EP1242234B1 - Dispositif de compression pour effectuer des operations de compression sur des corps moules a base de matieres granuleuses - Google Patents

Dispositif de compression pour effectuer des operations de compression sur des corps moules a base de matieres granuleuses Download PDF

Info

Publication number
EP1242234B1
EP1242234B1 EP00990584A EP00990584A EP1242234B1 EP 1242234 B1 EP1242234 B1 EP 1242234B1 EP 00990584 A EP00990584 A EP 00990584A EP 00990584 A EP00990584 A EP 00990584A EP 1242234 B1 EP1242234 B1 EP 1242234B1
Authority
EP
European Patent Office
Prior art keywords
spring
forces
exciting
mass
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00990584A
Other languages
German (de)
English (en)
Other versions
EP1242234A1 (fr
Inventor
Hubert Bald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gedib Ingenieurbuero und Innovationsberatung GmbH
Original Assignee
Gedib Ingenieurbuero und Innovationsberatung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19962887A external-priority patent/DE19962887A1/de
Priority claimed from DE10039028A external-priority patent/DE10039028A1/de
Application filed by Gedib Ingenieurbuero und Innovationsberatung GmbH filed Critical Gedib Ingenieurbuero und Innovationsberatung GmbH
Publication of EP1242234A1 publication Critical patent/EP1242234A1/fr
Application granted granted Critical
Publication of EP1242234B1 publication Critical patent/EP1242234B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/022Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form combined with vibrating or jolting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • B06B1/183Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid operating with reciprocating masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/022Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is subjected to vibrations

Definitions

  • the invention relates to a compression device operated with vibration vibrations for molding and compacting molded materials in mold recesses in molded boxes Shaped bodies, wherein the shaped bodies have a top and a bottom, about which the compression forces are introduced.
  • the Molding material before the compression process in the mold recesses as a volume made of loosely adhering, granular constituents, which only take place during the compression process by the action of compression forces on the top and the underside are formed into solid molded bodies.
  • the volume mass can be used the compacting device in machines for the production of finished concrete products (e.g. paving stones) e.g. from moist concrete mortar, in foundry molding machines made of molding sand and in sintered molding machines made of metal particles or other sintered particles exist.
  • the Compression equipment can also be used to preform sintered molded parts further condense.
  • the invention relates particularly to such vibration compaction devices which work comparatively quietly and with low energy consumption for compaction.
  • the low-noise mode of operation requires, on the one hand, that the compression takes place by using essentially harmonic (sinusoidal) vibration forces and, on the other hand, that the molding box has no noticeable inherent movements relative to the other components involved in the vibration.
  • the mold box In order to meet the latter requirement, the mold box must be clamped against such a machine element that participates in the vibration vibrations.
  • Such a machine element is, for example, the swing table located under the molding box.
  • the requirement for compression with low energy consumption is met in that the mass-spring system involved can also oscillate in or at least in the vicinity of the resonance frequency f o of this system.
  • the resonance frequency mode of operation leads to a very effective compression because of the so-called resonance effect due to the very high accelerations that can be achieved if it is ensured that the form body is also subjected to the high values for the vibration acceleration derived from the resonance mode.
  • the power transmission elements included in the power flow circuit can form an oscillatable mass-spring system which has at least a first resonance frequency f o , which resonance frequency can be excited by the specific excitation frequency of the drive device.
  • the mass-spring system 207 + 217 should be operated with its resonance frequency f o .
  • the molded body 226 itself is included in the resonant mass-spring system.
  • the compression of the molded body 226 should take place by the action of the acceleration of impact from impacts between the base plate 294 and the underside of the molded body or between the end face 272 of the press plate 250 and the upper side of the molded body (see, for example, column 3, lines 1 to 21).
  • the molded body 226 executes free-flight movements (gap L) relative to the vibrating mass system 207 (see, for example, column 9, lines 40 to 52 or claim 1). It is therefore a "Scdazzlingt compression device", so to speak.
  • EP 0 870 585 A1 describes a compression device in which the Compression of a molded body with simultaneous application of a pressure and one Vibration takes place by means of sinusoidal vibration acceleration.
  • the baling pressure can be controlled by a hydraulic one Pressing force device 6 and the vibration (vibration) is carried out by a hydraulic-mechanical mass-spring system, which is formed by the Vibration table 1, the molding box 14, the molding 17, the movable part 2 of the hydraulic Exciter 3, and by the compressible hydraulic medium, which is between the movable part 2 of the exciter and the drive means 7 (electromechanical Tax body).
  • the vibration during the compression can be carried out in such a way that the hydraulic-mechanical mass-spring system vibrates in the vicinity or exactly at its resonance frequency f o and thereby (due to the accelerations "a") generates mass forces which the 5 by the hydraulic Pressing force device 6 generated press force are superimposed. It also follows from this that, in contrast to DE 44 34 679 A1, the pressing pressure (generated by the hydraulic pressing force device 6 and transmitted via the hydraulic cylinder 5, 6) is not a pressure interrupted between two oscillating movements of the hydraulic-mechanical mass-spring system, but rather a print with a constant component and with) a superimposed alternating component.
  • the swing back The mass of the mass-spring system must therefore because of the desired high oscillation frequency in addition to the gravity, which is also involved, additionally by means of such a force Force can be exerted on the molded body (and on the hydraulic pressing force device 6) supported against a frame.
  • the volume of the medium is part of the hydraulic exciter 3, namely in that the volume of the medium is acted upon by the drive 7 and the control means 11 with "dynamic hydraulic volume flows" (column 2, lines 38 to 40), so that the movable part ( 2) the exciter (3) is forced to perform oscillatory movements and thereby generate the exciter oscillating movement and the dynamic excitation forces (the dynamic volume flows are the fluid volumes added to and removed from the volume of the medium at the time of the excitation frequency).
  • the volume of the medium is part of the hydraulic-mechanical mass-spring system to be vibrated with a resonance frequency f o , the compressible hydraulic medium being used as a spring (later also called the main system spring).
  • the portions The excitation energy is supplied in that the energy portions through the "dynamic hydraulic volume flows" to be generated discretely and in time with the excitation frequency (Column 2. lines 38 to 40) in the swinging hydraulic-mechanical Mass-spring system are introduced. This can be done in portions Energy coupling logically only through those associated with increasing pressure "dynamic hydraulic volume flows" happen. Like i.a. from the comments in column 1, lines 33 to 50 and in column 3, lines 19 to 22, the "dynamic hydraulic volume flows" with the participation of an "electro-hydraulic Control unit "or a” Servomechanism 7, 8 "are generated. This particular Measure of energy coupling must therefore have a certain meaning of the invention include, but is not described.
  • NL-A-8 004 985 is a device for compacting granular Substances to form bodies by introducing essentially harmonic Vibratory forces known in the form of a fixed during the compression is used, in which an upper and a lower press plate is provided movably are between which the fluffy material is arranged.
  • the lower press plate is supported by springs on the bottom, which are also used to adjust the Vibration amplitude can be used.
  • the springs do not provide storage represents the kinetic energy of the vibrating mass, so accordingly there is also no energy recovery (on the other hand, the vibration itself only by the hydraulic pressure to act on the press plates connected piston generated.
  • DE-A-37 24 199 discloses a device for compacting grainy Fabrics known to be shaped by impact compaction, on which over a Springs isolated from the ground and driven by unbalance A vibrating table is arranged above which a hydraulic and spring-loaded cover weight is arranged in a frame, all these parts resonate.
  • the compression device defined above is still characterized in that the main system spring (150, 970) acts as a hydraulic spring is designed with a compressible fluid volume (140, 906) that acts separately Organs for the generation of the excitation force (135, 980) and the spring force of the main system spring (150, 914) are provided, and that the power flow paths for the excitation force and the spring force is at least partially running separately.
  • the compression device defined above is still characterized in that the main system spring as a single mechanical spring or as a resultant composed of several individual mechanical springs Spring is formed that separately acting organs for the generation of the excitation force (135, 980) and the spring force of the main system spring are provided, and that the power flow paths for the excitation force and the spring force of the main system spring at least partially are separate.
  • a hydraulic alternating volume pump generator in different Variants provided.
  • those required to generate the excitation forces are required "dynamic hydraulic volume flows" or the hydraulic to be exchanged Alternating volumes are not produced by taking those derived from a pressure source Volume flow through an electro-hydraulic control element or a servomechanism modulated or portioned, but that you have a hydraulic alternating volume pump generator used as part of the excitation device.
  • those with mechanical Pump piston driven alternating volume pump generators are the amounts of hydraulic exchange volumes to be exchanged essentially independent of the pressure prevailing in the hydraulic exciter actuator.
  • the strokes of the reciprocating piston can also be changed in a predetermined manner are, or that the change volumes are variable by changing the useful stroke the reciprocating piston, such as one that can be regulated with regard to the displacer volume Axial piston pump.
  • the change volumes can also be varied by changing the stroke of the alternating volume pump generator is kept constant, but only a part of one Pump Hubes corresponding change volume is introduced into the fluid volume.
  • An example of a control process to be accomplished in this way is the change the useful stroke of the reciprocating piston in a conventional diesel engine injection device pointed.
  • the size of the exchanged exchange volumes remains constant because of the stroke distances of the Alternating volume pump generator is not retroactive due to the influence of dynamic Pressure of the exciter actuator (due to the dynamic mass forces) is affected can be. Nevertheless, the dynamic pressure of the exciter actuator can be React to the alternating volume pump generator in such a way that the pump piston on its way back is driven by dynamic pressure, causing the Average power output of the drive motor of the AC volumetric pump generator is reduced.
  • This type of coupling results from precisely this retroactive effect for the excitation energy under certain conditions also an automatic one Synchronization of excitation frequency and oscillation frequency of the mass-spring system or an automatic synchronization of the phase position of both types of vibrations.
  • the drive motor of the alternating volume pump generator only needs with respect to its rotational frequency to be controlled or regulated. Any deviation in synchronous guidance the phase position between the rotational frequency and the oscillation frequency of the mass-spring system is due to the elasticity of the electrical field, especially the rotating field or the traveling field of an AC motor (slip) compensated or in mitigated its impact.
  • the alternating volume pump generator does not have a suitable one Device for changing the stroke length (preferably down to zero) is, according to the invention between the output of the cylinder space of the alternating volume pump generator and the input of the fluid volume of the hydraulic exciter actuator closing room provided a switchable organ with which at least the fluid volume exchange can be restricted or interrupted.
  • a bypass path should advantageously also be switchable with the same switching operation over which the change volumes can be redirected to another container.
  • FIG. 1 shows a compression device in a general embodiment, the one below the line A-B shown part in Figures 4 to 8 in a different, special embodiment is shown, so that the part of the compression device shown in Fig. 1 below the dividing line A-B is replaced by the partial representations of Figures 4 to 8.
  • Figure 2 3 illustrates a first variant and FIG. 3 shows a second variant of an alternating volume pump generator, which is identified in Fig. 1 as frame 160, which frame in Fig. 1 and 9 symbolizes a control part, which together with the exciter actuator, the entire Excitation device forms.
  • FIG. 1 shows a compression device in a general embodiment, the one below the line A-B shown part in Figures 4 to 8 in a different, special embodiment is shown, so that the part of the compression device shown in Fig. 1 below the dividing line A-B is replaced by the partial representations of Figures 4 to 8.
  • Figure 2 3 illustrates a first variant
  • FIG. 3 shows a second variant of an alternating volume pump generator, which
  • FIG. 9 shows a further variant of a compression device, in which the hydraulic linear motor of the excitation actuator with respect to the hydraulic cylinder of the main system spring is arranged coaxially.
  • the reference numerals beginning with the number "1" are the same Represent organs or features as in Fig. 1.
  • Fig. 10 is on an enlarged scale a detail marked Q in FIG. 9 together with a connected hydraulic Circuit shown.
  • 100 denotes the frame of the compression device, which Forces of different types to be transmitted and which as vibration isolators serving spring 102 is supported against the floor 104.
  • Shaped box 106 is the shaped body 108 to be compressed, on the upper side thereof the pressing plate 110 of the pressing device 112 rests.
  • the bottom of the molding box and the shaped body rest on a base plate or transport plate 122, which in turn rests on the vibrating table 124.
  • Two clamping devices 126 with in the direction of the double arrow 132 movable for the purpose of tightening and loosening Clamping elements 130 are provided in order to exchange the base plate and / or the To enable mold box. At least during the compression process Molded box 106 and the base plate 122 clamped against the vibrating table 124, see above that they form a physical unity with it.
  • the hydraulic pressing device 112 consists of a cylinder 114, a piston 116 and a press drive device 118, which via a hydraulic line 120 with the Pressure fluid of the cylinder and connected to the central controller 190 via a line 192 is.
  • the pressing device supports the forces transmitted via the pressing plate 110 the frame.
  • the press drive device 118 can also be designed such that it is connected to a pressure source, which is delivered at different or recorded volume flows keeps a predetermined pressure constant.
  • the vibrating table 124 together with other components moving synchronously with it, which mainly include the molding box 106, the clamping device 126, the base plate 122, and the oscillating piston 134, belong to an oscillating mass system 136 which represents the mass of an oscillatable mass-spring system.
  • the dynamic mass forces generated when the vibrations of the mass-spring system are carried out are supported against the frame by the main system spring 150.
  • the main system spring of the mass-spring system simultaneously represents an energy converter and energy store, since it continuously stores the kinetic energy of the vibrating mass system 136 is converted into spring energy (and vice versa).
  • the main system spring 150 is embodied by a pressure fluid volume 140 of a certain size V o , at least part of the pressure fluid volume being clamped between the oscillating piston 134 and the walls of the cylinder 138.
  • the dynamic mass forces are supported against the frame 100 via the cylinder 138.
  • the vibrating mass system 136 can be used to perform the Vibration compression process to be carried out to generate vibratory movements 152 are forced.
  • the forces to perform the swinging movements are generated by a motion generation system 142 (which in principle is very different can be designed).
  • the latter consists at least of the two components Main system spring 150, which takes over the generation of the main forces and the excitation device 144 for the supply of the drive energy for excitation and maintenance the vibrations and for the compaction work.
  • the excitation device itself includes the (Generically shown in FIG. 1 by a rectangle 135) excitation actuator for generation of excitation forces and excitation control 160 for energy supply and energy control of the exciter actuator.
  • the excitation controller 160 is schematically represented by a Frame indicated, which is representative of different embodiments. Junction 196 on line 194 from central controller 190 to exciter controller 160 and the connection point 162 in the operative connection between the excitation control 160 and the exciter actuator 135 are said to be the interchangeability of the function carrier Exciter control 160 also
  • the excitation actuator 135 is arranged such that it excites the excitation forces with a movable Part against a component of the vibrating mass system 136, preferably against the Swing table 124, and supported with a fixed part against the frame 100 (the movable Part and the fixed part are not shown in Fig. 1). It can be seen that the power flow paths the main system spring 150 and the excitation actuator 135 at least partially run separately, so that there is a direct coupling of the spring forces and the excitation forces can not come as with the named prior art. Is too recognizable that the excitation force is not against the compressible fluid volume when it is generated 140 of the main system spring 150 is supported. That the function holder is the main system spring and exciter actuator can be realized with absolutely different means, show the partial representations of Figures 4 to 8.
  • the exciter actuator 135 works in such a way that it is clocked by the exciter control 160 predetermined frequency energy portions are supplied, which by the Active connection 164 is shown symbolically.
  • the exciter actuator is a hydraulic actuator, e.g. a hydraulic linear motor, then takes place as a hydraulic Line to be interpreted operative connection 164 a dynamic exchange of alternating volumes with the predetermined frequency between the exciter actuator and an in the exciter control 160 existing alternating volume pump generator.
  • alternating volume pump generators three different types are possible, two of which will be explained with reference to Figures 2 and 3. (In the third variant, the exciter actuator operated with an electric linear motor that works similarly to the one below Fig. 7 described).
  • the periodic excitation forces are at least approximately designed as harmonic excitation forces.
  • the easiest way to do this is by using alternating-volume pump generators with the inclusion of an unbalance vibrator or by using a hydraulic displacement pump.
  • the mass-spring system can be excited within certain limits to harmonic vibrations with any frequencies and any vibration path amplitudes. This also applies to the case of the compression vibration to be carried out, the vibrations of the mass-spring system being influenced by the components of the pressing device 112 and by the molded body 108 itself, for example by its spring force.
  • the mass-spring system with its excitation device 144 is designed in such a way that it is well under the resonance frequency f o , but also in the resonance frequency f o or in the vicinity, even when loaded by the pressing device with a predetermined pressing force passed over the molded body can be operated from f o (above and below).
  • the resonance mode is characterized, among other things, by the fact that very high accelerations of the vibrating table are achieved here, which are required especially with the compression provided here with harmonic vibration forces, and relatively low excitation forces have to be generated at the same time in the resonance mode.
  • the compacting device is part of a concrete block machine (whereby the compacted shaped bodies later harden to concrete blocks), the shaped body is made before it is compressed from a molding material made of loosely adhering gromigen Components such as damp concrete mortar. After the compression is complete, the molded body pushed out of the molding box and transported away in a manner known per se and the empty molding box is again made in a known manner with undensified molding material filled.
  • the pressing device is also involved in the process of changing the mold box contents 112 involved in a manner known per se, by doing this the piston 116 together able to perform an upward and downward lifting movement with the press plate 110 is.
  • the compression process begins after the mold box 106 is filled Molding material so that the pressing plate 110 moved downwards by the pressing device the top of the molding material. From that moment the lifting movement of the Press plate 110 moves to the same while exerting a predetermined pressure on the resulting molded body further downward with increasing compression. With Beginning of compression caused by press plate 110 or to any other Starting or ending at the point in time, the compression is carried out by a common Influence of pressure and vibration on the body.
  • a particularly effective compression can be brought about if the vibration is carried out at the resonance frequency or in the vicinity of the resonance frequency f o . For this reason, a process sequence is provided during the compression process, during which the resonance frequency f o is approximated or reached or passed at least once. Since different constituents of the molding compound, with their different behaviors, often require different vibration frequencies during compression, it is also intended to change the vibration frequency during the compression process and, if necessary, also the vibration path amplitude. With the progress of compaction, the compressive force should ideally also be adaptable. In order to be able to maintain a repeatable course of the parameters over time, it is therefore provided that the size of at least one of the parameters frequency, vibration path amplitude or pressing force vary according to a predetermined time function.
  • a further or more resonance points are created by changing the spring rate.
  • This requirement can be met in that the specific size V o of the pressure fluid volume 140 is formed by a plurality of sub-volumes that can be separated from one another by switchable shut-off valves. If the spring rate is to be changed, the corresponding check valves then only have to be opened or closed.
  • a continuous change in the spring rate can also be provided in that part of the pressure fluid volume 140 is formed by a cylinder, the cylinder space of which is changed by a piston which can be displaced in the cylinder in a predetermined manner.
  • the vibration must be able to be switched on and off, e.g. when changing the mold box content.
  • the Switching the vibration on and off in the sense of high productivity of the whole Production facility can be carried out very quickly. To meet this requirement measures are provided which will be described later with the aid of further figures.
  • the floor 104 could of course also be included for the transmission of the power flows as shown in FIG. 9.
  • the power flows especially the dynamic mass forces completely to flow through the frame 100 and the vibrations of the frame through springs 102 isolate from the ground.
  • pistons 116 and 134 in Fig. 1, as well as other pistons in the other figures designed as double-acting pistons could be.
  • FIG. 2 shows an exciter control 200 with an alternating volume pump generator, including an unbalance vibrator 240, in a schematic form.
  • the entire exciter control can be connected via two connection points 162 and 196 to a compression device according to FIG. 1 at the connection points 162 and 196 also present there, the excitation control 200 being the exciter control symbolized in FIG. 1 by the frame 160 replaced.
  • Two unbalances 204 are forced by their drive motors 202 to rotate in opposite directions and thus set the base plate 208 of the common frame in a directional oscillation, which is indicated by the double arrow 206.
  • the base plate 208 is also still softly supported in a manner not shown in the drawing via springs against the cylinder housing 214.
  • Two pump pistons 210 are fastened to the base plate 208 and work together with two cylinder spaces 216 of the cylinder housing 214.
  • the cylinder spaces are connected to one another by a connecting line 220 and are connected to the outside via a line 222 with the involvement of the device 226 at the connection point 162.
  • the oscillating movement of the pump pistons 210 forces the pressurized fluid volume 218, which is under a prestressing pressure, and with each downward stroke under increased pressure, an exchange volume of a predetermined size via the connection point 162 to the pressurized fluid volume of the exciter actuator 135, which in this case operates hydraulically 1 and to record an exchange volume emitted by the pressure fluid volume of the exciter actuator with each upward stroke.
  • a very specific portion of excitation energy can thus be delivered to the mass-spring system of FIG. 1.
  • the drive motors 202 are acted upon by a control device 230, with which, for example, the rotational frequency can be influenced in such a way that it corresponds to the resonance frequency f o of the compression device in FIG. 1.
  • the control unit 230 is also connected to the central control 190 via the connection point 196.
  • the size of the exchange volume to be exchanged with the hydraulically operated exciter actuator 135 in FIG. 1 must be able to be varied for different reasons, and the possibility must also be included of completely preventing the volume exchange and thus the oscillating movement of the compression device. Different solutions are provided for this task according to the invention.
  • the vibration amplitude of the vibrator can be varied between the value zero and the maximum value using means known per se and not described further here.
  • the equipment for the latter measures is to be indicated by a device 226 and its control connection via the connection point 196 to the central control 190.
  • FIG. 3 shows an exciter control 300 with a hydraulic pump as an alternating volume pump generator in a schematic form.
  • the entire exciter control can be connected via two connection points 162 and 196 to a compression device according to FIG. 1 at the connection points 162 and 196 also present there, the excitation control 300 being the exciter control symbolized in FIG. 1 by the frame 160 replaced.
  • a circular cam disc 310 can be driven in rotation by a drive motor M about a shaft 304 rotatably mounted in the pump housing, which is symbolized by the arrow 308.
  • the axis of rotation of the cam is arranged around an eccentric section 306 outside the center of the cam circle.
  • the drive motor M is acted upon by a control unit 330, with which, for example, the rotational frequency of the cam plate 310 can be influenced in such a way that it corresponds to the resonance frequency f o of the compression device in FIG. 1.
  • the control device 330 is also connected to the central control 190 via the connection point 196.
  • two corresponding possibilities are provided in the exciter controller 300.
  • the stroke of the pump piston 324 can be changed by changing the eccentric section 306 (possible down to the value zero).
  • the other solution works in a similar way to the solution described with reference to FIG. 2, in which the fluid volume exchange between the pressure fluid volume 326 and the pressure fluid volume of the exciter actuator can be restricted or interrupted.
  • Device 340 has the same task as device 226 in FIG. 2.
  • FIG. 4 shows a variant of a compression device according to FIG. 1 with the vibrating table 124, in which variant the exciter actuator 480 for generating the excitation forces and the main system spring 470 in comparison to a compression device according to FIG. 1 with a hydraulic exciter actuator are designed differently.
  • the main system spring 470 through the individual springs of two equally large pressurized fluid volumes 478 embodies each between its own oscillating piston 474 and cylinder 476 are included.
  • the excitation actuator 480 is formed by the actuator piston 482, which is fastened to the vibrating table 124 by means of the piston holder 484, through the Actuator cylinder 486 and by the actuator pressure fluid volume 488, which by means of Active connection 164 is connected to the excitation controller 160.
  • FIG. 4 should also be shown in FIG. 4 as excitation controls (instead of the symbolic Frame 160 interchangeable between the connection points 162 and 196) Alternating volume pump generators such as. which are described by FIGS. 2 and 3 are used can.
  • the transmission takes place in FIG. 4 the excitation forces such that they between the vibrating table 124 and frame 100 a special power flow path, which is parallel to that over the individual Springs (478) leading power flow paths runs. Due to this measure there can be no coupling of excitation forces and dynamic mass forces in the same volume of pressurized fluid.
  • FIG. 5 shows a variant of a compression device according to FIG. 1 with the vibrating table 124, in which variant the excitation actuator 580 for generating the excitation forces and the main system spring 570 are designed differently compared to FIG. 1.
  • the main system spring 570 is embodied by two equally large pressurized fluid volumes 578, which are each enclosed between their own oscillating piston 574 and cylinder 576.
  • the excitation actuator 580 is formed by a directional vibrator 584 whose amplitude is adjustable and which is fastened directly to the vibrating table 124 without a force-transmitting connection to the frame 100.
  • the control of the two drive motors 582 via which the speed can also be controlled, takes place via the operative connection 164 by the excitation controller 160. Something similar applies to the transmission of the excitation forces on its own power flow path, as in the description of FIG. 4 described.
  • FIG. 6 shows a variant of a compression device according to FIG. 1 with the vibrating table 124, in which variant the exciter actuator 680 for generating the excitation forces and the main system spring 670 are configured differently from FIG. 1.
  • the main system spring 670 is embodied by two equally large pressurized fluid volumes 678, which are each enclosed between their own oscillating piston 674 and cylinder 676.
  • the exciter actuator 680 comprises a directional vibrator 681, which is supported softly against the frame 100 via springs 682.
  • the control of the two drive motors 683 via which the speed can also be controlled, takes place via the operative connection 164 by the excitation controller 160.
  • the directional vibrator 681 does not have to be adjustable in terms of its oscillation amplitude and can remain in vibration.
  • the activation and deactivation of the excitation forces generated by the directional vibrator on the vibrating table 124 and the control of the size of the excitation energy portions to be transmitted with each oscillating movement of the directional vibrator is carried out by means of a hydraulically operated coupling device 684, which is also associated with the excitation actuator with a hydraulic switching element 685, the latter being controlled by the central control 190 via the line 686.
  • the hydraulic coupling device 684 comprises a double-acting piston 687 which by the vibrating movements of the directional vibrator to which it is attached in the cylinder chamber of the cylinder 688 is movable up and down.
  • the hydraulic switching element 685 can be in different versions are operated: In a first mode of operation, it provides for the exchange volumes to be exchanged a short-circuit path forth, so that the up and down movement of the Piston 687 practically no excitation forces from the directional vibrator on the vibrating table be transmitted.
  • the hydraulic switching element 685 In a second operating mode, the hydraulic switching element 685 a (preferably continuously adjustable) narrowed short-circuit path with a predefinable one Throttling effect available. By throttling the volume flows exchangeable volumes to be exchanged become the transferable amplitudes of the oscillating movement of the directional vibrator and the transferable excitation forces or the transferable Exciter energy portions reduced in a predeterminable manner.
  • the short-circuit path is completely blocked, which has the consequence that the oscillating movements or the excitation forces of the directional vibrator with full amplitude or in maximum size the vibrating table 124 are transmitted. For the transmission of excitation forces on one own power flow path applies something similar, as described in the description of Figure 4.
  • FIG. 7 shows a variant of a compression device according to FIG. 1 with the vibrating table 124, in which the exciter actuator 780 for generating the excitation forces and the main system spring 770 are configured differently from FIG. 1.
  • the main system spring 770 is embodied by two equally large pressurized fluid volumes 778. which are each enclosed between their own oscillating piston 774 and cylinder 776.
  • the excitation actuator 780 is an electric linear motor, consisting of a movable part 782 and a stationary part 783.
  • the excitation forces are generated in an air gap 784 by alternating magnetic fields and are supported on the one hand against the vibrating table 124 and on the other hand against the frame 100.
  • the size of the excitation forces, the stroke amplitude of the movable part and the excitation frequency are determined by the excitation control 160, which is connected to the linear motor via the operative connection 164. Something similar applies to the transmission of the excitation forces on its own power flow path, as described in the description of FIG. 4. With an electric linear motor, it can also be claimed as an advantage that it can be used to directly convert electrical energy into excitation energy.
  • FIG. 8 shows a variant of a compression device according to FIG. 1 with the vibrating table 124, in which variant the excitation actuator 880 for generating the excitation forces and the main system spring 870 are configured differently from FIG. 1.
  • the main system spring 870 is embodied by two equally large pressurized fluid volumes 878, which are each enclosed between their own oscillating piston 874 and cylinder 876.
  • the excitation actuator 880 is a hydraulic linear motor, consisting of a movable part 882 designed as a piston and a stationary part 883 designed as a cylinder.
  • the excitation forces are generated in the pressure fluid volume 884 by the exchange of dynamic hydraulic alternating volumes via the operative connection 164 with the exciter controller 160.
  • the exciter controller 160 contains an electrohydraulic servomechanism which, in accordance with the control information received from the central controller 190, generates dynamic hydraulic alternating volumes with predeterminable frequency and size and with predeterminable exciter energy portions.
  • the excitation forces are supported on the one hand against the vibrating table 124 and on the other hand against the frame 100.
  • 9 shows a variant of a compression device which, like the variants according to FIGS. 4 and 8, works with a hydraulic spring and with a hydraulic exciter. The construction of the entire compression device is similar to that of FIG. 1.
  • the reference numerals beginning with the number 1 therefore identify the same features with the functions assigned to them as in FIG. 1.
  • the features which are different in comparison to FIG. 1 and which have the number 9 begin, are all arranged below the vibrating table 124.
  • the force flow of all the forces involved is via the cylinder part 902.
  • the cylinder part is firmly connected to the foundation 904.
  • the foundation can be regarded as part of the frame 100 and is also the carrier of the force flow paths of all the compression forces involved.
  • the cylinder part 902 contains cylinder spaces or fluid volumes for two different hydraulic ones Linear motors:
  • the compressible fluid volume 906 represents the energy-storing It is part of the main system spring 970 and is decisive with its compression module for the resonance frequency of the mass-spring system with the vibrating mass system 136, to which the oscillating piston 908 belongs.
  • the fluid volume forms 906 together with the oscillating piston 908 the main system spring 970.
  • the actuator fluid volume 914 forms together with the actuator piston 916 and the cylinder part 902 the hydraulic linear motor of the excitation actuator 980, with which linear motor the Excitation forces are generated with which the frequency and amplitude of the compression vibration be determined.
  • the oscillating piston is fixed to the oscillating table 124 and the Actuator piston is firmly connected to the oscillating piston.
  • the fluid volume 906 and that Actuator fluid volumes 914 could also be interchanged.
  • the exciter actuator 980 is connected to the exciter controller 160 by means of the operative connection 164 connected is.
  • the excitation control (instead of the symbolic frame 160 between ports 162 and 196) (interchangeable volume pump generator) be executed; but it can also use an electro-hydraulic servomechanism contain, on the one hand to a pressure source (preferably with essentially constant pressure) and on the other hand dynamic hydraulic Alternating volumes with predeterminable frequency and size and with predeterminable portions of energy exchanged with the linear motor.
  • the vibrating table 124 or the vibrating piston should be in one with a variable or constant Predictable average altitude as held by the dimension "Z" is symbolized.
  • the average altitude is defined, for example, by that swing path reference position, at which the vibration speed has its maximum value and the vibration acceleration has the value zero.
  • Vibration path amplitudes + A and -A can be defined, depending on various parameters Vibration path amplitudes + A and -A can have remarkably different values.
  • At least when performing oscillating movements in resonance mode should a negative oscillation path amplitude -A the fluid volume 906 by approximately the amount -A be compressed.
  • a compensation volume dispenser 920 provided. It consists of a cylinder housing 922, one Compensating piston 926, a compensating spring 928 and a compensating volume 924 and is connected to the fluid volume 906 via a line 930.
  • the compensation piston 926 is against the force of the compensating spring 928 is pressed into a mechanically formed end position.
  • a compensation volume donor could but can also be replaced by a correspondingly controlled valve, which determines the volume flow on the upstroke from a pressure source and and the volume flow returns on the downstroke into the pressure source itself or into another container.
  • a displacement measuring system is provided for the detection of the vibration path of the vibration table 124 or the oscillating piston 908, consisting of a first sensor part 910 and a second sensor part 912. The result of this displacement measurement is (not on a drawing) shown way) fed to the central controller 190 and processed there.
  • a hydraulic control volume dispenser 940 is provided around the vibrating table 124 or the vibrating piston 908 despite leakage losses and other disruptive factors in the predeterminable average altitude or swing path reference position.
  • This can control a control volume flow into the fluid volume via line 942 906 lead in and, if necessary, lead away from him, such that the predetermined average altitude is kept constant.
  • the regular volume dispenser 940 in the selected example has a pressure source S, a check valve C and a valve V, through which valve the necessary dosing of the control volume flow is carried out becomes.
  • the valve V which is controlled by the central control 190 via the active line 944 is an actuator of a closed control loop of a level control device, with which the average altitude or swing path reference position is continuously regulated to a predetermined value.
  • FIG. 10 shows the detail identified by the circle "Q" in FIG. 9 with a modification such that an annular groove 950 is provided in the inner cylinder of the cylinder part 902 and is filled with a fluid volume 952.
  • the fluid volume 952 can unite with the fluid volume 906 when the oscillating piston 908 is moved to a higher position.
  • an additional hydraulic circuit 954 is shown, the line part 956 of which is connected to the fluid volume 952 via a fluid line 962.
  • FIG. 10 shows a variant of a level control device that operates purely mechanically and hydraulically in comparison to FIG.
  • the oscillating piston 908 has on its underside a piston control edge 960 which, at the same height (as drawn) as the cylinder control edge 958, separates the fluid volume 952 from the fluid volume 906. With the drawn height position of the oscillating piston, the oscillation travel reference position of the oscillating table 124 is also defined.
  • the cylinder control edge 958 represents a material measure for the target position of the oscillation travel reference position.
  • PLV is a pressure relief valve which, at a pressure> p L in the line part 956, a volume flow the way into the container T opens.
  • S2 represents a fluid source with a constant pressure ⁇ P L.
  • a check valve CV prevents fluid backflow from the line part 956 into the fluid source.
  • the function of the level control device is as follows: After the piston control edge 960 has passed the oscillation travel reference position during a downward oscillating movement of the oscillating piston 908, the compression of this fluid volume begins with a separated fluid volume 906 and the oscillating movement reaches its lower reversal point after the movement of the latter Route -A. As soon as the piston control edge 960 has again passed the oscillation travel reference position during the subsequent upward oscillating movement, a compensating volume flow from the source S2 begins to flow into the fluid volume 906 until the oscillating piston 908 has covered the distance + A has reached the upper reversal point.
  • the upward strokes corresponding to the distance + A can be of any size within a certain range due to the energy portions supplied via the actuator piston.
  • this level control device could with a similar design can also be carried out with a slightly different version:
  • the piston control edge (960) not on the oscillating piston 908 and the cylinder control edge 958 not attached to the inner cylinder belonging to the oscillating piston 908.
  • the piston control edge (960) on another piston and the cylinder control edge 958 realized on another, other inner cylinder associated with the other piston, wherein the cylinder control edge on the other cylinder also through the lower face of one other ring groove (or through radial holes) is realized.
  • the inner cylinder contains a different fluid volume (similar to 906 in FIG. 10) as a spring medium, which is adjacent to the bottom of the other piston.
  • Another hydraulic Circuitry constructed like circuit 954 in Fig.
  • the organs of the exciter actuator and the main system spring are at the same time arranged either above or below the vibrating table. Instead of one Shaped body or casting mold model can be provided at the same time several.
  • the relative The position of the main system spring and exciter actuator can be interchanged, which e.g. For Fig. 9 would mean that 908 is the actuator piston and 916 is the oscillating piston.
  • the dash-dot lines shown there e.g. the Line 879 in Fig. 8, symbolizes a fixed connection between two components.

Claims (19)

  1. Dispositif de compactage de matières granuleuses pour former un corps de moulage (108) par l'application de forces de vibration essentiellement harmoniques, avec
    un système ressort-masse pouvant osciller (136) avec une ou plusieurs fréquences fondamentales, englobant un ressort- système principal (150, 970) pour la conversion courante entre l'énergie cinétique du système ressort-masse (136) et l'énergie du ressort ou énergie élastique, ainsi qu' une masse qui présente une table oscillante (124) sur laquelle la force du ressort-système principal (150, 970) agit, et une forme (106) reliée solidement, au moins pendant le compactage, à la table oscillante (124) pour la réception du corps de moulage (108),
    un dispositif d'excitation (144), dont la fréquence d'excitation est réglable, avec un actionneur- excitateur pour l'excitation du système ressort-masse (136) en oscillations forcées dont les forces de vibration peuvent dériver ;la force d'excitation produite par l'actionneur- excitateur agissant sur la table oscillante (124) et la fréquence d'excitation pour les oscillations étant réglables, soit sensiblement selon la fréquence propre ou fondamentale, soit selon une gamme de fréquences, à l'intérieur de laquelle se trouve au moins une fréquence fondamentale,
    une commande (190) pour la commande et le réglage du dispositif d'excitation (144),
    un plateau de compression (110) pour l'application de la force au corps de moulage (108) dans la forme (106), du type dans lequel le ressort-système principal (150, 970) est un ressort hydraulique avec un volume de fluide (140, 906) compressible, et dans lequel les forces transmises par le plateau de compression (110) d'une part et les forces transmises par le ressort-système principal (150, 970) d'autre part, sont appliquées contre un cadre (100), à travers lequel les forces participant à la compression sont guidées sur un champ de forces fermé,
       caractérisé en ce que l'actionneur- excitateur (144) et le ressort-système principal (150, 970) sont conformés séparément l'un de l'autre et en ce que les lignes de forces de la force d'excitation et de la force du ressort circulent séparément au moins en partie.
  2. Dispositif de compactage de matières granuleuses pour former un corps de moulage (108) par l'application de forces de vibration essentiellement harmoniques, avec:
    un système ressort-masse oscillant (136) avec une ou plusieurs fréquences fondamentales englobant un ressort- système principal (150, 970) pour la conversion courante entre l'énergie cinétique du système ressort-masse (136) et l'énergie du ressort, ainsi qu'une masse constituée par une table oscillante (124) sur laquelle la force du ressort- système principal (150, 970) agit, et une forme (106) reliée solidement, au moins pendant la compression, à la table oscillante (124) pour la réception du corps de moulage (108),
    un dispositif d'excitation (144), dont la fréquence d'excitation est réglable, avec un actionneur- excitateur pour l'excitation du système ressort-masse (136) en oscillations forcées dont les forces de vibration peuvent dériver, la force produite par l'actionneur- excitateur agissant sur la table oscillante (124) et la fréquence d'excitation pour les oscillations étant réglables, soit sensiblement selon la fréquence propre, soit selon une gamme de fréquences, à l'intérieur de laquelle se trouve au moins une fréquence fondamentale,
    une commande (190) pour la commande et le réglage du dispositif d'excitation (144),
    un plateau de compression (110) pour l'application de la force au corps de moulage (108) dans la forme (106). du type dans lequel les forces transmises par le plateau de serrage (110) d'une part et les forces transmises par le ressort- système principal (150, 970) d'autre part sont appliquées contre un cadre (100), à travers lequel les forces participant à la compression sont guidées sur un champ de forces fermé,
       caractérisé en ce que l'actionneur- excitateur (144) et le ressort-système principal (150, 970) sont formés séparément l'un de l'autre et les trajectoires de flux magnétique de la force d'excitation et de la force du ressort sont séparées au moins en partie, le ressort- système principal (150, 970) étant alors constitué par un ressort mécanique unique ou par l'assemblage de plusieurs ressorts mécaniques.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce qu'un organe de transmission de force (908) est prévu entre le ressort- système principal (970) et la table oscillante (124) et en ce que l'organe de transmission de force n'est pas, au moins sur une partie de la trajectoire des oscillations parcourue lors de la réalisation de l'amplitude supérieure de la trajectoire d'oscillation (+A), soumis à la force élastique du ressort- système principal, en ce sens qu' un trajet de course libre (+A) de l'organe de transmission de force est défini en sorte que :
    lors de l'utilisation d'un ressort- système principal hydraulique (970) pour le remplissage ou le vidage du volume du cylindre (+A) pouvant être généré par le trajet de course libre (+A) du piston à ressort (908), un dispositif particulier d'échange de volume (920) est prévu, le piston à ressort (908) étant associé à l'organe de transmission de force ou étant identique à celui-ci,
    et, lors de l'utilisation d'un ressort- système principal mécanique, un soulèvement de l'organe de transmission de force est prévu par le ressort unique, ou par l'assemblage de ressorts.
  4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que, de la totalité de l'énergie cinétique de la masse du système ressort-masse, seule l'énergie cinétique relative à la vitesse d'oscillation dirigée vers le bas est susceptible d'être convertie en énergie élastique du ressort- système principal.
  5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que les forces élastiques dynamiques sont appliquées par l'organe de transmission de force (908) en un point central de la table oscillante et en ce que :
    au cas où seulement un actionneur- excitateur est prévu, les forces d'excitation sont appliquées par le même organe de transmission de la force (908) à la table oscillante et
    au cas où deux ou plusieurs actionneurs- excitateurs sont prévus, les forces d'excitation concernant leurs vecteurs forces résultants sont
    appliquées audit point central.
  6. Dispositif selon la revendication 5, caractérisé en ce que l'organe de transmission de force (908), relié à la table oscillante, est en même temps une partie d'un dispositif de guidage (902 ; 906), par lequel la masse de la tablé oscillante est sollicitée pour l'exécution de mouvements (152) uniquement verticaux à répétition ; en ce sens que, au cas où seulement un actionneur- excitateur est prévu, par l'action de cette partie de l'organe de transmission de force qui est en même temps une partie dudit dispositif de guidage, aussi bien les forces élastiques dynamiques que les forces d'excitation sont transmises.
  7. Dispositif selon la revendication 6, caractérisé en ce qu'un actionneur- excitateur (980) est prévu, dont les forces d'excitation sont retransmises, avec seulement un organe d'entraínement (916), à la table oscillante (124) et en ce qu'aussi bien les forces élastiques dynamiques que les forces d'excitation sont transmises par cette partie de l'organe de transmission de force (908), qui est en même temps un composant d'un dispositif de guidage (902 ; 906).
  8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que le taux d'élasticité du ressort- système principal est réglable.
  9. Dispositif selon l'une des revendications précédentes 1 à 8, caractérisé en ce que la force de compression peut être produite de manière variable par un dispositif de compression (112), ledit dispositif de compression étant alors asservi par une commande centrale (190).
  10. Dispositif selon la revendication 3, caractérisé en ce que, lors de l'utilisation d'un ressort- système principal hydraulique (970) avec un volume de fluide (906) pour ressort, un dispositif de régulation de niveau (940) est prévu, grâce auquel une hauteur (Z) moyenne, à afficher, du piston oscillant (908) est réglée ou asservie.
  11. Dispositif selon la revendication 10, caractérisé
    en ce que la hauteur moyenne (Z), à afficher, est asservie par l'alimentation d'un débit volumique de régulation à et/ou l'évacuation d'un débit volumique à partir du volume de fluide du ressort (906) et à partir du résultat de mesure d'un dispositif de mesure pour la détermination d'une valeur réelle de la valeur moyenne (Z), grâce à quoi un équipement hydraulique (940) est commandé ou asservi en fonction du résultat de mesure, la grandeur et/ou la direction du débit volumique ou de régulation étant modifiée par ledit équipement hydraulique (940), ou
    en ce que la hauteur moyenne (Z), à afficher, est réglée par l'action combinée d'une arête de commande (958), qui constitue une mesure matérialisée mécanique de ladite hauteur, et d'un autre moyen de commande mécanique (960) faisant office d'arête de commande, cette arête de commande qui fait partie d'un dispositif hydraulique de modification de la section du débit, suite au déplacement relatif engendré par le mouvement d'oscillation étant telle que, lorsque ladite section transversale du débit devient nulle, la compression du volume de fluide du ressort (906) commence.
  12. Dispositif selon la revendication 10 ou 11, caractérisé en ce qu'un distributeur volumétrique de compensation (920) pour l'alimentation d'un volume compensateur est réglé de façon à augmenter le volume de fluide du ressort (906) du ressort- système principal (970), lors de l'exécution d'un mouvement d'oscillation vers l'avant (vers l'amplitude +A).
  13. Dispositif selon l'une des revendications 1 à 12, caractérisé en ce qu'il est prévu un actionneur hydraulique d'excitation, susceptible d'être alimenté par des volumes alternés qui peuvent être produits grâce à un générateur à pompe pour volumes alternés (160), associé au dispositif d'excitation:
    soit par un piston de pompe (210) dont le mouvement alternatif dérive mécaniquement du mouvement d'oscillation d'un générateur de vibrations à balourd (240)
    ou par un piston de pompe (320) dont le mouvement alternatif dérive mécaniquement d'un organe moteur rotatif (310),
    ou par un piston de pompe dont le mouvement alternatif dérive du mouvement de la partie mobile d'un moteur électrique linéaire.
  14. Dispositif selon l'une des revendications 1 à 9, caractérisé en ce que les forces d'excitation sont des forces dérivées des forces massiques d'un générateur de vibrations à balourd, qui sont appliquées par ledit générateur de vibrations à balourd à la masse de la table oscillante (124) et, à savoir:
    soit, du fait que le support du générateur de vibrations à balourd (584) est directement et solidement lié à la masse de la table oscillante (124),
    soit, du fait que le générateur de vibrations à balourd (681)est légèrement en appui (basse fréquence de résonance) grâce aux ressorts (682) contre le cadre (100) ou contre le sol, et caractérisé en ce que la transmission des mouvements d'oscillation et des forces d'excitation dudit générateur de vibrations à balourd à la masse de la table oscillante est produite sous l'interconnexion d'un dispositif d'accouplement (684), ledit dispositif d'accouplement étant équipé d'un des principes ci-après pour la réalisation d'une liaison d'accouplement :
    grâce à un accouplement mécanique,
    en utilisant des forces magnétiques,
    en utilisant des fluides visqueux avec des forces de cisaillement pouvant être couplées électriquement,
    hydrauliquement par l'utilisation d'une ou deux colonnes d'huile, présentes dans des chambres de cylindre (672, 673), et susceptibles d'être déplacées grâce à l'action combinée d'un organe de commande hydraulique (685).
  15. Dispositif selon l'une des revendications 1 à 9, caractérisé en ce que l'action des forces d'excitation est limitée en butée entre la masse de la table oscillante (124) d'un côté et le cadre (100) de l'autre côté et en ce que l'actionneur d'excitation (780) est un moteur linéaire électrique (782,783).
  16. Dispositif selon la revendication 1, caractérisé en ce que le ressort- système principal (140) est représenté par un volume de fluide sous pression, au moins en partie bloqué (140) dans un corps de cylindre et en ce que le taux d'élasticité est variable par une modification de la quantité de fluide sous pression,
    soit du fait que la quantité de fluide sous pression (140) est formée grâce à plusieurs sous- volumes séparables les uns des autres grâce à l'action de clapets anti- retour ou analogues,
    ou du fait qu'une partie de la quantité de fluide sous pression (140) est bloquée dans un cylindre dont le volume cylindrique est modulable grâce à un piston mobile dans le cylindre de manière prédéfinie, le déplacement dudit piston étant réalisé de préférence grâce au mouvement d'une tige filetée.
  17. Dispositif selon l'une des revendications 1 à 16, caractérisé en ce qu'un moteur linéaire hydraulique est prévu comme actionneur d'excitation (980) et en ce que ledit moteur linéaire hydraulique est disposé de manière centrale et symétrique par rapport à la table oscillante (124) et est disposé lors de la formation du ressort- système principal en tant que ressort hydraulique (970) de façon concentrique à celui-ci.
  18. Dispositif de serrage ou de compression selon l'une des revendications 1 à 17,du type constituant une partie d'une presse de moulage sous pression, caractérisé par la combinaison des caractéristiques suivantes:
    la matière granuleuse est prévue pour le moulage d'un modèle de moule.
    au moins un modèle de moule est placé dans la forme et est solidement fixé à la masse du système ressort- masse et oscille avec celle-ci,
    la matière granuleuse à comprimer et à former au moins à sa partie inférieure, grâce aux contours du modèle de moule, est déjà disposée, avant le processus de compression, à côté et/ou au- dessus dudit modèle de moule.
  19. Dispositif selon l'une des revendications 1 à 18, caractérisé en ce que le système de compression est une partie d'une presse à fritter.
EP00990584A 1999-12-24 2000-12-27 Dispositif de compression pour effectuer des operations de compression sur des corps moules a base de matieres granuleuses Expired - Lifetime EP1242234B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19962887 1999-12-24
DE19962887A DE19962887A1 (de) 1999-12-24 1999-12-24 Verfahren und Vorrichtung für ein Verdichtungssystem
DE10039028 2000-08-10
DE10039028A DE10039028A1 (de) 2000-08-10 2000-08-10 Verfahren und Vorrichtung für ein Verdichtungssystem
PCT/DE2000/004632 WO2001047698A1 (fr) 1999-12-24 2000-12-27 Dispositif de compression pour effectuer des operations de compression sur des corps moules a base de matieres granuleuses

Publications (2)

Publication Number Publication Date
EP1242234A1 EP1242234A1 (fr) 2002-09-25
EP1242234B1 true EP1242234B1 (fr) 2003-10-08

Family

ID=26006649

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00990584A Expired - Lifetime EP1242234B1 (fr) 1999-12-24 2000-12-27 Dispositif de compression pour effectuer des operations de compression sur des corps moules a base de matieres granuleuses

Country Status (7)

Country Link
EP (1) EP1242234B1 (fr)
AT (1) ATE251544T1 (fr)
CA (1) CA2396499A1 (fr)
DE (1) DE50004031D1 (fr)
DK (1) DK1242234T3 (fr)
ES (1) ES2208464T3 (fr)
WO (1) WO2001047698A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860043B2 (en) 2009-06-05 2014-10-14 Cree, Inc. Light emitting device packages, systems and methods
US8866166B2 (en) 2009-06-05 2014-10-21 Cree, Inc. Solid state lighting device
US8878217B2 (en) 2010-06-28 2014-11-04 Cree, Inc. LED package with efficient, isolated thermal path
US9111778B2 (en) 2009-06-05 2015-08-18 Cree, Inc. Light emitting diode (LED) devices, systems, and methods
US9123874B2 (en) 2009-01-12 2015-09-01 Cree, Inc. Light emitting device packages with improved heat transfer
CN105170438A (zh) * 2015-10-15 2015-12-23 哈尔滨工程大学 一种水下圆柱壳宽带激振的装置
US11101408B2 (en) 2011-02-07 2021-08-24 Creeled, Inc. Components and methods for light emitting diode (LED) lighting

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059554A1 (de) * 2003-12-14 2005-08-11 GEDIB Ingenieurbüro und Innovationsberatung GmbH Einrichtung zum Verdichten von körnigen Formstoffen
WO2005056201A1 (fr) * 2003-12-14 2005-06-23 GEDIB Ingenieurbüro und Innovationsberatung GmbH Vibrateur de battage de pieux pour des articles battus
DE102008011272A1 (de) 2008-02-26 2009-08-27 Institut für Fertigteiltechnik und Fertigbau Weimar e.V. Betonsteinfertiger mit harmonischer Vibration durch Formerregung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1250323B (de) * 1967-09-14 RINO Werke o HG Maschinen fabrik Bammental bei Heidelberg Maschine zum Her stellen von Formlingen, insbesondere von dünnen Platten aus Beton od dgl
NL8004995A (nl) * 1980-09-03 1982-04-01 Lalesse Staalbouw B V Werkwijze en inrichting ter vervaardiging van een vormling uit aardvochtige betonspecie met lage water/cement verhouding.
NL8004985A (nl) * 1980-09-03 1982-04-01 Leonard Teerling Inrichting en werkwijze voor het verdichten van korrelige materialen, door zowel symmetrische als asymmetrische cyclische belastingen.
DE3724199A1 (de) * 1987-07-22 1989-02-02 Kloeckner Humboldt Deutz Ag Ruettelanlage zur herstellung von formkoerpern durch verdichtung
NL9300610A (nl) * 1993-04-07 1994-11-01 Boer Staal Bv Den Verdichtingsinrichting.
DE4332921C2 (de) * 1993-09-28 2003-04-10 Outokumpu Oy Rüttelanlage zur Herstellung von Formkörpern durch Verdichtung
DE4434696A1 (de) * 1993-09-29 1995-03-30 Hubert Bald Verfahren zur Kontrolle und/oder Sicherung der Qualität der Betonverdichtung bei der Herstellung von Betonsteinen in Betonsteinmaschinen
NL1005862C1 (nl) * 1997-04-09 1998-10-12 Boer Staal Bv Den Werkwijze alsmede inrichting voor het verdichten van korrelvormige massa zoals betonspecie.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123874B2 (en) 2009-01-12 2015-09-01 Cree, Inc. Light emitting device packages with improved heat transfer
US8860043B2 (en) 2009-06-05 2014-10-14 Cree, Inc. Light emitting device packages, systems and methods
US8866166B2 (en) 2009-06-05 2014-10-21 Cree, Inc. Solid state lighting device
US9111778B2 (en) 2009-06-05 2015-08-18 Cree, Inc. Light emitting diode (LED) devices, systems, and methods
US8878217B2 (en) 2010-06-28 2014-11-04 Cree, Inc. LED package with efficient, isolated thermal path
US11101408B2 (en) 2011-02-07 2021-08-24 Creeled, Inc. Components and methods for light emitting diode (LED) lighting
CN105170438A (zh) * 2015-10-15 2015-12-23 哈尔滨工程大学 一种水下圆柱壳宽带激振的装置
CN105170438B (zh) * 2015-10-15 2017-08-04 哈尔滨工程大学 一种水下圆柱壳宽带激振的装置

Also Published As

Publication number Publication date
EP1242234A1 (fr) 2002-09-25
DE50004031D1 (de) 2003-11-13
ATE251544T1 (de) 2003-10-15
WO2001047698A1 (fr) 2001-07-05
ES2208464T3 (es) 2004-06-16
CA2396499A1 (fr) 2001-07-05
DK1242234T3 (da) 2004-02-16

Similar Documents

Publication Publication Date Title
EP1568419B1 (fr) Vibrateur pour imposer des vibrations dans une cértaine diréction à des objéts et appareil pour faire des blocs de béton
EP1332028B1 (fr) Dispositif de compactage pour compacter des corps moules en materiaux granuleux et son procede d'utilisation
EP2257415B1 (fr) Dispositif de fabrication de parpaings en béton à vibrations harmoniques par excitation du moule et procédé de mise en forme et compactage de mélanges de béton
EP1242234B1 (fr) Dispositif de compression pour effectuer des operations de compression sur des corps moules a base de matieres granuleuses
DE10039028A1 (de) Verfahren und Vorrichtung für ein Verdichtungssystem
DE19921145A1 (de) Rüttelantrieb für eine Form
DE4434679A1 (de) Verdichtungssystem zum Formen und Verdichten von Formstoffen zu Formkörpern in Formkästen
WO2007147422A1 (fr) Installation et procédé de fabrication de produits en béton
DE3638207A1 (de) Verfahren zur herstellung von betonfomsteinen und vorrichtung zur durchfuehrung des verfahrens
DE102004059554A1 (de) Einrichtung zum Verdichten von körnigen Formstoffen
DE19962887A1 (de) Verfahren und Vorrichtung für ein Verdichtungssystem
DE19634991A1 (de) Vibrations-Verdichtungssystem für Betonsteinmaschinen und Verfahren hierfür
DE102015218578A1 (de) Hydrostatische verstelleinrichtung mit verminderter hysterese
EP2286025A1 (fr) Mécanisme secoueur
EP3094480B1 (fr) Dispositif et procédé de compactage de mélanges minéraux ou d'emboutissage de plaques de tôle ou de matière plastique
EP0794136A1 (fr) Convoyeur vibratoire utilisant la fréquence de résonance
DE1784761A1 (de) Verfahren und Vorrichtung zur Herstellung von Formkoerpern durch Verdichtung
DE202014000704U1 (de) Vorrichtung zum Verdichten von Mineralgemischen
WO2002045927A1 (fr) Dispositif de compactage pour compacter des corps de produits constitues d'une masse granulee
DE2552852C3 (de) Verfahren zum Verdichten von Formkörpern aus Beton o.dgl. plastischen Massen
WO2005056201A1 (fr) Vibrateur de battage de pieux pour des articles battus
EP1332041A1 (fr) Procede et dispositif de compression de matieres granuleuses
DE2453593C2 (de) Kolbenvibrator
EP1525077A2 (fr) Procede de realisation d'un bloc de pierre composite et machine vibrante utilisee dans le cadre du procede
DE202014000162U1 (de) Vorrichtung zum Verdichten von Mineralgemischen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031008

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031008

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031008

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50004031

Country of ref document: DE

Date of ref document: 20031113

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031227

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040108

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040121

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20031008

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2208464

Country of ref document: ES

Kind code of ref document: T3

BERE Be: lapsed

Owner name: *GEDIB INGENIEURBURO UND INNOVATIONSBERATUNG G.M.B

Effective date: 20031231

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041227

Year of fee payment: 5

Ref country code: FR

Payment date: 20041227

Year of fee payment: 5

Ref country code: AT

Payment date: 20041227

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20041228

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041229

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050118

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050128

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051227

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040308