EP1346422A1 - Organic field-effect transistor, method for structuring an ofet and integrated circuit - Google Patents

Organic field-effect transistor, method for structuring an ofet and integrated circuit

Info

Publication number
EP1346422A1
EP1346422A1 EP01999978A EP01999978A EP1346422A1 EP 1346422 A1 EP1346422 A1 EP 1346422A1 EP 01999978 A EP01999978 A EP 01999978A EP 01999978 A EP01999978 A EP 01999978A EP 1346422 A1 EP1346422 A1 EP 1346422A1
Authority
EP
European Patent Office
Prior art keywords
layer
ofet
structuring
organic
functional polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01999978A
Other languages
German (de)
French (fr)
Inventor
Adolf Bernds
Wolfgang Clemens
Peter Haring
Heinrich Kurz
Borislav Vratzov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Amo GmbH
Original Assignee
Siemens AG
Amo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Amo GmbH filed Critical Siemens AG
Publication of EP1346422A1 publication Critical patent/EP1346422A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/821Patterning of a layer by embossing, e.g. stamping to form trenches in an insulating layer

Definitions

  • the invention relates to an organic field-effect transistor, a method for structuring an OFET and an integrated circuit with improved structuring of the functional polymer layers.
  • Organic integrated circuits based on OFETs are used for microelectronic mass applications and disposable products such as identification and product "tags".
  • a "tag” is e.g. an electronic bar code as it is attached to goods or on suitcases.
  • OFETs have a wide range of uses as RFID tags: radio frequency identification tags that do not only have to be arranged on the surface. OFETs for these applications can do without the excellent performance of silicon technology, but this should ensure low manufacturing costs and mechanical flexibility.
  • the components such as Electronic bar codes are typically one-way products and are only economically interesting if they are manufactured in inexpensive processes.
  • the structured layer can only be structured with other known methods (such as printing) in such a way that the length 1 is the distance between
  • Designated source and drain electrode and thus represents a measure of the power density of the OFET is at least 30 to 50 microns. However, lengths 1 of less than 10 ⁇ m are aimed for, so that apart from the elaborate lithography method, currently no structuring method seems sensible.
  • the object of the invention is therefore to provide a cost-effective and mass-production method for structuring OFETs with high resolution. Furthermore, it is an object of the invention to create a more powerful OFET, which is equipped with more structured layers, and a more compact OFET, which can be produced with a smaller distance 1.
  • the invention relates to an organic field-effect transistor (OFET), comprising at least the following layers on a substrate: an organic semiconductor layer between and above at least one source and at least one drain electrode which are made of a conductive organic material, an organic insulation layer over the semiconducting layer and an organic conductor layer, the conductor layer and at least one of the other two layers being structured.
  • OFET organic field-effect transistor
  • the invention also relates to a method for structuring an OFET Squeegee at least one functional polymer into a negative form.
  • the invention relates to an integrated circuit which comprises at least one OFET, which has at least one structured conductor layer and a further structured layer.
  • a negative form is a structured layer or a part of a structured layer that contains depressions into which the functional polymer, which for example forms an electrode of an OFET or a semiconductor or an insulator layer, is filled by doctor blades.
  • the method comprises the following steps a) on a substrate or a lower layer, a, if necessary. full-surface molded layer, which is not applied to the area to be structured.
  • This molded layer is not the functional polymer (i.e. semiconducting, conductive or insulating layer), but another organic material that serves as a shape or cliché for the conductive organic electrode layer. This other organic material should have insulating properties.
  • the molding layer receives depressions corresponding to the structures by imprinting (pressing in a stamp impression with subsequent hardening by exposure), c) the functional polymer is then knife-coated into these depressions in liquid form, as a solution and / or as a melt.
  • the negative shape of the structure on the molding layer can be produced on the substrate or a lower layer by the imprint method, which is a technique which is mature in the field of electronic and microelectronic components.
  • the material of the negative form can be a UV-curing lacquer that has indentations after imprinting and exposure. Varnishes suitable for this purpose are commercially available and the method of structuring them by imprinting is known from the literature.
  • a stamp is pressed onto the uncured molded polymer, which is applied as a layer on the substrate or a lower layer, in such a way that indentations occur in the manner in which the structuring is to take place.
  • the layer provided with depressions is then hardened either thermally or by irradiation, which creates the solid molded layer into which the functional polymer can be knife-coated.
  • doctor blade method is that the difficult structuring of functional polymers is prepared by the well-established and proven imprint method. This means that a rich technical background can be used and extremely fine structures can be achieved.
  • the doctor blade method is also not material-specific. Rather, with the doctor method, polyaniline, but also any other conductive organic material, such as Polypyrrol, can be used to manufacture electrodes. Likewise, any other organic material such as Polythiophenes as semiconductors and / or polyvinylphenol as insulators are knife-coated and thus structured, that is to say the entire OFET.
  • the negative mold is removed after the functional polymer has cured, so that any difference in height between the functional polymer and the negative mold that may result from evaporation of the solvent or shrinkage is reduced.
  • the functional polymers can largely be left in their optimal consistency.
  • polyaniline as a conductive organic material has a certain viscosity with optimal conductivity. If, for example, polyaniline is to be printed and not coated, its viscosity must be based on one of the printing methods This usually means a loss in conductivity.
  • the viscosity range for doctoring is much larger than for printing, so that there is generally no need to make any changes in the viscosity of the organic material.
  • an advantage of the doctor blade method is the ability to apply thick layers.
  • the conductivity of 1 ⁇ m thick polymer electrodes is effectively higher than with the usual 0.2 ⁇ m layer thickness.
  • “Functional polymer” here means any organic, organometallic and / or inorganic material that is functionally involved in the construction of an OFET and / or an integrated circuit made up of several OFETs. These include, for example, the conductive component (eg polyaniline), the one Electrode forms the semiconducting component that the
  • organic material Everything that is based on organic material is referred to here briefly as “organic”, the term “organic material” encompassing all types of organic, organometallic and / or inorganic plastics, which are referred to in English as “plastics”, for example. These are all types of substances with the exception of classic semiconductors (germanium, silicon) and the typical metallic leads. ter. A restriction in the dogmatic sense ' to organic material as carbon-containing material is therefore not intended, rather the broad use of, for example, silicones is also contemplated. Furthermore, the term should not be restricted to polymeric or oligomeric materials, but the use of “small molecules” is also conceivable.
  • each layer of an OFET to which a layer to be structured is applied is referred to here as the “lower layer”.
  • the molding layer made of the molding polymer adjoins the “lower layer” or the substrate.
  • the shape polymer is not defined here by the term “polymer” to be in a polymeric state of aggregation; rather, this substance can also be any plastics that can be used in practice to form a negative shape.
  • Figure 1.1 shows the substrate or a lower layer 1 onto which the molding layer of the negative mold 2, for example made of a molding polymer such as a UV-curable lacquer, is applied over the entire surface, for example.
  • the molding layer 2 is embossed with a stamp 4, as in FIG. 1.2. shown, provided with depressions, so there are 2 depressions with the stamp 4, which can be made of silicon dioxide (Si0 2 ), for example, in the molded layer. While the stamp 4 impresses the depressions 12, the molding layer 2 is irradiated with UV light, as a result of which the molding polymer 2 with permanent formation of the
  • Wells 12 cures. This creates the depressions 12 in the molded layer 2, as shown in FIG. 1.3. are shown.
  • the stamp 4 is pulled out of the molding layer 2 after the embossing has ended.
  • the functional polymer 8 (for example polyaniline) is scraped into the recesses 12 using a doctor blade 9 (FIG. 1.4.).
  • Figure 1.5 you can see how in the manufacture OFET the functional polymer 8. fills the depressions 12 of the molded layer 2.
  • Figure 2 shows a further embodiment of the method in a continuous process or continuous web printing.
  • the tape made of substrate or lower layer 1 with the molded polymer 2, which can be a UV-curable but also a thermally curable lacquer.
  • This band is then subjected to 10 different work steps from left to right, as indicated by arrow 13, along several pressure rollers. First, it passes through the shadow plate 3, with which the not yet hardened molded polymer 2 is protected against radiation. Thereafter, depressions are embossed into the molded polymer 2 with the aid of the stamp roller 4, which are immediately hardened with the UV lamp 5 integrated in the stamp roller 4.
  • the direction of the arrow from FIG. 5 indicates the direction of the light cone emitted from FIG. 5.
  • the band provided with depressions 12 in the molding layer 2 then passes under a UV lamp or heater 6 for post-curing, so that a structured lacquer 7 is produced.
  • the functional polymer 8 is then knife-coated into the structured lacquer 7 with the depressions 12, so that the finished structure 11 is produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The invention relates to an organic field-effect transistor, to a method for structuring an OFET and to an integrated circuit with improved structuring of the functional polymer layers. The improved structuring is obtained by introducing, using a doctor blade, the functional polymer in the mold layer in which recesses are initially produced by imprinting.

Description

Beschreibungdescription
Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte SchaltungOrganic field-effect transistor, method for structuring an OFET and integrated circuit
Die Erfindung betrifft einen Organischen Feld-Effekt-Transistor, ein Verfahren zur Strukturierung eines OFETs und eine integrierte Schaltung mit verbesserter Strukturierung der Funktionspolymerschichten.The invention relates to an organic field-effect transistor, a method for structuring an OFET and an integrated circuit with improved structuring of the functional polymer layers.
Organische integrierte Schaltkreise (integrated plastic circuits) auf der Basis von OFETs werden für mikroelektronische Massenanwendungen und Wegwerf-Produkte wie Identifikationsund Produkt-„tags" gebraucht. Ein „tag" ist z.B. ein elektro- nischer Streifencode, wie er auf Waren angebracht wird oder auf Koffern. OFETs haben ein weites Einsatzgebiet als RFID- tags : radio frequency identification - tags, die nicht nur auf der Oberfläche angeordnet sein müssen. Bei OFETs für diese Anwendungen kann auf das excellente Betriebsverhalten der Silizium-Technologie verzichtet werden, aber dafür sollten niedrige Herstellungskosten und mechanische Flexibilität gewährleistet sein. Die Bauteile wie z.B. elektronische Strich- Kodierungen, sind typischerweise Einwegeprodukte und sind wirtschaftlich nur interessant, wenn sie in preiswerten Pro- zessen hergestellt werden.Organic integrated circuits based on OFETs are used for microelectronic mass applications and disposable products such as identification and product "tags". A "tag" is e.g. an electronic bar code as it is attached to goods or on suitcases. OFETs have a wide range of uses as RFID tags: radio frequency identification tags that do not only have to be arranged on the surface. OFETs for these applications can do without the excellent performance of silicon technology, but this should ensure low manufacturing costs and mechanical flexibility. The components such as Electronic bar codes are typically one-way products and are only economically interesting if they are manufactured in inexpensive processes.
Bisher wird, wegen der Herstellungskosten, nur die Leiterschicht des OFETs strukturiert . Die Strukturierung kann nur über einen zweistufigen Prozess („Lithographiemethode" vgl. dazu Applied Physics Letters 73(1), 1998, S.108.110 undSo far, only the OFET conductor layer has been structured due to the manufacturing costs. The structuring can only be carried out using a two-stage process (“lithography method”, cf. Applied Physics Letters 73 (1), 1998, pp. 108.110 and
Mol.Cryst.Liq. Cryst . 189,1990, S.221-225) mit zunächst vollflächiger Beschichtung und darauffolgender Strukturierung, die zudem materialspezifisch ist, bewerkstelligt werden. Mit „Materialspezifität" ist gemeint, dass der beschriebene Pro- zess mit den genannten photochemischen Komponenten einzig an dem leitfähigen organischen Material Polyanilin funktioniert. Ein anderes leitfähiges organisches Material, z.B. Polypyr- rol, lässt sich so nicht ohne weiteres auf diese Art strukturieren.Mol.Cryst.Liq. Cryst. 189, 1990, pp. 221-225) with initially full-surface coating and subsequent structuring, which is also material-specific. By "material specificity" it is meant that the described process with the named photochemical components only works on the conductive organic material polyaniline. Another conductive organic material, for example polypyr- rol, can not be easily structured in this way.
Die fehlende Strukturierung der anderen Schichten, wie zumin- dest die der halbleitenden und der isolierenden Schicht aus Funktionspolymeren, führt zu einer deutlichen Leistungssenkung der erhaltenen OFETs, darauf wird aber trotzdem aus Kostengründen verzichtet . Die strukturierte Schicht kann mit anderen bekannten Verfahren (wie z.B. Drucken) nur so struktu- riert werden, dass die Länge 1, die den Abstand zwischenThe lack of structuring of the other layers, such as at least that of the semiconducting and insulating layers made of functional polymers, leads to a significant reduction in the performance of the OFETs obtained, but is nevertheless dispensed with for cost reasons. The structured layer can only be structured with other known methods (such as printing) in such a way that the length 1 is the distance between
Source und Drain Elektrode bezeichnet und damit ein Maß für die Leistungsdichte des OFETs darstellt zumindest 30 bis 50 μm beträgt. Angestrebt werden aber Längen 1 von unter 10 μm, so dass außer der aufwendigen Lithographie-Methode mo- entan keine Strukturierungsmethode sinnvoll erscheint.Designated source and drain electrode and thus represents a measure of the power density of the OFET is at least 30 to 50 microns. However, lengths 1 of less than 10 μm are aimed for, so that apart from the elaborate lithography method, currently no structuring method seems sensible.
Aufgabe der Erfindung ist daher ein kostengünstiges und massenfertigungstaugliches Verfahren zur Strukturierung von OFETs mit hoher Auflösung zur Verfügung zu stellen. Weiterhin ist Aufgabe der Erfindung, einen leistungsstärkeren, weil mit mehr strukturierten Schichten ausgestatteten sowie einen kompakteren OFET zu schaffen, der mit einem geringeren Abstand 1 herstellbar ist.The object of the invention is therefore to provide a cost-effective and mass-production method for structuring OFETs with high resolution. Furthermore, it is an object of the invention to create a more powerful OFET, which is equipped with more structured layers, and a more compact OFET, which can be produced with a smaller distance 1.
Gegenstand der Erfindung ist ein Organischer Feld-Effekt- Transistor (OFET) , zumindest folgende Schichten auf einem Substrat umfassend: eine organische Halbleiterschicht zwischen und über zumindest einer Source- und zumindest einer Drain-Elek- trode, die aus einem leitenden organischen Material sind, eine organische Isolationsschicht über der halbleitenden Schicht und eine organische Leiterschicht, wobei die Leiterschicht und zumindest eine der beiden anderen Schichten strukturiert ist. Außerdem ist Gegenstand der Erfindung ein Verfahren zur Strukturierung eines OFETs durch Rakeln von zumindest einem Funktionspolymer in eine Negativ- Form. Schließlich ist Gegenstand der Erfindung eine integrierte Schaltung, die zumindest einen OFET, der zumindest eine strukturierte Leiterschicht und eine weitere struktu- rierte Schicht hat, umfasst.The invention relates to an organic field-effect transistor (OFET), comprising at least the following layers on a substrate: an organic semiconductor layer between and above at least one source and at least one drain electrode which are made of a conductive organic material, an organic insulation layer over the semiconducting layer and an organic conductor layer, the conductor layer and at least one of the other two layers being structured. The invention also relates to a method for structuring an OFET Squeegee at least one functional polymer into a negative form. Finally, the invention relates to an integrated circuit which comprises at least one OFET, which has at least one structured conductor layer and a further structured layer.
~ Als Negativ-Form wird eine strukturierte Schicht oder ein Teil einer strukturierten Schicht bezeichnet, die Vertiefungen enthält, in die das Funktionspolymer, das z.B. eine Elektrode eines OFETs oder eine Halbleiter- oder eine Isolatorschicht bildet, durch Rakeln eingefüllt wird. ~ A negative form is a structured layer or a part of a structured layer that contains depressions into which the functional polymer, which for example forms an electrode of an OFET or a semiconductor or an insulator layer, is filled by doctor blades.
Das Verfahren umfasst folgende Arbeitsschritteϊ a) auf einem Substrat oder einer unteren Schicht wird eine, ggf . vollflächige Formschicht, die nicht auf den Bereich, der strukturiert werden soll beschränkt sein muss, aufgebracht. Diese Formschicht ist nicht das Funktionspolymer (also halbleitende, leitende oder isolierende Schicht) , sondern ein anderes organisches Material, das als Form oder Klischee für die leitende organische Elektrodenschicht dient. Dieses andere organische Material sollte isolierende Eigenschaften haben. b) die Formschicht erhält durch Imprinting (Eindrücken eines Stempelabdrucks mit nachfolgender Aushärtung durch Belich- ten) Vertiefungen, die den Strukturen entsprechen, c) in diese Vertiefungen wird dann das Funktionspolymer flüssig, als Lösung und/oder als Schmelze hineingerakelt .The method comprises the following steps a) on a substrate or a lower layer, a, if necessary. full-surface molded layer, which is not applied to the area to be structured. This molded layer is not the functional polymer (i.e. semiconducting, conductive or insulating layer), but another organic material that serves as a shape or cliché for the conductive organic electrode layer. This other organic material should have insulating properties. b) the molding layer receives depressions corresponding to the structures by imprinting (pressing in a stamp impression with subsequent hardening by exposure), c) the functional polymer is then knife-coated into these depressions in liquid form, as a solution and / or as a melt.
Die Negativ-Form der Struktur auf der Formschicht kann durch die Imprintmethode, die eine auf dem Gebiet der elektronischen und mikroelektronischen Bauteile ausgereifte Technik darstellt, auf dem Substrat oder einer unteren Schicht erzeugt werden. Das Material der Negativ-Form kann ein UV- härtender Lack sein, der nach Imprinting und Belichten Ver- tiefungen besitzt. Dafür geeigneten Lacke sind kommerziell erhältlich und die Methode sie durch Imprinting zu strukturieren, ist literaturbekannt. Allgemein wird bei dem Imprinting auf das ungehärtete Formpolymer, das als Schicht auf dem Substrat oder einer unteren Schicht aufgebracht ist, ein Stempel so eingedrückt, dass Vertiefungen in der Art, wie die Strukturierung erfolgen soll, entstehen. Die mit Vertiefungen versehene Schicht wird dann entweder thermisch oder durch Bestrahlung gehärtet, wodurch die feste Formschicht entsteht, in die das Funktionspo- lymer eingerakelt werden kann.The negative shape of the structure on the molding layer can be produced on the substrate or a lower layer by the imprint method, which is a technique which is mature in the field of electronic and microelectronic components. The material of the negative form can be a UV-curing lacquer that has indentations after imprinting and exposure. Varnishes suitable for this purpose are commercially available and the method of structuring them by imprinting is known from the literature. In general, a stamp is pressed onto the uncured molded polymer, which is applied as a layer on the substrate or a lower layer, in such a way that indentations occur in the manner in which the structuring is to take place. The layer provided with depressions is then hardened either thermally or by irradiation, which creates the solid molded layer into which the functional polymer can be knife-coated.
Der Vorteil der Rakel-Methode besteht darin, dass die schwierige Strukturierung von Funktionspolymeren durch die eingefahrene und bewährte Imprintmethode vorbereitet wird. Dadurch kann auf einen reichen technischen Hintergrund zurückgegriffen werden und es können extrem feine Strukturen erzielt werden. Die Rakel-Methode ist zudem nicht materialspezifisch. Mit der Rakelmethode kann vielmehr Polyanilin, aber auch jedes andere leitfähige organisches Material, wie z.B. Polypyr- rol, zur Herstellung von Elektroden eingesetzt werden. Ebenso kann damit jedes andere organische Material wie z.B. Polythi- ophen als Halbleiter und/oder Polyvinylphenol als Isolator eingerakelt und somit strukturiert werden, also der gesamte OFET.The advantage of the doctor blade method is that the difficult structuring of functional polymers is prepared by the well-established and proven imprint method. This means that a rich technical background can be used and extremely fine structures can be achieved. The doctor blade method is also not material-specific. Rather, with the doctor method, polyaniline, but also any other conductive organic material, such as Polypyrrol, can be used to manufacture electrodes. Likewise, any other organic material such as Polythiophenes as semiconductors and / or polyvinylphenol as insulators are knife-coated and thus structured, that is to say the entire OFET.
Nach einer Ausführungsform des Verfahrens wird die Negativ- Form nach erfolgter Aushärtung des Funktionspolymers entfernt, so dass ein eventuell durch Verdunstung des Lösungsmittels oder Schrumpfung entstandener Höhenunterschied zwi- sehen Funktionspolymer und Negativ-Form vermindert wird.According to one embodiment of the method, the negative mold is removed after the functional polymer has cured, so that any difference in height between the functional polymer and the negative mold that may result from evaporation of the solvent or shrinkage is reduced.
Ein anderer Ansatz, einen gegebenenfalls entstandenen Höhenunterschied zwischen Negativ-Form und Funktionspolymer zu vermeiden, liegt in der Wiederholung des Einrakelvorgangs, wodurch das Volumen der Negativ-Form einfach weiter aufgefüllt wird. In der Regel" kann man die Funktionspolymere weitgehend in ihrer optimalen Konsistenz belassen. So besitzt z.B. Polyanilin als leitfähiges organisches Material bei optimaler Leitfähigkeit eine bestimmte Viskosität. Wenn Polyanilin beispielswei- se gedruckt werden soll und nicht eingerakelt, so muss seine Viskosität auf einen der Druckmethode angepassten Wert eingestellt werden. Das bedeutet meistens Einbusse der Leitfähig- eit. Für das Rakeln ist die Viskositätsspanne ungleich größer als für das Drucken, so dass in aller Regel keine Visko- sitätsänderungen am organischen Material vorgenommen werden ' müssen.Another approach to avoid a possible difference in height between the negative mold and the functional polymer is to repeat the doctoring process, as a result of which the volume of the negative mold is simply filled up further. As a rule, " the functional polymers can largely be left in their optimal consistency. For example, polyaniline as a conductive organic material has a certain viscosity with optimal conductivity. If, for example, polyaniline is to be printed and not coated, its viscosity must be based on one of the printing methods This usually means a loss in conductivity. The viscosity range for doctoring is much larger than for printing, so that there is generally no need to make any changes in the viscosity of the organic material.
Schließlich ist ein Vorteil der Rakelmethode die Fähigkeit zu dicken Schichten. So ist z.B. die Leitfähigkeit von 1 μm di- cken Polymerelektroden effektiv höher als bei üblicherweise 0,2 μm Schichtdicke. Ein OFET mit einer Schichtdicke im Bereich von bis zu Iμm, insbesondere im Bereich von 0,3 bis 0,7 μm ist deshalb vorteilhaft.Finally, an advantage of the doctor blade method is the ability to apply thick layers. For example, the conductivity of 1 μm thick polymer electrodes is effectively higher than with the usual 0.2 μm layer thickness. An OFET with a layer thickness in the range of up to 1 μm, in particular in the range from 0.3 to 0.7 μm, is therefore advantageous.
Als „Funktionspolymer" wird hier jedes organische, metallorganische und/oder anorganische Material bezeichnet, das funk- tionell am Aufbau eines OFET und/oder einer integrierten Schaltung aus mehreren OFETs beteiligt ist. Dazu zählen beispielhaft die leitende Komponente (z.B. Polyanilin), das eine Elektrode bildet, die halbleitende Komponente, die die“Functional polymer” here means any organic, organometallic and / or inorganic material that is functionally involved in the construction of an OFET and / or an integrated circuit made up of several OFETs. These include, for example, the conductive component (eg polyaniline), the one Electrode forms the semiconducting component that the
Schicht zwischen den Elektroden bildet und die isolierende Komponente. Es sei ausdrücklich darauf hingewiesen, dass die Bezeichnung „Funktionspolymer" demnach auch nicht polymere Komponenten, wie z.B. oligomere Verbindungen, umfasst.Layer between the electrodes forms and the insulating component. It is expressly pointed out that the term “functional polymer” accordingly also includes non-polymeric components, such as, for example, oligomeric compounds.
Als „organisch" wird hier kurz alles, was „auf organischem Material basiert" bezeichnet, wobei der Begriff „organisches Material" alle Arten von organischen, metallorganischen und/oder anorganischen Kunststoffen, die im Englischen z.B. mit „plastics" bezeichnet werden, umfasst. Es handelt sich um alle Arten von Stoffen mit Ausnahme der klassischen Halbleiter (Germanium, Silizium) und der typischen metallischen Lei- ter. Eine Beschränkung im dogmatischen Sinn' auf organisches Material als Kohlenstoff-enthaltendes Material ist demnach nicht vorgesehen, vielmehr ist auch an den breiten Einsatz von z.B. Siliconen gedacht. Weiterhin soll der Term keiner Beschränkung auf polyme-re oder oligomere Materialien unterliegen, sondern es ist durchaus auch der Einsatz von „small molecules" denkbar.Everything that is based on organic material is referred to here briefly as “organic”, the term “organic material” encompassing all types of organic, organometallic and / or inorganic plastics, which are referred to in English as “plastics”, for example. These are all types of substances with the exception of classic semiconductors (germanium, silicon) and the typical metallic leads. ter. A restriction in the dogmatic sense ' to organic material as carbon-containing material is therefore not intended, rather the broad use of, for example, silicones is also contemplated. Furthermore, the term should not be restricted to polymeric or oligomeric materials, but the use of “small molecules” is also conceivable.
Als „untere Schicht" wird hier jede Schicht eines OFETs be- zeichnet, auf die eine zu strukturierende Schicht aufgebracht wird. Die Formschicht aus dem Formpolymer schließt an die „untere Schicht" oder das Substrat an. Das Formpolymer wird hier durch die Bezeichnung „polymer" auch nicht auf einen po- lymeren Aggregatszustand festgelegt, vielmehr kann es sich bei dieser Substanz auch um alle praktisch einsetzbaren Kunststoffe zur Ausbildung einer Negativ-Form handeln.Each layer of an OFET to which a layer to be structured is applied is referred to here as the “lower layer”. The molding layer made of the molding polymer adjoins the “lower layer” or the substrate. The shape polymer is not defined here by the term “polymer” to be in a polymeric state of aggregation; rather, this substance can also be any plastics that can be used in practice to form a negative shape.
Im Folgenden wird eine Ausführungsform des Verfahrens noch ' anhand von schematischen Figuren näher erläutert.An embodiment of the method is explained in more detail below with the aid of schematic figures.
Figur 1.1. zeigt das Substrat oder eine untere Schicht 1 auf die die Formschicht der Negativ-Form 2, beispielsweise aus einem Formpolymer wie einem UV-härtbaren Lack, z.B. vollflächig aufgebracht ist. Die Formschicht 2 wird mit einem Präge- Stempel 4, wie in Figur 1.2. gezeigt, mit Vertiefungen versehen, also es werden in die Formschicht 2 Vertiefungen mit dem Stempel 4, der beispielsweise aus Siliziumdioxid (Si02) sein kann, eingeprägt. Während der Stempel 4 die Vertiefungen 12 einprägt wird die Formschicht 2 mit UV-Licht bestrahlt, wo- durch das Formpolymer 2 unter permantenter Ausbildung derFigure 1.1. shows the substrate or a lower layer 1 onto which the molding layer of the negative mold 2, for example made of a molding polymer such as a UV-curable lacquer, is applied over the entire surface, for example. The molding layer 2 is embossed with a stamp 4, as in FIG. 1.2. shown, provided with depressions, so there are 2 depressions with the stamp 4, which can be made of silicon dioxide (Si0 2 ), for example, in the molded layer. While the stamp 4 impresses the depressions 12, the molding layer 2 is irradiated with UV light, as a result of which the molding polymer 2 with permanent formation of the
Vertiefungen 12 aushärtet. Dadurch entstehen die Vertiefungen 12 in der Formschicht 2, wie sie in Figur 1.3. gezeigt sind. Der Stempel 4 wird nach beendigter Prägung aus der Formschicht 2 herausgezogen. In die Vertiefungen 12 wird das Funktionspolymer 8 (z.B. Polyanilin) mit einem Rakel 9 hin- eingerakelt (Figur 1.4.). In Figur 1.5. erkennt man, wie im fertigen OFET das Funktionspolymer 8. die Vertiefungen 12 der Formschicht 2 ausfüllt.Wells 12 cures. This creates the depressions 12 in the molded layer 2, as shown in FIG. 1.3. are shown. The stamp 4 is pulled out of the molding layer 2 after the embossing has ended. The functional polymer 8 (for example polyaniline) is scraped into the recesses 12 using a doctor blade 9 (FIG. 1.4.). In Figure 1.5. you can see how in the manufacture OFET the functional polymer 8. fills the depressions 12 of the molded layer 2.
Figur 2 zeigt eine weitere Ausführungsform des Verfahrens im kontinuierlichen Prozess oder kontinuierlichen Rollendruck. Zu sehen ist das Band aus Substrat oder unterer Schicht 1 mit dem Formpolymer 2, das ein UV-härtbarer, aber auch ein t er- ..misch härtbarer Lack sein kann. Dieses Band wird nun von links nach rechts, wie durch den Pfeil 13 angedeutet, entlang mehrerer Andruckrollen 10 verschiedenen Arbeitsschritten unterworfen. Zunächst passiert es das Schattenblech 3, mit dem das noch nicht gehärtete Formpolymer 2 gegen -Bestrahlung geschützt wird. Danach werden in das Formpolymer 2 mit Hilfe der Stempelrolle 4 Vertiefungen eingeprägt, die mit der in der Stempelrolle 4 integrierten UV-Lampe 5 gleich angehärtet werden. Die von 5 ausgehende Pfeilrichtung zeigt die Richtung des Lichtkegels, der von 5 ausgestrahlt wird, an. Das mit Vertiefungen 12 in der Formschicht 2 versehene Band zieht dann unter einer UV-Lampe oder Heizung 6 zur Nachhärtung vor- bei, so dass ein strukturierter Lack 7 entsteht. In den strukturierten Lack 7 mit den Vertiefungen 12 wird dann mit dem Rakel 9 das Funktionspolymer 8 eingerakelt, so dass die _ fertige Struktur 11 entsteht. Figure 2 shows a further embodiment of the method in a continuous process or continuous web printing. What can be seen is the tape made of substrate or lower layer 1 with the molded polymer 2, which can be a UV-curable but also a thermally curable lacquer. This band is then subjected to 10 different work steps from left to right, as indicated by arrow 13, along several pressure rollers. First, it passes through the shadow plate 3, with which the not yet hardened molded polymer 2 is protected against radiation. Thereafter, depressions are embossed into the molded polymer 2 with the aid of the stamp roller 4, which are immediately hardened with the UV lamp 5 integrated in the stamp roller 4. The direction of the arrow from FIG. 5 indicates the direction of the light cone emitted from FIG. 5. The band provided with depressions 12 in the molding layer 2 then passes under a UV lamp or heater 6 for post-curing, so that a structured lacquer 7 is produced. The functional polymer 8 is then knife-coated into the structured lacquer 7 with the depressions 12, so that the finished structure 11 is produced.

Claims

Patentansprüche claims
1. Organischer Feld-Effekt-Transistor (OFET), zumindest folgende Schichten auf einem Substrat umfassend: - eine organische Halbleiterschicht zwischen und über zumindest einer Source- und zumindest einer Drain-Elektrode, die aus einem leitenden organischen Material • •■ sind, . ... . .. eine organische Isolationsschicht über der halbleitenden Schicht und eine organische Leiterschicht, wobei die.Leiters-chicht und zumindest eine der beiden anderen Schichten strukturiert ist.1. Organic field-effect transistor (OFET), comprising at least the following layers on a substrate: an organic semiconductor layer between and above at least one source and at least one drain electrode, which are made of a conductive organic material. ... .. an organic insulation layer over the semiconducting layer and an organic conductor layer, the conductor layer and at least one of the other two layers being structured.
2. OFET nach Anspruch 1 mit einem Abstand 1 zwischen Source und Drain Elektrode von kleiner 20 μm, insbesondere von kleiner 10 μm und ganz bevorzugt von 2 bis 5 μm.2. OFET according to claim 1 with a distance 1 between source and drain electrode of less than 20 microns, in particular less than 10 microns and very preferably from 2 to 5 microns.
3. OFET nach einem der Ansprüche 1 oder 2 , der eine Elektrode mit einer Schichtdicke von lμm umfasst.3. OFET according to one of claims 1 or 2, which comprises an electrode with a layer thickness of lμm.
4. Integrierte Schaltung, die zumindest einen OFET, der zumindest eine .strukturierte Leiterschicht und eine weitere strukturierte Schicht hat, umfasst. - -4. Integrated circuit comprising at least one OFET, which has at least one structured conductor layer and a further structured layer. - -
5. Verfahren zur Strukturierung eines OFETs durch Rakeln von zumindest einem Funktionspolymer-, in eine Negativ-Form.5. Process for structuring an OFET by knife coating at least one functional polymer into a negative form.
6. Verfahren nach Anspruch 5, folgende Arbeitsschritte umfas- send: a) auf einem Substrat oder einer unteren Schicht wird eine Formschicht für eine Negativform aufgebracht, b) diese Formschicht erhält Vertiefungen, die den Negativen der späteren Strukturen entsprechen und c) in diese Vertiefungen wird dann das Funktionspolymer hin- eingerakelt . 6. The method according to claim 5, comprising the following steps: a) a molding layer for a negative mold is applied to a substrate or a lower layer, b) this molding layer is provided with depressions which correspond to the negatives of the later structures and c) into these depressions the functional polymer is then scraped on.
7. Verfahren nach einem der Ansprüche 5 oder 6, bei dem die Formschicht nach der Strukturierung entfernt wird.7. The method according to any one of claims 5 or 6, wherein the molding layer is removed after the structuring.
8. Verfahren nach einem der Ansprüche 5 bis 7, bei dem zumin- dest zweimal das Funktionspolymer in die Vertiefungen der8. The method according to any one of claims 5 to 7, in which at least twice the functional polymer in the wells of the
Formschicht eingerakelt wird.Form layer is scraped on.
9. Verfahren nach einem der Ansprüche 5 bis 8, bei dem die Vertiefungen in der Formschicht durch Imprinting erzeugt wer- den.9. The method according to any one of claims 5 to 8, in which the depressions in the molded layer are produced by imprinting.
10. Verfahren nach einem der Ansprüche 5 bis 9, das als kon- tiniuerliches Verfahren mit einem durchlaufenden Band durchgeführt wird. 10. The method according to any one of claims 5 to 9, which is carried out as a continuous process with a continuous belt.
EP01999978A 2000-12-08 2001-12-07 Organic field-effect transistor, method for structuring an ofet and integrated circuit Withdrawn EP1346422A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10061297 2000-12-08
DE10061297A DE10061297C2 (en) 2000-12-08 2000-12-08 Procedure for structuring an OFET
PCT/DE2001/004611 WO2002047183A1 (en) 2000-12-08 2001-12-07 Organic field-effect transistor, method for structuring an ofet and integrated circuit

Publications (1)

Publication Number Publication Date
EP1346422A1 true EP1346422A1 (en) 2003-09-24

Family

ID=7666421

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01999978A Withdrawn EP1346422A1 (en) 2000-12-08 2001-12-07 Organic field-effect transistor, method for structuring an ofet and integrated circuit

Country Status (5)

Country Link
US (1) US7229868B2 (en)
EP (1) EP1346422A1 (en)
JP (1) JP2004515928A (en)
DE (1) DE10061297C2 (en)
WO (1) WO2002047183A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1309994A2 (en) 2000-08-18 2003-05-14 Siemens Aktiengesellschaft Encapsulated organic-electronic component, method for producing the same and use thereof
DE10043204A1 (en) 2000-09-01 2002-04-04 Siemens Ag Organic field-effect transistor, method for structuring an OFET and integrated circuit
DE10045192A1 (en) 2000-09-13 2002-04-04 Siemens Ag Organic data storage, RFID tag with organic data storage, use of an organic data storage
DE10126860C2 (en) * 2001-06-01 2003-05-28 Siemens Ag Organic field effect transistor, process for its manufacture and use for the construction of integrated circuits
DE10212639A1 (en) * 2002-03-21 2003-10-16 Siemens Ag Device and method for laser structuring functional polymers and uses
DE10226370B4 (en) 2002-06-13 2008-12-11 Polyic Gmbh & Co. Kg Substrate for an electronic component, use of the substrate, methods for increasing the charge carrier mobility and organic field effect transistor (OFET)
WO2004017439A2 (en) 2002-07-29 2004-02-26 Siemens Aktiengesellschaft Electronic component comprising predominantly organic functional materials and method for the production thereof
DE10240105B4 (en) * 2002-08-30 2005-03-24 Infineon Technologies Ag Production of organic electronic circuits by contact printing techniques
EP2261979B1 (en) 2002-10-02 2013-09-11 Leonhard Kurz Stiftung & Co. KG Polymer sheet with organic semiconductors
CN1726604A (en) * 2002-11-05 2006-01-25 波尔伊克两合公司 Organic electronic component with high-resolution structuring and method for the production thereof
DE50306538D1 (en) 2002-11-19 2007-03-29 Polyic Gmbh & Co Kg ORGANIC ELECTRONIC SWITCHING WITH A STRUCTURED SEMICONDUCTIVE FUNCTIONAL LAYER AND MANUFACTURING METHOD THEREFOR
GB0229191D0 (en) * 2002-12-14 2003-01-22 Plastic Logic Ltd Embossing of polymer devices
DE10302149A1 (en) 2003-01-21 2005-08-25 Siemens Ag Use of conductive carbon black / graphite blends for the production of low-cost electronics
US7708958B2 (en) 2003-06-26 2010-05-04 Tersano Inc. System and containers for water filtration and item sanitization
DE10330062A1 (en) * 2003-07-03 2005-01-27 Siemens Ag Method and device for structuring organic layers
DE10339036A1 (en) * 2003-08-25 2005-03-31 Siemens Ag Organic electronic component with high-resolution structuring and manufacturing method
DE10340609A1 (en) * 2003-08-29 2005-04-07 Infineon Technologies Ag Polymer formulation and method of making a dielectric layer
DE10340608A1 (en) 2003-08-29 2005-03-24 Infineon Technologies Ag Polymer formulation and method of making a dielectric layer
DE10340643B4 (en) 2003-09-03 2009-04-16 Polyic Gmbh & Co. Kg Printing method for producing a double layer for polymer electronics circuits, and thereby produced electronic component with double layer
DE10349963A1 (en) 2003-10-24 2005-06-02 Leonhard Kurz Gmbh & Co. Kg Process for producing a film
DE102004005247A1 (en) * 2004-01-28 2005-09-01 Infineon Technologies Ag Imprint-lithographic process for manufacturing e.g. MOSFET, involves structuring polymerized gate dielectric layer by imprint stamp that is used to form hole on layer, and etching base of hole till preset thickness of layer is reached
JP2005353725A (en) * 2004-06-09 2005-12-22 Shinko Electric Ind Co Ltd Method for forming active element on substrate, and substrate
JP4549751B2 (en) * 2004-06-17 2010-09-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI253193B (en) * 2004-08-06 2006-04-11 Ind Tech Res Inst Method for manufacturing organic thin-film transistor with plastic substrate
DE102004040831A1 (en) 2004-08-23 2006-03-09 Polyic Gmbh & Co. Kg Radio-tag compatible outer packaging
DE102004059467A1 (en) * 2004-12-10 2006-07-20 Polyic Gmbh & Co. Kg Gate made of organic field effect transistors
DE102004059464A1 (en) 2004-12-10 2006-06-29 Polyic Gmbh & Co. Kg Electronic component with modulator
DE102004059465A1 (en) 2004-12-10 2006-06-14 Polyic Gmbh & Co. Kg recognition system
DE102004063435A1 (en) 2004-12-23 2006-07-27 Polyic Gmbh & Co. Kg Organic rectifier
DE102005009819A1 (en) 2005-03-01 2006-09-07 Polyic Gmbh & Co. Kg electronics assembly
JP4455517B2 (en) 2005-03-04 2010-04-21 三星モバイルディスプレイ株式會社 Thin film transistor manufacturing method
DE102005017655B4 (en) 2005-04-15 2008-12-11 Polyic Gmbh & Co. Kg Multilayer composite body with electronic function
EP1727219B1 (en) 2005-05-25 2014-05-07 Samsung SDI Germany GmbH Organic thin film transistor and method for producing the same
KR100647695B1 (en) * 2005-05-27 2006-11-23 삼성에스디아이 주식회사 Otft and fabrication method thereof and flat panel display device with the same
GB2427509A (en) * 2005-06-21 2006-12-27 Seiko Epson Corp Organic electronic device fabrication by micro-embossing
DE102005031448A1 (en) 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Activatable optical layer
DE102005035590A1 (en) * 2005-07-29 2007-02-01 Polyic Gmbh & Co. Kg Electronic component has flexible substrate and stack of layers including function layer on substratesurface
DE102005035589A1 (en) 2005-07-29 2007-02-01 Polyic Gmbh & Co. Kg Manufacturing electronic component on surface of substrate where component has two overlapping function layers
JP2007042905A (en) * 2005-08-04 2007-02-15 Sony Corp Semiconductor device and its manufacturing method
DE102005042166A1 (en) * 2005-09-06 2007-03-15 Polyic Gmbh & Co.Kg Organic device and such a comprehensive electrical circuit
DE102005044306A1 (en) 2005-09-16 2007-03-22 Polyic Gmbh & Co. Kg Electronic circuit and method for producing such
JP2007123773A (en) * 2005-10-31 2007-05-17 Fuji Electric Holdings Co Ltd Thin-film transistor and its manufacturing method
KR101308435B1 (en) 2006-06-30 2013-09-16 엘지디스플레이 주식회사 Method For Forming Patterns And Method For Fabricating Liquid Crystal Display Device By Applying Said Method
US7935566B2 (en) * 2007-05-14 2011-05-03 Nanyang Technological University Embossing printing for fabrication of organic field effect transistors and its integrated devices
US8071277B2 (en) * 2007-12-21 2011-12-06 3M Innovative Properties Company Method and system for fabricating three-dimensional structures with sub-micron and micron features
US8206537B2 (en) * 2008-08-27 2012-06-26 Carnegie Mellon University Method for forming a conducting multi-polymer nanostructure

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512052A (en) 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
US3769096A (en) * 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (en) 1973-10-12 1979-02-24
JPS54101176A (en) 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4340657A (en) * 1980-02-19 1982-07-20 Polychrome Corporation Novel radiation-sensitive articles
DE3338597A1 (en) 1983-10-24 1985-05-02 GAO Gesellschaft für Automation und Organisation mbH, 8000 München DATA CARRIER WITH INTEGRATED CIRCUIT AND METHOD FOR PRODUCING THE SAME
JPS60117769A (en) 1983-11-30 1985-06-25 Fujitsu Ltd Semiconductor memory device
DE3768112D1 (en) * 1986-03-03 1991-04-04 Toshiba Kawasaki Kk RADIATION DETECTOR.
JP2728412B2 (en) 1987-12-25 1998-03-18 株式会社日立製作所 Semiconductor device
GB2215307B (en) 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
US5364735A (en) * 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) * 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) * 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) * 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
US5487897A (en) * 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
US5206525A (en) * 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FI91573C (en) * 1990-01-04 1994-07-11 Neste Oy Method for manufacturing electronic and electro-optical components and circuits
FR2664430B1 (en) * 1990-07-04 1992-09-18 Centre Nat Rech Scient THIN FILM FIELD EFFECT TRANSISTOR WITH MIS STRUCTURE, IN WHICH THE INSULATION AND THE SEMICONDUCTOR ARE MADE OF ORGANIC MATERIALS.
FR2673041A1 (en) 1991-02-19 1992-08-21 Gemplus Card Int METHOD FOR MANUFACTURING INTEGRATED CIRCUIT MICROMODULES AND CORRESPONDING MICROMODULE.
US5408109A (en) * 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
JPH0580530A (en) 1991-09-24 1993-04-02 Hitachi Ltd Production of thin film pattern
US5173835A (en) 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
WO1993009469A1 (en) * 1991-10-30 1993-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Exposure device
US5219462A (en) * 1992-01-13 1993-06-15 Minnesota Mining And Manufacturing Company Abrasive article having abrasive composite members positioned in recesses
JP2709223B2 (en) * 1992-01-30 1998-02-04 三菱電機株式会社 Non-contact portable storage device
DE4243832A1 (en) 1992-12-23 1994-06-30 Daimler Benz Ag Push button arrangement
JP3457348B2 (en) * 1993-01-15 2003-10-14 株式会社東芝 Method for manufacturing semiconductor device
FR2701117B1 (en) * 1993-02-04 1995-03-10 Asulab Sa Electrochemical measurement system with multizone sensor, and its application to glucose measurement.
US5567550A (en) * 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
JPH0722669A (en) * 1993-07-01 1995-01-24 Mitsubishi Electric Corp Plastic functional element
WO1995006240A1 (en) * 1993-08-24 1995-03-02 Metrika Laboratories, Inc. Novel disposable electronic assay device
JP3460863B2 (en) * 1993-09-17 2003-10-27 三菱電機株式会社 Method for manufacturing semiconductor device
FR2710413B1 (en) * 1993-09-21 1995-11-03 Asulab Sa Measuring device for removable sensors.
US5556706A (en) * 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
IL111151A (en) 1994-10-03 1998-09-24 News Datacom Ltd Secure access systems
JP3246189B2 (en) * 1994-06-28 2002-01-15 株式会社日立製作所 Semiconductor display device
US5574291A (en) * 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) * 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
JP3068430B2 (en) 1995-04-25 2000-07-24 富山日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
US5652645A (en) * 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) * 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
GB2310493B (en) 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (en) 1996-03-06 2000-08-28 富士機工電子株式会社 Manufacturing method of air rear grid array package
DE19629656A1 (en) * 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostic test carrier with multilayer test field and method for the determination of analyte with its aid
US6344662B1 (en) * 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
KR100248392B1 (en) * 1997-05-15 2000-09-01 정선종 The operation and control of the organic electroluminescent devices with organic field effect transistors
EP0968537B1 (en) * 1997-08-22 2012-05-02 Creator Technology B.V. A method of manufacturing a field-effect transistor substantially consisting of organic materials
CA2301626C (en) * 1997-09-11 2008-05-20 Precision Dynamics Corporation Radio frequency identification tag on flexible substrate
US6251513B1 (en) * 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
JPH11142810A (en) 1997-11-12 1999-05-28 Nintendo Co Ltd Portable information processor
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
EP0958663A1 (en) * 1997-12-05 1999-11-24 Koninklijke Philips Electronics N.V. Identification transponder
US5998805A (en) * 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
US6083104A (en) * 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
DE69937485T2 (en) * 1998-01-28 2008-08-21 Thin Film Electronics Asa METHOD FOR PRODUCING TWO OR THREE-DIMENSIONAL ELECTRICALLY CONDUCTIVE OR SEMICONDUCTIVE STRUCTURES, A CLEARING METHOD THEREOF, AND A GENERATOR / MODULATOR OF AN ELECTRICAL FIELD FOR USE IN THE MANUFACTURE METHOD
US6087196A (en) * 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) * 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
DE19816860A1 (en) 1998-03-06 1999-11-18 Deutsche Telekom Ag Chip card, especially credit card
US6033202A (en) * 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
GB9808061D0 (en) * 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
GB9808806D0 (en) 1998-04-24 1998-06-24 Cambridge Display Tech Ltd Selective deposition of polymer films
JP3780700B2 (en) * 1998-05-26 2006-05-31 セイコーエプソン株式会社 Pattern forming method, pattern forming apparatus, pattern forming plate, pattern forming plate manufacturing method, color filter manufacturing method, conductive film manufacturing method, and liquid crystal panel manufacturing method
TW410478B (en) * 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US5967048A (en) * 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
US6215130B1 (en) * 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
PT1108207E (en) * 1998-08-26 2008-08-06 Sensors For Med & Science Inc Optical-based sensing devices
DE19851703A1 (en) * 1998-10-30 2000-05-04 Inst Halbleiterphysik Gmbh Electronic structure, e.g. FET, is produced by plotting, spraying, spin coating or spreading of insulating, semiconducting and-or conductive layers onto a substrate
US6384804B1 (en) * 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) * 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
US6114088A (en) * 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
GB2347013A (en) * 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US6300141B1 (en) * 1999-03-02 2001-10-09 Helix Biopharma Corporation Card-based biosensor device
US6180956B1 (en) 1999-03-03 2001-01-30 International Business Machine Corp. Thin film transistors with organic-inorganic hybrid materials as semiconducting channels
US6207472B1 (en) * 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
US6498114B1 (en) * 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) * 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
DE19921024C2 (en) 1999-05-06 2001-03-08 Wolfgang Eichelmann Video game system
US6383664B2 (en) * 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
BR0011888A (en) * 1999-06-21 2004-03-09 Univ Cambridge Tech Process for forming an electronic device, electronic device, logic circuit, active matrix display, and polymer transistor
US6272275B1 (en) * 1999-06-25 2001-08-07 Corning Incorporated Print-molding for process for planar waveguides
DE19933757A1 (en) 1999-07-19 2001-01-25 Giesecke & Devrient Gmbh Manufacturing chip card with integral battery involves applying first conducting track structure, electrolyte and second conducting track structure to form opposite polarity electrodes
DE19935527A1 (en) 1999-07-28 2001-02-08 Giesecke & Devrient Gmbh Active film for chip cards with display
DE19937262A1 (en) 1999-08-06 2001-03-01 Siemens Ag Arrangement with transistor function
US6593690B1 (en) * 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
WO2001027998A1 (en) * 1999-10-11 2001-04-19 Koninklijke Philips Electronics N.V. Integrated circuit
US6335539B1 (en) * 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) * 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
US6621098B1 (en) * 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6197663B1 (en) * 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
BR0016670A (en) * 1999-12-21 2003-06-24 Plastic Logic Ltd Methods for forming an integrated circuit and for defining an electronic circuit, and, electronic device
US6706159B2 (en) * 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
DE10012204A1 (en) 2000-03-13 2001-09-20 Siemens Ag Electronic postage stamp for identifying postal articles
US6329226B1 (en) * 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10033112C2 (en) * 2000-07-07 2002-11-14 Siemens Ag Process for the production and structuring of organic field-effect transistors (OFET), OFET produced thereafter and its use
EP1309994A2 (en) * 2000-08-18 2003-05-14 Siemens Aktiengesellschaft Encapsulated organic-electronic component, method for producing the same and use thereof
DE10043204A1 (en) * 2000-09-01 2002-04-04 Siemens Ag Organic field-effect transistor, method for structuring an OFET and integrated circuit
KR20020036916A (en) 2000-11-11 2002-05-17 주승기 Method of crystallizing a silicon thin film and semiconductor device fabricated thereby
KR100390522B1 (en) 2000-12-01 2003-07-07 피티플러스(주) Method for fabricating thin film transistor including a crystalline silicone active layer
US20020170897A1 (en) 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
US6870180B2 (en) 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
JP2003089259A (en) * 2001-09-18 2003-03-25 Hitachi Ltd Pattern forming method and pattern forming apparatus
US7351660B2 (en) 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6946332B2 (en) * 2002-03-15 2005-09-20 Lucent Technologies Inc. Forming nanoscale patterned thin film metal layers
US6812509B2 (en) 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6870183B2 (en) * 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0247183A1 *

Also Published As

Publication number Publication date
DE10061297A1 (en) 2002-06-27
JP2004515928A (en) 2004-05-27
DE10061297C2 (en) 2003-05-28
WO2002047183A1 (en) 2002-06-13
US7229868B2 (en) 2007-06-12
US20040063267A1 (en) 2004-04-01

Similar Documents

Publication Publication Date Title
WO2002047183A1 (en) Organic field-effect transistor, method for structuring an ofet and integrated circuit
EP1316116B1 (en) Method for structuring an organic field effect transistor
DE10126860C2 (en) Organic field effect transistor, process for its manufacture and use for the construction of integrated circuits
DE10140666C2 (en) Process for producing a conductive structured polymer film and use of the process
DE60029445T2 (en) METHOD FOR STRUCTURING POLYMER LAYERS, AND USE OF THE METHODS
US7271098B2 (en) Method of fabricating a desired pattern of electronically functional material
DE10033112A1 (en) Method for manufacturing and structuring organic field effect transistors (OFET)
EP1636826B1 (en) Compound used to form a self-assembled monolayer, layer structure, semiconductor component having a layer structure, and method for producing a layer structure
EP1559147B1 (en) Film comprising organic semiconductors
DE10349963A1 (en) Process for producing a film
DE10047171A1 (en) Electrode and/or conductor track used for components of OFETs and OLEDs is produced by treating an organic functional polymer with a chemical compound
EP1559148A2 (en) Organic electronic component with high-resolution structuring and method for the production thereof
WO2011131535A1 (en) Method and device for producing electronic and/or energy generating and/or energy converting elements and components
EP1704606B1 (en) Method for the production of an organic transistor comprising a self-adjusting gate electrode
DE10349027B4 (en) Organic circuit with small structures and process for their preparation
WO2005006462A1 (en) Method and device for structuring organic layers
DE102005005589A1 (en) Hybrid organic thin layered field effect transistor for use in polymer circuit, has source and drain electrodes including thin copper layer whose surface area facing semiconductor layer is modified to form copper oxide layer between layers
DE102007002119A1 (en) Organic thin film transistor i.e. top gate-organic thin film transistor, manufacturing method, involves bringing semiconductor layer that is made of organic semiconductor material, on intermediate layer between source- and drain electrodes
WO2007144163A2 (en) Method for producing a structured layer sequence on a substrate
WO2005006448A1 (en) Field effect transistor and method for the production of a field effect transistor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VRATZOV, BORISLAV

Inventor name: KURZ, HEINRICH

Inventor name: HARING, PETER

Inventor name: CLEMENS, WOLFGANG

Inventor name: BERNDS, ADOLF

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMO GMBH

Owner name: SIEMENS AKTIENGESELLSCHAFT

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMO GMBH

Owner name: POLYIC GMBH & CO. KG

17Q First examination report despatched

Effective date: 20060915

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMO GMBH

Owner name: POLYIC GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMO GMBH

Owner name: POLYIC GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090613