of the substrate 11.
  • the ribs extend along several parallel lines spaced regularly by the pitch p.
  • the electrodes 12 on the rear face of the screen are arranged in the channels 21 delimited by the ribs 20, a layer of dielectric 14 covering them and on top of them the phosphors 16.
  • FIG. 3 takes advantage of the new configuration of the structured substrate of the invention, generating a different arrangement of the rear electrodes 12. These electrodes are arranged opposite the channels 21 delimited by the "ribs" 20, and at the exterior of the glass substrate 10 on the external face 24. No dielectric layer of the layer 14 type of the prior art for these electrodes is then necessary because the glass thickness of the substrate 10 very advantageously plays the role of dielectric.
  • the integration of the glass elements is carried out on only one of the faces 22 of the substrate; in another embodiment of the substrate in particular, for a plasma screen, it may be advantageous to establish elements 20 on the two opposite faces 22, 24 of the substrate as illustrated in FIG. 4.
  • the raised elements 20 of the face 24 are at least opposite the walls of the walls of the face 22 so that grooves 25 are created opposite the basins of the face 22 so as to accommodate the electrodes 12 from the rear face in Ag paste.
  • This configuration advantageously provides an imprint that can directly accommodate conductive paste deposited with the squeegee, which allows savings on the supply of screen printing screens and electrode material.
  • FIG. 5 is a sectional view along a plane perpendicular to the plane of the glass ribbon.
  • the device 30 comprises an oven 31, a piston 32 for driving the glass, a die 33 capable of extruding an intermediate glass ribbon 41, a thermal regulation system 34 which makes it possible to give the intermediate ribbon the appropriate temperature for its drawing, a ribbon stretching system 35 to provide a final ribbon of the desired dimensions and cooling means not visible in the figure.
  • a strip of flat glass 40 such as float glass free of bubbles and solid defects is introduced under pressure by means of the piston 32 into the furnace 31 and the die 33.
  • the thickness of the glass can vary from 5 to 20 mm depending on the availability of the base material used and according to the final destination of the structured substrate.
  • the die is heated so that the temperature of the glass can reach that of softening.
  • the bottom 36 of the die is made of graphite for reasons of resistance to abrasion by glass.
  • the die bottom 36 illustrated in FIG. 6, is provided with a cutout 36a, the pattern of which is similar to the section of the final substrate to be obtained, except for a homothetic ratio. It is advantageously removable from the body of the die so that it can be easily changed in order to adapt the type of pattern to the desired profile of the substrate.
  • FIGS. 7a to 7d Several variants of patterns obtained for the glass elements 20 are proposed in FIGS. 7a to 7d by way of nonlimiting examples.
  • FIG. 7a illustrates a form of prismatic “ribs” with a triangular section, the base of the triangle being integrated into the substrate.
  • the top of the triangle is preferably truncated to avoid the peak effect during the operation of the electrodes.
  • the section of the “ribs” of FIG. 7b presents, on the one hand, a concave curved geometry at the level of the body of the substrate, such as consisting of two curves of the exponential type symmetrical with respect to an axis perpendicular to the plane of the substrate, and on the other hand, a substantially straight neck at the top.
  • the radius of curvature of the concave part can vary from 5 to 100 ⁇ m.
  • the “ribs” in FIG. 7c have an arch-shaped section such that the volume of the ribs constitutes a half-cylinder.
  • elements in relief exist on the two faces of the substrate symmetrically to the plane of the body of said substrate.
  • Such a configuration allows symmetrical cooling during the process for forming said substrate and will increase the heat dissipation capacity of the screen in operation thanks to the fin effect provided by the elements in relief.
  • the intermediate substrate ribbon 41 extruded has the section of the ribbon 42 of final substrate to the nearest homothetic ratio. It is then stretched thanks to the stretching means 35 by crossing immediately downstream of the die the thermal regulation system 34 which aims to control and adapt the temperature over the total width of the ribbon which has its asymmetrical profile variable temperature points.
  • the temperature of the tape to be that of softening must be perfectly uniform over the entire width of said tape to guarantee a constant stretching factor f over the entire width of the tape.
  • the stretch factor f can vary from 1 to 20 depending on the final application.
  • the cooling system through which the strip of final substrate 42 passes makes it possible to freeze the final shape of the substrate.
  • Means for traditional cutting of the flat glass not illustrated, or any other suitable means such as a laser, are provided for cutting the strip 42 along its width in order to provide structured substrates 10 to the desired lengths.
  • the substrates thus delivered will constitute the rear faces of plasma screens, the body of the substrate having for example a thickness of 1 mm and the glass elements being 150 ⁇ m in height.
  • the plasma screen of the invention as illustrated in Figure 3 is manufactured in the following manner.
  • the structured substrate 10 is held by suction, by appropriate means, in a horizontal position, its external face 24 devoid of the "ribs" being turned upwards.
  • a uniform layer of silver in the form of paste is deposited by screen printing on this external face.
  • the silver paste is advantageously photosensitive so as to fix it by exposure of the substrate to a UN beam. Also, when the layer has undergone the drying step, the substrate is turned over, internal face 22 provided with “ribs” facing upwards, to receive the bundle UN. intended to sensitize UN activators. photosensitive silver paste.
  • the development of the electrodes 12 is carried out in a known manner by the wet method and is followed by high-temperature cooking of the order of 550 ° C.
  • the substrate with symmetrical reliefs as illustrated in FIG. 7d very advantageously makes it possible to produce silver electrodes self-aligned with the "ribs" inside the screen, from a photosensitive silver paste, without require photomask. For this, it suffices to deposit the photosensitive silver layer on the inside of the screen and to expose it to ultraviolet light by the opposite structured face, on the outside.
  • the “ribs” of the lateral ends of the substrate are not used for the deposition of the electrodes and phosphors, their section can moreover be separate from that of the intermediate ribs.
  • ribs Immediately next to these "ribs" of lateral ends can be reserved "ribs" to accommodate elements involved in the operation of the product such as getters well known to those skilled in the art, these elements placed on the periphery of the image should not be in contact with the phosphors, the plasma, or the sealing frit.
  • the flatness of the vertices of the “ribs” leads to the production, on the external face 24 of the substrate and opposite to said vertices, to a second network of electrodes 12a parallel to the network of electrodes 12 disposed opposite the cuvettes ( Figure 8).
  • the external face 24 is here flat but could just as well be structured as in FIG. 4, grooves would then be arranged not only opposite the bowls but also opposite the vertices.
  • This second network of electrodes allows, by connection to the electrodes 12, rapid repair of the latter if they are possibly damaged.
  • the step following the deposition of the electrodes on the rear face of the screen consists in depositing the phosphors by electrophoresis by polarizing the electrodes.
  • This technique is well known in the manufacture of televisions, the deposit of phosphors being carried out on the front face of the cathode-ray tubes. By polarizing the electrodes of the face 24 of the substrate, the phosphors can thus be deposited on the bottom of the bowls of the channels 21.
  • the voltage values applied to the electrodes are adjusted according to the particular geometry of the "ribs".
  • the geometry of the “ribs” in FIG. 7b which makes it possible to obtain two networks of electrodes adjacent to each other, facilitates the deposition of the luminiphores not only in the bottom of the bowls but also on the walls of the walls.
  • a sealing frit is put in place with a view to securing the two glass substrates of the screen.
  • the structured substrate 10 is placed on a metal support equipped with suction and uniform heating means.
  • a sealing frit is applied to the periphery of the structured substrate 10, that is to say in the cuvettes of the two "ribs" of lateral ends and along the two adjacent sides in the ends of the cuvettes of the intermediate "ribs” .
  • the front face substrate 11 which has the electrodes 13 previously screen-printed is positioned on the structured substrate 10 resting on the top of the "ribs", the electrodes 13 of the substrate 11 extending perpendicular to the electrodes 12 of the substrate 10.
  • L The entire screen is housed in a closed enclosure in which the vacuum is created to create the vacuum between the substrates. Gas is then introduced inside the screen via the gap existing between the two uncompressed substrates. The joining of the two substrates via the sealing frit is then done by compression and heating of the assembly in the enclosure operating under a controlled atmosphere to guarantee high temperature uniformity.
  • the sealing frit it is deposited only on the two sides of the structured substrate 10 which will be arranged vertically in the mounted position of the screen, that is to say along the sides parallel to the "ribs" , which allows the channels 21 formed by the "ribs” to open freely.
  • the channels 21 of the "ribs” are connected by means of a suction cup system to a device for evacuating, purging and filling.
  • the device successively performs the steps of vacuuming the channels, purging under a neutral gas such as argon and filling with the discharge gas.
  • the free circulation of fluids from one channel to another and the direct connection with said device improves the time for carrying out these steps.
  • the resulting efficiency is not negligible since we go from 24 hours for the conventional solution of gas introduction to a few hours by this embodiment, bringing a significant saving on the cost of assembly of the screen .
  • the channels are closed by local heating and mechanical stamping of the edges of the two substrates having no sealing frit.
  • the joining of the other edges associated with the sealing frit is obtained by compression and heating of said edges.
  • Similar implementation steps as regards the use of the structured substrate of the invention can be applied to other embodiments, such as the manufacture of flat lamps.
  • a flat lamp comprises two facing substrates which are kept apart by means of spacers to form a space containing a discharge gas.
  • one of the two substrates is flat while the other is structured, the elements 20 in glass and in relief constituting the spacers.
  • the glass elements are in the form of isolated studs obtained by sawing and grinding of the extruded continuous "ribs".
  • the structured substrate of the invention can be used for any application which either requires maintaining a space between two glass walls, the glass elements 20 acting as spacers, or gives the substrate a new technical property.
  • FED screens and building applications are targeted where it is necessary to maintain a constant distance between two substrates.
  • Mention may be made, for example, of double glazing under vacuum or else double glazing inside which it is desired to circulate a functional liquid.
  • the dimensions of the bases, vertices and heights of the elements in relief 20 and the pitch between the elements as well as the thickness of the body of the substrate vary according to the envisaged application of the structured substrate.
  • the table below summarizes some values for the applications: plasma screen, flat lamp, screen
  • a microlenticular panel thus consists of a substrate according to the invention, flat on one of its faces intended to be placed on the screen, and structured on its opposite face with semi-cylindrical raised elements forming the lenses and as illustrated in FIG. 9.
  • the thickness of the body of the substrate can be between 2 and 5 mm
  • the base of an element in relief 0 or the pitch of the lenses can vary from 0.15 to 2 mm
  • the radius of curvature of the half-cylinders can be between 1 and 3 mm.

Abstract

Substrat en verre comportant des éléments en verre (20) agencés en relief sur une partie de sa superficie, caractérisé en ce que les éléments en verre (20) sont incorporés de manière intrinsèque au substrat. Ce substrat est avantageusement utilisé dans un écran plasma pour lequel la face avant comporte un premier réseau d'électrodes (13a, 13b) et la face arrière, qui est constituée par ledit substrat structuré, comprend un second réseau d'électrodes (12) sensiblement perpendiculaire au premier réseau (13a, 13b) et disposé sur la face externe (23) du substrat structuré, à l'opposé de l'espace (21) existant entre les éléments en relief (20), tandis que des luminophores (16) occupent en superficie l'espace (21) existant entre les éléments en relief.

Description

SUBSTRAT EN VERRE POURVU D'ELEMENTS EN VERRE ET EN RELIEF.
L'invention concerne un substrat en verre pourvu d'éléments en verre agencés en relief sur une partie de sa superficie.
Bien qu'elle ne se limite pas à une telle application, l'invention sera plus particulièrement décrite pour des substrats en verre en référence à la réalisation d'un écran plat émissif et plus précisément d'un écran plasma. D'autres utilisations, telles que pour les écrans FED ou les lampes planes, peuvent également être envisagées. L'expression lampe plane doit être comprise comme englobant des lampes destinées à la fabrication des ordinateurs portables, et des lampes de plus grandes dimensions pour des applications architecturales telles que la réalisation de panneaux publicitaires ou de cloisons, par exemple de bureaux, quelle que soit par ailleurs la technologie de ces lampes. Un écran plasma se compose essentiellement de deux substrats plans en verre. Sur au moins l'un des substrats sont déposés un ou plusieurs réseaux d'électrodes, une couche d'un matériau diélectrique et des couches constituées de matériaux luminophores correspondant par exemple aux couleurs verte, rouge et bleue. Avant d'être assemblés l'un à l'autre, les substrats de verre reçoivent également des barrières dont les fonctions consistent à former une multitude de cellules qui isolent entre eux les luminophores, et à maintenir une distance entre les deux substrats de verre.
Les barrières qualifiées encore de « ribs » sont réalisées indépendamment des substrats en verre et rapportées sur le substrat . Les « ribs » sont obtenues par le dépôt d'une fritte de verre associée à l'un des substrats par un procédé qui présente toutefois des étapes lentes telles que la sérigraphie, le sablage, ainsi que des étapes complexes et coûteuses nécessitant notamment le recyclage des poussières générées lors de l'étape de sablage ce qui n'est pas sans créer quelques problèmes de pollution. Par ailleurs, on s'est aperçu d'une dégradation fonctionnelle des luminophores qui serait due au dépôt d'impuretés sur les ribs engendrées lors du procédé d'obtention des ribs.
En outre, pour assurer un bon fonctionnement quant aux tensions d'amorçage des électrodes, il est nécessaire de recouvrir les électrodes d'un diélectrique dont le dépôt constitue une étape supplémentaire allant dans un sens contraire à l'amélioration toujours souhaitée des coûts de production.
L'invention a donc pour but de proposer un substrat en verre pourvu d'éléments en verre agencés en relief afin de constituer notamment des « ribs » qui n'engendrent pas les inconvénients de l'art antérieur et autoriser des économies de coûts sur la fabrication de produits utilisant un tel substrat.
Selon l'invention, le substrat en verre comportant des éléments en verre agencés en relief sur une partie de sa superficie, est caractérisé en ce que lesdits éléments en verre sont incorporés de manière intrinsèque au substrat. De préférence, le corps du substrat présente deux faces parallèles opposées, les éléments étant intégrés à au moins l'une des deux faces.
Selon une caractéristique, les éléments en verre s'étendent selon au moins une ligne sensiblement parallèle à un côté du substrat ; ils peuvent former au moins un muret continu ou former des plots isolés. De préférence, ils constituent des lignes parallèles régulièrement espacées, d'un pas p pouvant varier de 0,2 à
30 mm, depuis la proximité d'un bord du substrat jusqu'au bord opposé.
Selon une autre caractéristique de l'invention, la section des éléments peut prendre diverses formes. Ainsi, la section est par exemple de forme triangulaire, la base du triangle étant intégrée au substrat. Elle peut également présenter une géométrie incurvée de manière concave au niveau du corps du substrat, et un col sensiblement droit en sommet. En variante, la section est en forme d'arche telle que le volume constitue un demi-cylindre.
Selon d'autres caractéristiques, la hauteur de ces éléments peut varier de 0,15 à 12 mm, le sommet de ces éléments peut former un méplat dont la largeur est inférieur à 500 μm tandis que leur base peut présenter une largeur de 50 vm à 50 mm.
Un mode d'utilisation du substrat structuré de l'invention est en particulier celui d'un écran plasma qui comporte ledit substrat structuré constituant la face arrière de l'écran, et un substrat plat constituant la face avant de l'écran et doté sur sa face interne en regard de la face interne du substrat structuré d'un premier réseau d'électrodes, l'écran plasma étant caractérisé en ce qu'un second réseau d'électrodes sensiblement perpendiculaire au premier réseau est disposé sur la face interne du substrat structuré dans l'espace existant entre les éléments en relief tandis qu'un diélectrique recouvre ledit second réseau d'électrodes et que des luminophores sont logés dans ledit espace par dessus le diélectrique.
Selon une variante d'écran plasma, le second réseau d'électrodes de face arrière sensiblement perpendiculaire au premier réseau de face avant est disposé sur la face externe du substrat structuré et à l'opposé de l'espace existant entre les éléments en relief tandis que des luminophores occupent en superficie l'espace existant entre les éléments en relief.
Dans cette variante d'écran plasma, les électrodes de face arrière sont avantageusement placées sur la face externe du substrat, c'est-à-dire à l'extérieur de l'écran et non pas à l'intérieur de l'écran. Les avantages sont multiples :
- il n'y a plus besoin de diélectrique pour ce réseau d'électrodes car l'épaisseur du substrat apporte la fonction diélectrique ;
- une fois l'écran assemblé, il est toujours possible d'effectuer une réparation sur les électrodes ; - on supprime l'une des sources de pollution interne des écrans liée à l'évaporation et à la combustion incomplète des composés organiques constituant les liants de sérigraphie des électrodes, et également les risques de pollution des luminophores par les matériaux des électrodes de type Ag. Enfin selon cette dernière variante d'écran, et en particulier lorsque les éléments en relief présentent un méplat en leur sommet, il peut être prévu un troisième réseau d'électrodes parallèle au deuxième réseau, disposé sur la face externe du substrat et à l'opposé des sommets des éléments en relief , tandis que des luminiphores occupent en superficie l'espace existant entre les éléments en relief.
Le substrat structuré de l'invention, en particulier dans son utilisation pour un écran plasma, comporte une multitude de murets, constituant les « ribs », parallèles les uns aux autres et s'étendant d'un bord du substrat au bord opposé, les deux murets latéraux des deux bords respectifs du substrat étant de plus grande largeur que les murets intermédiaires afin d'assurer une surface de repos et de contact suffisante dans cette zone périphérique de scellement des deux substrats de l'écran.
Le substrat structuré de l'invention peut bien entendu être utilisé dans d'autres modes de réalisation, les éléments en relief pouvant constituer de simples espaceurs entre deux parois, que ce soit par exemple entre deux faces d'un écran FED par exemple, ou entre un fond et un couvercle d'une lampe plane.
Selon l'invention, le procédé de fabrication du substrat structuré est caractérisé en ce que le substrat est obtenu par extrusion en introduisant du verre plat sous forte pression dans une filière chauffée de manière que le verre atteigne une température proche de celle du ramollissement.
De préférence, du verre est extrudé au moyen d'une filière pour former un substrat intermédiaire incorporant des éléments en relief, substrat présentant une section de forme sensiblement identique à celle que l'on veut obtenir à un rapport homothétique près, puis le substrat intermédiaire est étiré pour constituer le substrat final de section désirée.
De façon plus précise, du verre plat est introduit dans la filière qui est chauffée de manière que le verre atteigne une température proche de celle de ramollissement, le fond de filière étant usiné de façon à présenter la section du substrat intermédiaire à délivrer par extrusion en sortie de la filière, puis l'étirage du substrat intermédiaire est effectué par des moyens d'étirage selon un facteur d'étirage (f), à la température proche de celle de ramollissement du verre.
Dans une variante de procédé, il est possible que l'étirage ait lieu dans la filière. Ce procédé de formage par extrusion permet un contrôle dimensionnel très précis de quelques pour-mille des objets formés, ce qui, combiné à une composition de verre homogène et exempte de défauts, assure un contrôle précis de la capacité électrique constituée par l'électrode et le diélectrique.
Il en résulte une plus grande uniformité pixel à pixel des tensions d'allumage de la décharge ionique, cette uniformité étant en effet dépendante de la hauteur exacte du « rib», du centrage de l'électrode par rapport au luminophore et de l'épaisseur du diélectrique.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit en regard des dessins annexés sur lesquels : - la figure 1 est une vue schématique partielle en coupe d'un écran plasma de l'art antérieur ;
- la figure 2 est une vue schématique partielle en coupe d'un écran plasma conforme à l'invention ;
- les figures 3 et 4 sont des variantes de réalisation de la figure 2; - la figure 5 illustre schématiquement un dispositif de mise en œuvre du procédé d'obtention d'un substrat structuré conforme à l'invention ;
- la figure 6 est une vue en coupe et de dessus du fond de la filière illustrée dans le dispositif de la figure 5 ; - les figures 7a à 7d illustrent en coupe et partiellement plusieurs variantes de géométrie des éléments en relief incorporés dans un substrat de l'invention ;
- la figure 8 est une vue schématique partielle en coupe d'un écran plasma conforme à l'invention à partir de la géométrie du substrat illustrée sur la figure 7b ;
- la figure 9 est une variante supplémentaire de géométrie des éléments en relief.
Un écran plasma connu usuel tel qu'illustré sur la figure 1 se compose d'un premier substrat en verre 10 et d'un second substrat 11 parallèles et disposés l'un en face de l'autre pour constituer respectivement la face arrière et la face avant de l'écran. Les substrats sont plats, c'est-à-dire ne présentant aucun élément particulier intégré dans leur surface.
Sur les faces internes respectives 22, 23 des substrats 10, 11 , en regard l'une de l'autre des substrats sont disposées des couches constituant des réseaux d'électrodes 12 et respectivement 13 qui sont agencés de manière perpendiculaire entre eux constituant ce qu'on appelle respectivement les colonnes et les lignes de l'écran délimitant les pixels.
Les électrodes 12 en face arrière, par exemple en argent, sont recouvertes d'un diélectrique 14 à base d'éléments à bas point de fusion tels que du PbO, et les électrodes 13a et 13b, une couche d'ITO par exemple, sont recouvertes d'un diélectrique 15, également à base de PbO.
Les électrodes 13a et 13b de face avant forment généralement des doubles pistes d'électrodes, c'est-à-dire qu'il s'agit de couples de deux lignes d'électrodes espacées d'environ 70 à 80 μ et reliées entre elles. Les électrodes 12 de face arrière de l'écran sont par ailleurs recouvertes d'une couche 16 d'un luminophore. Chaque luminophore, de couleur rouge, verte ou bleue, est séparé par des éléments à base de verre 20 du type « ribs » s'étendant sous forme de murets continus sur quasi toute la longueur du substrat
10 selon une multitude de lignes parallèles aux bords longitudinaux du substrat et positionnées régulièrement selon un pas p de 0,3 mm par exemple qui est fonction de la taille de l'écran et de sa résolution. Les parois des ribs sont recouvertes également partiellement des luminophores, c'est-à-dire jusqu'au niveau de l'épaisseur des électrodes. Le volume 17 créé entre les deux substrats 10 et 11 et dans les canaux 21 délimités par les « ribs » 20 est rempli d'un gaz, par exemple un mélange de néon et xénon. Lors du fonctionnement de l'écran, le mélange gazeux est excité en appliquant des tensions adaptées sur les électrodes 12, 13a e 13b, ce qui génère des ions Xe+ et Ne+ émettant des photons UN. Les photons UN. excitent alors les luminophores qui convertissent l'énergie excitatrice en lumière visible rouge, verte ou bleue.
Trois variantes d'écran plasma utilisant le substrat structuré de l'invention sont respectivement illustrées sur les figures 2 à 4 ; les éléments communs à l'art antérieur sont repérés par des références identiques. La figure 2 reproduit la même disposition des électrodes que celle de la figure 1 sur les faces avant et arrière de l'écran, les luminophores étant isolés par les ribs qui, non pas rapportées comme dans l'art antérieur, font partie intégrante du substrat 11. Les ribs s'étendent selon plusieurs lignes parallèles espacées régulièrement du pas p. Les électrodes 12 de face arrière de l'écran sont disposées dans les canaux 21 délimités par les ribs 20, une couche de diélectrique 14 les recouvrant et par dessus celles-ci les luminophores 16.
La variante de la figure 3 met à profit la nouvelle configuration du substrat structuré de l'invention, engendrant une disposition différente des électrodes arrière 12. Ces électrodes sont agencées en regard des canaux 21 délimités par les « ribs » 20, et à l'extérieur du substrat en verre 10 sur la face externe 24. Aucune couche de diélectrique du type couche 14 de l'art antérieur pour ces électrodes n'est alors nécessaire car l'épaisseur de verre du substrat 10 joue très avantageusement le rôle de diélectrique.
Si dans les variantes des figures 2 et 3, l'intégration des éléments en verre est réalisée sur une seule des faces 22 du substrat ; dans un autre mode de réalisation du substrat en particulier, pour un écran plasma, il peut être avantageux d'établir des éléments 20 sur les deux faces opposées 22, 24 du substrat tel qu'illustré sur la figure 4. Les éléments en relief 20 de la face 24 sont au moins opposés aux parois des murets de la face 22 de sorte que des gorges 25 sont créées à l'opposé des cuvettes de la face 22 de façon à loger les électrodes 12 de face arrière en pâte d'Ag. Cette configuration fournit avantageusement une empreinte pouvant accueillir directement de la pâte conductrice déposée à la raclette, ce qui permet une économie sur la fourniture des écrans de sérigraphie et du matériau des électrodes.
Le procédé d'obtention d'un substrat conforme à l'invention incorporant de manière intrinsèque les éléments en verre 20 du type « ribs » va à présent être décrit. Le procédé de fabrication d'un écran plasma sera expliqué à la suite de façon à montrer les facilités de sa mise en oeuvre, qui sont procurées grâce à un substrat ainsi structuré.
Le procédé d'obtention du substrat selon un mode de réalisation est expliqué en regard du dispositif 30 illustré schématiquement sur la figure 5 qui est une vue en coupe selon un plan perpendiculaire au plan du ruban de verre. Le dispositif 30 comporte un four 31 , un piston 32 d'entraînement du verre, une filière 33 apte à extruder un ruban en verre intermédiaire 41 , un système de régulation thermique 34 qui permet de conférer au ruban intermédiaire la température adéquate pour son étirage, un système d'étirage 35 du ruban pour fournir un ruban final aux dimensions voulues et des moyens de refroidissement non visibles sur la figure.
Une bande de verre plat 40 tel que du verre flotté exempt de bulles et de défauts solides est introduite sous pression au moyen du piston 32 dans le four 31 et la filière 33. L'épaisseur du verre peut varier de 5 à 20 mm selon la disponibilité du matériau de base utilisé et selon la destination finale du substrat structuré. La filière est chauffée de manière que la température du verre puisse atteindre celle de ramollissement. Le fond 36 de la filière est en graphite pour des raisons de résistance à l'abrasion par le verre.
Le fond de filière 36, illustré sur la figure 6, est pourvu d'une découpe 36a dont le motif est similaire à la section du substrat final à obtenir, à un rapport homothétique près. Il est avantageusement démontable du corps de la filière de manière à pouvoir le changer aisément afin d'adapter le type de motif au profilé souhaité du substrat. Plusieurs variantes de motifs obtenus pour les éléments en verre 20 sont proposés sur les figures 7a à 7d à titre d'exemples non limitatifs.
La figure 7a illustre une forme de « ribs » prismatiques à section triangulaire, la base du triangle étant intégrée au substrat. Le sommet du triangle est de préférence tronqué pour éviter l'effet de pointe lors du fonctionnement des électrodes.
La section des « ribs » de la figure 7b présente, d'une part, une géométrie incurvée de manière concave au niveau du corps du substrat, telle que se composant de deux courbes du type exponentielle symétriques par rapport à un axe perpendiculaire au plan du substrat, et d'autre part, un col sensiblement droit en sommet. Le rayon de courbure de la partie concave peut varier de 5 à 100 μm.
Les « ribs » de la figure 7c présentent une section en forme d'arche telle que le volume des ribs constitue un demi-cylindre.
Il peut être envisagé sur un même substrat de combiner des « ribs » 20 de différentes sections.
Dans la variante de la figure 7d, des éléments en relief existent sur les deux faces du substrat de manière symétrique au plan du corps dudit substrat. Une telle configuration permet un refroidissement symétrique lors du procédé de formage dudit substrat et augmentera la capacité de dissipation thermique de l'écran en fonctionnement grâce à l'effet d'ailettes procuré par les éléments en relief.
En sortie de la filière, le ruban de substrat intermédiaire 41 extrudé présente la section du ruban 42 de substrat final à un rapport homothétique près. Il est ensuite étiré grâce aux moyens d'étirage 35 en traversant immédiatement en aval de la filière le système de régulation thermique 34 qui a pour but de contrôler et d'adapter la température sur la largeur totale du ruban qui présente de part son profil dissymétrique des points de température variable. La température du ruban devant être celle de ramollissement doit être parfaitement homogène sur toute la largeur dudit ruban pour garantir un facteur d'étirage f constant sur toute la largeur de la bande. Le facteur d'étirage f peut varier de 1 à 20 selon l'application finale.
Enfin, le système de refroidissement au travers duquel passe la bande de substrat final 42 permet de figer la forme définitive du substrat. Des moyens de découpe traditionnelle du verre plat non illustrés, ou tout autre moyen adapté tel qu'un laser, sont prévus pour sectionner la bande 42 selon sa largeur afin de fournir des substrats structurés 10 aux longueurs désirées.
Les substrats ainsi délivrés vont constituer les faces arrière d'écrans plasma, le corps du substrat présentant par exemple une épaisseur de 1 mm et les éléments en verre étant de 150 μm de hauteur.
L'écran plasma de l'invention tel qu'illustré sur la figure 3 est fabriqué de la manière suivante.
Le substrat structuré 10 est maintenu par aspiration, grâce à des moyens appropriés, en position horizontale, sa face externe 24 dépourvue des « ribs » étant tournée vers le haut. Une couche uniforme d'argent sous forme de pâte est déposée par sérigraphie sur cette face externe.
La pâte d'argent est avantageusement photosensible de manière à la fixer par exposition du substrat à un faisceau UN. Aussi, lorsque la couche a subi l'étape de séchage, le substrat est retourné, face interne 22 pourvue des « ribs » tournée vers le haut, pour recevoir le faisceau UN. destiné à sensibiliser les activateurs UN. de la pâte d'argent photosensible.
La géométrie en relief du substrat, définie de manière homogène par les
« ribs » 20 qui établissent successivement les murets d'isolement des couleurs et les canaux 21 formant des cuvettes à fond plat et destinées à recevoir les luminophores, permet de focaliser d'autant mieux les UN. en fond de cuvette, de sorte que les électrodes 12 en Ag sont après développement, positionnées précisément selon des lignes opposées aux cuvettes. Aucun photomasque n'est alors nécessaire comme dans l'art antérieur, ce qui représente une économie pécunière supplémentaire dans le procédé de fabrication. En outre, la structure murets-cuvettes intégrée dans le substrat et la méthode de dépôt de la pâte assurent quelle que soit la linéarité des ribs un auto-alignement des électrodes en
Ag, caractéristique essentielle pour garantir une grande uniformité des tensions d'allumage lors du fonctionnement de l'écran. Le développement des électrodes 12 est réalisé de manière connue par voie humide et est suivi d'une cuisson à haute température de l'ordre de 550°C.
Le substrat avec reliefs symétriques comme illustré à la figure 7d permet très avantageusement de réaliser des électrodes d'argent auto-alignées avec les "ribs" à l'intérieur de l'écran, à partir d'une pâte à l'argent photosensible, sans nécessiter de photomasque. Il suffit pour cela de déposer la couche d'argent photosensible du côté intérieur de l'écran et de l'exposer aux ultra-violets par la face structurée opposée, du côté extérieur.
Afin d'obtenir une zone de scellement des deux substrats en verre comme il sera expliqué plus loin, les « ribs » des extrémités latérales du substrat ne sont pas utilisées pour le dépôt des électrodes et luminophores, leur section peut d'ailleurs être distincte de celle des ribs intermédiaires.
Immédiatement à côté de ces « ribs » d'extrémités latérales peuvent être réservées des « ribs » pour loger des éléments intervenant dans le fonctionnement du produit tels que des getters bien connus de l'homme de l'art, ces éléments placés en périphérie de l'image ne devant pas être en contact avec les luminophores, le plasma, ou la fritte de scellement.
Dans la variante de géométrie des « ribs » en référence à la figure 7b, la planéité des sommets des « ribs » conduit à la réalisation, sur la face externe 24 du substrat et à l'opposé desdits sommets, à un second réseau d'électrodes 12a parallèle au réseau d'électrodes 12 disposé à l'opposé des cuvettes (figure 8). La face externe 24 est ici plane mais pourrait tout aussi bien être structurée comme dans la figure 4, des gorges seraient alors disposées non seulement à l'opposé des cuvettes mais aussi à l'opposé des sommets. Ce second réseau d'électrodes permet, par une connexion aux électrodes 12, une réparation rapide de ces dernières si celles-ci sont éventuellement endommagées.
L'étape suivant le dépôt des électrodes de face arrière de l'écran consiste à déposer les luminophores par électrophorèse en polarisant les électrodes. Cette technique est bien connue dans la fabrication des téléviseurs, le dépôt de luminophores étant effectué sur la face avant des tubes cathodiques. En polarisant les électrodes de la face 24 du substrat, les luminophores peuvent ainsi être déposés sur le fond des cuvettes des canaux 21.
Les valeurs de tension appliquées aux électrodes sont ajustées en fonction de la géométrie particulière des « ribs ». La géométrie des « ribs » de la figure 7b, qui permet d'obtenir deux réseaux d'électrodes adjacentes les unes aux autres, facilite le dépôt des luminiphores non seulement dans le fond des cuvettes mais également sur les parois des murets.
Après séchage des luminophores, on procède à la mise en place d'une fritte de scellement en vue de la solidarisation des deux substrats en verre de l'écran. Le substrat structuré 10 est posé sur un support métallique équipé de moyens d'aspiration et de chauffage uniforme. On applique une fritte de scellement sur la périphérie du substrat structuré 10, c'est-à-dire dans les cuvettes des deux « ribs » d'extrémités latérales et le long des deux côtés adjacents dans les extrémités des cuvettes des « ribs » intermédiaires.
Enfin, le substrat 11 de face avant qui présente les électrodes 13 préalablement sérigraphiées est positionné sur le substrat structuré 10 en reposant sur le sommet des « ribs », les électrodes 13 du substrat 11 s'étendant perpendiculairement aux électrodes 12 du substrat 10. L'ensemble de l'écran est logé dans une enceinte fermée dans laquelle le vide est effectué pour réaliser le vide entre les substrats. Du gaz est ensuite introduit à l'intérieur de l'écran via l'interstice existant entre les deux substrats non comprimés. La solidarisation des deux substrats via la fritte de scellement se fait alors par compression et chauffage de l'ensemble dans l'enceinte fonctionnant sous atmosphère contrôlée pour garantir une grande uniformité de température.
Afin de tirer avantage de la structure du substrat avec « ribs » intégrés, une variante dans les étapes de solidarisation des substrats et de remplissage du gaz est envisageable.
Ainsi, concernant la fritte de scellement, celle-ci est déposée uniquement sur les deux côtés du substrat structuré 10 qui seront disposés verticalement en position montée de l'écran, c'est-à-dire le long des côtés parallèles aux « ribs », ce qui permet aux canaux 21 formés par les « ribs » de déboucher librement. Après mise en place du substrat 11 de face avant sur le substrat structuré 10 de face arrière, les canaux 21 des « ribs » sont reliés grâce à un système de ventouses à un dispositif de mise sous vide, de purge et de remplissage. Le dispositif assure successivement les étapes consistant à faire le vide dans les canaux, purger sous un gaz neutre tel que l'argon et remplir avec le gaz de décharge. La libre circulation des fluides d'un canal à l'autre et la mise en connexion directe avec ledit dispositif améliore le temps de réalisation de ces étapes. L'efficacité en résultant n'est pas négligeable puisque l'on passe de 24 heures pour la solution classique d'introduction du gaz à quelques heures par ce mode de réalisation, apportant une économie conséquente sur le coût d'assemblage de l'écran. Une fois le gaz rempli, la fermeture des canaux est obtenue par réchauffement local et estampage mécanique des bords des deux substrats ne présentant pas de fritte de scellement. La solidarisation des autres bords associés à la fritte de scellement est obtenue par compression et chauffage desdits bords. Des étapes similaires de mise en œuvre quant à l'utilisation du substrat structuré de l'invention peuvent être appliquées à d'autres réalisations, telles que la fabrication de lampes planes.
De manière connue, une lampe plane comporte deux substrats en regard qui sont maintenus écartés au moyen d'espaceurs pour constituer un espace contenant un gaz de décharge.
Pour une lampe plane selon l'invention, l'un des deux substrats est plat tandis que l'autre est structuré, les éléments 20 en verre et en relief constituant les espaceurs. Dans une variante d'espaceurs, les éléments en verre sont sous forme de plots isolés obtenus par sciage et meulage des « ribs » extrudées continus. Bien entendu, le substrat structuré de l'invention peut être utilisé pour n'importe quelle application qui, soit nécessite de maintenir un espace entre deux parois en verre, les éléments en verre 20 jouant le rôle d'espaceurs, soit confère au substrat une propriété technique nouvelle.
Sont par exemple visés pour la fonction d'espaceur, les écrans FED et les applications dans le bâtiment où il est nécessaire de maintenir une distance constante entre deux substrats. On peut citer par exemple le double vitrage sous vide ou bien un double vitrage à l'intérieur duquel on souhaite faire circuler un liquide fonctionnel.
Aussi, les dimensions des bases, sommets et hauteurs des éléments en relief 20 et le pas entre les éléments ainsi que l'épaisseur du corps du substrat varient selon l'application envisagée du substrat structuré. Le tableau ci-dessous résume quelques valeurs pour les applications : écran plasma, lampe plane, écran
FED, bâtiment.
Concernant la nouveauté technique que peut procurer un substrat de l'invention, elle peut viser la réalisation de panneaux microlenticulaires qui sont rapportés sur des écrans plats de visualisation afin d'obtenir une perception tridimensionnelle de l'image. Un panneau microlenticulaire est ainsi constitué d'un substrat conforme à l'invention, plat sur l'une de ses faces destinée à être posée sur l'écran, et structuré sur sa face opposée avec des éléments en relief demi- cylindriques formant les lentilles et tels qu'illustrés sur la figure 9. L'épaisseur du corps du substrat peut être comprise entre 2 et 5 mm, la base d'un élément en 0 relief 20 ou encore le pas des lentilles peut varier de 0,15 à 2 mm, et le rayon de courbure des demi-cylindres peut être compris entre 1 et 3 mm.

Claims

REVENDICATIONS
1. Substrat en verre comportant des éléments en verre (20) agencés en relief sur une partie de sa superficie, caractérisé en ce que les éléments en verre (20) sont incorporés de manière intrinsèque au substrat.
2. Substrat selon la revendication 1 , caractérisé en ce que le corps du substrat présente deux faces parallèles opposées, les éléments (20) étant intégrés à au moins l'une des deux faces.
3. Substrat en verre selon la revendication 1 ou 2, caractérisé en ce que les éléments (20) s'étendent selon au moins une ligne sensiblement parallèle à un côté du substrat.
4. Substrat selon la revendication 3, caractérisé en ce que les éléments (20) forment au moins un muret continu.
5. Substrat selon la revendication 3, caractérisé en ce que les éléments (20) forment des plots isolés.
6. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments (20) s'étendent selon plusieurs lignes parallèles espacées régulièrement depuis la proximité d'un bord du substrat jusqu'au bord opposé.
7. Substrat selon la revendication 6, caractérisé en ce que les lignes parallèles sont espacées les unes des autres d'un pas (p) variant de 0,2 à 50 mm.
8. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments (20) présentent une section de forme triangulaire, la base du triangle étant intégrée au substrat.
9. Substrat selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les éléments (20) présentent une géométrie incurvée de manière concave au niveau du corps du substrat, et un col sensiblement droit en sommet.
10. Substrat selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les éléments (20) présentent une section en forme d'arche.
11. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments (20) présentent une hauteur comprise entre
0,15 et 12 mm.
12. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que le sommet des éléments (20) forme un méplat dont la largeur est inférieure à 500 μ .
13. Substrat selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments (20) présentent une base de largeur variant de 50 μm à 50 mm.
14. Substrat selon la revendication 3, caractérisé en ce qu'il comporte une multitude de murets parallèles les uns aux autres et s'étendant d'un bord du substrat au bord opposé, les deux murets latéraux des deux bords respectifs du substrat étant de plus grande largeur que les murets intermédiaires.
15. Utilisation d'un substrat selon l'une quelconque des revendications précédentes dans la réalisation d'un écran de type visualisation, tel qu'un écran plasma.
16. Utilisation d'un substrat selon l'une quelconque des revendications 1 à 14 dans la réalisation d'une lampe plane.
17. Ecran plasma comportant un substrat structuré (10) selon l'une quelconque des revendications 1 à 14 constituant la face arrière de l'écran, et un substrat plat (11) constituant la face avant de l'écran, le substrat plat étant doté sur sa face interne (22) en regard de la face interne du substrat structuré d'un premier réseau d'électrodes (13a, 13b), caractérisé en ce qu'un second réseau d'électrodes (12) sensiblement perpendiculaire au premier réseau (13a, 13b) est disposé sur la face interne (22) du substrat structuré dans l'espace (21) existant entre les éléments en relief (20) tandis qu'un diélectrique (14) recouvre ledit second réseau d'électrodes (12) et que des luminophores (16) sont logés dans ledit espace (21) par dessus le diélectrique (14).
18. Ecran plasma comportant un substrat structuré (10) selon l'une quelconque des revendications 1 à 14 constituant la face arrière de l'écran et un substrat plat (11) constituant la face avant de l'écran, le substrat plat étant doté sur sa face interne (22) en regard de la face interne du substrat structuré d'un premier réseau d'électrodes (13a, 13b), caractérisé en ce qu'un second réseau d'électrodes (12) sensiblement perpendiculaire au premier réseau (13a, 13b) est disposé sur la face externe (23) du substrat structuré et à l'opposé de l'espace (21) existant entre les éléments en relief (20) tandis que des luminophores (16) occupent en superficie l'espace (21) existant entre les éléments en relief.
19. Ecran plasma comportant un substrat structuré (10) selon l'une quelconque des revendications 1 à 14 constituant la face arrière de l'écran et un substrat plat (11) constituant la face avant de l'écran, le substrat plat étant doté sur sa face interne (22) en regard de la face interne du substrat structuré d'un premier réseau d'électrodes (13a, 13b), caractérisé en ce qu'un deuxième réseau d'électrodes (12) sensiblement perpendiculaire au premier réseau (13a, 13b) est disposé sur la face externe (23) du substrat structuré et à l'opposé de l'espace (21) existant entre les éléments en relief (20), et en ce qu'un troisième réseau d'électrodes (12a) parallèle au deuxième réseau (12) est disposé sur la face externe (23) du substrat et à l'opposé des sommets des éléments en relief (20), tandis que des luminiphores (16) occupent en superficie l'espace (21) existant entre les éléments en relief.
20. Lampe plane comportant un substrat structuré selon l'une quelconque des revendications 1 à 14, et un autre substrat agencé en regard du substrat structuré, les deux substrats étant maintenus espacés au moyen des éléments en relief (20).
21. Procédé de fabrication d'un substrat selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'on obtient le substrat par extrusion en introduisant du verre plat sous forte pression dans une filière (33) chauffée de manière que le verre atteigne une température proche de celle du ramollissement.
22. Procédé de fabrication d'un substrat selon la revendication 21 , caractérisé en ce que du verre est extrudé au moyen de la filière (33) pour former un substrat intermédiaire (41) incorporant des éléments en relief, substrat présentant une section de forme sensiblement identique à celle que l'on veut obtenir à un rapport homothétique près, puis le substrat intermédiaire est étiré pour constituer le substrat final (42) de section désirée.
23. Procédé selon la revendication 22, caractérisé en ce que du verre plat est introduit dans la filière (33) chauffée de manière que le verre atteigne une température proche de celle de ramollissement, le fond de filière étant usiné de façon à présenter la section du substrat intermédiaire à délivrer par extrusion en sortie de la filière, puis l'étirage du substrat intermédiaire est effectué par des moyens d'étirage (35) selon un facteur d'étirage (f), à la température proche de celle de ramollissement du verre.
24. Procédé selon la revendication 22, caractérisé en ce que l'étirage a lieu dans la filière.
EP01271827A 2000-12-22 2001-11-28 Substrat en verre pourvu d' l ments en verre et en relief Withdrawn EP1349816A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0017362 2000-12-22
FR0017362A FR2818634B1 (fr) 2000-12-22 2000-12-22 Substrat en verre pourvu d'elements en verre et en relief
PCT/FR2001/003756 WO2002051760A1 (fr) 2000-12-22 2001-11-28 Substrat en verre pourvu d'éléments en verre et en relief

Publications (1)

Publication Number Publication Date
EP1349816A1 true EP1349816A1 (fr) 2003-10-08

Family

ID=8858453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01271827A Withdrawn EP1349816A1 (fr) 2000-12-22 2001-11-28 Substrat en verre pourvu d' l ments en verre et en relief

Country Status (11)

Country Link
US (1) US7419415B2 (fr)
EP (1) EP1349816A1 (fr)
JP (1) JP2004523453A (fr)
KR (1) KR100873931B1 (fr)
CN (1) CN1243676C (fr)
CZ (1) CZ20031629A3 (fr)
FR (1) FR2818634B1 (fr)
HK (1) HK1063774A1 (fr)
PL (1) PL198101B1 (fr)
RU (1) RU2276113C2 (fr)
WO (1) WO2002051760A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391753B1 (fr) * 2001-05-09 2010-12-15 Hamamatsu Photonics K. K. Lentille optique
CA2599993A1 (fr) 2004-03-04 2005-09-22 Quantum Quartz, Llc Procede et dispositif pour produire en continu du verre pour connecteurs de fibres optiques et autres composants a tolerance serree
JP4342428B2 (ja) * 2004-07-15 2009-10-14 シャープ株式会社 液晶表示パネルおよびその製造方法
JP2006225170A (ja) * 2005-02-15 2006-08-31 Canon Inc 加熱延伸装置及びこれを用いたガラススペーサの製造方法
KR100612289B1 (ko) * 2005-02-22 2006-08-11 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100795518B1 (ko) * 2006-06-12 2008-01-16 금호전기주식회사 평판형 형광램프 및 그 제조방법
US7495487B2 (en) * 2007-04-09 2009-02-24 Micron Technology, Inc. Delay-locked loop (DLL) system for determining forward clock path delay
US20100065105A1 (en) * 2008-09-12 2010-03-18 Francois Andre Koran Thin Film Photovoltaic Module Having a Contoured Substrate
US8179032B2 (en) * 2008-09-23 2012-05-15 The Board Of Trustees Of The University Of Illinois Ellipsoidal microcavity plasma devices and powder blasting formation
US8124868B2 (en) 2008-12-16 2012-02-28 Solutia Inc. Thin film photovoltaic module with contoured deairing substrate
WO2011096837A1 (fr) * 2010-02-05 2011-08-11 Общество с ограниченной ответственностью "ДиС ПЛЮС" Procédé de formation d'une surface émettrice de lumière et dispositif d'éclairage mettant en œuvre ce procédé
KR101771557B1 (ko) 2011-01-05 2017-08-25 엘지전자 주식회사 디스플레이 장치
US9003835B2 (en) * 2011-05-31 2015-04-14 Corning Incorporated Precision roll forming of textured sheet glass
WO2022072257A1 (fr) * 2020-10-02 2022-04-07 Corning Incorporated Procédés et appareil de fabrication d'un ruban de verre

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045225A1 (fr) * 1998-03-03 1999-09-10 Dansk Teknologisk Institut Fenetre comprenant un panneau isolant et un chassis, son procede de production et valve utilisee pour realiser ce procede

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425454A (en) * 1965-04-16 1969-02-04 Bell & Richardson Inc De Glass-resin composite structure
US3622298A (en) * 1969-08-13 1971-11-23 Owens Corning Fiberglass Corp Method and apparatus for manufacturing glass films
WO1992015636A1 (fr) * 1991-02-28 1992-09-17 Sekisui Kagaku Kogyo Kabushiki Kaisha Feuille de revetement et procede de realisation d'objets moules utilisant cette feuille
US5990854A (en) * 1993-08-03 1999-11-23 Plasmaco, Inc. AC plasma panel with system for preventing high voltage buildup
JP2716013B2 (ja) * 1995-08-11 1998-02-18 日本電気株式会社 カラープラズマディスプレイパネルおよびその製造方法
JPH09213215A (ja) * 1996-01-30 1997-08-15 Nippon Sheet Glass Co Ltd プラズマディスプレイ装置及びプラズマディスプレイ装置用ガラス基板の製造方法
US5840461A (en) * 1996-04-03 1998-11-24 Konica Corporation Process for producing cylindrical substrate for image formation
JP2000203857A (ja) * 1999-01-08 2000-07-25 Nippon Sheet Glass Co Ltd ガラススペ―サの製造方法
US6674238B2 (en) * 2001-07-13 2004-01-06 Pioneer Corporation Plasma display panel
JP2003203571A (ja) * 2002-01-08 2003-07-18 Pioneer Electronic Corp プラズマディスプレイパネル

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045225A1 (fr) * 1998-03-03 1999-09-10 Dansk Teknologisk Institut Fenetre comprenant un panneau isolant et un chassis, son procede de production et valve utilisee pour realiser ce procede

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO02051760A1 *

Also Published As

Publication number Publication date
FR2818634B1 (fr) 2003-10-24
FR2818634A1 (fr) 2002-06-28
CN1243676C (zh) 2006-03-01
JP2004523453A (ja) 2004-08-05
HK1063774A1 (en) 2005-01-14
US7419415B2 (en) 2008-09-02
PL198101B1 (pl) 2008-05-30
KR20030062428A (ko) 2003-07-25
PL362057A1 (en) 2004-10-18
CN1483006A (zh) 2004-03-17
US20040045321A1 (en) 2004-03-11
KR100873931B1 (ko) 2008-12-15
RU2276113C2 (ru) 2006-05-10
CZ20031629A3 (cs) 2004-12-15
WO2002051760A1 (fr) 2002-07-04

Similar Documents

Publication Publication Date Title
WO2002051760A1 (fr) Substrat en verre pourvu d'éléments en verre et en relief
EP1054428B1 (fr) Joint de scellement pour écrans d'affichage plats
FR2662534A1 (fr) Panneau d'affichage a plasma et son procede de fabrication.
FR2788878A1 (fr) Procede de fabrication d'un panneau d'affichage et dispositif d'affichage
FR2730333A1 (fr) Dispositif d'affichage par emission de rayonnement
FR2836584A1 (fr) Panneau electroluminescent dote d'elements d'extractions de lumiere
WO2009138682A2 (fr) Lampe plane a emission par effet de champ et sa fabrication
FR2872341A1 (fr) Lampe fluorescente pour ecran plat et son procede ou methode de fabrication
CA2494689A1 (fr) Lampe plane, procede de fabrication et application
EP0968512B1 (fr) Panneau a plasma bi-substrat
EP0867912A1 (fr) Pose d'espaceurs dans un écran plat de visualisation
EP1952418A1 (fr) Panneau a plasma dote d'un reseau de concentrateurs
FR2819097A1 (fr) Structure d'electrodes de maintien pour dalle avant de panneau de visualisation a plasma
FR2792454A1 (fr) Procede de fabrication d'un panneau a plasma
FR2764438A1 (fr) Procede de realisation d'une couche dielectrique comportant des motifs en relief, sur une dalle de panneau a plasma
EP1459346A1 (fr) Dalle de panneau a plasma comprenant des moyens pour re-diffuser les rayonnements uv
EP1543536B1 (fr) Panneau de visualisation a plasma a electrodes coplanaires de largeur constante
CA2406447A1 (fr) Cadre en verre
FR2797992A1 (fr) Composition pour la realisation d'un reseau noir procede de realisation d'un reseau noir et panneau d'affichage au plasma comprotant un tel reseau noir
FR2787632A1 (fr) Procede de fabrication d'un panneau d'affichage au plasma et panneau d'affichage au plasma realise par ledit procede
FR2786607A1 (fr) Perfectionnement aux panneaux a plasma de type coplanaire
FR2797991A1 (fr) Panneau d'affichage au plasma a contraste et colorimetrie ameliorees et procede fabrication d'un tel panneau
FR2787631A1 (fr) Procede de fabrication d'un panneau a plasma
FR2809863A1 (fr) Panneau matriciel de visualisation a plasma comportant des luminophores sur la dalle avant
FR2868200A1 (fr) Dalle et panneau a plasma dotes d'une couche de reflexion sous la couche de luminophores

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20090910

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121129