EP1332028B1 - Dispositif de compactage pour compacter des corps moules en materiaux granuleux et son procede d'utilisation - Google Patents

Dispositif de compactage pour compacter des corps moules en materiaux granuleux et son procede d'utilisation Download PDF

Info

Publication number
EP1332028B1
EP1332028B1 EP01953793A EP01953793A EP1332028B1 EP 1332028 B1 EP1332028 B1 EP 1332028B1 EP 01953793 A EP01953793 A EP 01953793A EP 01953793 A EP01953793 A EP 01953793A EP 1332028 B1 EP1332028 B1 EP 1332028B1
Authority
EP
European Patent Office
Prior art keywords
spring
mass
exciter
oscillating
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01953793A
Other languages
German (de)
English (en)
Other versions
EP1332028A1 (fr
Inventor
Hubert Bald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gedib Ingenieurbuero und Innovationsberatung GmbH
Original Assignee
Gedib Ingenieurbuero und Innovationsberatung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gedib Ingenieurbuero und Innovationsberatung GmbH filed Critical Gedib Ingenieurbuero und Innovationsberatung GmbH
Publication of EP1332028A1 publication Critical patent/EP1332028A1/fr
Application granted granted Critical
Publication of EP1332028B1 publication Critical patent/EP1332028B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/022Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is subjected to vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • B06B1/166Where the phase-angle of masses mounted on counter-rotating shafts can be varied, e.g. variation of the vibration phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/022Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form combined with vibrating or jolting

Definitions

  • the invention relates to a device for compaction according to claim 1 and a use of the device according to claim 26.
  • the molding material is before the Verdichtungsvörgang in the mold cavities first as a volume of mass loosely adhering granular components, which only during the compaction process by the action be formed of compactors on the top and bottom to solid moldings.
  • the volumetric mass when the compactor is used in machines for producing concrete finished products (e.g., paving stones), e.g. consist of wet concrete mortar.
  • the first genus is the widespread and known in the art "conventional nature" of collision compression, in which with respect to its vibration amplitude adjustable vibrating table of a vibrator at each oscillation period once encountered from below against the pallet.
  • This genus represents the closest prior art described by EP 0 515 305 B1 .
  • the compression energy originally generated by the vibrator is introduced via impact processes in the molding material. In this case, the pallet and the molding box are firmly clamped during the compression process with the vibrating table, so that their masses are included in the mass of the vibrating system and resonate with it.
  • the definable by the collision of different masses at different speeds joint here is at the top and bottom of the molding material itself, wherein during the compaction, an air gap between the lower mold base and the pallet on the one hand and the mold body top and the press plate on the other.
  • This second genus described by the DE 44 34 679 A1 , is most aptly called a compactor to carry out a "shaking compaction".
  • the masses of the molding material, the molding box, the pallet and the swinging table together form a mass system, which represents the oscillating mass of a mass-spring system working with harmonic (sinoid) oscillating movements.
  • All of these three genres are based on different philosophies about the physical effects occurring during compaction. In this case, even seemingly minor feature differences of the physical effects used can be of importance, such as. the formation of one and the same static moment of unbalanced bodies of unbalanced vibrators with larger or smaller center of gravity distances associated with smaller or larger masses. All three genera have in common that the operation of the compression devices strives to operate the oscillating systems such that the highest possible compression accelerations in the molding material at the highest possible vibration frequencies (possibly up to about 70 Hz) achieved, the accelerations and the frequencies even after be set to predetermined values. In each case, the vibration acceleration of the vibrating table always involved, depend on the next to the compaction result, the loads of the components involved, a linear function of the oscillation amplitude and a quadratic function of the oscillation frequency.
  • the by the publication EP 0 870 585 described compression device can also have no role model function with respect to the following functions:
  • the hydraulically formed system spring can exert a spring action only in a downward swinging motion and the use of the same fluid medium for the hydraulic exciter and for the hydraulic spring demonstrably leads to significant energy losses even when exercising the spring function.
  • the spring constant should obviously be changeable only for the purpose of adjusting the compression method to the differently sized products to be compacted occurring different masses to the fixed predetermined natural frequency of the mass-spring system restore. A change in the natural frequency during the compression process is not provided.
  • the object of the invention is to eliminate or reduce the disadvantages described above in the prior art, in which the compression energy is introduced predominantly by impacts of the vibrating table from below against the pallet in the molding.
  • High shock frequencies should be applicable and the compression device should work with a in a wide range (even during the compression process) adjustable compression frequency up to highest frequencies of 75 Hz and higher with long life of the components involved and with low energy consumption.
  • the repeating accuracy of the generation of the compaction acceleration by the impacts on the pallet or on the underside of the moldings themselves and the uniformity of the distribution of the compaction acceleration over the entire surface of the pallet are to be improved.
  • the invention uses, inter alia, the following principle: In the conventional generation of oscillatory movements of the vibrating table with the use of springs, which serve only the vibration isolation and are therefore set soft, the acceleration forces to be applied to the oscillating masses, predominantly by directed centrifugal forces of the unbalanced body generated.
  • the acceleration forces are applied at least in that case, where they must reach the highest values at the highest vibration frequencies, predominantly by spring forces and only to a smaller extent by the excitation forces of the excitation means. This is achieved by utilizing the effect of resonance enhancement.
  • this effect is exploited even better that it is provided to be able to produce at least a second natural frequency of the mass-spring system in the operatively covered range of vibration frequencies in addition to lying in the region of highest vibration frequencies natural frequency.
  • kinetic energy of the system mass and spring elements may be included in the spring system, the spring force from above the pallet acting, including such spring forces count, which are applied via the press plate with , If these are spring forces which are not passed over the press plate, as e.g. In the case of the springs 124 in FIG. 1, these contribute to the fact that the vibration displacement amplitude of the vibrating table or the mold can be regulated according to predetermined values even when the compression system oscillates during idling or in the pre-compression.
  • the kinetic energy storing spring elements of the system spring have to save compared to the soft set insulation springs in the conventional compression systems a much higher amount of energy.
  • the spring elements of the system spring are therefore preferably made of steel or a low-damping elastomer material or are embodied by a (low-attenuation) liquid compressible medium.
  • a soft spring is used to isolate the acceleration effect of oscillating masses.
  • a hard-set system spring in the case of the present invention means that the effect of the magnification function ⁇ should be claimed for values ⁇ > 1.
  • the system spring is set hard at least for the downward swinging motion, states that a system spring can also be constructed such that in both directions of vibration different spring constants are effective.
  • phase angle also indirectly determines the value of the oscillation travel amplitude s, which physically is the actual measure of the compression intensity actually to be controlled.
  • the metrological determination of the phase angle which is defined by the relative angular position of rotating unbalanced bodies, is complicated and subject to noticeable measurement errors.
  • the value of the oscillation amplitude s is not influenced indirectly by the detour of another variable to be controlled, but it is directly controlled (and measured directly), which together with the fact that not at the same time a changing reactive power torque is to control, leads to a more precise controllability of the compression intensity.
  • hydraulic or electric linear motors these can be subjected to such a force that even if several linear motors are used with parallel action, their force development is precisely symmetrical, so that only because of their multiple arrangement no asymmetrical accelerations occur on the vibrating table.
  • the oscillation frequency can also be changed in a predeterminable manner.
  • This object is made possible in the present invention by the good controllability of the oscillation amplitude s in combination with the possibility given in the invention that not a rotational speed must be changed, but only a repetition frequency in the dosage of certain amounts of excitation energy per oscillation period, which Case of hydraulic linear motors is very low in inertia and in the case of electric linear motors can be done almost inertia.
  • the main differences in the use of the linear motors in the invention in comparison with the conventional tasks are given in the following features:
  • the acceleration and deceleration of the oscillating masses, including the mass of the resonant motor part of the linear motor, in the compacting device predominantly, in particular, when the excitation frequencies are in the vicinity of the natural frequencies, determined by the forces of the system spring (in resonance mode). Therefore, a usual in the linear motors control device for Generation of a programmed sequence of movements is not used because it does not know the spring forces and can not influence and because the engine forces alone are not sufficient for the accelerations to be generated by far.
  • task has the linear motor per oscillation period (after once started up vibration) pass on only those amounts of energy to the system mass, which deprived the oscillating system mass by friction or by the compression energy delivered at the impact become.
  • the oscillating system mass In the case of a vibration path amplitude which is to be kept constant, therefore, it is important to reintroduce with each oscillation period the oscillating system mass that energy portion which is required to maintain the given oscillation path amplitude.
  • the power development on the linear motor does not have to follow a size determined by the time of oscillation time function (eg rectangular or sine function), since only the (per period) transmitted energy portion is crucial, of course, the timing of the beginning and end of the force development also play a role and have to be determined by the controller.
  • the control device must also be able to take into account the phenomenon of the occurrence of a phase shift angle ⁇ and the change of its value which occurs automatically as the compression process progresses (the phase shift angle ⁇ defines the angle by which the swing path amplitude lags the exciter force amplitude), which incidentally also affects the hydraulic linear motor Control applies. Since the time of measurement of the physical variable s, s ', s "or f, f', f" to be controlled, and the time of conversion of the value derived therefrom by a control algorithm for the manipulated variable y (for determining the size of the next zu transmitted energy portion) is not identical, measured values and / or derived values must be temporarily stored temporarily.
  • the linear guide which is optimally a cylindrical guide, has to absorb all horizontal acceleration forces, which may result, for example, from the impact.
  • Such a linear guide can also be dispensed with when using an electric linear motor if the air gap existing in the motors between the fixed part and the movable part is still able to absorb the horizontal deviations of the vibrating table.
  • hydraulic linear motor and when using hydraulic cylinders of conventional design should not be waived on a linear guide, however, unless hydraulic cylinders and linear guide are integrated by appropriate design measures in a unit.
  • a linear guide has not only the advantage that it ensures a uniform distribution of the shock accelerations, but it also results in a reduction of mold wear.
  • the electric linear motor work virtually wear-free.
  • the development of the excitation forces is particularly low in inertia feasible, which is why these linear motors are also more dynamic and accurate control.
  • the force curve does not need to be sinoidal, as is the case with the hydraulic linear motor, in practice by the use of servo valves.
  • the collision of the swinging table against the pallet results in high damaging pressure peaks in a hydraulic linear motor.
  • the electric linear motor is advantageous in this respect, because the force jumps in the elastic field of the air gap are effective and because electrical surge voltages can be absorbed by electrical means.
  • Fig. 1 shows schematically a compacting device of the first type, in which the vibrating table abuts against the pallet once from below during each oscillation period.
  • Fig. 2 in the upper part of the drawing the same swinging table as shown in Fig. 1, but connected to another system spring, wherein the lower spring system shown in Fig. 1 is replaced with respect to the spring constant adjustable spring system with a single leaf spring resilient element.
  • Fig. 3 shows details of another variant of the compression device according to Fig. 1, which is about additional switched on and off spring elements.
  • FIG. 4 shows a diagram with the profile of the oscillation travel amplitude A over the excitation frequency f N of the system mass of a compression device according to the invention with a single natural frequency for explaining possible amplitude control.
  • FIG. 6 shows a diagram similar to that of FIG. 5, wherein the advantage of an additional natural frequency of the oscillating system is explained.
  • 100 is the frame of the compacting device which stands on the foundation 102 and by which the forces to be transmitted by the pressing device 104 and the exciter device 106 are supported against each other.
  • the frame may in this case be firmly connected to the foundation, which is represented symbolically by the lines 190, but with small mass of the frame considerable excitation forces are to be transmitted to the foundation.
  • the molded body 110 enclosed in the molding recess of the molding box 108 lies with its underside on a pallet 112.
  • the pallet itself rests on an impact bar 114 secured to the frame 100 (and indicated by hatching for the sake of clarity), which is provided with recesses 116 through which the bumpers 118 of the vibrating table 120 pass and in the oscillating motion of the vibrating table after overcoming of the air gap 122 may collide against the underside of the pallet.
  • the resting on the pallet molding box 108 is pressed by springs 124 which are supported by lugs 126 against the frame, firmly on top of the pallet 112. In this way, the mold box maintains a firm connection with the pallet even in the case where the pallet is pushed upwards by the bumpers 118 and thereby can lift off the baffle bar 114.
  • the oscillating table 120 forms with its mass the main part of the system mass of the oscillatable mass-spring system 140, whose vibration forces are absorbed or generated primarily by the associated system spring 142.
  • the system spring consists of an upper spring system 144, through which at least a portion of the kinetic energy entrained in the upward swinging motion is stored, and a lower spring system 146, through which the majority of the maximum kinetic energy entrained in the downward swing motion is stored.
  • the upper spring system 144 and the lower spring system 146 consists of a plurality of spring elements 148 and 150, which may also be variable or adjustable with respect to their spring constants, which is symbolically indicated by the arrows 152.
  • the spring elements 148 and 150 may be formed as compression springs, thrust springs, torsion springs or torsion springs and are braced in the case of FIG.
  • the forces of the spring elements 148 and 150 are clamped at one end between parts of the frame 100 and supported at the other ends against a power connector 154, which is part of a power transmission member 156, with which the forces of the upper and lower spring system on the system mass be transmitted. It is advantageous to transmit the forces of the spring elements of the spring system at least at those ends at which the forces of the springs are transmitted into the system mass by pressure forces and / or shear forces in the power connection parts, since these points with respect to the reliability and durability critical Points are, which quickly fail when connecting the spring elements to the power connector parts at predominant application of tensile forces at this point.
  • the exciter device 106 comprises an excitation actuator 170, comprising a fixed actuator part 172 connected to the frame 100, a movable actuator part 174 connected to the system ground, and a drive device 196, which also includes a regulator 198.
  • the energy transfer means (electric current or hydraulic volume flow) are shaped or controlled such that when applying a predetermined constant or variable excitation frequency by the movable actuator 174 at each half-period or full period of the vibration excitation forces and thus excitation energy portions on the Mass-spring system are transmitted, whereby this is forced to carry out vibrations and for the delivery of impact energy for the compression process.
  • the oscillation travel amplitudes A are to be generated with such a size that sufficient impact energy is transferred for the compaction taking place in a manner known per se can.
  • the physical vibrational quantity defining the transferable compaction energy e.g. the oscillation travel amplitude A, be controlled or regulated, even at constant held oscillation frequency.
  • the pressing device 104 comprises a fixed part 182, a movable part 184, to which the pressing plate 180 is connected and a (not shown in the drawing) control part for carrying out a direction indicated by the arrow 186 vertical adjustment movement of the pressing plate.
  • the forces of the upper and lower spring system receiving parts of the frame 100 could also be separated together with the forces of the exciter 106 receiving parts of the frame of the frame 100 and together on one of the Foundation 102 separately existing, special (not shown in the drawing) foundation part angeodnet, which foundation part in this case (serving as damping mass) preferably (not shown in the drawing) insulation springs against the foundation 102 would be supported.
  • the exciter device 106 with its exciter actuator 170 which is required to be able to transmit variable amounts of energy into the oscillating system together with a drive device even when the exciter frequency is kept constant, can be embodied in different variants.
  • the exciter actuator may be an unbalance directional vibrator that is controllable with respect to the static torque, or a linear motor that is hydraulically or electrically operated with respect to the convertible excitation energy portions.
  • a measuring device is provided which consists of a part 192 fixed to the frame and of a part 194 connected to the vibration table. The signal of the measured magnitude is supplied to the controller 198 for processing (not shown).
  • Hydraulic or mechanical springs are provided in the upper spring system 144 and / or in the lower spring system 146, the spring constants of which are constant in the simplest case and given a resultant system spring whose natural frequency is at a particular location, e.g. may be located in the middle of the frequency range of the exciter frequency, whereby at this point a resonance point is formed.
  • the rerender effect should also be above and / or below in the dimensions then attenuated in accordance with the resonance curve (with the possibility of continuously passing through the exciter frequency through a predetermined frequency range) Be used resonance point.
  • each exciter frequency within the frequency range of the adjustable exciter frequency could be assigned a natural frequency of the system spring.
  • a stepwise adjustment of the natural frequency come into question.
  • the spring constant of the system spring is always to be understood as a resulting spring constant C R , which results from the spring constants of all spring elements participating in the system spring.
  • the resulting spring constant C R can be defined by determining the resulting natural frequency along with the system mass. In a gradual change in the resulting spring constant (during standstill or during compression) can be provided, for example, that one or more springs are constantly fully in use or turned on and that these springs are constantly switched on gradually other springs in addition to the power transmission of Vibrational forces are involved.
  • the lower or upper spring system is designed as a spring system with respect to its resulting spring constant and the resulting spring constant of the lower or upper spring system is determined by at least one non-adjustable and at least one switchable adjustable spring, it can be achieved thereby reducing the effort that the Adjustment range of the natural frequency starts at a certain frequency upwards. This is sufficient for the needs of the practice, where, for example, an adjustment of the natural frequency can be provided from about 30 Hz to 75 Hz.
  • An adjustable mechanical spring element is described below in FIG. 2.
  • An adjustable hydraulic spring element can be provided in that a spring element of the system spring is embodied by a compressible pressure fluid volume (hydraulic oil) clamped at least partially in a cylinder body by a spring piston and in that the spring rate is variable by changing the size of the pressure fluid volume. either by the fact that the size of the pressure fluid volume is formed by a plurality of separable from each other by switchable check valves sub-volumes, or in that a portion of the pressure fluid volume is clamped in a cylinder whose cylinder space is variable by one in the cylinder after predetermined Way and preferably continuously displaceable piston, wherein the displacement of the piston z. B. is performed by a threaded spindle drive.
  • FIG. 2 shows a variant of the vibratory mass-spring system shown in principle in FIG. 1 with the system mass and with the system spring of another type.
  • An exciter device is not shown for the sake of simplicity and it could be imagined in the form of two serving as excitation actuators linear motors in addition to the vibrating table 120 attacking.
  • the components whose reference numbers begin with the numeral 1 identical to the components of the same name in Fig. 1.
  • the vibration-transmitting terminal body 202 may be identical to the frame 100 shown in FIG.
  • the system spring has in this case an upper spring system 144, consisting of compression springs 124 and a lower spring system 244, which has a respect to their spring constant adjustable and predominantly subjected to bending leaf spring 282.
  • the dynamic mass forces (or spring forces) to be exchanged between the leaf spring 282 of the lower spring system and the oscillating table 120 at a vibration of the system mass in the direction of the double arrow 230 in a downward swinging motion are guided via the vibrating punch 280, which is located at the top of the vibrating table 120 is attached and at the lower end has a curve, with which it snuggles into the curve 284 of the leaf spring, the lower end acts as a force introduction element of the first kind on the center of the force Fm under exclusive generation of compressive forces at the force introduction point 209 center is inserted into the leaf spring.
  • A (preferably provided) even with the largest vibration displacement amplitudes A still existing bias on the springs 124 and the leaf spring 282 ensures that the contact between vibrating punch 280 and leaf spring 282 is never lost.
  • the dynamic forces acting on the leaf spring at this attacking mass forces Fm are on the at equal intervals L1 below the leaf spring at the force introduction points 211, 211 'arranged roller-shaped force introduction elements second type 210, 210 'in half under exclusive generation of compressive forces as supporting forces Fa transmitted.
  • the main extension direction of the leaf spring is symbolized by the double arrow 240.
  • the displacement of the roller supports 212 and 212 'in respectively opposite directions is performed synchronously, which is effected by a threaded spindle 220 with counter-rotating thread.
  • the threaded spindle 220 is driven by a motor-driven drive unit 222, which in turn is controlled by a (not shown) control.
  • the roller carriers 212, 212 'and thus the introduction points of the second kind 211, 211' for the support forces Fa can be brought into any predeterminable positions, for example in order to achieve e.g. to make the distances L1 or L2.
  • the roller carriers brought into the positions L2 are indicated by dashed lines.
  • the distances L1 and L2 refer to the introduction point of the first kind 209. It is obvious that with the arbitrarily adjustable positions for the introduction points of the second type 211, 211 '(within certain limits) arbitrarily and continuously adjustable spring constants of the leaf spring are connected.
  • Fig. 3 shows a variation of the compression device according to Fig. 1, wherein two similar additional spring systems 300 and 300 'are shown with additional switched on and off spring elements which are arranged between the vibrating table 120 and the foundation 102 to transmit power.
  • two spring elements 304 and 306 designed as compression springs and also in the switched-off state are arranged such that they transmit their spring forces to a lower cantilever part of a first type of power transmission part 308.
  • the power transmission part of the first type is connected via an upper Kragteil fixed to the vibrating table and destined to transfer the resulting force resulting from the deformation of the spring elements on the vibrating table.
  • the power transmission part of the second type 302 is fixedly connected to a piston 312 of a hydraulic switching device 310, whereby it is capable of depending on the switching state of the switching device resulting from the deformation of the spring elements resulting force on the fixed to the foundation To transfer or not to transfer cylinder 314 on the foundation 102.
  • the piston 312 can be moved up and down in the cylinder 314 at a first switching state, almost without transmitting any force, or it can be firmly clamped by the fluid medium in a second switching state in the cylinder.
  • the switching states of the switching device 310 are determined by the position of the valve 320.
  • the cylinder chambers 316 and 318 of the cylinder 314 are connected via the valve, so that the piston in the cylinder can move up and down without constraining forces.
  • the cylinder chambers are closed, so that the force of the power transmission part of the second type 302 is transmitted directly to the foundation.
  • the oscillating table 120 is fixedly connected to a central guide cylinder 412, the center axis of which passes through the center of gravity of the oscillating table and which is freely movable with its outer cylinder in the inner cylinder of a cylinder sliding guide 414.
  • a linear guide 410 is formed, which constitutes a forced guidance of the oscillating table for executing the oscillating movement on a straight line only in a double direction with a guide part arranged centrally and mirror-symmetrically on the oscillating table.
  • exciter actuators two identical linear motors 420 are provided, which can be acted upon by a special drive means, not shown, so that they generate excitation forces in the vertical direction.
  • Each linear motor 420 consists of a fixed motor part 422 and a movable motor part 424, both of which are separated by an air gap 426.
  • the movable motor part 424 is fixedly connected to the swing table 120 via a support part 428, while the fixed motor part 422 is fixed directly to the frame 100.
  • the linear motors 420 which are preferably designed as three-phase AC motors, are controlled via the special control device such that a physical variable of the oscillation profile of the vibrating table 120 or the mold 108 (in FIG. 1) is controlled according to predetermined values, and thus indirectly also the course of the compacting process or regulated.
  • FIG. 430 shows a spring system which, at least in the pre-compression, optionally together with the spring elements 124 shown in FIG. 1, represents the system spring.
  • This system spring develops in this case with its special, from a Elastomeric material produced thrust spring 434 spring forces in two directions for the storage of in both directions of vibration through the system mass entrained kinetic energy quantities.
  • the thrust spring 434 which in this case is designed as a hollow cylinder, is externally connected to a spring ring 432 and internally to a cylinder 436, which is fastened to the guide cylinder 412.
  • the spring ring 432 is supported in terms of strength over two holders 438 firmly against the damping mass 450, but the support could also be made against the foundation 102 or the frame 100.
  • a spring system with a thrust spring which can develop spring forces in both directions of vibration, can also be provided as a linear guide and exercise the function of a forced operation to perform the oscillating motion of the vibrating table in a double direction, provided that the spring forces with a centrally arranged on the vibrating table guide member be transmitted.
  • an additional and disconnectable additional mass is referred to, with which the size of the system mass can be changed in order to change the natural frequency of the mass-spring system can.
  • a hydraulic cylinder 442 is housed, in which there is a piston 444 which is fixedly connected to the cylinder 436 and thus to the system ground.
  • the piston 442 two displacement chambers are formed in the hydraulic cylinder, which can be individually shut off via a switchable valve 446 or connected to each other.
  • the piston 444 can move freely in the cylinder 442 up and down, without that the additional mass would be moved along. If the displacement chambers are shut off individually, the additional mass 440 is forced to resonate in synchronism with the system ground.
  • the springs 448 are only small forces transmitted to the damping mass (or the foundation), since they are designed as soft springs, which only have to keep the additional mass at a certain height, if it is not resonant.
  • the system spring 430 is supported in Fig. 4 against a particular damping mass 450, which in turn again over soft set springs 452 against the frame 100 and Foundation 102 supported.
  • Fig. 5 shows a diagram with the course of the vibration amplitude A over the excitation frequency f N of the system mass of a compression device according to the invention (eg Fig. 1) with a single, located at about 70 Hz natural frequency and with a certain damping D1 for the Curve K1.
  • a sinusoidal excitation force with a constant exciting force amplitude over the entire range of the excitation frequency is provided.
  • Damping D1 takes into account the frictional losses and the energy losses of the oscillating system due to the compression energy delivered.
  • the curve K1 represents the known resonance curve.
  • FIG. 5 shows two different methods of controlling the amplitude A according to a predetermined value at a given natural frequency of 70 Hz:
  • this first method involves changing the excitation frequency in order to change the amplitude A. Conversely, the amplitude A changes automatically when passing through a certain range of the excitation frequency.
  • the force excitation is generated by a variable in its excitation force amplitude linear motor whose excitation frequency is set to 63 Hz and its excitation force amplitude to 100%.
  • the change in the amplitude A is achieved here by changing the exciter force amplitude (a) while maintaining the exciter frequency (of 63 Hz).
  • a different type of resonance curve K3 must be generated by reducing the exciting force amplitude (a).
  • an arbitrarily predeterminable amplitude A can be achieved independently of the excitation frequency.
  • the application of the second method also makes it possible to change the excitation frequency within a predetermined frequency range as desired (also continuously) according to a predeterminable time function and additionally to generate arbitrarily predefinable amplitudes A.
  • the second method is that used in the present invention. When using this second method, the periodic excitation force does not necessarily have to be generated following a sinusoidal function.
  • Decisive for the generation of a specific amplitude A at a predetermined damping D is the amount of energy supplied via the exciter device per oscillation period.
  • the temporal course of the excitation force could also follow a rectangular function instead of a sine function, it being possible to deduce from the amount of energy converted per period to a substitute exciter force amplitude (a *) for a sinusoidal course of the excitation force.
  • Fig. 6 shows a diagram similar to that of Fig. 5, wherein the curve K1 corresponds to the curve K1 shown in Fig. 5 and indicates a mass-spring system having a natural frequency at about 70 Hz.
  • a second curve K4 represents the resonance curve of the same mass-spring system, in which case, however, the natural frequency (by varying the resulting spring constant of the system spring) is switched to a different value of about 46 Hz.
  • the force excitation of the associated mass-spring system should, as in the second method described in FIG.
  • the diagram shows that when using the rocking properties of both curves over a range of the excitation frequency of 27 to 78 Hz, a vibration amplitude of 1.1 mm can be achieved.
  • the damping value D changes continuously from a higher value (D4) to a lower value (D1).
  • D4 a higher value
  • D1 a lower value
  • the described method can be further optimized by also adjusting the natural frequency with an altered excitation frequency, wherein the amplitude is simultaneously regulated according to a predetermined value for A. In such a method one could reach the given values for A with a significantly lower excitation energy in comparison to the oscillation excitation of conventional type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Jigging Conveyors (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Optical Couplings Of Light Guides (AREA)

Claims (28)

  1. Dispositif permettant de comprimer des matières granulaires pour obtenir des corps profilés grâce à une précompression et à une compression principale dans des moules (108), moyennant quoi, comme support pour la matière à mouler (110), on prévoit une palette (112) ou une plaque de base et, pour appliquer la matière à mouler (110) sur la face supérieure à l'aide d'une force de compression, on prévoit un plateau de serrage (180), et moyennant quoi au moins une partie de l'énergie de compression totale peut être introduite dans la matière à mouler (110) par une table oscillante (120) grâce à des processus de percussion, qui peuvent être produits par les impacts de la table oscillante (120), effectuant des mouvements oscillants depuis le bas contre la palette (112),
    caractérisé en ce que
    - la table oscillante (120) fait partie d'un système masse/ressort (140) ayant un comportement oscillatoire, comportant un ressort de système (142), qui est un ressort réglé en étant « tendu » au moins pour le mouvement oscillant orienté vers le bas et présente une masse de système, dont la section de masse principale est constituée par la table oscillante (120) avec ses organes (156, 174) associés effectuant conjointement le mouvement d'oscillation,
    - le ressort du système (142) est un moyen permettant d'emmagasiner l'énergie d'au moins une partie de l'énergie cinétique générée de manière optimale lors du mouvement oscillant vers le haut par l'intermédiaire du ressort du système (142), moyennant quoi, lors du mouvement oscillant vers le bas, le ressort du système (142) présentant des éléments de ressort (150) réglés en étant « tendus » est un moyen permettant d'emmagasiner la majeure partie de l'énergie cinétique de la masse de système générée de manière optimale,
    - en combinant les valeurs de la constante de rappel résultante du ressort du système (142) et de la masse du système, on peut régler au moins une fréquence propre du système masse/ressort (140), qui est définie au moins dans la plage de la fréquence de compression supérieure utilisée dans la pratique dans le cadre de la précompression et/ou de la compression principale,
    - le système masse/ressort (140) peut être entraîné à l'aide d'un dispositif d'excitation (106) fonctionnant en produisant périodiquement une force d'excitation de manière à produire des mouvements d'oscillation forcés avec au moins une fréquence d'excitation pouvant être prédéfinie, moyennant quoi l'énergie d'excitation pouvant être transmise par l'intermédiaire du dispositif d'excitation peut être réglée par l'intermédiaire d'un dispositif de réglage (196, 198) de telle sorte qu'au moins lors d'une marche à vide du système de compression, à savoir sans matière à mouler (110) et sans plateau de serrage (180) reposant dessus, ou au moins lors de la procédure de précompression, à savoir sans plateau de serrage (180) reposant sur la matière à mouler (110), la grandeur physique de l'amplitude supérieure ou inférieure de la trajectoire d'oscillation s de la table oscillante (120) ou de la trajectoire d'oscillation f du moule ou une grandeur qui en est déduite de la vitesse d'oscillation ou de l'accélération d'oscillation s', f' ou s", f" peut être réglée ou commandée directement ou indirectement en fonction d'une valeur pouvant être prédéfinie, et
    - pour le dispositif d'excitation (106), on prévoit un ou plusieurs actionneurs d'excitation (172/174) qui sont configurés sous la forme de moteurs linéaires électriques (422/424) ou sous la forme de moteurs linéaires hydrauliques ou sous la forme de vibrateurs à balourd, pouvant être réglées quant à leur moment statique, dont les forces centrifuges orientées en conséquence sont inférieures d'au moins 20 % aux forces d'accélération nécessaires au niveau de la masse du système, afin d'obtenir les amplitudes de trajectoire d'oscillation prévues lors d'une fréquence maximale escomptée.
  2. Dispositif selon la revendication 1, caractérisé en ce que les éléments de ressort emmagasinant l'énergie cinétique, du ressort du système (430), sont fabriqués en acier ou dans une matière élastomère (434) ayant un faible amortissement, ou sont représentés par un milieu liquide fermement renfermé dans un espace de compression, qui est de préférence de l'huile hydraulique.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que, participant à l'effet élastique du ressort de système (142) doté desdits éléments de ressort mécaniques, que le plateau de serrage intervienne ou n'intervienne pas sur la transmission des forces de compression, les éléments suivants exercent une action :
    - un système de ressort supérieur (144) comportant un ou plusieurs éléments de ressort (148) supérieurs, principalement soumis à la pression, grâce auxquels au moins une partie de l'énergie cinétique générée de manière optimale lors du mouvement oscillant vers le haut de la masse du système est emmagasinée temporairement, et un système de ressort inférieur (146) comportant un ou plusieurs éléments de ressort (150) inférieurs, principalement soumis à la pression, grâce auxquels la majeure partie de l'énergie cinétique générée de manière optimale lors du mouvement oscillant vers le bas de la masse du système est emmagasinée temporairement, moyennant quoi les forces des systèmes de ressort supérieur et inférieur s'appliquent sur la masse du système,
    et/ou un système de ressort (430) comportant un ou plusieurs éléments de ressort (434), qui sont soumis à la flexion, torsion ou poussée de telle sorte que, par l'intermédiaire du ou des élément(s) de ressort identique(s) (434) au moins une partie de l'énergie cinétique générée de manière optimale lors du mouvement oscillant vers le haut de la masse du système ainsi que la majeure partie de l'énergie cinétique générée de manière optimale lors du mouvement oscillant vers le bas de la masse du système sont emmagasinées, moyennant quoi les forces apparaissant lors de l'emmagasinement d'énergie s'appliquent sur la masse du système.
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'une partie de l'énergie cinétique générée lors du mouvement oscillant vers le bas peut être emmagasinée pendant la réalisation de la procédure de percussion précédente par l'intermédiaire d'éléments de ressort supérieurs (124) dont les forces de rappel s'exercent par le haut sur la palette (112), moyennant quoi, dans ce cas, les éléments de ressort supérieurs (124) font partie du système de ressort supérieur (144).
  5. Dispositif selon l'une quelconques des revendications 1 à 4, caractérisé en ce qu'un élément de ressort mécanique réglable est un ressort à lames (282) soumis à une flexion, en ce qu'une longueur de ressort (L1, L2) active en termes d'élasticité est définie entre la zone d'introduction de force (209) d'une force introduite Fm et une zone d'introduction de force (210, 210') d'une force supportée Fa = Fm/2 , et en ce que le déplacement est provoqué par une variation de la longueur du ressort active en termes d'élasticité (L1, L2), de préférence en utilisant un entraînement auxiliaire (222) motorisé.
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que, lorsque le ressort du système est doté d'un ressort hydraulique faisant office d'élément de ressort, celui-ci peut être réglé en modifiant le volume du ressort pouvant être comprimé au sein d'un espace de compression.
  7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'énergie d'excitation pouvant être transmise par le dispositif d'excitation (106) peut être influencée par un dispositif de réglage (198) de telle sorte que, en complément ou en variante par rapport à la procédure de précompression ainsi que lors de la procédure de compression principale, la grandeur physique de l'amplitude supérieure ou inférieure de la trajectoire d'oscillation s, A de la table oscillante (120) ou de la trajectoire d'oscillation f du moule ou la grandeur qui en est déduite de la vitesse d'oscillation ou de l'accélération d'oscillation s', f', ou s", f" peut être ajustée en fonction d'une valeur pouvant être prédéfinie.
  8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'une grandeur physique s, s', s" ou f, f', f" peut être réglée selon une valeur constante ou variable pouvant être prédéfinie, les fréquences d'excitation constantes ou variables pouvant être prédéfinies de façon différente.
  9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le ou les moteurs linéaires (170, 420) électriques prévus sous la forme d'actionneurs d'excitation (170) sont des moteurs à courant alternatif, de préférence des moteurs à courant alternatif triphasés, qui sont dotés d'une excitation par aimant permanent ou des moteurs asynchrones et qui sont dotés d'un élément de moteur fixe (422) et d'un élément de moteur mobile linéaire (424), et en ce qu'une grandeur physique s, s', s" ou f, f', f" est réglée grâce au dosage variable des portions d'énergie délivrées ou évacuées lors d'une période d'oscillation.
  10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que, dans les moteurs linéaires configurés sous la forme de moteurs à courant alternatif triphasés (170, 420), le courant de magnétisation et le courant formant la force de poussée peuvent être réglés sous la forme de composantes séparées.
  11. Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les moteurs linéaires électriques sont des moteurs à courant alternatif triphasés comportant un dispositif de commande (196, 198) spécifique, qui est configuré pour produire des portions d'énergie d'excitation déterminées ou pouvant être influencées, par période d'oscillation.
  12. Dispositif selon la revendication 11, caractérisé en ce que, grâce au dispositif de commande (196/198) spécifique destiné aux moteurs linéaires électriques (170, 420), on remplit de manière alternée ou simultanément les fonctions suivantes :
    - par l'intermédiaire du dispositif de commande spécifique (196/198), pour un cycle de fréquence d'excitation pouvant être prédéfinie ou deux fois à l'intérieur de la période d'oscillation (de 360°), le début et la fin de l'apparition de la force d'excitation motorisée ainsi que la grandeur de la force d'excitation motorisée sont déterminés ou calculés,
    - par l'intermédiaire du dispositif de commande (196/198) spécifique, afin de maîtriser le phénomène de l'apparition d'un angle de décalage de phase γ et la modification réglée automatiquement sous l'influence de paramètres déterminés de l'angle de décalage de phase γ, on utilise un algorithme spécifique grâce auquel la valeur mesurée de la grandeur physique à régler s, s', s" ou f, f', f" et/ou la valeur déduite grâce à l'algorithme de réglage est enregistrée temporairement afin de fixer la grandeur de la prochaine portion d'énergie à transmettre.
  13. Dispositif selon l'une quelconque des revendications 1 à 12, caractérisé en ce que, outre l'emmagasinement de l'énergie d'excitation dans le système oscillatoire par l'intermédiaire des actionneurs d'excitation, de l'énergie peut également être prélevée du système oscillatoire afin de retarder le processus d'oscillation après une procédure de réglage non aboutie ou pour interrompre rapidement le processus d'oscillation.
  14. Dispositif selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la au moins une fréquence propre réglée ou pouvant être réglée du système masse/ressort n'est pas supérieure à environ 30 % de la fréquence de compression supérieure utilisée dans la pratique pour la précompression ou la compression principale et/ou en ce que la au moins une fréquence propre réglée ou pouvant être réglée du système masse/ressort est définie de manière à être supérieure à une valeur d'environ 30 Hz.
  15. Dispositif selon l'une quelconque des revendications 1 à 14, caractérisé en ce que, lorsqu'on utilise des moteurs linéaires (420) électriques ou hydrauliques en tant qu'actionneurs d'excitation, la table oscillante (120) est amenée de force à effectuer un mouvement oscillant grâce à un guide linéaire (410) centralisé unique afin d'absorber les forces horizontales au niveau de la table oscillante et de garantir une accélération avec une orientation commune au niveau de tous les éléments de la table oscillante.
  16. Dispositif selon l'une quelconque des revendications 1 à 15, caractérisé en ce que, afin de décaler la fréquence propre du système masse/ressort ayant un comportement oscillatoire, on peut connecter ou déconnecter plusieurs masses supplémentaires (440) à la masse du système grâce à un processus de commutation de telle sorte que, lorsque la masse supplémentaire est connectée, elle intervient de manière synchronisée avec la masse du système, moyennant quoi il est préférable que la procédure de commutation soit réalisée en utilisant un composant (442/444) pouvant être actionné par voie hydraulique.
  17. Dispositif selon l'une quelconque des revendications 1 à 16, caractérisé en ce que, pour modifier la constante de rappel résultante du système de ressort, l'action d'un ou plusieurs éléments de ressort (304/306) lors de la procédure d'emmagasinement de l'énergie d'oscillation peut être introduite ou annulée, moyennant quoi les éléments de ressort devant être connectés sont reliés fermement à un premier élément de transmission de force (308) grâce auquel la force de rappel est transmise à la masse du système et reliés à un deuxième élément de transmission de force (302) grâce auquel la force de rappel est transmise à la base (102) ou à une masse d'amortissement (450) spécifique, moyennant quoi le deuxième élément de transmission de force peut être accouplé grâce à une procédure de commutation d'un dispositif de commutation (310) fonctionnant avec des moyens mécaniques ou hydrauliques, avec la base ou avec une masse d'amortissement et moyennant quoi, lors de l'utilisation d'un ou de plusieurs deuxièmes éléments de transmission de force pouvant être commutés, on obtient également une modification de la constante de rappel résultante du système de ressort en un ou plusieurs paliers lorsque les fréquences d'excitation sont différentes.
  18. Dispositif selon l'une quelconque des revendications 1 à 17, caractérisé en ce que, pour modifier la constante de rappel résultante du système de ressort, on peut ajuster un ou plusieurs éléments de ressort (150, 282) de manière continue ou selon plusieurs paliers en ce qui concerne leur propre constante de rappel.
  19. Dispositif selon l'une quelconque des revendications 16 à 18, caractérisé en ce que, quand on parcourt une plage de fréquences d'excitation lors de la compression avec un réglage progressif de la fréquence propre du système masse/ressort, le réglage est réalisé par paliers à une ou plusieurs fréquences d'excitation associées pouvant être prédéfinies et, avec un réglage continu de la fréquence propre, le réglage de la fréquence propre est réalisé simultanément avec le réglage de la fréquence d'excitation.
  20. Dispositif selon l'une quelconque des revendications 1 à 19, caractérisé en ce que le ressort du système masse/ressort est relié par conjugaison de forme et fermement à une masse d'amortissement (450) afin de transmettre les forces de rappel dynamiques à celle-ci, laquelle masse est au moins 20 fois supérieure à la masse du système, moyennant quoi la masse d'amortissement soit fait partie de la base à laquelle le châssis du dispositif de compression est également relié par conjugaison de forme soit représente une masse propre qui repose de préférence de manière lâche contre la base grâce à des ressorts isolants (452).
  21. Dispositif selon l'une quelconque des revendications 1 à 20, caractérisé en ce que le dispositif d'excitation, sous la forme d'un actionneur d'excitation, comporte un ou plusieurs moteurs rotatifs avec une transmission associée provoquant une déformation du mouvement, afin de produire un mouvement d'excitation linéaire déduit du mouvement de rotation moyennant quoi, lorsqu'au moins deux moteurs rotatifs sont prévus, ceux-ci sont reliés de telle sorte à la transmission de déformation du mouvement commune que, suite à un décalage de l'angle de rotation relatif des deux moteurs, on produit un mouvement résultant dont la course peut être réglée.
  22. Dispositif selon l'une quelconque des revendications 1 à 21, caractérisé en ce que, pour le dispositif d'excitation sous la forme d'un actionneur d'excitation, on prévoit un vibrateur à balourd pouvant être réglé par rapport à son nombre de tours mais pas à son moment statique et en ce que, grâce à un dispositif de réglage, la grandeur physique de l'amplitude supérieure ou inférieure de la trajectoire d'oscillation s de la table oscillante ou de la trajectoire d'oscillation f du moule ou une grandeur déduite de celle-ci de sa vitesse d'oscillation ou de l'accélération d'oscillation s', f' ou s", f" est réglée en fonction d'une valeur pouvant être prédéfinie, et en ce que l'énergie d'excitation excédentaire transmise par le dispositif d'excitation est prélevée du système masse/ressort ayant un comportement oscillatoire par l'intermédiaire d'un dispositif d'amortissement influencé par le dispositif de réglage, moyennant quoi l'énergie évacuée est transmise par l'intermédiaire du mouvement oscillant du système masse/ressort et moyennant quoi le dispositif d'amortissement fonctionne par exemple par voie hydraulique en convertissant l'énergie cinétique en énergie calorifique.
  23. Dispositif selon l'une quelconque des revendications 1 à 22, caractérisé en ce qu'on prévoit un système de mesure (192/194) grâce auquel les valeurs effectives des grandeurs physiques s', s" ou f, f" à régler sont déterminées.
  24. Dispositif selon l'une quelconque des revendications 1 à 23, caractérisé en ce que le ressort du système de la table oscillante est réglé de manière à être tendu pour les deux directions d'oscillation.
  25. Dispositif selon l'une quelconque des revendications 1 à 24, caractérisé en ce que les moteurs linéaires hydrauliques ne sont prévus que dans le cas où on prévoit parallèlement un guidage forcé permettant de produire le mouvement oscillant de la table oscillante dans une direction double avec un élément de guidage disposé de manière centralisée sur la table oscillante.
  26. Utilisation du dispositif selon l'une quelconque des revendications 1 à 25, permettant de réaliser les procédures de compression sur la matière à mouler (110) constituée de matière granulaire, telle que du mortier de béton sec,
    caractérisée en ce que lorsqu'on réalise la procédure de compression, l'oscillation est provoquée par un dispositif d'excitation (106) parcourant une plage prédéfinie de fréquences d'excitation avec des valeurs croissantes.
  27. Utilisation selon la revendication 26, caractérisée en ce que, lorsqu'on parcourt la plage de fréquences d'excitation, on observe une variation de la fréquence propre en ce qu'un réglage de la valeur des constantes de rappel du ressort de système (142) et/ou un réglage de la valeur de la masse du système (440) est réalisé.
  28. Utilisation selon la revendication 26 ou 27, caractérisée en ce qu'on peut au moins effectuer une précompression dans laquelle la matière à mouler (110) ne peut pas être mise en contact avec le plateau de serrage (180).
EP01953793A 2000-11-11 2001-06-19 Dispositif de compactage pour compacter des corps moules en materiaux granuleux et son procede d'utilisation Expired - Lifetime EP1332028B1 (fr)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
DE10056063 2000-11-11
DE10056063 2000-11-11
DE10055904 2000-11-12
DE10055904 2000-11-12
DE10060860 2000-12-06
DE10060860 2000-12-06
DE10106910 2001-02-13
DE10106910 2001-02-13
PCT/DE2001/002266 WO2002038346A1 (fr) 2000-11-11 2001-06-19 Dispositif de compactage pour compacter des corps moules en materiaux granuleux et son procede d'utilisation

Publications (2)

Publication Number Publication Date
EP1332028A1 EP1332028A1 (fr) 2003-08-06
EP1332028B1 true EP1332028B1 (fr) 2007-10-10

Family

ID=27437899

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01953793A Expired - Lifetime EP1332028B1 (fr) 2000-11-11 2001-06-19 Dispositif de compactage pour compacter des corps moules en materiaux granuleux et son procede d'utilisation

Country Status (7)

Country Link
US (1) US7025583B2 (fr)
EP (1) EP1332028B1 (fr)
CN (1) CN1193866C (fr)
AT (1) ATE375237T1 (fr)
CA (1) CA2428293C (fr)
DE (2) DE50113129D1 (fr)
WO (1) WO2002038346A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056279A1 (fr) * 2003-12-14 2005-06-23 GEDIB Ingenieurbüro und Innovationsberatung GmbH Dispositif pour serrer des matieres a mouler se presentant sous forme de grains
DE102004009251B4 (de) 2004-02-26 2006-05-24 Hess Maschinenfabrik Gmbh & Co. Kg Vibrator zum Beaufschlagen eines Gegenstandes in einer vorbestimmten Richtung und Vorrichtung zum Herstellen von Betonsteinen
US7051588B1 (en) * 2004-06-02 2006-05-30 The United States Of America As Represented By The Secretary Of The Navy Floating platform shock simulation system and apparatus
WO2006081480A2 (fr) * 2005-01-27 2006-08-03 Columbia Machine, Inc. Machine a palettes de grande taille pour la formation de produits moules
FR2887794B1 (fr) * 2005-06-29 2008-08-08 Solios Carbone Sa Procede de compaction de produits et dispositif pour la mise en oeuvre du procede
DE102005036797A1 (de) * 2005-08-02 2007-02-08 GEDIB Ingenieurbüro und Innovationsberatung GmbH Federsystem zur Erzeugung von Federkräften in zwei entgegengesetzten Richtungen
FR2947095B1 (fr) * 2009-06-19 2011-07-08 Ferraz Shawmut Procede de fabrication d'un fusible
NL2005171C2 (nl) * 2010-07-29 2012-01-31 Boer Staal Bv Den Inrichting voor het verdichten van korrelvormige massa zoals betonspecie.
US20130259967A1 (en) * 2011-08-23 2013-10-03 Christopher T. Banus Vacuum vibration press for forming engineered composite stone slabs
US9073239B2 (en) 2011-08-23 2015-07-07 Christopher T Banus Vacuum vibration press for forming engineered composite stone slabs
EP3173158A1 (fr) * 2015-11-26 2017-05-31 Joachim Hug Dispositif vibrant pour le durcissement à froid des materiaux
DE102016001385A1 (de) 2016-02-09 2017-08-10 Hubert Bald Federsystem an einer Betonsteinmaschine
DE102017008535A1 (de) * 2017-09-11 2019-03-14 Bomag Gmbh Vorrichtung zur Bodenverdichtung und Betriebs- und Überwachungsverahren
CN108412834B (zh) * 2018-01-25 2019-11-08 昆明理工大学 一种混沌振动液压缸
CN109550925A (zh) * 2019-01-29 2019-04-02 南通盟鼎新材料有限公司 一种可调式振动台及其震动方法
CN111086092B (zh) * 2019-12-25 2021-11-05 招商局重庆交通科研设计院有限公司 一种公路碾压混凝土抗弯拉试件成型装置
CN112847738A (zh) * 2021-01-08 2021-05-28 张胜 一种保温型蒸压加气混凝土砌块浇筑成型方法
CN113534667B (zh) * 2021-07-30 2023-07-04 清华大学 堆石料振动压实参数的调节方法及装置
CN114633341B (zh) * 2022-03-30 2024-04-26 江西工业贸易职业技术学院 一种用于预制建筑装配用混凝土振捣器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE278298C (fr) *
US3343239A (en) * 1965-01-27 1967-09-26 Columbia Machine Concrete block forming machine with pneumatic vibration
DE2041520C3 (de) * 1970-08-21 1975-02-06 Kloeckner-Humboldt-Deutz Ag, 5000 Koeln Rüttelanlage zur Herstellung von Formkörpern durch Verdichtung
BG27273A1 (en) * 1974-02-25 1979-10-12 Vnii P Rabot Ogneu Promysch Method and press for moulding details from powdered and granular materials
US4179258A (en) * 1974-12-04 1979-12-18 Karas Genrikh E Method of molding products from moist materials and apparatus realizing same
US4111627A (en) * 1977-03-29 1978-09-05 Kabushiki Kaisha Tiger Machine Seisakusho Apparatus for molding concrete-blocks
JPS5424922A (en) * 1977-07-26 1979-02-24 Katsura Kikai Seisakushiyo Kk Vibration equipment for concrete block molding machine
NL8004985A (nl) * 1980-09-03 1982-04-01 Leonard Teerling Inrichting en werkwijze voor het verdichten van korrelige materialen, door zowel symmetrische als asymmetrische cyclische belastingen.
DK29785A (da) * 1984-05-29 1985-11-30 L & N Int As Fremgangsmaade til komprimering af nystoebt beton samt apparat til udoevelse af fremgangsmaaden
DE3709112C1 (de) * 1986-08-27 1988-01-28 Knauer Maschf Gmbh Ruettelvorrichtung fuer eine Betonsteinformmaschine
DE4116647C5 (de) * 1991-05-22 2004-07-08 Hess Maschinenfabrik Gmbh & Co. Kg Rüttelvorrichtung
DE4434687A1 (de) * 1993-09-29 1995-03-30 Hubert Bald Verfahren zur Steuerung oder Regelung eines Vibrations-Verdichtungssystems zum Verdichten und Formen von Formmassen in Formkästen und Verdichtungssystem zur Anwendung des Verfahrens
DE19634991A1 (de) * 1995-08-31 1997-03-06 Hubert Bald Vibrations-Verdichtungssystem für Betonsteinmaschinen und Verfahren hierfür
NL1005862C1 (nl) * 1997-04-09 1998-10-12 Boer Staal Bv Den Werkwijze alsmede inrichting voor het verdichten van korrelvormige massa zoals betonspecie.

Also Published As

Publication number Publication date
DE10129468A1 (de) 2002-06-27
DE10129468B4 (de) 2006-01-26
EP1332028A1 (fr) 2003-08-06
CA2428293A1 (fr) 2002-05-16
US7025583B2 (en) 2006-04-11
US20040051197A1 (en) 2004-03-18
CN1478010A (zh) 2004-02-25
CN1193866C (zh) 2005-03-23
ATE375237T1 (de) 2007-10-15
WO2002038346A1 (fr) 2002-05-16
CA2428293C (fr) 2010-12-14
DE50113129D1 (de) 2007-11-22

Similar Documents

Publication Publication Date Title
EP1332028B1 (fr) Dispositif de compactage pour compacter des corps moules en materiaux granuleux et son procede d'utilisation
EP2257415B1 (fr) Dispositif de fabrication de parpaings en béton à vibrations harmoniques par excitation du moule et procédé de mise en forme et compactage de mélanges de béton
EP1050393B1 (fr) Dispositif de production de vibrations pour moule
EP1568419B1 (fr) Vibrateur pour imposer des vibrations dans une cértaine diréction à des objéts et appareil pour faire des blocs de béton
DE4434679A1 (de) Verdichtungssystem zum Formen und Verdichten von Formstoffen zu Formkörpern in Formkästen
DE10039028A1 (de) Verfahren und Vorrichtung für ein Verdichtungssystem
EP1242234B1 (fr) Dispositif de compression pour effectuer des operations de compression sur des corps moules a base de matieres granuleuses
WO2007147422A1 (fr) Installation et procédé de fabrication de produits en béton
DE102004059554A1 (de) Einrichtung zum Verdichten von körnigen Formstoffen
EP0326870B1 (fr) Procédé et dispositif de compactage de sable de fonderie
DE19634991A1 (de) Vibrations-Verdichtungssystem für Betonsteinmaschinen und Verfahren hierfür
EP2286025A1 (fr) Mécanisme secoueur
DE10351177B4 (de) Verfahren und Vorrichtung für ein dreidimensionales Vibrationssystem für Gießbehälter beim Lost-Foam-Gießverfahren
EP2012988A1 (fr) Dispositif de réalisation d'agglomérés de béton au moyen d'un dispositif vibreur et d'un actionneur
WO2002045927A1 (fr) Dispositif de compactage pour compacter des corps de produits constitues d'une masse granulee
WO2002038365A1 (fr) Procede et dispositif de compression de matieres granuleuses
DE202014000704U1 (de) Vorrichtung zum Verdichten von Mineralgemischen
WO2005056201A1 (fr) Vibrateur de battage de pieux pour des articles battus
DE19962887A1 (de) Verfahren und Vorrichtung für ein Verdichtungssystem
DE19534203C1 (de) Vibrationseinrichtung zum Verdichten und Glätten von plattenförmigen Betonfertigteilen
DE1003542B (de) Verfahren und Einrichtung zum Verformen bildsamer fester Werkstoffe
WO2004009308A2 (fr) Procede de realisation d'un bloc de pierre composite et machine vibrante utilisee dans le cadre du procede
EP2087243A1 (fr) Dispositif actionneur produisant des vibrations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030530

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: LT LV MK RO SI

17Q First examination report despatched

Effective date: 20050823

17Q First examination report despatched

Effective date: 20050823

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50113129

Country of ref document: DE

Date of ref document: 20071122

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080110

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080310

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

BERE Be: lapsed

Owner name: GEDIB INGENIEURBURO UND INNOVATIONSBERATUNG G.M.B

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120824

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113129

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101