EP1331464B1 - Wärmeübertrager - Google Patents

Wärmeübertrager Download PDF

Info

Publication number
EP1331464B1
EP1331464B1 EP03000982A EP03000982A EP1331464B1 EP 1331464 B1 EP1331464 B1 EP 1331464B1 EP 03000982 A EP03000982 A EP 03000982A EP 03000982 A EP03000982 A EP 03000982A EP 1331464 B1 EP1331464 B1 EP 1331464B1
Authority
EP
European Patent Office
Prior art keywords
rib
longitudinal direction
fin
heat exchanger
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03000982A
Other languages
English (en)
French (fr)
Other versions
EP1331464A2 (de
EP1331464A3 (de
Inventor
Roland Burk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1331464A2 publication Critical patent/EP1331464A2/de
Publication of EP1331464A3 publication Critical patent/EP1331464A3/de
Application granted granted Critical
Publication of EP1331464B1 publication Critical patent/EP1331464B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators

Definitions

  • the invention relates to a heat exchanger, in particular for a motor vehicle, for heat transfer between a liquid and a gas, having the features of the preamble of claim 1.
  • Such a heat exchanger is known for example from DE-OS 14 51 216 and has a plurality of tubes which are arranged parallel to each other and spaced from each other.
  • the tubes can be flowed through by the liquid in the tube longitudinal direction and can be flowed around by the gas transversely to the tube longitudinal direction.
  • a plurality of ribs are arranged in the gas flow path, which are heat-transmitting connected to the tubes. These ribs extend with their longitudinal direction transversely to the tube longitudinal direction and at the same time serve as spacers for the tubes.
  • all arranged between two adjacent tubes ribs are combined to form a ribbed belt.
  • Each rib has a plurality of gills which are arranged one behind the other and parallel to one another in the rib longitudinal direction. These gills extend with their longitudinal direction approximately transversely to the tube longitudinal direction and transversely to the rib longitudinal direction. Furthermore, the gills are inclined transversely to the longitudinal direction of the gill against the rib longitudinal direction and thereby When gas is applied to the heat exchanger, the gas flow will flow from one side of the rib to the other side of the rib. Initially, these gills cause a constant rebuilding thermal boundary layers, which are relatively thin on average due to the short start-up lengths and thus allow a relatively good heat transfer between the gas and the gills.
  • the inclination or inclination of the gills causes the inflowing gas is a transverse velocity component in the direction of the tube longitudinal direction is impressed. It comes thereby to a deflection of the gas in the direction of the tube longitudinal direction. This ensures that the gills are not in Totwasser capable from each other, but can be flowed largely undisturbed by the gas. In order nevertheless to achieve a largely vertical flow direction through the entire heat exchanger, the inclination of the gills, ie the direction of the gill exhibition is reversed approximately in half of the rib length.
  • the gills of each rib are inclined in a first rib longitudinal section in the same direction to each other, while the gills are inclined in a second rib longitudinal section in the same direction and in opposite directions to the gills of the first rib longitudinal section. Furthermore, in all the tube longitudinally juxtaposed ribs in the tube longitudinal direction juxtaposed gills are inclined in the same direction. This design results in a double deflection transversely to the tube longitudinal direction for the gas in the flow through the heat exchanger.
  • the tubes are each connected to a container for collecting and / or distributing and / or diverting the liquid.
  • the deflection of the gas flow is hindered by the gill angle.
  • a pressure gradient builds up between the containers, which increases the flow resistance of the heat exchanger.
  • the heat transfer performance of the ribs starting from a foot soldered to the respective tube, decreases as far as the middle of the rib, whereby a corresponding temperature gradient is formed on the gas side. Since no velocity component in the longitudinal direction of the gill occurs during the flow through the heat exchanger, the central region of the gas flow takes part in the heat transfer in only a small part. In order to improve the fin efficiency, it is possible to reduce the distances between adjacent tubes and thus the gill length or to increase the rib thickness. However, these measures increase the weight and the cost and the gas-side flow resistance of the heat exchanger.
  • US 6170566 B1 discloses a rib with inlet gills and with outlet gills.
  • the present invention addresses the problem of providing a heat exchanger of the type mentioned an improved embodiment, which in particular achieves a relatively high heat transfer performance at a relatively small pressure loss.
  • the invention is based on the general idea, the gills in such a way that the inclination of the gill transverse direction with respect to the rib longitudinal direction along the gill longitudinal direction reverses at adjacent longitudinal gill segments.
  • the gills thereby show a propeller-like torsion with respect to their longitudinal direction.
  • each gill in the one gill longitudinal section carries the gas flow from the first rib side to the second rib side and in the other gill longitudinal section from the second rib side to the first rib side.
  • the cross-flow components of the gas flow can be increased, whereby the heat transfer between gas and gill or rib increases.
  • all the gills of a rib can be arranged so that the one another in the longitudinal direction of the ribs following gill longitudinal sections are inclined in the same direction.
  • the gills following one another in the longitudinal direction of the ribs cooperate in the same direction to deflect the gas flow, as a result of which the flow resistance of the heat exchanger is reduced.
  • a certain number of juxtaposed in the tube longitudinal direction ribs each form a group of ribs, wherein the ribs of a group of ribs all gills are arranged so that in the tube longitudinal direction of successive gill longitudinal sections are inclined in the same direction, wherein in the ribs of adjacent rib groups, the gill longitudinal sections of a group of ribs in opposite directions the gill longitudinal sections of the other rib group are inclined.
  • the gill alignment repeats over several ribs and then changes the direction of inclination or twisting direction. After the same number of ribs then the twisting direction or the direction of inclination of the individual longitudinal gill portions is again reversed.
  • the rib groups formed thereby have thus alternating directions of inclination or twisting directions with their gills, which produce a pressure-loss-poor system of counter-rotating vortices.
  • This vortex system leads on the one hand to a gas exchange in the tube longitudinal direction and on the other hand in the longitudinal direction of the gudgeon. This results in an improved turbulence of the gas flow in the central region of the ribs. Overall, this can increase the heat transfer between gas flow and ribs.
  • the number of ribs in the rib groups can be chosen such that the rib groups extend in the tube longitudinal direction approximately as far as adjacent tubes are spaced apart from one another transversely to the tube longitudinal direction.
  • essentially cylindrical vortices can be generated during the flow through the heat exchanger, which ensures a particularly favorable heat transfer at relatively low pressure losses.
  • a heat exchanger 1 has a plurality of tubes 2, which run parallel to one another and are arranged at a distance from one another.
  • the tubes 2 lie in a plane that corresponds to the drawing plane in Fig. 1.
  • the tubes 2 are at their longitudinal ends shown in Fig. 1 below each with a lower container 3 and at its upper longitudinal end shown in Fig. 1 above with an upper container. 4 connected.
  • the tubes 2 are permeable in their interior in their symbolized by a double arrow tube longitudinal direction 5 of a liquid.
  • the containers 3 and 4 serve to collect and / or distribute and / or redirect the liquid flow.
  • the heat exchanger 1 is the heat exchanger 1 of a motor vehicle.
  • the heat exchanger 1 is the so-called “radiator” of the engine cooling circuit or a radiator or a condenser or an evaporator of an air conditioner.
  • the heat exchanger 1 is a so-called “flat tube heat exchanger", in which the tubes 2 are designed as flat tubes; This means that the tubes 2 are significantly larger transversely to their longitudinal direction 5 in the rib longitudinal direction 8 than in the rib transverse direction 9.
  • the flat tubes can also be constructed by brazed against each other discs, wherein it does not matter here on the internal structure of the discs or tubes 2 ,
  • the tubes 2 are spaced from each other, they are outwardly transversely to the tube longitudinal direction 5 and substantially perpendicular to the heat exchanger plane, that is perpendicular to the plane of the drawing, of a gas, e.g. Air, flow around.
  • a gas e.g. Air
  • rib ribbons 6 are arranged in the gas flow path, which are corrugated or folded zigzag-shaped, wherein the individual folds or corrugations form ribs 7, which are each connected heat-transmitting with the tubes 2.
  • the ribs 7 and the ribbed bands 6 are soldered to the tubes 2.
  • the ribs 7 extend with their in Fig. 3 symbolized by a double arrow longitudinal direction 8 transversely to the tube longitudinal direction 5.
  • the rib longitudinal direction 8 thus extends substantially parallel to the flow of the heat exchanger 1 acting on the gas.
  • the ribs 7 and the rib bands 6 can simultaneously serve as spacers for the tubes 2.
  • FIGS. 2 and 4 the detail II of Fig. 1 is shown enlarged, the views in FIGS. 2 and 4 are rotated by 90 ° relative to the illustration of FIG. 1.
  • Figs. 2 and 4 the structure of a special ribbed belt 6 is shown in more detail.
  • the fold or corrugation of the ribbed belt 6 are designed so that ribs 7, which are arranged in the tube longitudinal direction 5 adjacent to each other, are positioned so that they extend with respect to a transverse to the rib longitudinal direction 8, in Fig. 2 by a double arrow symbolized rib transverse direction 9 parallel to each other.
  • rib ribbons 6 are corrugated or folded in a zig-zag, as in FIG. 1, so that ribs 7 are inclined with respect to the rib transverse direction 9 and extend only substantially parallel to one another.
  • the ribs 7 each have a plurality of gills 10, which are arranged one behind the other in the rib longitudinal direction 8.
  • a longitudinal direction 11 of the gills 10 extends transversely to the rib longitudinal direction 8 and thus coincides with the rib transverse direction 9.
  • the gills 10 are arranged with respect to their gill longitudinal direction 11 parallel to each other. Due to the parallel or substantially parallel orientation of the ribs 7, the gills 10 are also arranged with adjacent ribs 7 as shown in FIG. 2, also with respect to their gill longitudinal direction 11 parallel or substantially parallel to each other.
  • each gill 10 has a plurality of gill longitudinal sections 12 and 13. Two different embodiments are shown by way of example in FIGS. 2 to 5, which differ from one another with respect to the number of gill longitudinal sections 12, 13 per gill 10.
  • each gill 10 has two longitudinal gill portions 12, 13, while in the embodiment according to FIGS. 4 and 5, each gill 10 has three longitudinal gill portions 12, 13, respectively.
  • the one gill longitudinal sections 12 are shown in Fig. 2 above and drawn in Fig. 3 by solid lines.
  • the other gill longitudinal portions 13 are shown in Fig. 2 below and drawn in Fig. 3 with broken lines. 2
  • the two Kiemenl Kunststoffsabête 12 and 13 formed substantially the same size, which can be achieved in total a symmetrical deflection effect.
  • the one gill longitudinal portions 13 are arranged as shown in FIG. 4 approximately in the middle of the gills 10, while the other two gill longitudinal portions 12 adjoins the outside of the central longitudinal gill portion 13. Accordingly, in Fig. 5, the outer longitudinal gill portions 12 are drawn by solid lines, while the central gill longitudinal portions 13 are plotted with broken lines. According to Fig. 4, the two outer longitudinal gill portions 12 are formed approximately equal. Furthermore, the two outer longitudinal gill portions 12 together are approximately the same size as the central longitudinal gill portion 13th
  • the gill longitudinal sections 12 and 13 of the gills 10 are wound with respect to the gill longitudinal direction 11 in opposite directions against each other, resulting in a propeller-like twist.
  • the gill longitudinal sections 12 in each gill 10 which are symbolized in FIG. 3 by corresponding double arrows, transverse to the gill longitudinal direction 11, are inclined relative to the rib longitudinal direction 8.
  • the other longitudinal gill segments 13 extend with their transverse direction 14, which is shown in FIG. 3 by dotted double arrows, also inclined to the rib longitudinal direction 8, but the inclination of the other longitudinal gill portions 13 is oriented opposite to the inclination of the gill longitudinal segments 12.
  • each gill 10 is arranged at each rib 7 in such a way that the gill longitudinal sections 12 and 13 following one another in the rib longitudinal direction 8 are inclined in the same direction.
  • all the lower ones see FIG (see Fig. 4) Gill longitudinal portions 13 in the same manner inclined with respect to the rib longitudinal direction 8.
  • each case form a certain number of ribs 7, which are arranged side by side in the tube longitudinal direction 5, respectively a rib group 15 and 15 ', which are characterized in Figs. 3 and 5 by braces.
  • a rib group 15 and 15 ' which are characterized in Figs. 3 and 5 by braces.
  • all gills 10 are arranged so that all upper or outer longitudinal gill portions 12 are arranged mutually in the same direction and that all lower or central longitudinal gill segments 13 are oriented in the same direction.
  • the successive gill longitudinal sections 12 and 13 are inclined in the same direction.
  • the gill longitudinal sections 12,13 of a group of ribs 15 are inclined in opposite directions to the gill longitudinal sections 12,13 of the other rib group 15'.
  • the gill longitudinal sections 12,13 results for the gas flow in the flow through the heat exchanger 1 within the ribs 7, a vortex formation, the helical shape is apparent in particular from FIGS. 2 and 4 and which are designated in Figs ,
  • These vortices 16 on the one hand cause a gas exchange in the tube longitudinal direction 5 and on the other hand in the longitudinal direction of the gill 11.
  • the temperature gradient between regions of the ribs 7 close to the tube and central regions of the ribs 7 remote from the tube can be reduced become. Overall, this improves the heat transfer between gas flow and gills 10 or ribs 7 and thus between gas flow and tubes 5 and the liquid flow guided therein.
  • each rib group 15, 15 ' has three ribs 7 with co-gills 10 or first longitudinal gill segments 12 and second longitudinal gill segments 13.
  • the desired vortex 16 can form.
  • This vortex system 16 leads to an intensive gas exchange between tube-near and tube-distant air layers, whereby all layers of air along the gas flow path in the region near the tube with high temperature difference, so that the heat transfer is improved.
  • the ribs 7 can build relatively large in the gill longitudinal direction 11, i. the tubes 2 may have relatively large distances from each other. This results in a particularly cost-effective design for the heat exchanger 1.
  • the formation of the vortex 16 has only a comparatively low pressure loss result.
  • the edge regions of the tubes 2, that is to say the transition zones between the containers 3, 4 and the tube longitudinal ends, can also be used better for heat transfer.
  • the gills 10 are mirror-symmetrical with respect to a median plane extending in the tube longitudinal direction 5 and in the rib longitudinal direction 8 between the tubes 2. This symmetry may have manufacturing advantages, in particular with regard to distortion during continuous rolling of a ribbed belt 6.

Description

  • Die Erfindung betrifft einen Wärmeübertrager, insbesondere für ein Kraftfahrzeug, zur Wärmeübertragung zwischen einer Flüssigkeit und einem Gas, mit den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Ein derartiger Wärmeübertrager ist beispielsweise aus der DE-OS 14 51 216 bekannt und weist mehrere Rohre auf, die parallel zueinander und beabstandet voneinander angeordnet sind. Die Rohre sind innen in Rohrlängsrichtung von der Flüssigkeit durchströmbar und außen quer zur Rohrlängsrichtung vom Gas umströmbar. Zwischen den Rohren sind im Gasströmungsweg jeweils mehrere Rippen angeordnet, die wärmeübertragend mit den Rohren verbunden sind. Diese Rippen erstrecken sich mit ihrer Längsrichtung quer zur Rohrlängsrichtung und dienen gleichzeitig als Abstandshalter für die Rohre. Zweckmäßig sind sämtliche zwischen zwei benachbarten Rohren angeordnete Rippen zu einem Rippenband zusammengefaßt.
  • Jede Rippe weist mehrere Kiemen auf, die in Rippenlängsrichtung hintereinander und parallel zueinander angeordnet sind. Diese Kiemen erstrecken sich mit ihrer Längsrichtung etwa quer zur Rohrlängsrichtung und quer zur Rippenlängsrichtung. Des weiteren sind die Kiemen quer zur Kiemenlängsrichtung gegenüber der Rippenlängsrichtung geneigt und können dadurch bei einer Gasbeaufschlagung des Wärmeübertragers die Gasströmung von der einen Rippenseite zur anderen Rippenseite führen. Diese Kiemen bewirken zunächst einen ständigen Neuaufbau thermischer Grenzschichten, die aufgrund der kurzen Anlauflängen im Mittel relativ dünn sind und dadurch eine relativ gute Wärmeübertragung zwischen dem Gas und den Kiemen ermöglichen. Durch die Neigung oder Schrägstellung der Kiemen wird bewirkt, daß dem einströmenden Gas eine Quergeschwindigkeitskomponente in Richtung der Rohrlängsrichtung aufgeprägt wird. Es kommt dadurch zu einer Ablenkung des Gases in Richtung der Rohrlängsrichtung. Hierdurch wird erreicht, daß die Kiemen nicht im Totwassergebiet voneinander liegen, sondern weitgehend ungestört vom Gas angeströmt werden können. Um dennoch eine weitgehend senkrechte Durchströmungsrichtung durch den gesamten Wärmeübertrager zu erzielen, wird die Neigung der Kiemen, also die Richtung der Kiemenausstellung etwa in der Hälfte der Rippenlänge umgekehrt. Das heißt, die Kiemen jeder Rippe sind in einem ersten Rippenlängsabschnitt gleichsinnig zueinander geneigt, während die Kiemen in einem zweiten Rippenlängsabschnitt gleichsinnig zueinander und gegensinnig zu den Kiemen des ersten Rippenlängsabschnitts geneigt sind. Des weiteren sind bei allen in Rohrlängsrichtung nebeneinander angeordneten Rippen die in Rohrlängsrichtung nebeneinander angeordneten Kiemen gleichsinnig geneigt. Durch diese Bauweise ergibt sich für das Gas bei der Durchströmung des Wärmeübertragers eine doppelte Umlenkung quer zur Rohrlängsrichtung.
  • An ihren Längsenden sind die Rohre jeweils mit einem Behälter zum Sammeln und/oder Verteilen und/oder Umlenken der Flüssigkeit verbunden. In der Nähe dieser Behälter ist die Umlenkung der Gasströmung durch die Kiemen-Neigung behindert. Hierdurch baut sich ein Druckgefälle zwischen den Behältern auf, der den Durchströmungswiderstand des Wärmeübertragers erhöht. Des weiteren nimmt die Wärmeübertragungsleistung der Rippen ausgehend von einem an dem jeweiligen Rohr angelöteten Fuß bis zur Rippenmitte hin ab, wodurch sich auf der Gasseite ein entsprechender Temperaturgradient ausbildet. Da bei der Durchströmung des Wärmeübertragers in der Regel keine Geschwindigkeitskomponente in Kiemenlängsrichtung auftritt, nimmt der mittlere Bereich der Gasströmung an der Wärmeübertragung in nur geringem Maße teil. Um den Rippenwirkungsgrad zu verbessern, ist es möglich, die Abstände zwischen benachbarten Rohren und somit die Kiemenlänge zu reduzieren oder die Rippendicke zu erhöhen. Diese Maßnahmen erhöhen jedoch das Gewicht und die Kosten sowie den gasseitigen Durchströmungswiderstand des Wärmeübertragers.
  • Die US 6170566 B1 offenbart eine Rippe mit Einlasskiemen und mit Auslasskiemen.
  • Die DE 9404009 U1 offenbart einen Wärmetauscher mit Rohren und Rippen.
  • Die vorliegende Erfindung beschäftigt sich mit dem Problem, für einen Wärmeübertrager der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die insbesondere eine relativ hohe Wärmeübertragungsleistung bei einem relativ kleinen Druckverlust erreicht.
  • Gelöst wird dieses Problem durch den Gegenstand des unabhängigen Anspruchs. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, die Kiemen so auszubilden, daß sich die Neigung der Kiemenquerrichtung gegenüber der Rippenlängsrichtung entlang der Kiemenlängsrichtung bei benachbarten Kiemenlängsabschnitten umkehrt. Die Kiemen zeigen dadurch bezüglich ihrer Längsrichtung eine propellerartige Verwindung. Das bedeutet, daß jede Kieme in dem einen Kiemenlängsabschnitt die Gasströmung von der ersten Rippenseite auf die zweite Rippenseite führt und im anderen Kiemenlängsabschnitt von der zweiten Rippenseite zur ersten Rippenseite leitet. Bei einer entsprechenden Anordnung und Verteilung dieser Kiemenlängsabschnitte können die Querströmungskomponenten der Gasströmung vergrößert werden, wodurch sich die Wärmeübertragung zwischen Gas und Kieme bzw. Rippe erhöht.
  • Gemäß einer besonders vorteilhaften Ausführungsform können alle Kiemen einer Rippe so angeordnet sein, daß die in Rippenlängsrichtung aufeinander folgenden Kiemenlängsabschnitte gleichsinnig geneigt sind. Durch diese Maßnahme wirken die in Rippenlängsrichtung aufeinander folgenden Kiemen zur Umlenkung der Gasströmung in der gleichen Richtung zusammen, wodurch sich der Durchströmungswiderstand des Wärmeübertragers reduziert.
  • Eine bestimmte Anzahl von in Rohrlängsrichtung nebeneinander angeordneten Rippen bilden jeweils eine Rippengruppe, wobei bei den Rippen einer Rippengruppe alle Kiemen so angeordnet sind, daß die in Rohrlängsrichtung aufeinander folgenden Kiemenlängsabschnitte gleichsinnig geneigt sind, wobei bei den Rippen benachbarter Rippengruppen die Kiemenlängsabschnitte der einen Rippengruppe gegensinnig zu den Kiemenlängsabschnitten der anderen Rippengruppe geneigt sind. Durch diese Anordnung wiederholt sich die Kiemenausrichtung über mehrere Rippen hinweg und wechselt dann die Neigungsrichtung bzw. Verwindungsrichtung. Nach der gleichen Zahl von Rippen wird dann die Verwindungsrichtung bzw. die Neigungsrichtung der einzelnen Kiemenlängsabschnitte erneut umgekehrt. Die hierdurch ausgebildeten Rippengruppen besitzen somit alternierende Neigungsrichtungen oder Verwindungsrichtungen bei ihren Kiemen, die ein druckverlustarmes System gegenläufiger Wirbel erzeugen. Dieses Wirbelsystem führt einerseits zu einem Gasaustausch in Rohrlängsrichtung sowie andererseits in Kiemenlängsrichtung. Hierdurch ergibt sich eine verbesserte Verwirbelung der Gasströmung auch im mittleren Bereich der Rippen. Insgesamt kann dadurch die Wärmeübertragung zwischen Gasströmung und Rippen gesteigert werden.
  • Für eine vorteilhafte Weiterbildung kann die Rippenanzahl in den Rippengruppen so gewählt sein, daß sich die Rippengruppen in Rohrlängsrichtung etwa so weit erstrecken wie benachbarte Rohre quer zur Rohrlängsrichtung voneinander beabstandet sind. Durch diese Bauweise können bei der Durchströmung des Wärmeübertragers im wesentlichen zylindrische Wirbel generiert werden, die bei relativ geringen Druckverlusten eine besonders günstige Wärmeübertragung gewährleisten.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, daß die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Ein bevorzugtes Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder funktional gleiche oder ähnliche Bauteile beziehen.
  • Es zeigen, jeweils schematisch,
  • Fig. 1
    eine Ansicht in Rippenlängsrichtung auf einen Wärmeübertrager nach der Erfindung,
    Fig. 2
    eine vergrößerte Darstellung eines Ausschnitts II aus Fig. 1,
    Fig. 3
    eine Schnittansicht der Darstellung aus Fig. 2 entsprechend den Schnittlinien III in Fig. 2,
    Fig. 4
    eine Ansicht wie in Fig. 2, jedoch einer anderen Ausführungsform,
    Fig. 5
    eine Ansicht wie in Fig. 3, jedoch entsprechend der Ausführungsform gemäß Fig. 4.
  • Entsprechend Fig. 1 weist ein Wärmeübertrager 1 mehrere Rohre 2 auf, die parallel zueinander verlaufen und voneinander beabstandet angeordnet sind. Die Rohre 2 liegen dabei in einer Ebene, die in Fig. 1 der Zeichnungsebene entspricht. Die Rohre 2 sind an ihren in Fig. 1 unten dargestellten Längsenden jeweils mit einem unteren Behälter 3 und an ihren in Fig. 1 oben dargestellten oberen Längsende mit einem oberen Behälter 4 verbunden. Die Rohre 2 sind in ihrem Inneren in ihrer durch einen Doppelpfeil symbolisierten Rohrlängsrichtung 5 von einer Flüssigkeit durchströmbar. Die Behälter 3 und 4 dienen zum Sammeln und/oder Verteilen und/oder Umlenken der Flüssigkeitsströmung.
  • Entsprechend einer bevorzugten Anwendung handelt es sich beim Wärmeübertrager 1 um den Wärmeübertrager 1 eines Kraftfahrzeugs. Beispielsweise handelt es sich um den sogenannten "Kühler" des Motorkühlkreises oder um einen Heizkörper oder um einen Kondensator oder um einen Verdampfer einer Klimaanlage. Bei der hier gezeigten bevorzugten Ausführungsform handelt es sich beim Wärmeübertrager 1 um einen sogenannten "Flachrohr-Wärmeübertrager", bei dem die Rohre 2 als Flachrohre ausgebildet sind; das bedeutet, daß die Rohre 2 quer zu ihrer Längsrichtung 5 in der Rippenlängsrichtung 8 deutlich größer sind als in der Rippenquerrichtung 9. Die Flachrohre können auch durch gegeneinander gelötete Scheiben aufgebaut sein, wobei es auf die innere Struktur der Scheiben oder Rohre 2 hier nicht ankommt.
  • Da die Rohre 2 voneinander beabstandet sind, sind sie außen quer zur Rohrlängsrichtung 5 und im wesentlichen senkrecht zur Wärmeübertragerebene, also senkrecht zur Zeichnungsebene, von einem Gas, z.B. Luft, umströmbar.
  • Zwischen benachbarten Rohren 2 sind im Gasströmungsweg jeweils Rippenbänder 6 angeordnet, die zick-zack-förmig gewellt oder gefaltet sind, wobei die einzelnen Falten oder Wellen Rippen 7 ausbilden, die jeweils mit den Rohren 2 wärmeübertragend verbunden sind. Insbesondere sind die Rippen 7 bzw. die Rippenbänder 6 mit den Rohren 2 verlötet.
  • Die Rippen 7 erstrecken sich mit ihrer in Fig. 3 durch einen Doppelpfeil symbolisierten Längsrichtung 8 quer zur Rohrlängsrichtung 5. Die Rippenlängsrichtung 8 verläuft somit im wesentlichen parallel zur Anströmung des den Wärmeübertrager 1 beaufschlagenden Gases. Die Rippen 7 bzw. die Rippenbänder 6 können gleichzeitig als Abstandshalter für die Rohre 2 dienen.
  • In den Fig. 2 und 4 ist das Detail II aus Fig. 1 vergrößert dargestellt, wobei die Ansichten in den Fig. 2 und 4 um 90° gegenüber der Darstellung gemäß Fig. 1 gedreht sind. In den Fig. 2 und 4 ist der Aufbau eines speziellen Rippenbandes 6 näher dargestellt. Bei diesen Ausführungsformen sind die Faltung bzw. Wellung des Rippenbandes 6 so ausgeführt, daß Rippen 7, die in der Rohrlängsrichtung 5 benachbart zueinander angeordnet sind, so positioniert sind, daß sie bezüglich einer quer zur Rippenlängsrichtung 8 verlaufenden, in Fig. 2 durch einen Doppelpfeil symbolisierten Rippenquerrichtung 9 parallel zueinander verlaufen. Bei einer anderen Ausführungsform, sind die Rippenbänder 6 wie in Fig. 1 zick-zack-förmig gewellt oder gefaltet, so daß die Rippen 7 gegenüber der Rippenquerrichtung 9 geneigt sind und nur im wesentlichen parallel zueinander verlaufen.
  • Entsprechend den Fig. 2 bis 5 weisen die Rippen 7 jeweils mehrere Kiemen 10 auf, die in Rippenlängsrichtung 8 hintereinander angeordnet sind. Eine Längsrichtung 11 der Kiemen 10 verläuft quer zur Rippenlängsrichtung 8 und fällt somit mit der Rippenquerrichtung 9 zusammen. Bei jeder Rippe 7 sind die Kiemen 10 bezüglich ihrer Kiemenlängsrichtung 11 parallel zueinander angeordnet. Durch die parallele oder im wesentlichen parallele Ausrichtung der Rippen 7 sind die Kiemen 10 außerdem bei benachbarten Rippen 7 entsprechend Fig. 2 ebenfalls bezüglich ihrer Kiemenlängsrichtung 11 parallel oder im wesentlichen parallel zueinander angeordnet.
  • Erfindungsgemäß besitzt jede Kieme 10 mehrere Kiemenlängsabschnitte 12 und 13. In den Fig. 2 bis 5 sind exemplarisch zwei verschiedene Ausführungsformen dargestellt, die sich hinsichtlich der Anzahl der Kiemenlängsabschnitte 12, 13 je Kieme 10 voneinander unterscheiden. Bei der Ausführungsform der Fig. 2 und 3 besitzt jede Kieme 10 zwei Kiemenlängsabschnitte 12, 13, während bei der Ausführungsform gemäß den Fig. 4 und 5 jede Kieme 10 jeweils drei Kiemenlängsabschnitte 12, 13 aufweist. Die einen Kiemenlängsabschnitte 12 sind in Fig. 2 oben dargestellt und in Fig. 3 mit durchgezogenen Linien gezeichnet. Im Unterschied dazu sind die anderen Kiemenlängsabschnitte 13 in Fig. 2 unten dargestellt und in Fig. 3 mit unterbrochenen Linien gezeichnet. Gemäß Fig. 2 sind die beiden Kiemenlängsabschnitte 12 und 13 im wesentlichen gleich groß ausgebildet, wodurch sich insgesamt eine symmetrische Umlenkungswirkung erzielen läßt.
  • Im Unterschied dazu sind bei der anderen Ausführungsform die einen Kiemenlängsabschnitte 13 gemäß Fig. 4 etwa in der Mitte der Kiemen 10 angeordnet, während die beiden anderen Kiemenlängsabschnitte 12 außen an den mittleren Kiemenlängsabschnitt 13 angrenzen. Dementsprechend sind in Fig. 5 die äußeren Kiemenlängsabschnitte 12 mit durchgezogenen Linien gezeichnet, während die mittleren Kiemenlängsabschnitte 13 mit unterbrochenen Linien eingetragen sind. Entsprechend Fig. 4 sind die beiden äußeren Kiemenlängsabschnitte 12 etwa gleich groß ausgebildet. Des weiteren sind die beiden äußeren Kiemenlängsabschnitte 12 zusammen etwa gleich groß wie der mittlere Kiemenlängsabschnitt 13.
  • Die Kiemenlängsabschnitte 12 und 13 der Kiemen 10 sind bezüglich der Kiemenlängsrichtung 11 in entgegengesetzten Richtungen gegeneinander verwunden, wodurch sich eine propellerartige Verwindung ergibt. Durch diese Bauweise sind bei jeder Kieme 10 die einen Kiemenlängsabschnitte 12 in einer in Fig. 3 durch entsprechende Doppelpfeile symbolisierten, quer zur Kiemenlängsrichtung 11 verlaufenden Kiemenquerrichtung 14 gegenüber der Rippenlängsrichtung 8 geneigt. Gleichzeitig verlaufen auch die anderen Kiemenlängsabschnitte 13 mit ihrer Kiemenquerrichtung 14, die in Fig. 3 durch gepunktete Doppelpfeile dargestellt ist, ebenfalls geneigt zur Rippenlängsrichtung 8, allerdings ist die Neigung der anderen Kiemenlängsabschnitte 13 entgegengesetzt zur Neigung der einen Kiemenlängsabschnitte 12 orientiert.
  • Des weiteren sind bei jeder Rippe 7 jeweils alle Kiemen 10 so angeordnet, daß die in Rippenlängsrichtung 8 aufeinander folgenden Kiemenlängsabschnitte 12 bzw. 13 gleichsinnig geneigt sind. Bezugnehmend auf die Fig. 3 und 5 bedeutet dies, daß bei jeder Rippe 7 die oberen (vgl. Fig. 2) oder die äußeren (vgl. Fig. 4) Kiemenlängsabschnitte 12 in der gleichen Weise gegenüber der Rippenlängsrichtung 8 geneigt verlaufen. Ebenso verlaufen bei jeder Rippe 7 auch sämtliche untere (vgl. Fig. 2) oder sämtliche mittlere (vgl. Fig. 4) Kiemenlängsabschnitte 13 in der gleichen Weise geneigt gegenüber der Rippenlängsrichtung 8. Mit Bezug auf Fig. 2 bedeutet dies, daß die oben dargestellten Kiemenabschnitte 12 innerhalb einer Rippe 7 in der einen Richtung geneigt sind, während bei derselben Rippe 7 sämtliche unten dargestellten zweiten Kiemenlängsabschnitte 13 in die andere Richtung gegenüber der Rippenlängsrichtung 8 geneigt sind. Mit Bezug auf Fig. 4 bedeutet dies, daß die außen angeordneten Kiemenlängsabschnitte 12 innerhalb einer Rippe 7 in der einen Richtung geneigt sind, während bei derselben Rippe 7 sämtliche in der Mitte angeordneten Kiemenlängsabschnitte 13 in die andere Richtung gegenüber der Rippenlängsrichtung 8 geneigt sind.
  • Außerdem bilden bei den hier gezeigten Ausführungsformen jeweils eine bestimmte Anzahl von Rippen 7, die in der Rohrlängsrichtung 5 nebeneinander angeordnet sind, jeweils eine Rippengruppe 15 bzw. 15', die in den Fig. 3 und 5 durch geschweifte Klammern gekennzeichnet sind. Beachtenswert ist hierbei, daß bei den Rippen 7 einer Rippengruppe 15 alle Kiemen 10 so angeordnet sind, daß alle oberen oder äußeren Kiemenlängsabschnitte 12 zueinander gleichsinnig angeordnet sind und daß alle unteren oder mittleren Kiemenlängsabschnitte 13 gleichsinnig zueinander orientiert sind. Das bedeutet, daß in Rohrlängsrichtung 5 die aufeinander folgenden Kiemenlängsabschnitte 12 bzw. 13 gleichsinnig geneigt sind. Des weiteren ist beachtenswert, daß bei den Rippen 7 benachbarter Rippengruppen 15 und 15' die Kiemenlängsabschnitte 12,13 der einen Rippengruppe 15 gegensinnig zu den Kiemenlängsabschnitten 12,13 der anderen Rippengruppe 15' geneigt sind.
  • Durch diese Anordnung der Kiemenlängsabschnitte 12,13 ergibt sich für die Gasströmung bei der Durchströmung des Wärmeübertragers 1 innerhalb der Rippen 7 eine Wirbelbildung, deren Schraubenform insbesondere aus den Fig. 2 und 4 hervorgeht und die in den Fig. 2 bis 5 mit 16 bezeichnet sind. Diese Wirbel 16 bewirken einerseits einen Gasaustausch in der Rohrlängsrichtung 5 und andererseits in der Kiemenlängsrichtung 11. Durch diesen Gasaustausch kann der Temperaturgradient zwischen rohrnahen Bereichen der Rippen 7 und rohrfernen mittleren Bereichen der Rippen 7 reduziert werden. Insgesamt verbessert sich dadurch die Wärmeübertragung zwischen Gasströmung und Kiemen 10 bzw. Rippen 7 und somit zwischen Gasströmung und Rohren 5 bzw. der darin geführten Flüssigkeitsströmung.
  • Bei der Ausführungsform gemäß den Fig. 2 und 3 ist es besonders vorteilhaft, die Rippenanzahl pro Rippengruppe 15 bzw. 15' so zu wählen, daß sich die Rohrgruppen 15 und 15' in der Rohrlängsrichtung 5 etwa so weit erstrecken wie benachbarte Rohre 2 quer zur Rohrlängsrichtung 5, also in Kiemenlängsrichtung 11, voneinander beabstandet sind. Hierdurch können die erzeugten Wirbel 16 im wesentlichen eine zylindrische Form annehmen. Dies ist zur Erzielung kleiner Durchströmungswiderstände von besonderem Vorteil.
  • Bei der Ausführungsform gemäß den Fig. 4 und 5 ist es besonders zweckmäßig, die Rippenanzahl pro Rippengruppe 15 bzw. 15' so zu wählen, daß sich die Rohrgruppen 15 und 15' in der Rohrlängsrichtung 5 etwa halb so weit erstrecken wie benachbarte Rohre 2 quer zur Rohrlängsrichtung 5, also in Kiemenlängsrichtung 11, voneinander beabstandet sind. Hierdurch können gemäß Fig. 4 in jeder Rippengruppe 15, 15' zwei aneinander grenzende, im wesentlichen zylindrische Wirbel 16 erzeugt werden, die eine besonders intensive Durchmischung der Gasströmung gewährleisten.
  • Bei den hier gezeigten Ausführungsformen besitzt jede Rippengruppe 15,15' drei Rippen 7 mit gleichsinnigen Kiemen 10 bzw. ersten Kiemenlängsabschnitten 12 und zweiten Kiemenlängsabschnitten 13.
  • Die Kiemen 10 bilden in den Rippen 7 Durchbrüche, wobei die Kiemen 10 aufgrund ihrer Anstellung bzw. Neigung bei einer Gasbeaufschlagung des Wärmeübertragers 1 die Gasströmung von der einen Rippenseite zur anderen Rippenseite führen. Durch die gegensinnige Strömungsumlenkung bei den ersten Kiemenlängsabschnitten 12 und den zweiten Kiemenlängsabschnitten 13 sowie aufgrund der gewählten Anordnung und Orientierung der Kiemenlängsabschnitte 12,13 bei benachbarten Rippen 7 können sich die gewünschten Wirbel 16 ausbilden.
  • Durch die vorgeschlagene Ausgestaltung der Kiemen 10 bzw. durch die gezielte Orientierung der Kiemenlängsabschnitte 12 und 13 ergeben sich propellerartige Verwindungen, die über mehrere Rippen 7 hinweg zusammenwirken und dort ein in sich geschlossenes Wirbelsystem (Vortex-System) anregen. Dieses Vortex-System 16 führt zu einem intensiven Gasaustausch zwischen rohrnahen und rohrfernen Luftschichten, wodurch alle Luftschichten entlang des Gasströmungswegs in den rohrnahen Bereich mit hoher Temperaturdifferenz kommen, so daß die Wärmeübertragung verbessert ist.
  • Bei der erfindungsgemäßen Bauweise können die Rippen 7 in der Kiemenlängsrichtung 11 relativ groß bauen, d.h. die Rohre 2 können relativ große Abstände voneinander aufweisen. Hierdurch ergibt sich eine besonders kostengünstige Bauweise für den Wärmeübertrager 1. Die Ausbildung der Wirbel 16 hat nur einen vergleichsweise geringen Druckverlust zur Folge. Des weiteren können auch die Randbereiche der Rohre 2, also die Übergangszonen zwischen den Behältern 3,4 und den Rohrlängsenden besser zur Wärmeübertragung genutzt werden.
  • Insgesamt ergibt sich somit ein Wärmeübertrager 1, der eine sehr effiziente Wärmeübertragung zwischen Gas und Flüssigkeit ermöglicht und gleichzeitig einen relativ geringen Druckverlust für die Gasströmung erzeugt.
  • Bei der Ausführungsform gemäß den Fig. 4 und 5 sind die Kiemen 10 bezüglich einer Mittelebene, die sich in Rohrlängsrichtung 5 und in Rippenlängsrichtung 8 zwischen den Rohren 2 erstreckt, spiegelsymmetrisch ausgebildet. Diese Symmetrie kann fertigungstechnische Vorteile aufweisen, insbesondere hinsichtlich eines Verziehens beim Endloswalzen eines Rippenbandes 6.

Claims (9)

  1. Wärmeübertrager, insbesondere für Kraftfahrzeuge, zur Wärmeübertragung zwischen einer Flüssigkeit und einem Gas,
    - mit mehreren Rohren (2),
    -- die parallel zueinander und beabstandet voneinander angeordnet sind,
    -- die innen in Rohrlängsrichtung (5) von der Flüssigkeit durchströmbar sind,
    -- die außen quer zur Rohrlängsrichtung (5) vom Gas umströmbar sind,
    - wobei zwischen den Rohren (2) im Gasströmungsweg jeweils mehrere Rippen (7) angeordnet sind,
    -- die wärmeübertragend mit den Rohren (2) verbunden sind,
    -- die sich mit ihrer Längsrichtung (8) quer zur Rohrlängsrichtung (5) erstrecken,
    - wobei jede Rippe (7) mehrere Kiemen (10) aufweist,
    -- die in Rippenlängsrichtung (8) hintereinander und parallel zueinander angeordnet sind,
    -- die sich mit ihrer Längsrichtung im wesentlichen quer zur Rohrlängsrichtung (5) und quer zur Rippenlängsrichtung (8) erstrecken,
    -- die quer zur Kiemenlängsrichtung (11) gegenüber der Rippenlängsrichtung (8) geneigt sind,
    -- die bei einer Gasbeaufschlagung des Wärmeübertragers (1) die Gasströmung von der einen Rippenseite zur anderen Rippenseite führen,
    - daß jede Kieme (10) wenigstens zwei Kiemenlängsabschnitte (12,13) aufweist,
    - wobei zwei benachbarte Kiemenlängsabschnitte (12,13) quer zur Kiemenlängsrichtung (11) in entgegengesetzten Richtungen gegenüber der Rippenlängsrichtung (8) geneigt sind, dadurch gekennzeichnet, daß eine bestimmte Anzahl von nebeneinander angeordneten Rippen (7) jeweils eine Rippengruppe (15,15') bilden, wobei bei den Rippen (7) einer Rippengruppe (15,15') alle Kiemen (10) so angeordnet sind, daß die in Rohrlängsrichtung (5) aufeinander folgenden Kiemenlängsabschnitte (12,13) gleichsinnig geneigt sind, wobei bei den Rippen (7) benachbarter Rippengruppen (15,15') die Kiemenlängsabschnitte (12,13) der einen Rippengruppe (15) gegensinnig zu den Kiemenlängsabschnitten (12,13) der anderen Rippengruppe (15') geneigt sind.
  2. Wärmeübertrager nach Anspruch 1,
    dadurch gekennzeichnet,
    daß alle Kiemen (10) einer Rippe (7) so angeordnet sind, daß die in Rippenlängsrichtung (8) aufeinander folgenden Kiemenlängsabschnitte (12,13) gleichsinnig geneigt sind.
  3. Wärmeübertrager nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß die Rippenanzahl in den Rippengruppen (15,15') so gewählt ist, daß sich die Rippengruppen (15,15') in Rohrlängsrichtung (5) etwa so weit oder etwa halb so weit erstrecken wie benachbarte Rohre (2) quer zur Rohrlängsrichtung (5) voneinander beabstandet sind.
  4. Wärmeübertrager nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß die Rippen (7) bezüglich ihrer quer zur Rippenlängsrichtung (8) verlaufenden Rippenquerrichtung (9) parallel zueinander angeordnet sind.
  5. Wärmeübertrager nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß bei einer Ausführungsform, bei der die Kiemen (10) jeweils nur zwei Kiemenlängsabschnitte (12,13) besitzen, bei jeder Kieme (10) beide Kiemenlängsabschnitte (12,13) etwa gleich groß sind.
  6. Wärmeübertrager nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß bei einer Ausführungsform, bei der die Kiemen (10) jeweils mehr als zwei Kiemenlängsabschnitte (12,13) besitzen, bei jeder Kieme (10) die Gesamtlänge aller Kiemenlängsabschnitte (12) mit der einen Kiemenausstellrichtung etwa gleich der Gesamtlänge aller Kiemenlängsabschnitte (13) mit der anderen Kiemenausstellrichtung ist.
  7. Wärmeübertrager nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß bei einer Ausführungsform, bei der die Kiemen (10) jeweils drei Kiemenlängsabschnitte (12,13) besitzen, bei jeder Kieme (10) der mittlere Kiemenlängsabschnitt (13) etwa gleich groß ist wie die beiden etwa gleich großen äußeren Kiemenlängsabschnitte (12) zusammen.
  8. Wärmeübertrager nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    daß alle Rippen (7), die zwischen zwei benachbarten Rohren (2) angeordnet sind, zu einem im wesentlichen zick-zack-förmig gewellten oder gefalteten Rippenband (6) zusammengefaßt sind.
  9. Wärmeübertrager nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    daß der Wärmeübertrager (1) als Flachrohr-Wärmeübertrager ausgebildet ist, bei dem die Erstreckungsrichtung der Rohre (2) quer zur Rohrlängsrichtung (5) in Rippenlängsrichtung (8) größer ist als quer dazu.
EP03000982A 2002-01-25 2003-01-17 Wärmeübertrager Expired - Lifetime EP1331464B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10202768 2002-01-25
DE10202768A DE10202768A1 (de) 2002-01-25 2002-01-25 Wärmeübertrager

Publications (3)

Publication Number Publication Date
EP1331464A2 EP1331464A2 (de) 2003-07-30
EP1331464A3 EP1331464A3 (de) 2003-08-06
EP1331464B1 true EP1331464B1 (de) 2006-05-24

Family

ID=7713005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03000982A Expired - Lifetime EP1331464B1 (de) 2002-01-25 2003-01-17 Wärmeübertrager

Country Status (4)

Country Link
EP (1) EP1331464B1 (de)
AT (1) ATE327492T1 (de)
DE (2) DE10202768A1 (de)
ES (1) ES2263854T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1764816B (zh) 2003-03-26 2010-09-29 贝洱工业技术公司 换热器,特别是空气/空气冷却器
DE10336625A1 (de) * 2003-08-05 2005-03-10 Behr Gmbh & Co Kg Vorrichtung zum Austausch von Wärme und Verfahren zu deren Herstellung
DE202008016603U1 (de) * 2008-12-15 2010-04-29 Autokühler GmbH & Co. KG Wellrippe für Wärmeaustauscher
DE102015226577A1 (de) 2015-12-22 2017-06-22 Mahle International Gmbh Blechteil mit einer Kiemen aufweisenden Rippenstruktur eines Wärmeübertragers sowie Herstellungsverfahren
DE102016213197A1 (de) 2016-07-19 2018-01-25 Mahle International Gmbh Wellrippe eines Wärmeübertragers und Wärmeübertrager

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214954A (en) 1963-02-19 1965-11-02 Ford Motor Co Roll die
FR1526316A (fr) * 1967-04-14 1968-05-24 Chausson Usines Sa Perfectionnements aux dissipateurs secondaires pour radiateurs et aérothermes
US3993125A (en) * 1975-11-28 1976-11-23 Ford Motor Company Heat exchange device
DE3050963C3 (de) * 1980-04-30 1995-11-09 Nippon Denso Co Wärmetauscher
GB2169694B (en) * 1985-01-15 1988-01-20 Sanden Corp Serpentine heat exchanger
US4815532A (en) * 1986-02-28 1989-03-28 Showa Aluminum Kabushiki Kaisha Stack type heat exchanger
EP0275813B1 (de) * 1986-12-29 1991-02-27 United Technologies Corporation Vorrichtung zur Erhöhung der Wärmeübertragung
JP2786702B2 (ja) * 1989-12-07 1998-08-13 昭和アルミニウム株式会社 複式一体型熱交換器
DE9404009U1 (de) * 1994-03-10 1995-07-13 Behr Gmbh & Co Wärmetauscher
DE19531383A1 (de) * 1995-08-26 1997-02-27 Martin Dipl Ing Behle Wärmeübertrager
US5992514A (en) * 1995-11-13 1999-11-30 Denso Corporation Heat exchanger having several exchanging portions
US5730214A (en) * 1997-01-16 1998-03-24 General Motors Corporation Heat exchanger cooling fin with varying louver angle
DE19719262C2 (de) * 1997-05-07 2003-01-30 Valeo Klimatech Gmbh & Co Kg Zickzacklamelle als Verrippung von Flachrohrwärmetauschern bei Kraftfahrzeugen
US6170566B1 (en) * 1999-12-22 2001-01-09 Visteon Global Technologies, Inc. High performance louvered fin for a heat exchanger

Also Published As

Publication number Publication date
EP1331464A2 (de) 2003-07-30
DE50303414D1 (de) 2006-06-29
ATE327492T1 (de) 2006-06-15
DE10202768A1 (de) 2003-07-31
ES2263854T3 (es) 2006-12-16
EP1331464A3 (de) 2003-08-06

Similar Documents

Publication Publication Date Title
EP0401752B1 (de) Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
EP0964218B1 (de) Wärmetauscher mit verrippten Flachrohren, insbesondere Heizungswärmetauscher, Motorkühler, Verflüssiger oder Verdampfer, für Kraftfahrzeuge
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
EP1996888B1 (de) Wärmetauscher für ein kraftfahrzeug
DE60116922T2 (de) Kondensator
DE69911131T2 (de) Wärmetauscher
DE3536325A1 (de) Waermeaustauscher
EP3048407A1 (de) Wärmeübertrager
DE19519633A1 (de) Ladeluftkühler
DE102007013302A1 (de) Wärmetauscher für ein Kraftfahrzeug
DE2952736C2 (de)
DE102007031824A1 (de) Wärmetauscher
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
AT401431B (de) Wärmetauscher
EP1331464B1 (de) Wärmeübertrager
EP0845648B1 (de) Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
EP1668303B1 (de) Gelötetes wärmeübertragernetz
EP1748271B1 (de) Rippen/Rohrblock für einen Wärmeübertrager
EP1632742B1 (de) Wärmeübertrager, insbesondere für Klimaanlage
DE19814028A1 (de) Doppel-Wärmetauscher
EP1434023B1 (de) Kältetrockner
EP1673583B1 (de) Ladeluft/kühlmittel-kühler
EP1248063B1 (de) Wärmeübertrager
WO2004079748A2 (de) Abstandhalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040206

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20040428

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50303414

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061024

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2263854

Country of ref document: ES

Kind code of ref document: T3

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060524

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO. KG

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20080103

Year of fee payment: 6

Ref country code: IT

Payment date: 20080123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080111

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061125

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090117

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100210

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090117

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303414

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303414

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150311

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303414

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190131

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50303414

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801