EP1345894B1 - Procede de preparation d'un hydroperoxyde organique a quantite reduite de contaminants - Google Patents

Procede de preparation d'un hydroperoxyde organique a quantite reduite de contaminants Download PDF

Info

Publication number
EP1345894B1
EP1345894B1 EP01991866A EP01991866A EP1345894B1 EP 1345894 B1 EP1345894 B1 EP 1345894B1 EP 01991866 A EP01991866 A EP 01991866A EP 01991866 A EP01991866 A EP 01991866A EP 1345894 B1 EP1345894 B1 EP 1345894B1
Authority
EP
European Patent Office
Prior art keywords
organic hydroperoxide
organic
hydroperoxide
alkyl aryl
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01991866A
Other languages
German (de)
English (en)
Other versions
EP1345894A1 (fr
Inventor
Carolus Matthias Anna Maria Mesters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Priority to EP01991866A priority Critical patent/EP1345894B1/fr
Publication of EP1345894A1 publication Critical patent/EP1345894A1/fr
Application granted granted Critical
Publication of EP1345894B1 publication Critical patent/EP1345894B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • C07C407/003Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • C07C407/003Separation; Purification; Stabilisation; Use of additives
    • C07C407/006Stabilisation; Use of additives

Definitions

  • the present invention relates to a process for preparing organic hydroperoxide having a reduced amount of contaminants.
  • organic hydroperoxides can suitably be used in the preparation of propylene oxide.
  • US-A-5,723,637 describes a similar process for producing propylene oxide comprising autoxidation of ethyl benzene to obtain a raw material solution of ethyl benzene hydroperoxide in ethyl benzene which is reacted with propylene in the presence of a titanium containing solid catalyst to give propylene oxide.
  • the raw material solution is prepared by washing the solution of ethyl benzene hydroperoxide in ethyl benzene with an aqueous alkali solution to bring the lactic acid concentration to 5 ppm by weight or less.
  • the oily phase obtained after the alkali washing may further be washed with water.
  • the present invention relates to a process for preparing organic hydroperoxide having a reduced content of contaminants, which process comprises:
  • Organic hydroperoxides are useful in a range of processes.
  • One of these processes is the reaction of organic hydroperoxide with an olefin containing from 3 to 10 carbon atoms, preferably from 3 to 6 carbon atoms, more preferably from 3 to 4 carbon atoms, most preferably propene, in order to obtain an oxirane compound containing the same number of carbon atoms as the starting olefin(s).
  • the organic compound usually is an alkyl aryl.
  • Such process further comprises:
  • the alkyl aryl hydroxide obtained in step (g) can be used in a wide range of processes.
  • One of these processes comprises the steps described above, and furthermore:
  • organic compound used in the process of the present invention can in principle be any compound, organic compounds which are most frequently used are alkyl aryl compounds.
  • Alkyl aryl compounds which are most frequently used are benzene compounds containing at least 1 alkyl substituent which alkyl substituent contains from 1 to 10 carbon atoms, preferably from 2 to 8 carbon atoms.
  • the benzene compound contains from 1 to 2 constituents.
  • the alkyl aryl compounds most frequently used are ethyl benzene, di(iso-propyl)benzene and/or cumene.
  • the oxidation of the organic compound can be carried out by any suitable process known in the art.
  • the oxidation can be carried out in the liquid phase in the presence of a diluent.
  • This diluent is preferably a compound which is liquid under the reaction conditions and does not react with the starting materials and product obtained.
  • the diluent can also be a compound necessarily present during the reaction. For example, if the alkyl aryl is ethyl benzene the diluent can be ethyl benzene as well.
  • the oxidation can conveniently be carried out by blowing air through the organic compound while cooling the reaction mixture in view of the exothermic nature of the reaction.
  • the process of the present invention is especially suitable for decreasing the metal content of the separated hydrocarbonaceous phase containing organic hydroperoxide obtained in step (c).
  • the metal will usually be present in the form of metal ions.
  • the process of the present invention is especially suitable for processes in which the basic aqueous solution is a basic aqueous solution of a metal salt.
  • the organic hydroperoxide containing reaction product is contacted with a basic aqueous solution, more specifically a basic aqueous solution containing metal compounds.
  • a basic aqueous solution containing metal compounds.
  • the metal compounds will frequently be metal salts, further metal compounds can be present as well.
  • Suitable salts for use in the basic aqueous solution include alkali and alkaline earth metal salts.
  • alkali metal hydroxides, alkali metal carbonates and/or alkali metal hydrogen carbonates are used. Examples of these compounds are NaOH, KOH, Na 2 CO3, K 2 CO 3 , NaHCO 3 and KHCO 3 . In view of their easy availability, it is preferred to use NaOH and/or Na 2 CO 3 .
  • the basic aqueous solution used in step (b) in commercial applications can contain a wide range of compounds.
  • process step (b) is preferably carried out at elevated temperature and/or during intense mixing of the organic hydroperoxide containing reaction product and the basic aqueous solution. Such intense mixing can be done in any way known in the art.
  • the exact conditions under which step (b) is carried out strongly depends on the further circumstances.
  • step (b) the hydrocarbonaceous phase is separated from the aqueous phase in step (c).
  • a preferred method comprises allowing the hydrocarbonaceous phase and aqueous phase to settle, and subsequently removing part of all of one of the phases. Not all of the product obtained in step (b) needs to be subjected to step (c). However, preferably all product of step (b) is subjected to step (c).
  • step (d) at least part of the separated hydrocarbonaceous phase obtained in step (c) is washed.
  • Washing of the separated hydrocarbonaceous phase can be carried out in any way known to someone skilled in the art.
  • the washing liquid is preferably water.
  • the washing liquid can contain a wide range of further compounds as at least part of the water can have been used before either in the present process or in another process.
  • used wash water can contain acidic compounds, there will usually be such mixture of compounds present that the pH of the washing liquid will be at least 7.5.
  • washing of step (d) can be repeated as often as desired. Generally, the washing will be carried out from 1 to 5 times. It will be obvious that it is advantageous to limit the number of washing steps if possible.
  • At least part of the hydrocarbonaceous phase containing organic hydroperoxide is subsequently contacted with a guard bed.
  • part of the hydrocarbonaceous phase can be used, it will usually be preferred from an efficiency point of view to contact all of the hydrocarbonaceous phase.
  • a bed comprising solid adsorbent having a void content of from 50% to 98% by volume, was capable of removing contaminants at least part of which are thought to be dissolved in the hydrocarbonaceous phase.
  • adsorbents can remove the contaminants such that a substantially reduced pressure drop is observed when using the product obtained in step (e) in a further conversion step.
  • the void content of the solid adsorbent is considered to be the void volume between the solid particles. Potential pores inside the solid particles are not taken into account.
  • the void content is based on total volume of solid adsorbent particles and volume between these particles.
  • the guard bed has a void content of at least 55% volume, more preferably at least 60%. The upper limit depends on the desired strength of the solid adsorbent particles.
  • the void content can be at most 98%, more specifically at most 90%, most specifically at most 80%.
  • the adsorbent is preferably an inert solid, more preferably one or more solids chosen from the group consisting of silica, silica gel, glass, alumina, more especially alpha-alumina, molecular sieves, clay and minerals.
  • the solid adsorbent has a low surface area.
  • the surface area is less than 50 m 2 /g, more preferably less than 20 m 2 /g, most preferably less than 15 m 2 /g.
  • the solid adsorbent can have any shape as long as the void content is obtained.
  • the adsorbents used in the present invention can be shaped by extrusion. Further, it has been found that extrudates shaped as hollow cylinder particles give good results.
  • the shapes of the solid adsorbent is such that it forms a graded guard bed. In a graded guard bed, larger solids with larger voids are present where the guard bed is first contacted with the hydrocarbonaceous phase containing organic hydroperoxide, while finer solid particles with smaller voids are present further down stream while the overall void content is at least 50%.
  • guard bed can be present in a separate reactor, it is preferred from an economic point of view that the guard bed is on top of the catalyst bed in which the organic hydroperoxide is further converted.
  • step (f) at least part of the hydrocarbonaceous phase containing organic hydroperoxide obtained in step (e) is contacted with an olefin containing from 3 to 10 carbon atoms and catalyst to obtain alkyl aryl hydroxide and oxirane compound.
  • a catalyst which can suitably used in such process comprises titanium on silica and/or silicate.
  • a preferred catalyst is described in EP-A-345856.
  • the reaction generally proceeds at moderate temperatures and pressures, in particular at temperatures in the range of from 0 to 200 °C, preferably in the range from 25 to 200 °C.
  • the precise pressure is not critical as long as it suffices to maintain the reaction mixture in a liquid condition. Atmospheric pressure may be satisfactory. In general, pressures can be in the range of from 1 to 100 x 105 N/m 2 .
  • the liquid mixture comprising the desired products is separated from the catalyst.
  • the oxirane compound can then be separated from the reaction product containing alkyl aryl hydroxide in any way known to be suitable to someone skilled in the art.
  • the liquid reaction product may be worked up by fractional distillation, selective extraction and/or filtration.
  • the solvent, the catalyst and any unreacted olefin or alkyl aryl hydroperoxide may be recycled or can be used in another process.
  • the alkyl aryl hydroxide obtained in the process can be dehydrated in the presence of a catalyst. Processes which can be used for this step have been described in WO 99/42425 and WO 99/42426. However, any suitable process known to someone skilled can in principle be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Claims (7)

  1. Procédé de préparation d'un hydroperoxyde organique ayant une teneur réduite en contaminants, lequel procédé comprend les étapes suivantes :
    (a) l'oxydation d'un composé organique pour obtenir un produit réactionnel contenant un hydroperoxyde organique,
    (b) la mise en contact d'au moins une partie du produit réactionnel contenant l'hydroperoxyde organique avec une solution basique aqueuse,
    c) la séparation de la phase hydrocarbonée contenant l'hydroxyde organique de la phase aqueuse,
    (d) le lavage d'au moins une partie de la phase hydrocarbonée séparée contenant l'hydroperoxyde organique, et
    (e) la mise en contact d'au moins une partie de la phase hydrocarbonée contenant l'hydroxyde organique avec un lit de protection comprenant un adsorbant solide ayant une teneur en vides de 50% à 98% en volume.
  2. Procédé selon la revendication 1, dans lequel le composé organique est un composé d'alkylaryle.
  3. Procédé selon la revendication 2, lequel procédé comprend également :
    (f) la mise en contact d'au moins une partie de la phase hydrocarbonée contenant l'hydroperoxyde organique obtenue à l'étape (e) avec une oléfine contenant 3 à 10 atomes de carbone et un catalyseur pour obtenir de l'hydroxyde d'alkylaryle et un composé d'oxiranne,
    (g) la séparation d'au moins une partie du composé d'oxiranne de l'hydroxyde d'alkylaryle.
  4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la solution basique aqueuse est une solution basique aqueuse contenant des composés métalliques.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le composé d'alkylaryle est l'éthylbenzène, le di(isopropyl)-benzène et/ou le cumène.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel l'adsorbant solide est formé d'un ou plusieurs solides choisis dans le groupe constitué de la silice, d'un gel de silice, de verre, d'alumine, de tamis moléculaires, d'argile et de minéraux.
  7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel les solides du lit de protection ont une teneur en vides de 55% à 90% en volume.
EP01991866A 2000-12-27 2001-12-17 Procede de preparation d'un hydroperoxyde organique a quantite reduite de contaminants Expired - Lifetime EP1345894B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01991866A EP1345894B1 (fr) 2000-12-27 2001-12-17 Procede de preparation d'un hydroperoxyde organique a quantite reduite de contaminants

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00311709 2000-12-27
EP00311709 2000-12-27
PCT/EP2001/014992 WO2002051801A1 (fr) 2000-12-27 2001-12-17 Procede de preparation d'un hydroperoxyde organique a quantite reduite de contaminants
EP01991866A EP1345894B1 (fr) 2000-12-27 2001-12-17 Procede de preparation d'un hydroperoxyde organique a quantite reduite de contaminants

Publications (2)

Publication Number Publication Date
EP1345894A1 EP1345894A1 (fr) 2003-09-24
EP1345894B1 true EP1345894B1 (fr) 2005-11-02

Family

ID=8173491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01991866A Expired - Lifetime EP1345894B1 (fr) 2000-12-27 2001-12-17 Procede de preparation d'un hydroperoxyde organique a quantite reduite de contaminants

Country Status (12)

Country Link
US (1) US7067680B2 (fr)
EP (1) EP1345894B1 (fr)
JP (1) JP3939655B2 (fr)
KR (1) KR100839680B1 (fr)
CN (1) CN1249029C (fr)
AT (1) ATE308517T1 (fr)
AU (1) AU2002231722B2 (fr)
BR (1) BR0116544A (fr)
DE (1) DE60114663T2 (fr)
ES (1) ES2247191T3 (fr)
RU (1) RU2282621C2 (fr)
WO (1) WO2002051801A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512129B1 (en) * 2002-01-23 2003-01-28 Arco Chemical Technology, L.P. Epoxidation process
US7141703B2 (en) * 2003-02-14 2006-11-28 Shell Oil Company Process for producing phenol and ketone using neutralizing base
CN1764637A (zh) * 2003-02-28 2006-04-26 国际壳牌研究有限公司 方法
JP4363138B2 (ja) * 2003-09-18 2009-11-11 住友化学株式会社 有機過酸化物の製造方法
JP4770200B2 (ja) * 2004-03-04 2011-09-14 三菱化学株式会社 クメンハイドロパーオキサイドの製造方法
US7863493B2 (en) * 2006-04-12 2011-01-04 Shell Oil Company Process for preparing an organic hydroperoxide, industrial set-up therefore and process wherein such organic hydroperoxide is used in the preparation of an alkylene oxide
MY159778A (en) * 2008-12-31 2017-01-31 Memc Singapore Pte Ltd Methods to recover and purify silicon paricles from saw kerf
US8853481B2 (en) 2012-10-26 2014-10-07 Uop Llc Highly selective alkylation process with low zeolite catalyst composition
CN114082383B (zh) * 2021-12-27 2023-08-08 红宝丽集团泰兴化学有限公司 环氧化反应稳定性的提升方法及提升装置
CN114100544B (zh) * 2021-12-27 2023-07-11 红宝丽集团泰兴化学有限公司 有机烃过氧化物的处理装置和处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3242304C2 (de) 1982-11-16 1986-07-10 Drägerwerk AG, 2400 Lübeck Gasüberwachungsgerät mit Indikatorband und einem eine Umwandlungsfüllung zur chemischen Umwandlung des zu messenden Gases in eine durch das Indikatorband nachweisbaren Substanz enthaltenden Vorrohr
US4539101A (en) 1983-08-17 1985-09-03 Mobil Oil Corporation Method and catalyst for removing contaminants from hydrocarbonaceous fluids using a copper-Group VIA metal-alumina catalyst
US4601998A (en) * 1983-08-17 1986-07-22 Mobil Oil Corporation Method and catalyst for removing contaminants from hydrocarbonaceous fluids using a copper-group via metal-alumina catalyst
GB8813484D0 (en) 1988-06-08 1988-07-13 Shell Int Research Process for preparation of oxirane compound
US5723637A (en) 1995-12-06 1998-03-03 Sumitomo Chemical Company, Limited Process for producing propylene oxide
US5883268A (en) 1997-10-23 1999-03-16 Arco Chemical Technology, L.P. Process stream purification
US6420620B1 (en) 1998-02-17 2002-07-16 Shell Oil Company Process for preparing styrenes
EP1056696B1 (fr) 1998-02-18 2002-09-04 Shell Internationale Researchmaatschappij B.V. Procede servant a preparer des styrenes

Also Published As

Publication number Publication date
US20040063978A1 (en) 2004-04-01
CN1484635A (zh) 2004-03-24
JP2004520323A (ja) 2004-07-08
AU2002231722B2 (en) 2006-09-28
US7067680B2 (en) 2006-06-27
KR20030094225A (ko) 2003-12-11
RU2282621C2 (ru) 2006-08-27
JP3939655B2 (ja) 2007-07-04
DE60114663T2 (de) 2006-07-20
EP1345894A1 (fr) 2003-09-24
WO2002051801A1 (fr) 2002-07-04
ATE308517T1 (de) 2005-11-15
KR100839680B1 (ko) 2008-06-19
ES2247191T3 (es) 2006-03-01
CN1249029C (zh) 2006-04-05
BR0116544A (pt) 2003-10-07
RU2003123121A (ru) 2005-01-10
DE60114663D1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
KR100489466B1 (ko) 프로필렌옥사이드의제조방법
KR20030075151A (ko) 옥시란 화합물을 제조하는 방법
AU2002216112A1 (en) Preparation of oxirane compounds
EP1345894B1 (fr) Procede de preparation d'un hydroperoxyde organique a quantite reduite de contaminants
EP1266894B1 (fr) Procede de production d'un oxyde de propylene
AU2002231722A1 (en) Process for preparing organic hydroperoxide having a reduced amount of contaminants.
KR101108422B1 (ko) 프로필렌옥시드의 정제 방법
EP1440058B1 (fr) Procede de preparation d'hydroperoxydes organiques
AU2002342717A1 (en) Process for preparing organic hydroperoxides
EP1472218B1 (fr) Methode de preparation d'un produit contenant de l'hydroperoxide d'alkylaryle
AU2004215591B2 (en) Process
RU2315760C2 (ru) Способ получения стирола

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051102

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051102

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051102

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051102

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051102

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60114663

Country of ref document: DE

Date of ref document: 20051208

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2247191

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20060803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081020

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081124

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091217

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218