EP1339432A1 - Molekulare einschlussverbindungen aus biokatalytisch hergestellten, linearen und wasserunlöslichen polysacchariden und aus feffsäuren bzw. deren derivaten - Google Patents

Molekulare einschlussverbindungen aus biokatalytisch hergestellten, linearen und wasserunlöslichen polysacchariden und aus feffsäuren bzw. deren derivaten

Info

Publication number
EP1339432A1
EP1339432A1 EP01994752A EP01994752A EP1339432A1 EP 1339432 A1 EP1339432 A1 EP 1339432A1 EP 01994752 A EP01994752 A EP 01994752A EP 01994752 A EP01994752 A EP 01994752A EP 1339432 A1 EP1339432 A1 EP 1339432A1
Authority
EP
European Patent Office
Prior art keywords
molecular inclusion
fatty acids
water
inclusion compound
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01994752A
Other languages
English (en)
French (fr)
Inventor
Stephan Hausmanns
Thomas Kiy
Dirk Fabritius
Ivan Tomka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Ventures GmbH
Original Assignee
Celanese Ventures GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Ventures GmbH filed Critical Celanese Ventures GmbH
Publication of EP1339432A1 publication Critical patent/EP1339432A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof

Definitions

  • the present invention relates to molecular inclusion compounds from biocatalytically prepared, water-insoluble, linear polysaccharides and from fatty acids or their derivatives, processes for their preparation and their use.
  • Microcapsules are either in finely divided dispersions in which the material to be encapsulated is embedded in a sponge-like matrix (e.g. R94-9400419), or in structures in which the material to be encapsulated is not penetrated by the capsule material, but only surrounded (e.g. Arshady et al. 1990, Polymer Eng. Sci., 30 (15), 905-914 and 915-924).
  • the compound to be encapsulated is part of the multimolecular aggregates. It is also known that starch components such as amylose and amylopectin can also be used to form the above microcapsules.
  • microcapsules primarily serve to protect the encapsulated material against external influences (e.g. heat, UV light, oxidation), but can also make a significant contribution to easier processing (e.g. flowability, stickiness, conversion of liquid products into solid products).
  • Another application of the microcapsules is oral application while influencing sensory properties.
  • native starches can be used to form microcapsules (MK).
  • starches with a high proportion of resistant starches (high RS content) are used, which are only fermentatively degraded in the large intestine and not, as usual, by pancreatic amylase in the stomach and small intestine.
  • complex compounds of the iodine-starch complex type have also been described, in which one or more iodine or fatty acid molecules are embedded in a starch helix (cf. FIG. 1). This complex is referred to below as the molecular inclusion compound.
  • Helical iodine-starch complexes and their use for medical and pharmaceutical application are described, for example, by Gehnt and Eskin in US Pat. No. 5,955,101.
  • WO 94/17676 describes a composition of hydrolyzed starch as a matrix for incorporated lipophilic compounds.
  • a combination of molecular inclusion and dispersion is proposed in DE 44 11 414.
  • a product for the enteral supply of fatty acids is disclosed in which these are present in the product in a proportion of at least 10%.
  • the fatty acid is finely dispersed in a plasticized starch matrix, some of the fatty acids being at least partially enclosed in an amylose helix.
  • amylose helix it is not clear what the corresponding percentage of fatty acid molecules molecularly included in the amylose helix is.
  • Molecular inclusion compounds are therefore known which are based on native and thus branched, water-soluble starch or their degradation products and in which, according to common, professional knowledge, a maximum of 4.6% by weight of fatty acid, based on the starch content, can be incorporated as a molecular inclusion compound (also: loading) (see also Example 4 and Krüger et al., Monthly Bull. Brauwiss. (1984) 37 (12) pp. 505-512). Fanta et al. describe the complexation (loading) of 4.6% by weight myristic acid in amylose-rich starch (Carbohydr. Polym. (1999) 38 (1) pp. 1-6). However, materials and processes that would allow a molecular inclusion of significantly higher amounts of fatty acids (higher loading) would be desirable.
  • Molecular inclusion compounds are particularly well suited for use in pharmaceutical preparations, as functional foods, in cosmetic preparations and as food additives, and as food supplements, since the included compounds are very good, for example, against molecular influences such as e.g.
  • the fields of application of such molecular inclusion compounds also depend very much on the properties of the materials used for the inclusion.
  • the materials used are ⁇ -amylase resistant, so that the molecular inclusion compounds according to the invention are only digested in the large intestine. This can prevent the enzymatic / hydrolytic degradation of the molecular inclusion compound from occurring faster, based on the entire digestion process. It is particularly advantageous if the lipophilic molecules present in the interior of the molecular inclusion compounds are only released in the large intestine, so that they can be directly absorbed by the cells of the intestinal wall, without first being enzymatically involved, for example, by pancreatic enzymes split or modified. As a result, the bioavailability of the compounds can be increased in a particularly favorable manner.
  • a further object of the present invention was to provide molecular inclusion compounds and processes for their production, in which the materials used for the inclusion have new properties which open up new fields of application or special advantages in use for molecular inclusion compounds. It was also an object of the present invention to provide improved molecular inclusion compounds and processes for their preparation which, owing to the materials used, can be used as a constituent of human or veterinary compositions, as a food and feed constituent and for cosmetic applications.
  • a molecular inclusion compound characterized in that it consists of at least (a) a biocatalytically produced, linear, water-insoluble polysaccharide and (b) one (one) or more (more) fatty acid (s) or fatty acid derivative (s) ) consists.
  • An object of the present invention is therefore monomolecular inclusion compounds from biocatalytically produced, water-insoluble, linear polysaccharides and helically complexed lipophilic molecules, e.g. Fatty acids or their esters, the amount of helically complexed lipophilic compound being at least 5% by weight, based on the polyglucan used.
  • the amount of helically complexed lipophilic compound is preferably at least 7% by weight, based on the polysaccharide used, particularly preferably more than 9% by weight, based on the polysaccharide used, very particularly preferably more than 10% by weight, based on the polysaccharide used.
  • linear, water-insoluble polysaccharides are homogenized in a mixture with a lipophilic compound and processed to form a homogeneous matrix. Any unbound excess of the lipophilic compound is then removed by extraction.
  • a plasticizer can also be added. Homogenization can be brought about, for example, by extrusion. It is clear to the person skilled in the art that further, for example taste-improving, appearance-influencing or, in general, processability-influencing substances can be added.
  • Preferred plasticizers according to the invention are odorless, colorless, light, cold and heat resistant, only slightly or not at all hygroscopic, water-resistant, not harmful to health, difficult to ignite and as little volatile as possible, neutral reaction, miscible with polymers and auxiliaries and have good gelling behavior on. In particular, they should be compared to the used components have compatibility, gelling ability and softening effectiveness.
  • plasticizers examples include water, polyalcohols such as ethylene glycol, glycerol, propanediol, erythritol, maitol, sorbitol, polyvalent alkanoic acids such as maleic acid, succinic acid, adipic acid, polyvalent hydroxyalkanoic acids such as lactic acid, 2-hydroxybutyric acid, citric acid, malic acid, dimethyl or other solvents, urea for strength.
  • polyalcohols such as ethylene glycol, glycerol, propanediol, erythritol, maitol, sorbitol
  • polyvalent alkanoic acids such as maleic acid, succinic acid, adipic acid
  • polyvalent hydroxyalkanoic acids such as lactic acid, 2-hydroxybutyric acid, citric acid, malic acid, dimethyl or other solvents, urea for strength.
  • plasticizers are preferably used in a proportion of 2% by weight to 50% by weight, based on the polysaccharide component of the mixture according to the invention.
  • fragrance or aroma substances, binders etc. can be added if, for example, a cosmetic or pharmaceutical use or a use as a food or nutritional component is intended.
  • the degree of loading of native starch in palmitic acid which cannot be washed out with chloroform is 2-3% by weight. Surprisingly, this proportion increases to 7.7% by weight in the molecular inclusion compound according to the invention using biocatalytically prepared, linear and water-insoluble 1,4- ⁇ -D-polyglucan as polysaccharide.
  • the fatty acid is only released from the molecular inclusion compound after degradation by suitable enzymes or chemical hydrolysis under suitable conditions and can then be reisolated.
  • Linear, water-insoluble polysaccharides in the context of the present invention are polysaccharides which are built up from monosaccharides, disaccharides or other monomeric units in such a way that the monosaccharides, disaccharides or other monomeric units are always linked to one another in the same way.
  • Each basic unit or building block defined in this way has exactly two links, one each to a different monomer. From that except for the two basic units that form the beginning and the end of the polysaccharide. These basic units have only one link to another monomer. With three links on a basic unit (covalent bonds) one speaks of a branch.
  • Linear, water-insoluble polysaccharides in the sense of the invention have no branches or at most only to a minor extent, so that the very small branch fractions cannot be detected using conventional analytical methods such as, for example, 13 C or 1 H NMR spectroscopy.
  • DAß German Pharmacopoeia, Scientific Publishing House mbH, Stuttgart, Govi-N erlag GmbH, Frankfurt, 9th edition, 1987
  • Water-insoluble polysaccharides preferred according to the invention can therefore be assigned to class 4 of the DASS, that is to say that a saturated solution of the polysaccharide at room temperature and normal pressure comprises about 30 to 100 parts by volume of solvent, ie water, per part by weight of substance (1 g substance per 30-100 ml water).
  • Water-insoluble polysaccharides which are more preferred according to the invention can be assigned to class 5 of the DAB, ie that a saturated solution of the polysaccharide at room temperature and normal pressure comprises about 100 to 1000 parts by volume of solvent, ie water, per part by weight of substance (1 g substance per 100-1000 ml water).
  • even more preferred water-insoluble polysaccharides can be assigned to class 6 of the DAB, ie that a saturated solution of the polysaccharide at room temperature and normal pressure comprises about 1000 to 10000 parts by volume of solvent, ie water, per part by weight of substance (1 g substance per 1000-10000 ml water).
  • the most preferred water-insoluble polysaccharides can be assigned to class 7 of the DAB, that is to say that a saturated solution of the polysaccharide at room temperature and normal pressure comprises about 10,000 to 100,000 parts by volume of solvent, ie water, per part by weight of substance (lg substance per 10000-100000 ml water).
  • sparingly soluble to practically insoluble polysaccharides especially very sparingly soluble to practically insoluble polysaccharides, are preferred.
  • It is preferably water-insoluble poly- ⁇ -1,4-D-glucan.
  • linear, water-insoluble polysaccharides which have been produced in a biocatalytic (synonym: biotransformer) or a fermentative process are preferred.
  • Linear polysaccharides produced by biocatalysis in the context of this invention means that the linear polysaccharide is produced by catalytic reaction of basic monomeric units such as oligomeric saccharides, for example mono- and / or disaccharides, using a so-called biocatalyst, usually an enzyme , is used under suitable conditions.
  • Biocatalysis can be carried out with living, growing cells, with cells in the stationary state, with immobilized cells, with isolated or genetically engineered soluble or immobilized enzymes, in a single or multi-phase system.
  • Linear polysaccharides from fermentations are, in the parlance of the present invention, linear polysaccharides which have been modified by fermentative processes using organisms which occur in nature, such as fungi, algae or bacteria, or using organisms which are not found in nature with the aid of genetic engineering methods of general definition natural organisms such as fungi, algae or bacteria can be obtained or can be obtained with the help of fermentative processes.
  • linear polysaccharides according to the present invention can also be other polyglucans or other linear polysaccharides such as pullulans, pectins, mannans or polyfructans.
  • linear polysaccharides for the preparation of the molecular inclusion compounds described in the present invention can also be obtained from the reaction of further non-linear polysaccharides by treating non-linear polysaccharides containing branches with an enzyme in such a way that they are used to cleave the Branching occurs, so that linear polysaccharides are present after their separation.
  • enzymes can be, for example, amylases, iso-amylases, Act gluconohydrolases or pullulanases.
  • the polysaccharides according to the invention should always be strictly linear.
  • the polysaccharide used is 1,4- ⁇ -D-polyglucan.
  • the 1,4- ⁇ -D-polyglucan is preferably produced by means of a biocatalytic (biotransformatory) process with the aid of polysaccharide synthases, starch synthases, glycosyltransferases, -1,4-glucantransferases, glycogen synthases, amylosucrases or phosphorylases.
  • the molecular weights Mw of the linear polysaccharides used according to the invention can vary within a wide range from 10 3 g / mol to 10 7 g / mol.
  • molecular weights Mw of 10 4 g / mol to 10 5 g / mol, in particular 2 ⁇ 10 4 g / mol to 5 ⁇ 10 4 g / mol are preferred.
  • the ⁇ -amylase-resistant polysaccharides according to the invention can be characterized in that the 1,4- ⁇ -D-polyglucans are chemically modified in a manner known per se.
  • 1,4- ⁇ -D-polyglucans may have been chemically modified by etherification or esterification in the 2-, 3- or 6-position.
  • the person skilled in the art is sufficiently familiar with this chemical modification; see. for example the following literature:
  • an RS content is understood to mean the content of ⁇ -amylase-resistant polysaccharides as it is according to the method of Englyst et al. (Classification and measurement of nutritionally important starch fractions, European Journal of Clinical Nutrition, 46 (Suppl. 23) (1992) 33-50).
  • the molecular inclusion compounds described in the present invention have a high degree of resistance to ⁇ -amylase compared to native starch.
  • the ⁇ -amylase-resistant inclusion compounds according to the invention are characterized in that an RS content according to Englyst is at least 30, preferably 50, particularly preferably 75 and very particularly preferably 95% by weight ,
  • biocatalytically produced, linear and water-insoluble polysaccharides which can be used according to the invention have a whole series of features both of native strength and of those described in the prior art Distinguish enzymatic "debris products" of native starch. A summary of such differences is given in Table 1 below.
  • the inventors mentioned above currently assume that the surprisingly high binding capacity of the inclusion compounds according to the invention compared to inclusion compounds from the prior art cannot be attributed to a single one of these substance characteristics, but rather the sum of these Properties, possibly the strict linearity of the molecules according to the invention and the lack of phosphate esters and the high water insolubility in their entirety are responsible for the fact that the inclusion compounds according to the invention have such surprisingly favorable properties. Since the linear 1,4-D-polyglucan can be a more resistant form compared to the native starch (RS> 30%), this has advantages in the oral application of compounds which have their effect only after the passage of the Should ignite stomach and small intestine.
  • lipophilic agents can only be released specifically in the large intestine.
  • lipophilic substances which can be used according to the invention are saturated fatty acids or unsaturated fatty acids, so-called PUFAs.
  • PUFAs (English: Poly-Unsaturated Fatty Acids; German: polyunsaturated fatty acids) are understood in the parlance of the present invention as fatty acids with a chain length of more than 12 carbon atoms with at least two double bonds (see Table 2).
  • the fatty acids can be used both in the form of the free fatty acids, as fatty acid esters, as physiologically acceptable salts of the fatty acids, as triglycerides or in the form of other derivatives.
  • these fatty acids can be protected against premature digestion in the digestive system.
  • polysaccharide component of the mixture according to the invention can also be a mixture of different biocatalytically produced, water-insoluble and linear polysaccharides.
  • Figure 1 shows a schematic representation of the molecular inclusion compound.
  • A Process of binding a fatty acid into the polysaccharide helix;
  • B Fully stored fatty acid.
  • Figure 2 shows X-ray spectra for poly- ⁇ -l, 4-D-glucan with 35% glycerol (1) and additionally 2.5% (2), 5% (3) and 10% (4) palmitic acid.
  • the biotransformation supernatant is denatured at 95 ° C. After cooling to room temperature, centrifugation was carried out again. The clear supernatant was frozen at -70 ° C and thawed at 4 ° C for 3 days. The precipitate thus generated was frozen at -70 ° C and freeze-dried.
  • 39.5 g of the solid are washed with water for 30 min with stirring at room temperature, frozen at -70 ° C. and freeze-dried.
  • the fructose and sucrose content is determined after dissolving the solid in DMSO by a coupled enzymatic assay according to Stitt et al. (Meth. Enzym., 174 (1989) 518-552) and is 2.27 mg fructose per 100 mg solid.
  • the sucrose content is below the detection limit.
  • a mixture of 200g poly- ⁇ -l, 4-D-glucan (material from Example 1), 70g glycerol and 5g, 10g, 20g or 30g palmitic acid (corresponds to 2.5%, 5%, 10% or 15% based on the weight fraction of the polyglucan) are initially charged and homogenized in the extruder at 170 ° C. and 100 rpm. Samples are taken from the product after cooling. The melting peaks of the samples are determined using DSC (Digital Scanning Calorimetry). The degree of complexation Kx is then determined with the aid of a Soxhlet extraction (chloroform, 48h) by dissolving out the uncomplexed palmitic acid.
  • Table 3 shows results of a Soxhlet extraction in which native starch (purified potato starch) was used instead of poly- ⁇ -1,4-D-glucan in the sample preparation according to Example 1.
  • Table 3 Results of DSC and Soxhlet extraction
  • Example 3 The samples described in Example 3 were subjected to an X-ray structure analysis.
  • X-ray spectra for poly- ⁇ -l, 4-D-glucan with 35% glycerol (1) and 5 additionally 2.5% (2), 5% (3) and 10% (4) palmitic acid are shown in FIG. 2. It can be seen that the spectrum for the pure, plasticized poly- ⁇ -1,4-D-glucan (1) from the amorphous halo, the three larger peaks at 13.7, 15.5 and 21.1 ° 2 ⁇ , as well as some smaller peaks. The reflections at 13.7 and 21.1 ° are characteristic of the simple helix of V-amylose, a structure type that is typical of complex starches.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Obesity (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Es werden molekulare Einschlussverbindungen beschrieben, die dadurch gekennzeichnet sind, dass sie mindestens aus (a) einem biokatalytisch hergestellten, linearen, wasserunlöslichen Polysaccharid und (b) einer (einem) oder mehrere Fettsäure(n) oder Fettsäurederivat(en) bestehen. Diese molekularen Einschlussverbindungen sind besonders gut geeignet für die Verwendung in pharmazeutischen Zubereitungen, als funktionelle Nahrungsmittel ("Functional Foods"), in kosmetischen Zubereitungen und als Lebensmittelzusatztoffe sowie als Nahrungsergänzungsmittel, da die eingeschlossenen Verbindungen beispielsweise sehr gut vor molekularen Einflüssen wie dem Angriff von Enzymen geschützt sind.

Description

Molekulare Emschlussverbindungen aus biokatalytisch hergestellten, linearen und wasserunlöslichen Polysacchariden und aus Fettsäuren bzw. deren Derivaten.
Die vorliegende Erfindung betrifft molekulare Einschlussverbindungen aus biokatalytisch hergestellten, wasserunlöslichen, linearen Polysacchariden und aus Fettsäuren oder deren Derivaten, Verfahren zu deren Herstellung sowie deren Verwendung.
Die Herstellung von Mikro- oder Nanokapseln für die Ummantelung oder Verkapselung von Substanzen oder Substanzgemischen ist Gegenstand vielfacher Untersuchungen. Dabei werden Mikrokapseln entweder in fein verteilte Dispersionen, bei denen das zu verkapselnde Material in einer schwammartigen Matrix eingebettet ist (z. B. R94-9400419), oder in Strukturen, bei denen das zu verkapselnde Material vom Kapselmaterial nicht durchsetzt, sondern nur umgeben ist (z.B. Arshady et al.1990, Polymer Eng. Sei., 30 (15), 905-914 und 915-924), unterteilt.
In beiden Fällen liegen in Bezug auf das Kapselmaterial multimolekulare, Undefinierte Aggregate vor. Im Fall der Dispersionen ist dabei die zu verkapselnde Verbindung Teil der multimolekularen Aggregate. Weiterhin ist bekannt, dass auch Stärkebestandteile wie Amylose und Amylopektin zur Bildung obiger Mikrokapseln verwendet werden können.
Die Mikrokapseln dienen dabei vor allem zum Schutz des verkapselten Materials gegen äußere Einflüsse (z.B. Hitze, UV-Licht, Oxidation), können aber auch wesentlich zur vereinfachten Verarbeitbarkeit beitragen (z.B. Rieselfähigkeit, Klebrigkeit, Überführung von flüssigen Produkten in feste Produkte). Eine weitere Anwendung der Mikrokapseln ist die orale Applikation unter Beeinflussung sensorischer Eigenschaften. Es ist bekannt, dass zur Bildung von Mikrokapseln (MK) native Stärken verwendet werden können. Dabei werden u.a. auch Stärken mit einem hohen Anteil an resistenten Stärken (hoher RS-Gehalt) eingesetzt, die erst im Dickdarm fermentativ abgebaut werden und nicht wie üblich bereits durch Pankreas Amylase im Magen und Dünndarm.
Demgegenüber wurden auch Komplexverbindungen nach Art des Jod-Stärke- Komplexes beschrieben, bei denen ein oder mehrere Jod- oder Fettsäure-Moleküle in eine Stärkehelix eingelagert sind (vergleiche Fig. 1). Dieser Komplex wird im Folgenden als molekulare Einschlussverbindung bezeichnet. Helikale Jod-Stärke- Komplexe und deren Verwendung für die medizinische und pharmazeutische Applikation werden beispielsweise von Gehnt und Eskin in der US 5,955,101 beschrieben.
Von den gleichen Autoren wird in der US 5,910,318 ein ähnlicher Komplex für die Maskierung von Jod bei Jod-Mangelkrankheiten beschrieben.
In der WO 94/17676 wird eine Zusammensetzung aus hydrolysierter Stärke als Matrix für inkorporierte lipophile Verbindungen beschrieben.
In der DE 44 11 414 wird eine Kombination aus molekularem Einschluss und Dispersion vorgeschlagen. Es wird ein Produkt zur enteralen Versorgung von Fettsäuren offenbart, bei dem diese mit einem Anteil von mindestens 10% im Produkt vorliegen. Dabei liegt die Fettsäure fein dispergiert in einer plastifizierten Stärkematrix vor, wobei ein Teil der Fettsäuren zumindest abschnittsweise in eine Amylose-Helix eingeschlossen ist. Es ist jedoch nicht klar, wie hoch der entsprechende Prozentsatz an in der Amylose-Helix molekular eingeschlossenen Fettsäure-Molekülen ist. Es sind also molekulare Einschlussverbindungen bekannt, die auf nativer und somit verzweigter, wasserlöslicher Stärke oder deren Abbauprodukten beruhen und in denen nach landläufigem, fachmännischen Wissen maximal 4,6-Gew.% Fettsäure bezogen auf den Stärke-Anteil als molekulare Einschlussverbindung inkorporiert sein können (auch: Beladung) (vergleiche dazu auch Beispiel 4 und Krüger et. al., Monatsschr. Brauwiss. (1984) 37(12) S. 505-512). Fanta et al. beschreiben die Komplexierung (Beladung) von 4,6-Gew.% Myristinsäure in Amylose-reicher Stärke (Carbohydr. Polym. (1999) 38(1) S. 1-6). Wünschenswert wären jedoch Materialien und Verfahren, die einen molekularen Einschluss wesentlich höherer Mengen Fettsäuren ermöglichen würden (höhere Beladung).
Molekulare Einschlussverbindungen sind nämlich besonders gut geeignet für die Verwendung in pharmazeutischen Zubereitungen, als funktionelle Nahrungsmittel („Functional Foods"), in kosmetischen Zubereitungen und als Lebensmittelzusatzstoffe sowie als Nahrungsergänzungsmittel, da die eingeschlossenen Verbindungen beispielsweise sehr gut vor molekularen Einflüssen wie z. B. dem Angriff von Enzymen geschützt sind. Die Einsatzgebiete solcher molekularer Einschlussverbindungen hängen dabei auch ganz wesentlich von den Eigenschaften der zum Einschluss verwendeten Materialien ab.
Für bestimmte Anwendungen der erfindungsgemäßen molekularen Einschlussverbindungen ist es besonders wünschenswert, wenn die verwendeten Materialien α-Amylase resistent sind, so dass die erfindungsgemäßen molekularen Einschlussverbindungen erst im Dickdarm verdaut werden. Dadurch kann vermieden werden, dass ein bezogen auf den gesamten Verdauungsvorgang schneller enzymatischer/hydrolytischer Abbau der molekularen Einschlussverbindung stattfindet. Besonders vorteilhaft ist es, wenn die im Innern der molekularen Einschlussverbindungen geschützt vorliegenden lipophilen Moleküle erst im Dickdarm freigesetzt werden, so dass sie direkt von den Zellen der Darmwand resorbiert werden können, ohne dass sie dabei vorher zu einem wesentlichen Anteil beispielsweise durch Pankreas-Enzyme enzymatisch gespalten oder modifiziert werden. Dadurch kann die Bioverfügbarkeit der Verbindungen in besonders günstiger Weise erhöht werden.
Eine Aufgabe der vorliegenden Erfindung war es daher, Materialien und Verfahren zur Verfügung zu stellen, mit denen eine quantitativ wesentlich höhere Komplexierung von Fettsäuren in sogenannten molekularen Einschlussverbindungen erreicht werden kann. Eine weitere Aufgabe der vorliegenden Erfindung war es, molekulare Einschlussverbindungen sowie Verfahren zu ihrer Herstellung zur Verfügung zu stellen, bei denen die zum Einschluss verwendeten Materialien neue Eigenschaften aufweisen, die für molekulare Einschlussverbindungen neue Einsatzgebiete bzw. besondere Vorteile bei der Verwendung eröffnen. Auch war es Aufgabe der vorliegenden Erfindung, verbesserte molekulare Einschlussverbindungen und Verfahren zu deren Herstellung zur Verfügung zu stellen, die aufgrund der verwendeten Materialien als Bestandteil von humanmedizinischen oder veterinärmedizinischen Zusammensetzungen, als Nahrungs- und Futtermittelbestandteil sowie für kosmetische Anwendungen verwendbar sind.
Diese Aufgabe wird erfindungsgemäß gelöst durch Bereitstellen einer molekularen Einschlussverbindung, dadurch gekennzeichnet, dass diese mindestens aus (a) einem biokatalytisch hergestellten, linearen, wasserunlöslichen Polysaccharid und (b) einer (einem) oder mehrerer (mehreren) Fettsäure(n) oder Fettsäurederivat(en) besteht.
Weitere bevorzugte Ausführungsformen und Gegenstände der vorliegenden Anmeldung werden in den Ansprüchen beschrieben.
Überraschenderweise konnte von den Erfindern festgestellt werden, dass mit absolut unverzweigten, wasserunlöslichen Polysacchariden, wie sie z. B. über den Weg der biokatalytischen Produktion erhältlich sind, molekulare Einschlussverbindungen mit einer wesentlich höhere Beladungen im Vergleich mit nativen Stärken hergestellt werden können.
Ein Gegenstand der vorliegenden Erfindung sind daher monomolekulare Einschlussverbindungen aus biokatalytisch hergestellten, wasserunlöslichen, linearen Polysacchariden und helikal komplexierten lipophilen Molekülen, z.B. Fettsäuren oder deren Estern, wobei die Menge an helikal komplexierter lipophiler Verbindung mindestens 5 Gew.-% bezogen auf das eingesetzte Polyglucan beträgt. Bevorzugt beträgt die Menge an helikal komplexierter lipophiler Verbindung jedoch mindestens 7 Gew.-% bezogen auf das eingesetzte Polysaccharid, besonders bevorzugt mehr als 9 Gew.-% bezogen auf das eingesetzte Polysaccharid, ganz besonders bevorzugt mehr als 10 Gew.-% bezogen auf das eingesetzte Polysaccharid.
Zur Herstellung der erfindungsgemäßen molekularen Einschlussverbindungen werden biokatalytisch hergestellte, lineare, wasserunlösliche Polysaccharide in einer Mischung mit einer lipophilen Verbindung homogenisiert und zu einer homogenen Matrix verarbeitet. Ein etwaiger ungebundener Überschuß der liphophilen Verbindung wird anschließend durch Extraktion entfernt.
Gegebenenfalls kann auch ein Weichmacher zugesetzt werden. Dabei kann die Homogenisierung beispielsweise durch eine Extrusion herbeigeführt werden. Es ist dem Fachmann klar, dass noch weitere, beispielsweise geschmacksverbessernde, das Aussehen beeinflussende oder in allgemeiner Form die Verarbeitbarkeit beeinflussende Substanzen zugefügt werden können.
Bevorzugte Weichmacher gemäß der Erfindung sind geruchlos, farblos, licht-, kälte- und wärmebeständig, nur wenig bis gar nicht hygroskopisch, wasserbeständig, nicht gesundheitsschädlich, schwer brennbar und möglichst wenig flüchtig, neutral reagierend, mit Polymeren und Hilfsstoffen mischbar und weisen ein gutes Gelierverhalten auf. Insbesondere sollen sie gegenüber den verwendeten Komponenten Verträglichkeit, Geliervermögen und weichmachende Wirksamkeit aufweisen. Beispiele für geeignete Weichmacher sind Wasser, Polyalkohole wie Ethylenglykol, Glycerin, Propandiol, Erythritol, Ma iitol, Sorbitol, mehrwertige Alkansäuren wie Maleinsäure, Bernsteinsäure, Adipinsäure, mehrwertige Hydroxyalkansäuren wie Milchsäure, 2-Hydroxybuttersäure, Citronensäure, Apfelsäure, Dimethylsulfoxid, Harnstoff oder weitere Lösungsmittel für Stärke.
Die Verwendung von Weichmachern ist dem Fachmann geläufig. Bevorzugt werden die Weichmacher in einem Anteil von 2 Gew.-% bis 50 Gew.-%, bezogen auf die Polysaccharidkomponente des erfindungsgemäßen Gemischs, eingesetzt.
Auch Duft- oder Aromastoffe, Bindemittel u.a. können zugesetzt werden, wenn beispielsweise eine kosmetische oder pharmazeutische Verwendung oder eine Verwendung als Nahrungsmittel oder Nahrungsbestandteil vorgesehen ist.
Der Beladungsgrad nativer Stärke an mit Chloroform nicht auswaschbarer Palmitinsäure liegt bei 2-3 Gew.-%. Überraschenderweise erhöht sich dieser Anteil bei der erfindungsgemäßen molekularen Einschlussverbindung unter Verwendung von biokatalytisch hergestelltem, linearem und wasserunlöslichem 1,4-α-D-Polyglucan als Polysaccharid auf 7,7 Gew.-%. Die Fettsäure wird aus der molekularen Einschlussverbindung erst nach Abbau durch geeignete Enzyme oder chemische Hydrolyse unter geeigneten Bedingungen freigesetzt und kann dann reisoliert werden.
"Lineare, wasserunlösliche Polysaccharide" im Sinne der vorliegenden Erfindung sind Polysaccharide, die aus Monosacchariden, Disacchariden oder anderen monomeren Bausteinen derart aufgebaut sind, dass die Monosaccharide, Disaccharide oder anderen monomeren Bausteine stets in der gleichen Art miteinander verknüpft sind. Jede so definierte Grundeinheit oder Baustein hat genau zwei Verknüpfungen, jeweils eine zu einem anderen Monomer. Davon ausgenommen sind die beiden Grundeinheiten, die den Anfang und das Ende des Polysaccharids bilden. Diese Grundeinheiten haben nur eine Verknüpfung zu einem weiteren Monomer. Bei drei Verknüpfungen an einer Grundeinheit (kovalente Bindungen) spricht man von einer Verzweigung. Lineare, wasserunlösliche Polysaccharide im Sinne der Erfindung weisen keine Verzweigungen oder allenfalls nur in untergeordnetem Maß auf, so dass die sehr kleinen Verzweigungsanteile mit herkömmlichen analytischen Methoden wie beispielsweise der 13C- oder 'H-NMR-Spektroskopie nicht nachweisbar sind.
Unter dem Begriff "wasserunlösliche Polysaccharide" werden für die vorliegende Erfindung Verbindungen verstanden, die nach der Definition des Deutschen Arzneibuches (DAß = Deutsches Arzneibuch, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Govi-N erlag GmbH, Frankfurt, 9. Auflage, 1987) entsprechend den Klassen 4 bis 7 unter die Kategorien "wenig löslich", "schwer lösliche", "sehr schwer lösliche" bzw. "praktisch unlösliche" Verbindungen fallen.
Im Fall der erfindungsgemäß verwendeten Polysaccharide bedeutet dies, dass mindestens 98 % der eingesetzten Menge, insbesondere mindestens 99,5 %, unter Νormalbedingungen (T = 25 °C +/- 20 %, p= 101325 Pascal +/- 20 %) in Wasser unlöslich ist (entsprechend den Klassen 4 bzw. 5). Erfindungsgemäß bevorzugte wasserunlösliche Polysaccharide lassen sich daher der Klasse 4 des DAß zuordnen, d.h. dass eine gesättigte Lösung des Polysaccharids bei Raumtemperatur und Normaldruck etwa 30 bis 100 Volumenteile Lösungsmittel, d.h. Wasser, pro Massenteil Substanz umfasst (lg Substanz auf 30-100ml Wasser). Erfindungsgemäß mehr bevorzugte wasserunlösliche Polysaccharide lassen sich der Klasse 5 des DAB zuordnen, d.h. dass eine gesättigte Lösung des Polysaccharids bei Raumtemperatur und Normaldruck etwa 100 bis 1000 Volumenteile Lösungsmittel, d.h. Wasser, pro Massenteil Substanz umfasst (lg Substanz auf 100-1000ml Wasser). Erfindungsgemäß noch mehr bevorzugte wasserunlösliche Polysaccharide lassen sich der Klasse 6 des DAB zuordnen, d.h. dass eine gesättigte Lösung des Polysaccharids bei Raumtemperatur und Normaldruck etwa 1000 bis 10000 Volumenteile Lösungsmittel, d.h. Wasser, pro Massenteil Substanz umfasst (lg Substanz auf 1000-lOOOOml Wasser). Erfindungsgemäß am meisten bevorzugte wasserunlösliche Polysaccharide lassen sich der Klasse 7 des DAB zuordnen, d.h. dass eine gesättigte Lösung des Polysaccharids bei Raumtemperatur und Normaldruck etwa 10000 bis 100000 Volumenteile Lösungsmittel, d.h. Wasser, pro Massenteil Substanz umfasst (lg Substanz auf 10000- 100000ml Wasser).
Für die vorliegende Erfindung werden schwer lösliche bis praktisch unlösliche Polysaccharide, insbesondere sehr schwer lösliche bis praktisch unlösliche Polysaccharide, bevorzugt.
"Sehr schwer löslich" entsprechend Klasse 6 kann durch folgende Versuchsbeschreibung veranschaulicht werden:
Ein Gramm des zu untersuchenden Polysaccharids wird in 1 1 entionisierten Wasser auf 130° C unter einem Druck von 1 bar erhitzt. Die entstehende Lösung bleibt nur kurzzeitig über wenige Minuten stabil. Beim Erkalten unter Normalbedingungen fällt die Substanz wieder aus. Nach Abkühlung auf Raumtemperatur und Abtrennung mittels Zentrifugation köm en unter Berücksichtigung der experimentellen Verluste mindestens 66 % der eingesetzten Menge zurückgewonnen werden.
Bevorzugt handelt es sich um wasserunlösliches Poly-α-1 ,4-D-Glucan.
Im Rahmen der vorliegenden Erfindung werden lineare, wasserunlösliche Polysaccharide, welche in einem biokatalytischen (Synonym: biotransformatorischem) oder einem fermentativen Prozess hergestellt wurden, bevorzugt. Durch Biokatalyse (Synonym: Biotransformation) hergestellte lineare Polysaccharide im Rahmen dieser Erfindung bedeutet, dass das lineare Polysaccharid durch katalytische Reaktion von monomeren Grundbausteinen wie oligomeren Sacchariden, z.B. von Mono- und/oder Disacchariden, hergestellt wird, indem ein sogenannter Biokatalysator, üblicherweise ein Enzym, unter geeigneten Bedingungen verwendet wird. Biokatalysen können mit lebenden, wachsenden Zellen, mit Zellen im stationären Zustand, mit immobilisierten Zellen, mit isolierten oder gentechnisch hergestellten löslichen oder immobilisierten Enzymen, im Ein- oder Mehrphasensystem, durchgeführt werden.
Lineare Polysaccharide aus Fermentationen sind im Sprachgebrauch der vorliegenden Erfindung lineare Polysaccharide, die durch fermentative Prozesse unter der Verwendung von in der Natur vorkommenden Organismen wie Pilzen, Algen oder Bakterien oder unter Verwendung von in der Natur nicht vorkommenden Organismen unter Zuhilfenahme von gentechnischen Methoden allgemeiner Definition modifizierten natürlichen Organismen wie Pilzen, Algen oder Bakterien gewonnen werden oder unter Einschaltung und Mithilfe von fermentativen Prozessen gewonnen werden können.
Lineare Polysaccharide gemäß der vorliegenden Erfindung können neben dem bevorzugten 1,4-α-D-Polyglucan auch weitere Polyglucane oder andere lineare Polysaccharide wie etwa Pullulane, Pektine, Mannane oder Polyfructane sein.
Darüber hinaus können lineare Polysaccharide zur Herstellung der in der vorliegenden Erfindung beschriebenen molekularen Einschlussverbindungen auch aus der Reaktion weiterer nicht-linearer Polysaccharide dadurch gewonnen werden, dass nicht-lineare Polysaccharide, die Verzweigungen enthalten, derart mit einem Enzym behandelt werden, dass es zur Spaltung der Verzweigungen kommt, so dass nach ihrer Abtrennung lineare Polysaccharide vorliegen. Bei diesen Enzymen kann es sich beispielsweise um Amylasen, iso-Amylasen, Gluconohydrolasen oder Pullulanasen handeln. Allerdings sollten die erfindungsgemäßen Polysaccharide immer strikt linear sein.
In einer besonders vorteilhaften Ausführungsform der Erfindung ist das verwendete Polysaccharid 1,4-α-D-Polyglucan. Bevorzugt wird das 1,4-α-D- Polyglucan mittels eines biokatalytischen (biotransformatorischen) Prozesses mit Hilfe von Polysaccharidsynthasen, Stärkesynthasen, Glykosyltransferasen, -1,4- Glucantransferasen, Glycogensynthasen, Amylosucrasen oder Phosphorylasen hergestellt.
Die Molekulargewichte Mw der erfindungsgemäß verwendeten linearen Polysaccharide können in einem weiten Bereich von 103 g/mol bis 107 g/mol variieren. Für das vorzugsweise verwendete lineare Polysaccharid 1,4-α-D- Polyglucan werden Molekulargewichte Mw von 104 g/mol bis 105 g/mol, insbesondere 2 x 104 g/mol bis 5 x 104 g/mol bevorzugt.
Ferner können die erfindungsgemäßen α-Amylase-resistenten Polysaccharide dadurch gekennzeichnet sein, dass die 1,4-α-D-Polyglucane chemisch in an sich bekannter Weise modifiziert sind.
So können die 1,4-α-D-Polyglucane durch Veretherung oder Veresterung in 2-, 3- oder 6-Position chemisch modifiziert worden sein. Der Fachmann ist mit dieser chemischen Modifizierung hinlänglich vertraut; vgl. beispielsweise folgende Literatur:
1. Functional Properties of Food Components, 2nd edition, Y. Pomeranz, Academic Press (1991).
2. Lehrbuch der Lebensmittelchemie, Belitz & Grosch, Springer Verlag (1992). 3. Citrat Starch Possible Application as Resistent Starch in Different Food Systems, B. Wepner et al., European Air Concerted Action, Abstract: air3ct94- 2203, Functional Properties of Non-digestible Carbohydrates, Pro Fibre-Tagung, Lissabon, Februar 1998, Seite 59.
Für die Zwecke der vorliegenden Erfindung versteht man unter einem RS-Gehalt den Gehalt an α-Amylase-resistenten Polysacchariden, wie er nach der Methode von Englyst et al. (Classification and measurement of nutritionally important starch fractions, European Journal of Clinical Nutrition, 46 (Suppl. 23) (1992) 33- 50) bestimmt werden kann.
Weiterhin wird für die Zwecke der vorliegenden Erfindung unter einer molekularen Einschlußverbindung ebenso der einzelne Komplex aus lipophiler Verbindung und Polysaccharid (Figur 1), wie auch eine größere Menge dieser Verbindungen z.B. in Form eines Pulvers etc. verstanden.
Die in der vorliegenden Erfindung beschriebenen molekularen Einschlussverbindungen weisen in einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung im Vergleich zu nativer Stärke einen hohen Grad an Resistenz gegenüber α-Amylase auf. In einem besonders bevorzugten Ausführungsbeispiel der vorliegenden Erfindung sind die erfindungsgemäßen α- Amylase-resistenten Einschlussverbindungen dadurch gekennzeichnet, dass ein RS-Gehalt nach Englyst von mindestens 30, bevorzugt von 50, besonders bevorzugt von 75 und ganz besonders bevorzugt von 95 Gew.-% vorliegt.
Es ist dabei für die vorliegende Erfindung von hoher Bedeutung, dass die erfindungsgemäß verwendbaren biokatalytisch hergestellten, linearen und wasserunlöslichen Polysaccharide sich in einer ganzen Reihe von Merkmalen sowohl von nativer Stärke als auch von im Stand der Technik beschriebenen enzymatischen „Entzweigungsprodukten" nativer Stärke unterscheiden. Eine Zusammenstellung solcher Unterschiede ist in der folgenden Tabelle 1 angegeben.
Tabelle 1 Unterschiede zwischen nativer Stärke und erfindungsgemäß einsetzbaren, biokatalytisch hergestellten, linearen und wasserunlöslichen Polysacchariden, insbesondere 1,4-α-D-Polyglucane
Obwohl darüber keine Sicherheit herrscht, gehen die vorstehend genannten Erfinder zur Zeit davon aus, dass die im Vergleich mit Einschluss Verbindungen aus dem Stand der Technik überraschend hohe Bindekapazität der erfindungsgemäßen Einschlussverbindungen sich nicht auf ein einzelnes dieser Stoffmerkmale zurückführen lässt, sondern dass vielmehr die Summe dieser Eigenschaften, möglicherweise die strikte Linearität der erfindungsgemäßen Moleküle sowie das Fehlen der Phosphatester sowie die hohe Wasserunlöslichkeit in ihrer Summe dafür verantwortlich sind, dass die erfindungsgemäßen Einschlussverbindungen solche überraschend günstigen Eigenschaften aufweisen. Da es sich bei dem linearen 1,4- -D-Polyglucan um eine im Vergleich zur nativen Stärke resistenteren Form (RS >30 %) handeln kann, hat dies Vorteile bei der oralen Applikation von Verbindungen, die ihre Wirkung erst nach dem Durchtritt des Magens und des Dünndarms entfachen sollen.
So können beispielsweise lipophile Wirkstoffe gezielt erst im Dickdarm freigesetzt werden.
Beispiel für erfindungsgemäß verwendbare lipophile Stoffe sind gesättigte Fettsäuren oder ungesättigte Fettsäuren, sogenannte PUFAs. Unter PUFAs (Englisch: Poly-Unsaturated Fatty Acids; Deutsch: mehrfach ungesättigte Fettsäuren) versteht man im Sprachgebrauch der vorliegenden Erfindung Fettsäuren mit einer Kettenlänge von mehr als 12 Kohlenstoffatomen mit mindestens zwei Doppelbindungen (siehe Tabelle 2). Dabei können die Fettsäuren sowohl in Form der freien Fettsäuren, als Fettsäureester, als physiologisch verträgliche Salze der Fettsäuren, als Triglyceride oder in Form anderer Derivate verwendet werden.
Die folgende Tabelle zeigt eine nicht erschöpfende Zusammenstellung von erfindungsgemäß besonders gut geeigneten Fettsäuren.
Tabelle 2: Erfindungsgemäß besonders gut geeigneten Fettsäuren
Durch Einschluss in die erfindungsgemäßen besonders bevorzugten α-Amylase resistenten molekularen Einschlussverbindungen können diese Fettsäuren vor einem vorzeitigen Verdau im Verdauungssystem geschützt werden.
Es ist klar, daß es sich bei der Polysaccharidkomponente der erfindungsgemäßen Mischung auch um ein Gemisch unterschiedlicher biokatalytisch hergestellter, wasserunlöslicher und linearer Polysaccharide handeln kann.
Anwendungen für molekulare Einschlussverbindungen finden sich u.a. in den Krankheitsgebieten Darmkrebs (Bougnoux 1999, Curr. Opin. Clin. Nutr. Metab. Care, 2 (2), 121-126; Wisont 1999, friform 10 (5), 380-397), entzündliche Darmerkrankungen (z.B. Morbus Crohn oder Collitis), mentale oder neurologische Erkrankungen (z.B. Depression, Schizophrenie, Alzheimer) und Gefäßerkrankungen (z.B. Bluthochdruck, Arteriosklerose).
Weitere wichtige Anwendungsgebiete der erfindungsgemäßen molekularen Einschluss Verbindungen liegen in den Bereichen Kinderernährung, Säuglings- und Frühgeborenenernährung, klinische Ernährung, funktionelle Nahrungsmittel („Functional Foods"), kosmetische Anwendungen und Lebensmittelzusatzstoffe.
Figur 1 zeigt eine schematische Darstellung der molekularen Einschlussverbindung. (A): Vorgang der Bindung einer Fettsäure in die Polysaccharidhelix; (B) vollständig eingelagerte Fettsäure. Figur 2 zeigt Röntgenspektren für Poly-α-l,4-D-Glucan mit 35% Glycerin (1) und zusätzlich 2,5% (2), 5% (3) und 10% (4) Palmitinsäure.
Die folgenden Beispiele erläutern die Erfindung näher.
Beispiel 1 :
Herstellung von Poly-α-l,4-D-Glucan
In einem 5-1-Gefass werden 5 1 einer sterilisierten 30-proz. Saccharose Lösung gegeben. Ein Enzymextrakt, der eine Amylosucrase aus Neisseria polysaccharea enthält (s. WO 95 31 553), wird in einer Portion zugegeben und gemischt. Die eingesetzte Enzymaktivität beträgt in diesem Experiment 148000 Units. Das verschlossene Gefäß wurde bei 37 OC inkubiert. Während der Dauer der Biotransformation bildet sich ein weißer Niederschlag. Die Reaktion wird nach 39 h beendet. Der Niederschlag wird abzentrifugiert, bei -70 °C eingefroren und anschließend gefriergetrocknet. Die Masse des gefriergetrockneten Feststoffes beträgt 526,7 g (70,2 % Ausbeute).
Zur Abtrennung niedermolekularer Zucker werden 200 g des Feststoffes mit Wasser 30 min unter Rühren bei Raumtemperatur gewaschen, bei -70 °C eingefroren und gefriergetrocknet. Der Gehalt an Fruktose und Saccharose wird nach Lösen des Feststoffes in DMSO durch einen gekoppelten enzymatischen Assayl bestimmt und beträgt 4,61 mg Fruktose pro 100 mg Feststoff (4, 6 %). Der Gehalt an Saccharose liegt unter der Nachweisgrenze.
Der Überstand der Biotransformation wird bei 95 °C denaturiert. Nach Abkühlen auf Raumtemperatur wurde erneut zentrifiigiert. Der klare Überstand wurde bei - 70 °C eingefroren und über 3 Tage bei 4 °C aufgetaut. Der so erzeugte Niederschlag wurde bei -70 °C eingefroren und gefriergetrocknet. Zur Abtrennung niedermolekularer Zucker werden 39, 5 g des Feststoffes mit Wasser 30 min unter Rühren bei Raumtemperatur gewaschen, bei -70 °C eingefroren und gefriergetrocknet. Der Gehalt an Fruktose und Saccharose wird nach Lösen des Feststoffes in DMSO durch einen gekoppelten enzymatischen Assay gemäß Stitt et al. (Meth. Enzym., 174 (1989) 518 - 552) bestimmt und beträgt 2,27 mg Fruktose pro 100 mg Feststoff. Der Gehalt an Saccharose liegt unter der Nachweisgrenze.
Beispiel 2:
Charakterisierung des Ausgangsmaterial
Bestimmung des Molekulargewichts des mit Amylosucrase synthetisierten wasserunlöslichen Poly-α-l,4-D-Glucan aus Beispiel 1 (Figur 1)
Es werden 2 mg des Poly-(l,4-(-D-glukans) aus Beispiel 1 bei Raumtemperatur in Dimethylsulfoxid (DMSO, p.a. von Riedel-de-Haen) gelöst und filtriert (2 (m) . Ein Teil der Lösung wird in eine Säule der Gelpermeationschromatographie infiziert. Als Elutionsmittel wird DMSO verwendet. Die Signalintensität wird mittels eines RI-Detektors gemessen und gegen Pullulanstandards (Firma Polymer Standard Systems) ausgewertet. Die Flußrate beträgt 1.0 ml pro Minute.
Die Messung ergibt ein Zahlenmittel des Molekulargewichts (Mn) von 2.326 g/mol und ein Gewichtsmittel des Molekulargewichts (Mw) von 3.367 g/mol. Die Wiederfmdungsrate beträgt 100 %. Beispiel 3:
Bestimmung des maximal möglichen Komplexierungsgrades
Eine Mischung aus 200g Poly-α-l,4-D-Glucan (Material aus Beispiel 1), 70g Glycerin und 5g, 10g, 20g bzw. 30g Palmitinsäure (entspricht 2,5%, 5%, 10% bzw. 15% bezogen auf den Gewichtsanteil des Polyglucans) werden vorgelegt und im Extruder bei 170°C und lOOupm homogenisiert. Vom Produkt werden nach dem Abkühlen Proben entnommen. Mit Hilfe der DSC (Digital Scanning Calorimetry) werden die Schmelzpeaks der Proben bestimmt. Anschließend werden mit Hilfe einer Soxhlet-Extraktion (Chloroform, 48h) durch Herauslösen der nicht komplexierten Palmitinsäure der Komplexierungsgrad Kx bestimmt.
Als Ergebnis der Komplexbildung wird Palmitinsäure in der Amylose-Helix eingeschlossen, es existiert keine kohärente Palmitinphase mehr. Erst bei einem Überschuß an Palmitinsäure liegt der nichtkomplexierte Teil der Säure als kohärente Phase mit eigenem Schmelzpeak vor. Die Abwesenheit des Palmitinsäure-Schmelzpeaks ist somit ein Beweis dafür, dass die Komplexierung vollständig stattgefunden hat. Ist noch ein Rest-Schmelzpeak vorhanden, so kann aus der Differenz der Flächen der Anteil der komplexierten Säure ermittelt werden. Diese Werte sind in Tabelle 3 aufgeführt und den Ergebnissen der Soxhlet-Extraktion gegenübergestellt. In der letzten Spalte der Tabelle 3 sind darüber hinaus Ergebnisse einer Soxhlet-Extraktion aufgeführt, bei der bei der Probenherstellung nach Beispiel 1 native Stärke (gereinigte Kartoffelstärke) anstelle von Poly-α-l,4-D-Glucan eingesetzt wurde. Tabelle 3: Ergebnisse von DSC und Soxhlet-Extraktion
Die Resultate lassen darauf schließen, dass unter Verwendung von 35% Glycerin 5 als Weichmacher 7,5 - 7,7% Palmitinsäure, bezogen auf das Gewicht des reinen Poly-α-l,4-D-Glucan, komplexiert werden kann. Hingegen ist durch Verwendung von nativer Kartoffelstärke maximal eine Komplexierung von 2,5% Palmitinsäure möglich.
0 Beispiel 4:
Strukturuntersuchung durch Röntgenbeugung.
Die im Beispiel 3 beschriebenen Proben wurden einer Röntgen-Strukturanalyse unterzogen. Röntgenspektren für Poly-α-l,4-D-Glucan mit 35% Glycerin (1) und 5 zusätzlich 2,5% (2), 5% (3) und 10% (4) Palmitinsäure sind in Figur 2 dargestellt. Es ist zu erkennen, dass sich das Spektrum für das reine, weichgemachte Poly-α- 1,4-D-Glucan (1) aus dem amorphen Halo, den drei größeren Peaks bei 13,7, 15,5 und 21,1° 2Θ, sowie einigen kleineren Peaks zusammensetzt. Die Reflexe bei 13,7 und 21,1° sind charakteristisch für die einfache Helix der V-Amylose, ein 0 Strukturtyp, der typisch für komplexierte Stärke ist. Daneben sind noch einige weitere Strukturen vorhanden, wie der Reflex bei 15,5° und die verschiedenen kleineren Reflexe belegen. Diese Strukturen nehmen mit der Zunahme des Palmitinsäureanteils ab, während der V-Amylose Strukturtyp sich weiter ausprägt, deutlich sichtbar an Reflex 13,7. Dieser ist ohne Palmitinsäureanteil nur schwach ausgebildet und wird mit Zunahme des Palmitinsäureanteils ((2)— »(4)) ausgeprägter. Beim maximalen Komplexierungsgrad liegt die gesamte kristalline Phase im V-Amylose Strukturtyp vor. Bei 10% Palmitinsäure (4) ist bei 7,5° 2Θ ein Reflex zu beobachten, der reiner kristallisierter Palmitinsäure zuzuordnen ist. Die Anwesenheit von nicht-komplexierter Palmitinsäure bei dieser Konzentration ist im Einklang mit den Resultaten der DSC-Messung und der Soxhlet-Extraktion in den Röntgenspektren erst ab 10% Palmitinsäure festzustellen, bei 2,5 und 5% tritt kein Reflex auf.

Claims

Patentansprüche:
1. Molekulare Einschlussverbmdung, dadurch gekennzeichnet, dass diese mindestens aus (a) einem biokatalytisch hergestellten, linearen, wasserunlöslichen Polysaccharid und (b) einer (einem) oder mehrerer (mehreren) Fettsäure(n) oder Fettsäurederivat(en) besteht.
2. Molekulare Einschlussverbindung nach Anspruch 1, dadurch gekennzeichnet, dass der Anteil der Fettsäuren oder der Fettsäurederivate an der molekularen Einschlussverbindung nach Extraktion nicht molekular eingeschlossener Fettsäuren oder Fettsäurederivaten mindestens 5 Gew.-%, bevorzugt mindestens 7 Gew.-%, besonders bevorzugt mind. 9 Gew.-% und ganz besonders bevorzugt mind. 10 Gew.-% beträgt.
3. Molekulare Einschlussverbindung nach Anspruch 2, dadurch gekennzeichnet, dass zur Extraktion Chloroform verwendet wird.
4. Molekulare Einschlussverbindung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Fettsäuren oder Fettsäurederivate freie Fettsäuren, Fettsäureester, physiologisch verträgliche Salze der Fettsäuren oder Triglyceride sein können.
5. Molekulare Einschlussverbmdung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das verwendete Polysaccharid biokatalytisch hergestelltes, lineares, wasserunlösliches Poly-α-l,4-D-Glukan ist, wobei mit herkömmlichen Methoden nur α- 1,4- Verzweigungen nachweisbar sind.
6. Molekulare Einschlussverbindung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Grundgerüst der Fettsäuren oder der Fettsäurederivate eine Kettenlänge von 12 bis 30 Kohlenstoffatomen und mindestens 2 Kohlenstoff-Kohlenstoff-Doppelbindungen aufweist.
7. Molekulare Einschlussverbindung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Einschlussverbindungen eine erhöhte Resistenz gegenüber α-Amylase aufweisen und in einem Test nach Englyst ein RS-Gehalt von mindestens 30 Gew.-%, bevorzugt von mindesten 50 Gew.-%, besonders bevorzugt von mindestens 75 Gew.-%, ganz besonders bevorzugt von mindestens 95 Gew.-% nachweisbar ist.
8. Verfahren zur Herstellung der molekularen Einschlussverbmdung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass biokatalytisch hergestelltes, lineares, wasserunlösliches Polysaccharid in einer Mischung mit einer lipophilen Verbindung homogenisiert wird und gegebenenfalls ein ungebundener Überschuß an der liphophilen Verbindung durch Extraktion entfernt wird.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Mischung vor der Homogenisierung ein Weichmacher zugesetzt wird.
lONerfahren nach Anspruch 8, dadurch gekennzeichnet, dass es sich um eine Extrusion handelt.
11. Verwendung der molekularen Einschlussverbindung nach einem der vorstehenden Ansprüche als Wirkstoffträger oder Wirkstoff in pharmazeutischen Zubereitungen, als Bestandteil ftmktioneller Nahrungsmittel („Functional Foods"), in kosmetischen Zubereitungen und als Lebensmittelzusatzstoff, als Nahrungsergänzungsmittel sowie als Symbiotika in Kombination mit probiotischen Mikroorganismen..
EP01994752A 2000-11-30 2001-11-29 Molekulare einschlussverbindungen aus biokatalytisch hergestellten, linearen und wasserunlöslichen polysacchariden und aus feffsäuren bzw. deren derivaten Withdrawn EP1339432A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10059726 2000-11-30
DE10059726 2000-11-30
PCT/EP2001/013971 WO2002043768A1 (de) 2000-11-30 2001-11-29 Molekulare einschlussverbindungen aus biokatalytisch hergestellten, linearen und wasserunlöslichen polysacchariden und aus feffsäuren bzw. deren derivaten

Publications (1)

Publication Number Publication Date
EP1339432A1 true EP1339432A1 (de) 2003-09-03

Family

ID=7665410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01994752A Withdrawn EP1339432A1 (de) 2000-11-30 2001-11-29 Molekulare einschlussverbindungen aus biokatalytisch hergestellten, linearen und wasserunlöslichen polysacchariden und aus feffsäuren bzw. deren derivaten

Country Status (4)

Country Link
US (1) US20040048829A1 (de)
EP (1) EP1339432A1 (de)
JP (1) JP2004518777A (de)
WO (1) WO2002043768A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082968A1 (ja) * 2005-02-07 2006-08-10 Ezaki Glico Co., Ltd. α-1,4-グルカンを含有する吸着剤およびその製造方法
US20110256261A1 (en) * 2007-08-10 2011-10-20 Univ Iowa State Res Found Resistant food starches and methods related thereto
JP5572323B2 (ja) * 2009-03-04 2014-08-13 備前化成株式会社 包摂反応においてホスト化合物の選択性を高める低分子多糖類、およびそれを用いた苦味成分および臭い成分を包摂する方法
AR087157A1 (es) 2011-06-20 2014-02-26 Gen Biscuit Galletita saludable
CN114522635B (zh) * 2022-01-24 2023-08-25 华南理工大学 一种具有可控释放肉桂醛的抗菌微胶囊及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE368118T1 (de) * 1994-05-18 2007-08-15 Bayer Bioscience Gmbh Für enzyme, die die fähigkeit besitzen lineare alpha 1,4-glucane in pflanzen, pilzen und mikroorganismen zu synthesieren, kodierende dna sequenzen
JP2913010B2 (ja) * 1995-03-09 1999-06-28 農林水産省食品総合研究所長 有機溶媒可溶化リパーゼを用いる糖質−脂肪酸複合体の製造方法
DE19852826A1 (de) * 1998-11-17 2000-05-18 Aventis Res & Tech Gmbh & Co Poly(alpha-1,4-D-Glucan)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0243768A1 *

Also Published As

Publication number Publication date
JP2004518777A (ja) 2004-06-24
WO2002043768A1 (de) 2002-06-06
US20040048829A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
DE69520528T2 (de) Verwendung einer Zusammensetzung enthaltend Inulin oder Oligofructose als Antikrebsmittel
DE69113713T2 (de) Verfahren zur Herstellung von Komplexen aus mehrfachungesättigten Fettsäuren mit langer Kette und Cyclodextrinen und die so erhaltenen Komplexe.
DE60117777T2 (de) Acylierte zyclodextrin guest-inklusion komplexe
DE69927498T2 (de) Pektine aus aloe
DE10033990B4 (de) Nanopartikel aus einem substituierten Cyclodextrin, dessen Verwendung und diese enthaltenden Zubereitungen
DE19839214C1 (de) Verfahren zur Herstellung von sphärischen Mikropartikeln mit glatter Oberfläche, die ganz oder teilweise aus mindestens einem wasserunlöslichen linearen Polysaccharid bestehen, sowie mit diesem Verfahren erhältliche Mikropartikel und deren Verwendung
US9737608B2 (en) Phytoglycogen nanoparticles and methods of manufacture thereof
DE69902154T3 (de) Eisen-dextran verbindung zur verwendung als komponente in einer therapeutischen zusammensetzung zur behandlung oder prophylaxe von eisenmangel, sowie verfahren zur herstellung der eisen-dextran verbindung und ihre anwendung zur herstellung einer parenteral anwendbaren therapeutischen zubereitung.
DE2524279A1 (de) Mittel zur intravaskulaeren verabreichung und verfahren zu seiner herstellung
EP2298325A1 (de) Kombinationen aus antiadhäsiven und präbiotischen Kohlenhydraten
DE60127674T2 (de) Verwendung einer acetylierten vorgelatinierten stärke mit einem hohen gehalt von amylose
DE60307249T2 (de) Eisen-dextrin verbindung zur behandlung von anämien durch eisenmangel
US20170369597A1 (en) Phytoglycogen nanoparticles and methods of manufacture thereof using corn
EP0716605A1 (de) Blockierung der anlagerung von keimen an menschliche zellen
DE102013011026A1 (de) Zusammensetzung eines Nahrungsmittelzusatzstoffes
EP1123342B1 (de) Verfahren zur herstellung von sphärischen mikropartikeln, die ganz oder teilweise aus mindestens einem wasserunlöslichen verzweigungen enthaltenden polyglucan bestehen, sowie mit diesem verfahren erhältliche mikropartikel
WO2000002926A1 (de) α-AMYLASE RESISTENTE POLYSACCHARIDE, HERSTELLUNGSVERFAHREN, VERWENDUNG UND LEBENSMITTEL MIT DIESEN POLYSACCHARIDEN
WO2001042309A2 (de) VERFAHREN ZUR ERHÖHUNG DES GEHALTES AN α-AMYLASE-RESISTENTER STÄRKE EINES POLYSACCHARIDS
DE60304723T2 (de) VERZWEIGTE ALPHA-GLUCANE FüR DAS GEWICHTSMANAGEMENT
EP1712568A1 (de) Langkettiges Inulin
EP1339432A1 (de) Molekulare einschlussverbindungen aus biokatalytisch hergestellten, linearen und wasserunlöslichen polysacchariden und aus feffsäuren bzw. deren derivaten
DE69715301T2 (de) Neue Diacerhein Formulierungen, erhalten durch Einschluss des Wirkstoffs in Polysaccharidhydrogele
DE19839212C2 (de) Verfahren zur Herstellung von sphärischen Nanopartikeln, die ganz oder teilweise aus mindestens einem wasserunlöslichen linearen Polysaccharid bestehen
DE69622038T2 (de) Zusammensetzung zur ph-abhängig gesteuerten freisetzung von wirkstoffen und verfahren zu deren herstellung
DE602004009470T2 (de) Faserreiche fraktion von trigonella-foenum-graecum-samen und verwendung davon als pharmazeutischer exzipient

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KIY, THOMAS

Inventor name: HAUSMANNS, STEPHAN

Inventor name: FABRITIUS, DIRK

Inventor name: TOMKA, IVAN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040714